|
2 | 2 |
|
3 | 3 | ## Implemented
|
4 | 4 |
|
5 |
| -* `trapz` |
6 |
| -* `trapz_weights` |
| 5 | +<!-- vim-markdown-toc GFM --> |
| 6 | + |
| 7 | + * [`trapz` - integrate sampled values using trapezoidal rule](#trapz---integrate-sampled-values-using-trapezoidal-rule) |
| 8 | + * [Syntax](#syntax) |
| 9 | + * [Arguments](#arguments) |
| 10 | + * [Return value](#return-value) |
| 11 | + * [Example](#example) |
| 12 | + * [`trapz_weights` - trapezoidal rule weights for given abscissas](#trapz_weights---trapezoidal-rule-weights-for-given-abscissas) |
| 13 | + * [Syntax](#syntax-1) |
| 14 | + * [Arguments](#arguments-1) |
| 15 | + * [Return value](#return-value-1) |
| 16 | + * [Example](#example-1) |
| 17 | +* [`simps` - integrate sampled values using Simpson's rule (to be implemented)](#simps---integrate-sampled-values-using-simpsons-rule-to-be-implemented) |
| 18 | + * [Syntax](#syntax-2) |
| 19 | + * [Arguments](#arguments-2) |
| 20 | + * [Return value](#return-value-2) |
| 21 | + * [Example](#example-2) |
| 22 | +* [`simps_weights` - Simpson's rule weights for given abscissas (to be implemented)](#simps_weights---simpsons-rule-weights-for-given-abscissas-to-be-implemented) |
| 23 | + * [Syntax](#syntax-3) |
| 24 | + * [Arguments](#arguments-3) |
| 25 | + * [Return value](#return-value-3) |
| 26 | + * [Example](#example-3) |
| 27 | + |
| 28 | +<!-- vim-markdown-toc --> |
7 | 29 |
|
8 | 30 | ## `trapz` - integrate sampled values using trapezoidal rule
|
9 | 31 |
|
@@ -78,7 +100,7 @@ end program
|
78 | 100 |
|
79 | 101 | ```
|
80 | 102 |
|
81 |
| -# `simps` - integrate sampled values using Simpson's rule |
| 103 | +# `simps` - integrate sampled values using Simpson's rule (to be implemented) |
82 | 104 |
|
83 | 105 | Returns the Simpson's rule integral of an array `y` representing discrete samples of a function. The integral is computed assuming either equidistant abscissas with spacing `dx` or arbitary abscissas `x`.
|
84 | 106 |
|
@@ -112,7 +134,7 @@ If the size of `y` is two, the result is the same as if `trapz` had been called
|
112 | 134 |
|
113 | 135 | TBD
|
114 | 136 |
|
115 |
| -# `simps_weights` - Simpson's rule weights for given abscissas |
| 137 | +# `simps_weights` - Simpson's rule weights for given abscissas (to be implemented) |
116 | 138 |
|
117 | 139 | Given an array of abscissas `x`, computes the array of weights `w` such that if `y` represented function values tabulated at `x`, then `sum(w*y)` produces a Simpson's rule approximation to the integral.
|
118 | 140 |
|
|
0 commit comments