1
1
#:include "common.fypp"
2
- #:set RC_KINDS_TYPES = REAL_KINDS_TYPES[0:2]
2
+ #:set R_KINDS_TYPES = REAL_KINDS_TYPES[0:2]
3
3
#:set CI_KINDS_TYPES = INT_KINDS_TYPES + CMPLX_KINDS_TYPES[0:2]
4
4
module stdlib_specialfunctions_gamma
5
5
use iso_fortran_env, only : qp => real128
@@ -14,7 +14,7 @@ module stdlib_specialfunctions_gamma
14
14
integer(int32), parameter :: max_fact_int32 = 13_int32
15
15
integer(int64), parameter :: max_fact_int64 = 21_int64
16
16
17
- #:for k1, t1 in RC_KINDS_TYPES
17
+ #:for k1, t1 in R_KINDS_TYPES
18
18
${t1}$, parameter :: tol_${k1}$ = epsilon(1.0_${k1}$)
19
19
#:endfor
20
20
real(qp), parameter :: tol_qp = epsilon(1.0_qp)
@@ -62,12 +62,12 @@ module stdlib_specialfunctions_gamma
62
62
!! Lower incomplete gamma function
63
63
!!
64
64
#:for k1, t1 in INT_KINDS_TYPES
65
- #:for k2, t2 in RC_KINDS_TYPES
65
+ #:for k2, t2 in R_KINDS_TYPES
66
66
module procedure ingamma_low_${t1[0]}$${k1}$${k2}$
67
67
#:endfor
68
68
#:endfor
69
69
70
- #:for k1, t1 in RC_KINDS_TYPES
70
+ #:for k1, t1 in R_KINDS_TYPES
71
71
module procedure ingamma_low_${t1[0]}$${k1}$
72
72
#:endfor
73
73
end interface lower_incomplete_gamma
@@ -78,12 +78,12 @@ module stdlib_specialfunctions_gamma
78
78
!! Logarithm of lower incomplete gamma function
79
79
!!
80
80
#:for k1, t1 in INT_KINDS_TYPES
81
- #:for k2, t2 in RC_KINDS_TYPES
81
+ #:for k2, t2 in R_KINDS_TYPES
82
82
module procedure l_ingamma_low_${t1[0]}$${k1}$${k2}$
83
83
#:endfor
84
84
#:endfor
85
85
86
- #:for k1, t1 in RC_KINDS_TYPES
86
+ #:for k1, t1 in R_KINDS_TYPES
87
87
module procedure l_ingamma_low_${t1[0]}$${k1}$
88
88
#:endfor
89
89
end interface log_lower_incomplete_gamma
@@ -94,12 +94,12 @@ module stdlib_specialfunctions_gamma
94
94
!! Upper incomplete gamma function
95
95
!!
96
96
#:for k1, t1 in INT_KINDS_TYPES
97
- #:for k2, t2 in RC_KINDS_TYPES
97
+ #:for k2, t2 in R_KINDS_TYPES
98
98
module procedure ingamma_up_${t1[0]}$${k1}$${k2}$
99
99
#:endfor
100
100
#:endfor
101
101
102
- #:for k1, t1 in RC_KINDS_TYPES
102
+ #:for k1, t1 in R_KINDS_TYPES
103
103
module procedure ingamma_up_${t1[0]}$${k1}$
104
104
#:endfor
105
105
end interface upper_incomplete_gamma
@@ -110,12 +110,12 @@ module stdlib_specialfunctions_gamma
110
110
!! Logarithm of upper incomplete gamma function
111
111
!!
112
112
#:for k1, t1 in INT_KINDS_TYPES
113
- #:for k2, t2 in RC_KINDS_TYPES
113
+ #:for k2, t2 in R_KINDS_TYPES
114
114
module procedure l_ingamma_up_${t1[0]}$${k1}$${k2}$
115
115
#:endfor
116
116
#:endfor
117
117
118
- #:for k1, t1 in RC_KINDS_TYPES
118
+ #:for k1, t1 in R_KINDS_TYPES
119
119
module procedure l_ingamma_up_${t1[0]}$${k1}$
120
120
#:endfor
121
121
end interface log_upper_incomplete_gamma
@@ -126,12 +126,12 @@ module stdlib_specialfunctions_gamma
126
126
!! Regularized (normalized) lower incomplete gamma function, P
127
127
!!
128
128
#:for k1, t1 in INT_KINDS_TYPES
129
- #:for k2, t2 in RC_KINDS_TYPES
129
+ #:for k2, t2 in R_KINDS_TYPES
130
130
module procedure regamma_p_${t1[0]}$${k1}$${k2}$
131
131
#:endfor
132
132
#:endfor
133
133
134
- #:for k1, t1 in RC_KINDS_TYPES
134
+ #:for k1, t1 in R_KINDS_TYPES
135
135
module procedure regamma_p_${t1[0]}$${k1}$
136
136
#:endfor
137
137
end interface regularized_gamma_p
@@ -142,12 +142,12 @@ module stdlib_specialfunctions_gamma
142
142
!! Regularized (normalized) upper incomplete gamma function, Q
143
143
!!
144
144
#:for k1, t1 in INT_KINDS_TYPES
145
- #:for k2, t2 in RC_KINDS_TYPES
145
+ #:for k2, t2 in R_KINDS_TYPES
146
146
module procedure regamma_q_${t1[0]}$${k1}$${k2}$
147
147
#:endfor
148
148
#:endfor
149
149
150
- #:for k1, t1 in RC_KINDS_TYPES
150
+ #:for k1, t1 in R_KINDS_TYPES
151
151
module procedure regamma_q_${t1[0]}$${k1}$
152
152
#:endfor
153
153
end interface regularized_gamma_q
@@ -158,12 +158,12 @@ module stdlib_specialfunctions_gamma
158
158
! Incomplete gamma G function.
159
159
! Internal use only
160
160
!
161
- #:for k1, t1 in RC_KINDS_TYPES
161
+ #:for k1, t1 in R_KINDS_TYPES
162
162
module procedure gpx_${t1[0]}$${k1}$ !for real p and x
163
163
#:endfor
164
164
165
165
#:for k1, t1 in INT_KINDS_TYPES
166
- #:for k2, t2 in RC_KINDS_TYPES
166
+ #:for k2, t2 in R_KINDS_TYPES
167
167
module procedure gpx_${t1[0]}$${k1}$${k2}$ !for integer p and real x
168
168
#:endfor
169
169
#:endfor
@@ -176,7 +176,7 @@ module stdlib_specialfunctions_gamma
176
176
! Internal use only
177
177
!
178
178
#:for k1, t1 in INT_KINDS_TYPES
179
- #:for k2, t2 in RC_KINDS_TYPES
179
+ #:for k2, t2 in R_KINDS_TYPES
180
180
module procedure l_gamma_${t1[0]}$${k1}$${k2}$
181
181
#:endfor
182
182
#:endfor
@@ -372,7 +372,7 @@ contains
372
372
373
373
374
374
#:for k1, t1 in INT_KINDS_TYPES
375
- #:for k2, t2 in RC_KINDS_TYPES
375
+ #:for k2, t2 in R_KINDS_TYPES
376
376
377
377
impure elemental function l_gamma_${t1[0]}$${k1}$${k2}$(z, x) result(res)
378
378
!
@@ -555,7 +555,7 @@ contains
555
555
556
556
557
557
558
- #:for k1, t1 in RC_KINDS_TYPES
558
+ #:for k1, t1 in R_KINDS_TYPES
559
559
#:if k1 == "sp"
560
560
#:set k2 = "dp"
561
561
#:elif k1 == "dp"
@@ -701,7 +701,7 @@ contains
701
701
702
702
703
703
#:for k1, t1 in INT_KINDS_TYPES
704
- #:for k2, t2 in RC_KINDS_TYPES
704
+ #:for k2, t2 in R_KINDS_TYPES
705
705
impure elemental function gpx_${t1[0]}$${k1}$${k2}$(p, x) result(res)
706
706
!
707
707
! Approximation of incomplete gamma G function with integer argument p.
@@ -840,7 +840,7 @@ contains
840
840
841
841
842
842
843
- #:for k1, t1 in RC_KINDS_TYPES
843
+ #:for k1, t1 in R_KINDS_TYPES
844
844
impure elemental function ingamma_low_${t1[0]}$${k1}$(p, x) result(res)
845
845
!
846
846
! Approximation of lower incomplete gamma function with real p.
@@ -877,7 +877,7 @@ contains
877
877
878
878
879
879
#:for k1, t1 in INT_KINDS_TYPES
880
- #:for k2, t2 in RC_KINDS_TYPES
880
+ #:for k2, t2 in R_KINDS_TYPES
881
881
impure elemental function ingamma_low_${t1[0]}$${k1}$${k2}$(p, x) &
882
882
result(res)
883
883
!
@@ -917,7 +917,7 @@ contains
917
917
918
918
919
919
920
- #:for k1, t1 in RC_KINDS_TYPES
920
+ #:for k1, t1 in R_KINDS_TYPES
921
921
impure elemental function l_ingamma_low_${t1[0]}$${k1}$(p, x) result(res)
922
922
923
923
${t1}$, intent(in) :: p, x
@@ -954,7 +954,7 @@ contains
954
954
955
955
956
956
#:for k1, t1 in INT_KINDS_TYPES
957
- #:for k2, t2 in RC_KINDS_TYPES
957
+ #:for k2, t2 in R_KINDS_TYPES
958
958
impure elemental function l_ingamma_low_${t1[0]}$${k1}$${k2}$(p, x) &
959
959
result(res)
960
960
@@ -986,7 +986,7 @@ contains
986
986
987
987
988
988
989
- #:for k1, t1 in RC_KINDS_TYPES
989
+ #:for k1, t1 in R_KINDS_TYPES
990
990
impure elemental function ingamma_up_${t1[0]}$${k1}$(p, x) result(res)
991
991
!
992
992
! Approximation of upper incomplete gamma function with real p.
@@ -1024,7 +1024,7 @@ contains
1024
1024
1025
1025
1026
1026
#:for k1, t1 in INT_KINDS_TYPES
1027
- #:for k2, t2 in RC_KINDS_TYPES
1027
+ #:for k2, t2 in R_KINDS_TYPES
1028
1028
impure elemental function ingamma_up_${t1[0]}$${k1}$${k2}$(p, x) &
1029
1029
result(res)
1030
1030
!
@@ -1066,7 +1066,7 @@ contains
1066
1066
1067
1067
1068
1068
1069
- #:for k1, t1 in RC_KINDS_TYPES
1069
+ #:for k1, t1 in R_KINDS_TYPES
1070
1070
impure elemental function l_ingamma_up_${t1[0]}$${k1}$(p, x) result(res)
1071
1071
1072
1072
${t1}$, intent(in) :: p, x
@@ -1104,7 +1104,7 @@ contains
1104
1104
1105
1105
1106
1106
#:for k1, t1 in INT_KINDS_TYPES
1107
- #:for k2, t2 in RC_KINDS_TYPES
1107
+ #:for k2, t2 in R_KINDS_TYPES
1108
1108
impure elemental function l_ingamma_up_${t1[0]}$${k1}$${k2}$(p, x) &
1109
1109
result(res)
1110
1110
@@ -1145,7 +1145,7 @@ contains
1145
1145
1146
1146
1147
1147
1148
- #:for k1, t1 in RC_KINDS_TYPES
1148
+ #:for k1, t1 in R_KINDS_TYPES
1149
1149
impure elemental function regamma_p_${t1[0]}$${k1}$(p, x) result(res)
1150
1150
!
1151
1151
! Approximation of regularized incomplete gamma function P(p,x) for real p
@@ -1180,7 +1180,7 @@ contains
1180
1180
1181
1181
1182
1182
#:for k1, t1 in INT_KINDS_TYPES
1183
- #:for k2, t2 in RC_KINDS_TYPES
1183
+ #:for k2, t2 in R_KINDS_TYPES
1184
1184
impure elemental function regamma_p_${t1[0]}$${k1}$${k2}$(p, x) result(res)
1185
1185
!
1186
1186
! Approximation of regularized incomplete gamma function P(p,x) for integer p
@@ -1216,7 +1216,7 @@ contains
1216
1216
1217
1217
1218
1218
1219
- #:for k1, t1 in RC_KINDS_TYPES
1219
+ #:for k1, t1 in R_KINDS_TYPES
1220
1220
impure elemental function regamma_q_${t1[0]}$${k1}$(p, x) result(res)
1221
1221
!
1222
1222
! Approximation of regularized incomplete gamma function Q(p,x) for real p
@@ -1251,7 +1251,7 @@ contains
1251
1251
1252
1252
1253
1253
#:for k1, t1 in INT_KINDS_TYPES
1254
- #:for k2, t2 in RC_KINDS_TYPES
1254
+ #:for k2, t2 in R_KINDS_TYPES
1255
1255
impure elemental function regamma_q_${t1[0]}$${k1}$${k2}$(p, x) result(res)
1256
1256
!
1257
1257
! Approximation of regularized incomplet gamma function Q(p,x) for integer p
0 commit comments