|
| 1 | +#:include "common.fypp" |
| 2 | +#:set RC_KINDS_TYPES = REAL_KINDS_TYPES + CMPLX_KINDS_TYPES |
| 3 | +! Test singular value decomposition |
| 4 | +module test_linalg_svd |
| 5 | + use testdrive, only: error_type, check, new_unittest, unittest_type |
| 6 | + use stdlib_linalg_constants |
| 7 | + use stdlib_linalg, only: diag |
| 8 | + use stdlib_linalg_svd, only: svd,svdvals |
| 9 | + use stdlib_linalg_state, only: linalg_state_type |
| 10 | + |
| 11 | + implicit none (type,external) |
| 12 | + |
| 13 | + contains |
| 14 | + |
| 15 | + !> SVD tests |
| 16 | + subroutine test_svd(error) |
| 17 | + logical, intent(out) :: error |
| 18 | + |
| 19 | + real :: t0,t1 |
| 20 | + |
| 21 | + call cpu_time(t0) |
| 22 | + |
| 23 | + #:for rk,rt,ri in REAL_KINDS_TYPES |
| 24 | + #:if rk!="xdp" |
| 25 | + call test_svd_${ri}$(error) |
| 26 | + if (error) return |
| 27 | + #:endif |
| 28 | + #:endfor |
| 29 | + |
| 30 | + #:for ck,ct,ci in CMPLX_KINDS_TYPES |
| 31 | + #:if ck!="xdp" |
| 32 | + call test_complex_svd_${ci}$(error) |
| 33 | + if (error) return |
| 34 | + #:endif |
| 35 | + #:endfor |
| 36 | + |
| 37 | + call cpu_time(t1) |
| 38 | + |
| 39 | + print 1, 1000*(t1-t0), merge('SUCCESS','ERROR ',.not.error) |
| 40 | + |
| 41 | + 1 format('SVD tests completed in ',f9.4,' milliseconds, result=',a) |
| 42 | + |
| 43 | + end subroutine test_svd |
| 44 | + |
| 45 | + !> Real matrix svd |
| 46 | + #:for rk,rt,ri in REAL_KINDS_TYPES |
| 47 | + #:if rk!="xdp" |
| 48 | + subroutine test_svd_${ri}$(error) |
| 49 | + logical,intent(out) :: error |
| 50 | + |
| 51 | + !> Reference solution |
| 52 | + ${rt}$, parameter :: tol = sqrt(epsilon(0.0_${rk}$)) |
| 53 | + ${rt}$, parameter :: third = 1.0_${rk}$/3.0_${rk}$ |
| 54 | + ${rt}$, parameter :: twothd = 2*third |
| 55 | + ${rt}$, parameter :: rsqrt2 = 1.0_${rk}$/sqrt(2.0_${rk}$) |
| 56 | + ${rt}$, parameter :: rsqrt18 = 1.0_${rk}$/sqrt(18.0_${rk}$) |
| 57 | + |
| 58 | + ${rt}$, parameter :: A_mat(2,3) = reshape([${rt}$ :: 3,2, 2,3, 2,-2],[2,3]) |
| 59 | + ${rt}$, parameter :: s_sol(2) = [${rt}$ :: 5, 3] |
| 60 | + ${rt}$, parameter :: u_sol(2,2) = reshape(rsqrt2*[1,1,1,-1],[2,2]) |
| 61 | + ${rt}$, parameter :: vt_sol(3,3) = reshape([rsqrt2,rsqrt18,twothd, & |
| 62 | + rsqrt2,-rsqrt18,-twothd,& |
| 63 | + 0.0_${rk}$,4*rsqrt18,-third],[3,3]) |
| 64 | + |
| 65 | + !> Local variables |
| 66 | + type(linalg_state_type) :: state |
| 67 | + ${rt}$ :: A(2,3),s(2),u(2,2),vt(3,3) |
| 68 | + |
| 69 | + !> Initialize matrix |
| 70 | + A = A_mat |
| 71 | + |
| 72 | + !> Simple subroutine version |
| 73 | + call svd(A,s,err=state) |
| 74 | + error = state%error() .or. .not. all(abs(s-s_sol)<=tol) |
| 75 | + if (error) return |
| 76 | + |
| 77 | + !> Function interface |
| 78 | + s = svdvals(A,err=state) |
| 79 | + error = state%error() .or. .not. all(abs(s-s_sol)<=tol) |
| 80 | + if (error) return |
| 81 | + |
| 82 | + !> [S, U]. Singular vectors could be all flipped |
| 83 | + call svd(A,s,u,err=state) |
| 84 | + error = state%error() .or. & |
| 85 | + .not. all(abs(s-s_sol)<=tol) .or. & |
| 86 | + .not.(all(abs(u-u_sol)<=tol) .or. all(abs(u+u_sol)<=tol)) |
| 87 | + if (error) return |
| 88 | + |
| 89 | + !> [S, U]. Overwrite A matrix |
| 90 | + call svd(A,s,u,overwrite_a=.true.,err=state) |
| 91 | + error = state%error() .or. & |
| 92 | + .not. all(abs(s-s_sol)<=tol) .or. & |
| 93 | + .not.(all(abs(u-u_sol)<=tol) .or. all(abs(u+u_sol)<=tol)) |
| 94 | + if (error) return |
| 95 | + |
| 96 | + !> [S, U, V^T] |
| 97 | + A = A_mat |
| 98 | + call svd(A,s,u,vt,overwrite_a=.true.,err=state) |
| 99 | + error = state%error() .or. & |
| 100 | + .not. all(abs(s-s_sol)<=tol) .or. & |
| 101 | + .not.(all(abs(u-u_sol)<=tol) .or. all(abs(u+u_sol)<=tol)) .or. & |
| 102 | + .not.(all(abs(vt-vt_sol)<=tol) .or. all(abs(vt+vt_sol)<=tol)) |
| 103 | + if (error) return |
| 104 | + |
| 105 | + !> [S, V^T]. Do not overwrite A matrix |
| 106 | + A = A_mat |
| 107 | + call svd(A,s,vt=vt,err=state) |
| 108 | + error = state%error() .or. & |
| 109 | + .not. all(abs(s-s_sol)<=tol) .or. & |
| 110 | + .not.(all(abs(vt+vt_sol)<=tol) .or. all(abs(vt+vt_sol)<=tol)) |
| 111 | + if (error) return |
| 112 | + |
| 113 | + !> [S, V^T]. Overwrite A matrix |
| 114 | + call svd(A,s,vt=vt,overwrite_a=.true.,err=state) |
| 115 | + error = state%error() .or. & |
| 116 | + .not. all(abs(s-s_sol)<=tol) .or. & |
| 117 | + .not.(all(abs(vt-vt_sol)<=tol) .or. all(abs(vt+vt_sol)<=tol)) |
| 118 | + if (error) return |
| 119 | + |
| 120 | + !> [U, S, V^T]. |
| 121 | + A = A_mat |
| 122 | + call svd(A,s,u,vt,err=state) |
| 123 | + error = state%error() .or. & |
| 124 | + .not. all(abs(s-s_sol)<=tol) .or. & |
| 125 | + .not.(all(abs(u-u_sol)<=tol) .or. all(abs(u+u_sol)<=tol)) .or. & |
| 126 | + .not.(all(abs(vt-vt_sol)<=tol) .or. all(abs(vt+vt_sol)<=tol)) |
| 127 | + if (error) return |
| 128 | + |
| 129 | + !> [U, S, V^T]. Partial storage -> compare until k=2 columns of U rows of V^T |
| 130 | + A = A_mat |
| 131 | + u = 0 |
| 132 | + vt = 0 |
| 133 | + call svd(A,s,u,vt,full_matrices=.false.,err=state) |
| 134 | + error = state%error() & |
| 135 | + .or. .not. all(abs(s-s_sol)<=tol) & |
| 136 | + .or. .not.(all(abs( u(:,:2)- u_sol(:,:2))<=tol) .or. all(abs( u(:,:2)+ u_sol(:,:2))<=tol)) & |
| 137 | + .or. .not.(all(abs(vt(:2,:)-vt_sol(:2,:))<=tol) .or. all(abs(vt(:2,:)+vt_sol(:2,:))<=tol)) |
| 138 | + |
| 139 | + if (error) return |
| 140 | + |
| 141 | + end subroutine test_svd_${ri}$ |
| 142 | + |
| 143 | + #:endif |
| 144 | + #:endfor |
| 145 | + |
| 146 | + !> Test complex svd |
| 147 | + #:for ck,ct,ci in CMPLX_KINDS_TYPES |
| 148 | + #:if ck!="xdp" |
| 149 | + subroutine test_complex_svd_${ci}$(error) |
| 150 | + logical,intent(out) :: error |
| 151 | + |
| 152 | + !> Reference solution |
| 153 | + real(${ck}$), parameter :: tol = sqrt(epsilon(0.0_${ck}$)) |
| 154 | + real(${ck}$), parameter :: one = 1.0_${ck}$ |
| 155 | + real(${ck}$), parameter :: zero = 0.0_${ck}$ |
| 156 | + real(${ck}$), parameter :: sqrt2 = sqrt(2.0_${ck}$) |
| 157 | + real(${ck}$), parameter :: rsqrt2 = one/sqrt2 |
| 158 | + ${ct}$, parameter :: cone = (1.0_${ck}$,0.0_${ck}$) |
| 159 | + ${ct}$, parameter :: cimg = (0.0_${ck}$,1.0_${ck}$) |
| 160 | + ${ct}$, parameter :: czero = (0.0_${ck}$,0.0_${ck}$) |
| 161 | + |
| 162 | + real(${ck}$), parameter :: s_sol(2) = [sqrt2,sqrt2] |
| 163 | + ${ct}$, parameter :: A_mat(2,2) = reshape([cone,cimg,cimg,cone],[2,2]) |
| 164 | + ${ct}$, parameter :: u_sol(2,2) = reshape(rsqrt2*[cone,cimg,cimg,cone],[2,2]) |
| 165 | + ${ct}$, parameter :: vt_sol(2,2) = reshape([cone,czero,czero,cone],[2,2]) |
| 166 | + |
| 167 | + !> Local variables |
| 168 | + type(linalg_state_type) :: state |
| 169 | + ${ct}$ :: A(2,2),u(2,2),vt(2,2) |
| 170 | + real(${ck}$) :: s(2) |
| 171 | + |
| 172 | + !> Initialize matrix |
| 173 | + A = A_mat |
| 174 | + |
| 175 | + !> Simple subroutine version |
| 176 | + call svd(A,s,err=state) |
| 177 | + error = state%error() .or. .not. all(abs(s-s_sol)<=tol) |
| 178 | + if (error) return |
| 179 | + |
| 180 | + !> Function interface |
| 181 | + s = svdvals(A,err=state) |
| 182 | + error = state%error() .or. .not. all(abs(s-s_sol)<=tol) |
| 183 | + if (error) return |
| 184 | + |
| 185 | + !> [S, U, V^T] |
| 186 | + A = A_mat |
| 187 | + call svd(A,s,u,vt,overwrite_a=.true.,err=state) |
| 188 | + error = state%error() .or. & |
| 189 | + .not. all(abs(s-s_sol)<=tol) .or. & |
| 190 | + .not. all(abs(matmul(u,matmul(diag(s),vt)) - A_mat)<=tol) |
| 191 | + if (error) return |
| 192 | + |
| 193 | + end subroutine test_complex_svd_${ci}$ |
| 194 | + |
| 195 | + #:endif |
| 196 | + #:endfor |
| 197 | + |
| 198 | + |
| 199 | +end module test_linalg_svd |
| 200 | + |
| 201 | + |
0 commit comments