|
1 | 1 | # pySELFI #
|
2 | 2 |
|
3 | 3 | [](https://arxiv.org/abs/1902.10149)
|
| 4 | +[](https://arxiv.org/abs/2209.11057) |
4 | 5 | [](https://github.com/florent-leclercq/pyselfi)
|
5 |
| -[](https://github.com/florent-leclercq/pyselfi/commits) |
| 6 | +[](https://github.com/florent-leclercq/pyselfi/commits) |
6 | 7 | [](https://zenodo.org/badge/latestdoi/197575311)
|
7 | 8 | [](https://github.com/florent-leclercq/pyselfi/blob/master/LICENSE)
|
8 | 9 | [](https://badge.fury.io/py/pyselfi)
|
9 | 10 | [](http://pyselfi.readthedocs.io/en/latest/)
|
10 |
| -[](https://travis-ci.com/florent-leclercq/pyselfi) |
11 | 11 | [](http://pyselfi.florent-leclercq.eu/)
|
12 | 12 |
|
13 | 13 | Simulator Expansion for Likelihood-Free Inference (SELFI): a python implementation.
|
14 | 14 |
|
15 | 15 | ## Documentation ##
|
16 | 16 |
|
17 |
| -The code's homepage is [http://pyselfi.florent-leclercq.eu](http://pyselfi.florent-leclercq.eu). The documentation is available on readthedocs at [https://pyselfi.readthedocs.io/](https://pyselfi.readthedocs.io/). Limited user-support may be asked from the main author, Florent Leclercq. |
| 17 | +The code's homepage is [https://pyselfi.florent-leclercq.eu](https://pyselfi.florent-leclercq.eu). The documentation is available on readthedocs at [https://pyselfi.readthedocs.io/](https://pyselfi.readthedocs.io/). Limited user-support may be asked from the main author, Florent Leclercq. |
18 | 18 |
|
19 | 19 | ## Contributors ##
|
20 | 20 |
|
21 |
| -* Florent Leclercq, florent.leclercq@polytechnique.org |
| 21 | +* Florent Leclercq, florent.leclercq@iap.fr |
22 | 22 |
|
23 | 23 | ## Reference ##
|
24 | 24 |
|
25 |
| -To acknowledge the use of pySELFI in research papers, please cite its [doi:10.5281/zenodo.3341588](https://doi.org/10.5281/zenodo.3341588) (or for the latest version, see the badge above), as well as the paper <a href="https://arxiv.org/abs/1902.10149" target="blank">Leclercq <i>et al.</i> (2019)</a>: |
| 25 | +To acknowledge the use of pySELFI in research papers, please cite its [doi:10.5281/zenodo.3341588](https://doi.org/10.5281/zenodo.3341588) (or for the latest version, see the badge above), as well as the papers [Leclercq <i>et al.</i> (2019)](https://arxiv.org/abs/1902.10149) and [Leclercq (2022)](https://arxiv.org/abs/2209.11057): |
26 | 26 |
|
27 |
| -*Primordial power spectrum and cosmology from black-box galaxy surveys*<br/> |
| 27 | +* *Primordial power spectrum and cosmology from black-box galaxy surveys*<br/> |
28 | 28 | F. Leclercq, W. Enzi, J. Jasche, A. Heavens<br/>
|
29 | 29 | <a href="http://dx.doi.org/10.1093/mnras/stz2718" target="blank">MNRAS <b>490</b>, 4237 (2019)</a>, <a href="http://arxiv.org/abs/1902.10149" target="blank">arXiv:1902.10149</a> [<a href="http://arxiv.org/abs/1902.10149" target="blank">astro-ph.CO</a>] [<a href="https://ui.adsabs.harvard.edu/?#abs/2019MNRAS.490.4237L" target="blank">ADS</a>] [<a href="http://arxiv.org/pdf/1902.10149" class="document" target="blank">pdf</a>]
|
| 30 | +* *Simulation-based inference of Bayesian hierarchical models while checking for model misspecification*<br/> |
| 31 | +F. Leclercq<br/> |
| 32 | +Proceedings of the <a href="https://maxent22.see.asso.fr/" target="blank">41st International Conference on Bayesian and Maximum Entropy methods in Science and Engineering (MaxEnt2022)</a>, 18-22 July 2022, Paris, France<br /> |
| 33 | +<a href="https://doi.org/10.3390/psf2022005004" target="blank"> Physical Sciences Forum <b>5</b>, 4 (2022)</a>, <a href="https://arxiv.org/abs/2209.11057" target="blank">arXiv:2209.11057</a> [<a href="https://arxiv.org/abs/2209.11057" target="blank">astro-ph.CO</a>] [<a href="https://ui.adsabs.harvard.edu/?#abs/2022arXiv220911057L" target="blank">ADS</a>] [<a href="https://arxiv.org/pdf/2209.11057" class="document" target="blank">pdf</a>] |
30 | 34 |
|
31 |
| - @ARTICLE{pySELFI, |
32 |
| - author = {{Leclercq}, Florent and {Enzi}, Wolfgang and {Jasche}, Jens and {Heavens}, Alan}, |
33 |
| - title = "{Primordial power spectrum and cosmology from black-box galaxy surveys}", |
34 |
| - journal = {\mnras}, |
35 |
| - keywords = {methods: statistical, cosmological parameters, large-scale structure of Universe, Astrophysics - Cosmology and Nongalactic Astrophysics, Astrophysics - Instrumentation and Methods for Astrophysics}, |
36 |
| - year = "2019", |
37 |
| - month = "Dec", |
38 |
| - volume = {490}, |
39 |
| - number = {3}, |
40 |
| - pages = {4237-4253}, |
41 |
| - doi = {10.1093/mnras/stz2718}, |
42 |
| - archivePrefix = {arXiv}, |
43 |
| - eprint = {1902.10149}, |
44 |
| - primaryClass = {astro-ph.CO}, |
45 |
| - adsurl = {https://ui.adsabs.harvard.edu/abs/2019MNRAS.490.4237L}, |
46 |
| - adsnote = {Provided by the SAO/NASA Astrophysics Data System} |
47 |
| - } |
| 35 | + |
| 36 | + @ARTICLE{pySELFI1, |
| 37 | + author = {{Leclercq}, Florent and {Enzi}, Wolfgang and {Jasche}, Jens and {Heavens}, Alan}, |
| 38 | + title = "{Primordial power spectrum and cosmology from black-box galaxy surveys}", |
| 39 | + journal = {\mnras}, |
| 40 | + keywords = {methods: statistical, cosmological parameters, large-scale structure of Universe, Astrophysics - Cosmology and Nongalactic Astrophysics, Astrophysics - Instrumentation and Methods for Astrophysics}, |
| 41 | + year = "2019", |
| 42 | + month = "Dec", |
| 43 | + volume = {490}, |
| 44 | + number = {3}, |
| 45 | + pages = {4237-4253}, |
| 46 | + doi = {10.1093/mnras/stz2718}, |
| 47 | + archivePrefix = {arXiv}, |
| 48 | + eprint = {1902.10149}, |
| 49 | + primaryClass = {astro-ph.CO}, |
| 50 | + adsurl = {https://ui.adsabs.harvard.edu/abs/2019MNRAS.490.4237L}, |
| 51 | + } |
| 52 | + |
| 53 | + @ARTICLE{pySELFI2, |
| 54 | + author = {{Leclercq}, Florent}, |
| 55 | + title = "{Simulation-based inference of Bayesian hierarchical models while checking for model misspecification}", |
| 56 | + journal = {Physical Sciences Forum}, |
| 57 | + keywords = {Statistics - Methodology, Astrophysics - Instrumentation and Methods for Astrophysics, Mathematics - Statistics Theory, Quantitative Biology - Populations and Evolution, Statistics - Machine Learning}, |
| 58 | + year = "2022", |
| 59 | + month = "Sep", |
| 60 | + volume = {5}, |
| 61 | + pages = {4}, |
| 62 | + doi = {10.3390/psf2022005004}, |
| 63 | + archivePrefix = {arXiv}, |
| 64 | + eprint = {2209.11057}, |
| 65 | + primaryClass = {stat.ME}, |
| 66 | + adsurl = {https://ui.adsabs.harvard.edu/abs/2022arXiv220911057L}, |
| 67 | + } |
48 | 68 |
|
49 | 69 | ## License ##
|
50 | 70 |
|
51 |
| -This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. By downloading and using pySELFI, you agree to the [LICENSE](LICENSE), distributed with the source code in a text file of the same name. |
| 71 | +This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. By downloading and using pySELFI, you agree to the [LICENSE](https://github.com/florent-leclercq/pyselfi/blob/master/LICENSE), distributed with the source code in a text file of the same name. |
0 commit comments