Skip to content

DQN with RGB image as input  #8

@ghorbelm

Description

@ghorbelm

Hello
I try to do a DQN with a RGB image.
Python code :

def build_QNetwork_RGB(n_actions, learning_rate, history_length, input_shape):
"""Builds a dueling DQN as a Keras model
Arguments:
n_actions: Number of possible action the agent can take
learning_rate: Learning rate
input_shape: Shape of the preprocessed frame the model sees
history_length: Number of historical frames the agent can see
Returns:
A compiled Keras model
"""
model_input = Input(shape=(history_length, input_shape[0], input_shape[1], input_shape[2]))
x = Lambda(lambda layer: layer / 255)(model_input) # normalize by 255
x = Conv2D(32, (8, 8), strides=4, kernel_initializer=VarianceScaling(scale=2.), activation='relu', use_bias=False)(x)
x = Conv2D(64, (4, 4), strides=2, kernel_initializer=VarianceScaling(scale=2.), activation='relu', use_bias=False)(x)
x = Conv2D(64, (3, 3), strides=1, kernel_initializer=VarianceScaling(scale=2.), activation='relu', use_bias=False)(x)
x = Conv2D(1024, (7, 7), strides=1, kernel_initializer=VarianceScaling(scale=2.), activation='relu', use_bias=False)(x)

# Split into value and advantage streams
val_stream, adv_stream = Lambda(lambda w: tf.split(w, 2, 4))(x)  # custom splitting layer

val_stream = Flatten()(val_stream)
val = Dense(1, kernel_initializer=VarianceScaling(scale=2.))(val_stream)

adv_stream = Flatten()(adv_stream)
adv = Dense(n_actions, kernel_initializer=VarianceScaling(scale=2.))(adv_stream)

# Combine streams into Q-Values
reduce_mean = Lambda(lambda w: tf.reduce_mean(w, axis=1, keepdims=True))  # custom layer for reduce mean

q_vals = Add()([val, Subtract()([adv, reduce_mean(adv)])])

# Build model
model = Model(model_input, q_vals)
model.compile(Adam(learning_rate), loss=tf.keras.losses.Huber())    

model.summary()

return model**_ 

===========================================================
when I used this function to build network :

INPUT_SHAPE = (84, 84, 3) # Size of the preprocessed input frame.
HISTORY_LENGTH = 5
Num_Actions = 4

BATCH_SIZE = 32 # Number of samples the agent learns from at once
LEARNING_RATE = 0.00001

MAIN_DQN = build_QNetwork_RGB(Num_Actions, LEARNING_RATE, HISTORY_LENGTH, INPUT_SHAPE)

===========================================================
I got :
Model: "model"


Layer (type) Output Shape Param # Connected to

input_1 (InputLayer) [(None, 5, 84, 84, 3 0


lambda (Lambda) (None, 5, 84, 84, 3) 0 input_1[0][0]


conv2d (Conv2D) (None, 5, 20, 20, 32 6144 lambda[0][0]


conv2d_1 (Conv2D) (None, 5, 9, 9, 64) 32768 conv2d[0][0]


conv2d_2 (Conv2D) (None, 5, 7, 7, 64) 36864 conv2d_1[0][0]


conv2d_3 (Conv2D) (None, 5, 1, 1, 1024 3211264 conv2d_2[0][0]


lambda_1 (Lambda) [(None, 5, 1, 1, 512 0 conv2d_3[0][0]


flatten_1 (Flatten) (None, 2560) 0 lambda_1[0][1]


dense_1 (Dense) (None, 4) 10244 flatten_1[0][0]


flatten (Flatten) (None, 2560) 0 lambda_1[0][0]


lambda_2 (Lambda) (None, 1) 0 dense_1[0][0]


dense (Dense) (None, 1) 2561 flatten[0][0]


subtract (Subtract) (None, 4) 0 dense_1[0][0]
lambda_2[0][0]


add (Add) (None, 4) 0 dense[0][0]
subtract[0][0]

Total params: 3,299,845
Trainable params: 3,299,845
Non-trainable params: 0


I feel that this model is not well built. Do you have an idea how to correct it if this is the case?

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions