@@ -327,6 +327,7 @@ def create_conv_upsample():
327
327
model .set_initializer (tensor_name , gen_finn_dt_tensor (DataType ["FLOAT32" ], init_shape ))
328
328
return model
329
329
330
+
330
331
def create_resize ():
331
332
"""
332
333
Creates an model for testing the 3D to 4D transform of the resize node.
@@ -346,18 +347,18 @@ def create_resize():
346
347
name = "Resize2" ,
347
348
mode = "nearest" ,
348
349
)
349
-
350
+
350
351
in_resize1 = onnx .helper .make_tensor_value_info ("in_resize1" , onnx .TensorProto .FLOAT , [1 , 32 , 4 ])
351
- out_resize1 = onnx .helper .make_tensor_value_info ("out_resize1" , onnx .TensorProto .FLOAT , [1 , 32 , 8 ])
352
- out_resize2 = onnx .helper .make_tensor_value_info ("out_resize2" , onnx .TensorProto .FLOAT , [1 , 32 , 16 ])
353
-
352
+ out_resize1 = onnx .helper .make_tensor_value_info ("out_resize1" , onnx .TensorProto .FLOAT , [1 , 32 , 8 ])
353
+ out_resize2 = onnx .helper .make_tensor_value_info ("out_resize2" , onnx .TensorProto .FLOAT , [1 , 32 , 16 ])
354
+
354
355
roi_resize1 = onnx .helper .make_tensor_value_info ("roi_resize1" , onnx .TensorProto .FLOAT , [4 ])
355
356
scales_resize1 = onnx .helper .make_tensor_value_info ("scales_resize1" , onnx .TensorProto .FLOAT , [])
356
357
sizes_resize1 = onnx .helper .make_tensor_value_info ("sizes_resize1" , onnx .TensorProto .INT64 , [3 ])
357
358
358
359
roi_resize2 = onnx .helper .make_tensor_value_info ("roi_resize2" , onnx .TensorProto .FLOAT , [4 ])
359
360
scales_resize2 = onnx .helper .make_tensor_value_info ("scales_resize2" , onnx .TensorProto .FLOAT , [3 ])
360
-
361
+
361
362
list_of_nodes = [
362
363
resize_node1 ,
363
364
resize_node2 ,
@@ -384,9 +385,10 @@ def create_resize():
384
385
model = model .transform (InferShapes ())
385
386
model .set_initializer ("sizes_resize1" , np .array ([1 , 32 , 8 ], dtype = np .int64 ))
386
387
model .set_initializer ("scales_resize1" , np .array ([], dtype = np .float32 ))
387
- model .set_initializer ("scales_resize2" , np .array ([1. , 1. , 2. ], dtype = np .float32 ))
388
+ model .set_initializer ("scales_resize2" , np .array ([1.0 , 1.0 , 2.0 ], dtype = np .float32 ))
388
389
return model
389
390
391
+
390
392
@pytest .mark .parametrize ("test_model" , ["Quartz" , "VGG" , "ConvUpsample" , "Resize" ])
391
393
def test_4d_conversion (test_model ):
392
394
"""
0 commit comments