Skip to content

Stable Diffusion deep dive notebook vae encoding problem  #27

@debdip

Description

@debdip

while encode image to the latent space using
latent = vae.encode(tfms.ToTensor()(input_im).unsqueeze(0).to(torch.float16).to(torch_device)*2-1)
it gave error RuntimeError: Input type (torch.cuda.HalfTensor) and weight type (torch.HalfTensor) should be the same

As my graphics card 8gb I converted vae to torch.float16. Is that the problem.

the whole error is---

RuntimeError Traceback (most recent call last)
Cell In[20], line 2
1 # Encode to the latent space
----> 2 encoded = pil_to_latent(input_image)
3 encoded.shape
4 # Let's visualize the four channels of this latent representation:

Cell In[18], line 4, in pil_to_latent(input_im)
1 def pil_to_latent(input_im):
2 # Single image -> single latent in a batch (so size 1, 4, 64, 64)
3 with torch.no_grad():
----> 4 latent = vae.encode(tfms.ToTensor()(input_im).type(torch.float16).unsqueeze(0).to(torch_device)*2-1) # Note scaling
5 return 0.18215 * latent.latent_dist.sample()

File F:\Python 3.10.8\lib\site-packages\diffusers\models\vae.py:566, in AutoencoderKL.encode(self, x, return_dict)
565 def encode(self, x: torch.FloatTensor, return_dict: bool = True) -> AutoencoderKLOutput:
--> 566 h = self.encoder(x)
567 moments = self.quant_conv(h)
568 posterior = DiagonalGaussianDistribution(moments)

File F:\Python 3.10.8\lib\site-packages\torch\nn\modules\module.py:1190, in Module._call_impl(self, *input, **kwargs)
1186 # If we don't have any hooks, we want to skip the rest of the logic in
1187 # this function, and just call forward.
1188 if not (self._backward_hooks or self._forward_hooks or self._forward_pre_hooks or _global_backward_hooks
1189 or _global_forward_hooks or _global_forward_pre_hooks):
-> 1190 return forward_call(*input, **kwargs)
1191 # Do not call functions when jit is used
1192 full_backward_hooks, non_full_backward_hooks = [], []

File F:\Python 3.10.8\lib\site-packages\diffusers\models\vae.py:130, in Encoder.forward(self, x)
128 def forward(self, x):
129 sample = x
--> 130 sample = self.conv_in(sample)
132 # down
133 for down_block in self.down_blocks:

File F:\Python 3.10.8\lib\site-packages\torch\nn\modules\module.py:1190, in Module._call_impl(self, *input, **kwargs)
1186 # If we don't have any hooks, we want to skip the rest of the logic in
1187 # this function, and just call forward.
1188 if not (self._backward_hooks or self._forward_hooks or self._forward_pre_hooks or _global_backward_hooks
1189 or _global_forward_hooks or _global_forward_pre_hooks):
-> 1190 return forward_call(*input, **kwargs)
1191 # Do not call functions when jit is used
1192 full_backward_hooks, non_full_backward_hooks = [], []

File F:\Python 3.10.8\lib\site-packages\torch\nn\modules\conv.py:463, in Conv2d.forward(self, input)
462 def forward(self, input: Tensor) -> Tensor:
--> 463 return self._conv_forward(input, self.weight, self.bias)

File F:\Python 3.10.8\lib\site-packages\torch\nn\modules\conv.py:459, in Conv2d._conv_forward(self, input, weight, bias)
455 if self.padding_mode != 'zeros':
456 return F.conv2d(F.pad(input, self._reversed_padding_repeated_twice, mode=self.padding_mode),
457 weight, bias, self.stride,
458 _pair(0), self.dilation, self.groups)
--> 459 return F.conv2d(input, weight, bias, self.stride,
460 self.padding, self.dilation, self.groups)

RuntimeError: Input type (torch.cuda.HalfTensor) and weight type (torch.HalfTensor) should be the same

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions