|
| 1 | +# Copyright (c) 2017-present, Facebook, Inc. |
| 2 | +# |
| 3 | +# Licensed under the Apache License, Version 2.0 (the "License"); |
| 4 | +# you may not use this file except in compliance with the License. |
| 5 | +# You may obtain a copy of the License at |
| 6 | +# |
| 7 | +# http://www.apache.org/licenses/LICENSE-2.0 |
| 8 | +# |
| 9 | +# Unless required by applicable law or agreed to in writing, software |
| 10 | +# distributed under the License is distributed on an "AS IS" BASIS, |
| 11 | +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 12 | +# See the License for the specific language governing permissions and |
| 13 | +# limitations under the License. |
| 14 | +############################################################################## |
| 15 | + |
| 16 | +import unittest, os |
| 17 | +import numpy as np |
| 18 | +import hypothesis.strategies as st |
| 19 | +import caffe2.python.hypothesis_test_util as hu |
| 20 | +import tensor_comprehensions as tc |
| 21 | + |
| 22 | +from hypothesis import given, settings |
| 23 | +from caffe2.python import core, dyndep |
| 24 | + |
| 25 | + |
| 26 | +CONDA_PREFIX = os.environ.get("CONDA_PREFIX") |
| 27 | +if CONDA_PREFIX: |
| 28 | + tc_c2_lib = os.path.join(CONDA_PREFIX, "lib/libtc_c2.so") |
| 29 | +else: |
| 30 | + dyndep.InitOpsLibrary("@/tc/tc:tc_c2") |
| 31 | + |
| 32 | +MATMUL_LANG = """ |
| 33 | +def matmul(float(M,N) A, float(N,K) B) -> (output) { |
| 34 | + output(m, k) +=! A(m, r_n) * B(r_n, k) |
| 35 | +} |
| 36 | +""" |
| 37 | + |
| 38 | +MATMUL_GRAD_LANG = """ |
| 39 | +def matmul_grad(float(M, N) A, float(N, K) B, float(M, K) d_O) -> (d_A, d_B) { |
| 40 | + d_A(m, n) +=! d_O(m, r_k) * B(n, r_k) |
| 41 | + d_B(n, k) +=! d_O(r_m, k) * A(r_m, n) |
| 42 | +} |
| 43 | +""" |
| 44 | + |
| 45 | +class TestCaffe2(hu.HypothesisTestCase): |
| 46 | + @given(n=st.integers(1, 4), |
| 47 | + m=st.integers(1, 4), |
| 48 | + k=st.integers(1, 4), |
| 49 | + seed=st.integers(min_value=0, max_value=2**32 - 1), |
| 50 | + **hu.gcs_gpu_only) |
| 51 | + def test_matmul(self, n, m, k, seed, gc, dc): |
| 52 | + np.random.seed(seed) |
| 53 | + |
| 54 | + X = np.random.rand(m, k).astype(np.float32) |
| 55 | + W = np.random.rand(k, n).astype(np.float32) |
| 56 | + |
| 57 | + def ref(X, W): |
| 58 | + return [np.dot(X, W)] |
| 59 | + |
| 60 | + op = core.CreateOperator( |
| 61 | + "TcOp", ["X", "Y"], "out", |
| 62 | + tc_def=MATMUL_LANG, |
| 63 | + tc_name="matmul", |
| 64 | + tc_grad_def=MATMUL_GRAD_LANG, |
| 65 | + tc_grad_name="matmul_grad", |
| 66 | + inputs_used_by_gradient=[0, 1], |
| 67 | + output_gradients_used_by_gradient=[0], |
| 68 | + inputs_to_compute_gradients_of=[0, 1], |
| 69 | + ) |
| 70 | + |
| 71 | + self.assertReferenceChecks( |
| 72 | + device_option=gc, |
| 73 | + op=op, |
| 74 | + inputs=[X, W], |
| 75 | + reference=ref, |
| 76 | + ) |
| 77 | + |
| 78 | + for i in range(2): |
| 79 | + self.assertGradientChecks( |
| 80 | + device_option=gc, |
| 81 | + op=op, |
| 82 | + inputs=[X, W], |
| 83 | + outputs_to_check=i, |
| 84 | + outputs_with_grads=[0], |
| 85 | + ) |
| 86 | + |
| 87 | + @given(n=st.integers(1, 4), |
| 88 | + m=st.integers(1, 4), |
| 89 | + k=st.integers(1, 4), |
| 90 | + seed=st.integers(min_value=0, max_value=2**32 - 1), |
| 91 | + **hu.gcs_gpu_only) |
| 92 | + @settings(max_examples=2) |
| 93 | + def test_matmul_tune_and_run(self, n, m, k, seed, gc, dc): |
| 94 | + matmul = tc.define(MATMUL_LANG, name="matmul") |
| 95 | + matmul_grad = tc.define(MATMUL_GRAD_LANG, name="matmul_grad") |
| 96 | + |
| 97 | + mapping_options = matmul.autotune( |
| 98 | + (n, k), (k, m), |
| 99 | + generations=3, |
| 100 | + threads=32, |
| 101 | + pop_size=2, |
| 102 | + tuner_min_launch_total_threads=1, |
| 103 | + ) |
| 104 | + |
| 105 | + grad_mapping_options = matmul_grad.autotune( |
| 106 | + (n, k), (k, m), (n, m), |
| 107 | + generations=1, |
| 108 | + threads=32, |
| 109 | + pop_size=2, |
| 110 | + tuner_min_launch_total_threads=1, |
| 111 | + ) |
| 112 | + |
| 113 | + X = np.random.rand(m, k).astype(np.float32) |
| 114 | + W = np.random.rand(k, n).astype(np.float32) |
| 115 | + |
| 116 | + def ref(X, W): |
| 117 | + return [np.dot(X, W)] |
| 118 | + |
| 119 | + op = core.CreateOperator( |
| 120 | + "TcOp", ["X", "Y"], "out", |
| 121 | + tc_def=MATMUL_LANG, |
| 122 | + tc_name="matmul", |
| 123 | + tc_grad_def=MATMUL_GRAD_LANG, |
| 124 | + tc_grad_name="matmul_grad", |
| 125 | + inputs_used_by_gradient=[0, 1], |
| 126 | + output_gradients_used_by_gradient=[0], |
| 127 | + inputs_to_compute_gradients_of=[0, 1], |
| 128 | + mapping_options=mapping_options.serialize(), |
| 129 | + grad_mapping_options=grad_mapping_options.serialize(), |
| 130 | + ) |
| 131 | + |
| 132 | + self.assertReferenceChecks( |
| 133 | + device_option=gc, |
| 134 | + op=op, |
| 135 | + inputs=[X, W], |
| 136 | + reference=ref, |
| 137 | + ) |
| 138 | + |
| 139 | + for i in range(2): |
| 140 | + self.assertGradientChecks( |
| 141 | + device_option=gc, |
| 142 | + op=op, |
| 143 | + inputs=[X, W], |
| 144 | + outputs_to_check=i, |
| 145 | + outputs_with_grads=[0], |
| 146 | + ) |
| 147 | + |
| 148 | +if __name__ == '__main__': |
| 149 | + unittest.main() |
0 commit comments