|
| 1 | +import time |
| 2 | +import torch |
| 3 | +import torch.optim as optim |
| 4 | +import torch.nn as nn |
| 5 | +import torch.utils.data |
| 6 | +import torch.nn.functional as F |
| 7 | +import tensor_comprehensions as tc |
| 8 | +import numpy as np |
| 9 | + |
| 10 | +NB_HYPERPARAMS, INIT_INPUT_SZ = 26, 7 |
| 11 | +USE_MAX_SHARED_MENORY=0 |
| 12 | + |
| 13 | +def getrand(l): |
| 14 | + return np.random.choice(l).item() |
| 15 | + |
| 16 | +def get_convolution_example(size_type="default", inp_sz_list=[], use_max_shared_memory=False): |
| 17 | + global INIT_INPUT_SZ, USE_MAX_SHARED_MEMORY |
| 18 | + |
| 19 | + USE_MAX_SHARED_MEMORY = use_max_shared_memory |
| 20 | + |
| 21 | + INIT_INPUT_SZ = 7 |
| 22 | + tc_name = "convolution" |
| 23 | + tc_code = """ |
| 24 | + def convolution(float(N,C,H,W) I, float(M,C,KH,KW) W1) -> (O) { |
| 25 | + O(n, m, h, w) +=! I(n, r_c, h + r_kh, w + r_kw) * W1(m, r_c, r_kh, r_kw) |
| 26 | + } |
| 27 | + """ |
| 28 | + |
| 29 | + if(size_type=="input"): |
| 30 | + N, C, H, W, O, kH, kW = tuple(inp_sz_list) |
| 31 | + elif(size_type=="default"): |
| 32 | + N, C, H, W, O, kH, kW = 16, 4, 56, 56, 16, 1, 1 #8, 2, 28, 28, 8, 1, 1 |
| 33 | + elif(size_type=="random"): |
| 34 | + N, C, H, W, O, kH, kW = \ |
| 35 | + getrand([8, 16, 32, 64]), \ |
| 36 | + getrand([2, 4, 8, 16]), \ |
| 37 | + getrand([28, 56, 112]), \ |
| 38 | + getrand([28, 56, 112]), \ |
| 39 | + getrand([8, 16, 32]), \ |
| 40 | + getrand([1, 2, 4]), \ |
| 41 | + getrand([1, 2, 4]) |
| 42 | + else: |
| 43 | + print("Unknown size type") |
| 44 | + exit() |
| 45 | + I, W1 = torch.randn(N, C, H, W, device='cuda'), torch.randn(O, C, kH, kW, device='cuda') |
| 46 | + init_input = (I, W1) |
| 47 | + init_input_sz = np.array([N,C,H,W,O, kH, kW]) |
| 48 | + print(init_input_sz) |
| 49 | + init_input_sz = torch.from_numpy(init_input_sz).float() |
| 50 | + |
| 51 | + computeCat(init_input) |
| 52 | + set_tc(tc_code, tc_name) |
| 53 | + |
| 54 | + return (tc_code, tc_name, init_input, init_input_sz) |
| 55 | + |
| 56 | +def print_opt(options): |
| 57 | + print(options.tolist()) |
| 58 | + |
| 59 | +def set_tc(tc_code_arg, tc_name_arg): |
| 60 | + global tc_code, tc_name |
| 61 | + tc_code = tc_code_arg |
| 62 | + tc_name = tc_name_arg |
| 63 | + |
| 64 | +def catVec_to_optVec(catVec): |
| 65 | + global cat_val |
| 66 | + opt = [cat_val[i][catVec[i]] for i in range(NB_HYPERPARAMS)] |
| 67 | + return opt |
| 68 | + |
| 69 | +def evalTime(opt, iters=50, warmup=10, estimator="mean", naive=False, prune=-1, curr_best=-1): |
| 70 | + global tc_code, tc_name, inp, cat_val |
| 71 | + |
| 72 | + infty = 30000 |
| 73 | + opt = catVec_to_optVec(opt) |
| 74 | + if naive: |
| 75 | + opt = tc.MappingOptions("naive") |
| 76 | + else: |
| 77 | + opt = optionsFromVector(opt) |
| 78 | + try: |
| 79 | + tc_prog = tc.compile(tc_code, tc_name, opt, *inp) |
| 80 | + first_ft = tc_prog.executor.profile_kernel(inp) |
| 81 | + except (KeyboardInterrupt, SystemExit): |
| 82 | + raise |
| 83 | + except: |
| 84 | + return infty |
| 85 | + if(prune != -1 and first_ft > 100*curr_best): |
| 86 | + return first_ft |
| 87 | + for _ in range(warmup): |
| 88 | + tc_prog.executor.profile_kernel(inp) |
| 89 | + |
| 90 | + first_t = tc_prog.executor.profile_kernel(inp) |
| 91 | + |
| 92 | + if(prune != -1 and first_t > prune*curr_best): |
| 93 | + return first_t |
| 94 | + |
| 95 | + tc_time_list = [] |
| 96 | + for i in range(iters): |
| 97 | + iter_time = tc_prog.executor.profile_kernel(inp) |
| 98 | + tc_time_list.append(iter_time) |
| 99 | + if(estimator == "mean"): |
| 100 | + mean_time = np.mean(tc_time_list) |
| 101 | + return mean_time |
| 102 | + elif(estimator == "median"): |
| 103 | + median_time = np.median(tc_time_list) |
| 104 | + return median_time |
| 105 | + elif(estimator == "p25"): |
| 106 | + p25_time = np.percentile(tc_time_list, 25) |
| 107 | + return p25_time |
| 108 | + print("Unknown estimator") |
| 109 | + return infty |
| 110 | + |
| 111 | +def getRawVectorFromTcOpt(tc_opt): |
| 112 | + tr_dic = {"Max":0, "Preserve3Coincident":1, "Min":2} |
| 113 | + opt_vect = np.zeros(NB_HYPERPARAMS).astype(int) |
| 114 | + opt_vect[0] = tr_dic[tc_opt["outerScheduleFusionStrategy"]] |
| 115 | + opt_vect[1] = tr_dic[tc_opt["intraTileScheduleFusionStrategy"]] |
| 116 | + opt_vect[2] = tc_opt["fixParametersBeforeScheduling"] |
| 117 | + opt_vect[3] = len(tc_opt["tile"]) |
| 118 | + assert opt_vect[3] < 7, "Too many tilings" |
| 119 | + opt_vect[4:4+opt_vect[3]] = tc_opt["tile"] |
| 120 | + opt_vect[10] = tc_opt["unroll"] |
| 121 | + #opt_vect[11] = tc_opt["tileImperfectlyNested"] #todo: pybind |
| 122 | + opt_vect[11] = tc_opt["matchLibraryCalls"] |
| 123 | + opt_vect[12] = len(tc_opt["mapToBlocks"]) |
| 124 | + opt_vect[13:13+opt_vect[12]] = tc_opt["mapToBlocks"] |
| 125 | + opt_vect[16] = len(tc_opt["mapToThreads"]) |
| 126 | + opt_vect[17:17+opt_vect[16]] = tc_opt["mapToThreads"] |
| 127 | + opt_vect[20] = tc_opt["useSharedMemory"] |
| 128 | + opt_vect[21] = tc_opt["usePrivateMemory"] |
| 129 | + opt_vect[22] = tc_opt["unrollCopyShared"] |
| 130 | + if(USE_MAX_SHARED_MEMORY and "maxSharedMemory" in tc_opt): |
| 131 | + opt_vect[23] = tc_opt["maxSharedMemory"] |
| 132 | + opt_vect[24] = tc_opt["useReadOnlyCache"] |
| 133 | + opt_vect[25] = tc_opt["privateDepth"] |
| 134 | + return opt_vect |
| 135 | + |
| 136 | +def optionsFromVector(vect): |
| 137 | + strat_str = ["Max", "Preserve3Coincident", "Min"] |
| 138 | + options = tc.MappingOptions("naive") |
| 139 | + options.outerScheduleFusionStrategy(strat_str[vect[0]]) |
| 140 | + options.intraTileScheduleFusionStrategy(strat_str[vect[1]]) |
| 141 | + options.fixParametersBeforeScheduling(vect[2]) |
| 142 | + options.tile(list(vect[4:(4+vect[3])])) |
| 143 | + options.unroll(vect[10]) |
| 144 | + options.matchLibraryCalls(vect[11]) |
| 145 | + options.mapToBlocks(list(vect[13:13+vect[12]])) |
| 146 | + options.mapToThreads(list(vect[17:17+vect[16]])) |
| 147 | + options.useSharedMemory(vect[20]) |
| 148 | + options.usePrivateMemory(vect[21]) |
| 149 | + options.unrollCopyShared(vect[22]) |
| 150 | + if(USE_MAX_SHARED_MEMORY): |
| 151 | + options.maxSharedMemory(vect[23]) |
| 152 | + options.useReadOnlyCache(vect[24]) |
| 153 | + options.privateDepth(vect[25]) |
| 154 | + return options |
| 155 | + |
| 156 | +def computeDivs(sz): |
| 157 | + l = [] |
| 158 | + for i in range(sz): |
| 159 | + if(2**i > sz): |
| 160 | + break |
| 161 | + l.append((sz+2**i-1)//(2**i)) |
| 162 | + return l |
| 163 | + |
| 164 | +def getAllDivs(inp, maxp2=8): |
| 165 | + p2 = [2**i for i in range(maxp2 + 1)] |
| 166 | + l = [] |
| 167 | + for elem in inp: |
| 168 | + for sz in elem.shape: |
| 169 | + l += computeDivs(sz) |
| 170 | + divs_list = list(set(l + p2)) |
| 171 | + return sorted(divs_list) |
| 172 | + |
| 173 | +def computeCat(inp_arg): |
| 174 | + global cat_sz, cat_val, inp |
| 175 | + inp = inp_arg |
| 176 | + cat_sz = np.zeros(NB_HYPERPARAMS).astype(int) |
| 177 | + cat_val = [] |
| 178 | + |
| 179 | + divs = getAllDivs(inp) |
| 180 | + if(USE_MAX_SHARED_MEMORY): |
| 181 | + divs2 = getAllDivs([np.array([tc.tclib.shared_memory_size()])]) |
| 182 | + |
| 183 | + cat_val.append([0,1,2]) #0 |
| 184 | + cat_val.append([0,1,2]) #1 |
| 185 | + cat_val.append([0,1]) #2 |
| 186 | + cat_val.append([i+1 for i in range(6)]) #3 |
| 187 | + for i in range(6): #tiling #4-9 |
| 188 | + cat_val.append(divs + [0]) #4-9 |
| 189 | + cat_val.append([2**i for i in range(8)]) #10 |
| 190 | + cat_val.append([0,1]) #11 |
| 191 | + cat_val.append([i+1 for i in range(3)]) #12 |
| 192 | + for i in range(3): #13-15 |
| 193 | + cat_val.append(divs) #blocks #maximum 2^31-1 for the first value and 65535 for the second and third |
| 194 | + cat_val.append([i+1 for i in range(3)]) #16 |
| 195 | + for i in range(3): #17-19 |
| 196 | + cat_val.append(divs) #threads #maximum 1024 for the first and second value, 32 for the third, product below 1024 |
| 197 | + cat_val.append([0,1]) #20 |
| 198 | + cat_val.append([0,1]) #21 |
| 199 | + cat_val.append([0,1]) #22 |
| 200 | + if(USE_MAX_SHARED_MEMORY): #23 |
| 201 | + cat_val.append(divs2) |
| 202 | + else: |
| 203 | + cat_val.append([0]) |
| 204 | + cat_val.append([0,1]) #24 |
| 205 | + cat_val.append([i for i in range(6)]) #25 |
| 206 | + |
| 207 | + for i in range(NB_HYPERPARAMS): |
| 208 | + cat_sz[i] = len(cat_val[i]) |
0 commit comments