Skip to content
This repository was archived by the owner on Apr 28, 2023. It is now read-only.

Commit 6b319f5

Browse files
authored
Merge pull request #422 from dchichkov/master
Adding instruction - how to execute in the Google Research Colaboratory
2 parents 0b3a8be + e27d427 commit 6b319f5

File tree

1 file changed

+41
-0
lines changed

1 file changed

+41
-0
lines changed
Lines changed: 41 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,41 @@
1+
Installation in the Google Colaboratory environment
2+
===================================================
3+
4+
If you want to install TC in a Google Colaboratory environment, copy/paste and run
5+
the following code in the notebook. Please note, it will take 2-3 minutes to execute.
6+
7+
Step 1: Create new Notebook in the Google Research Colaboratory
8+
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9+
10+
Open https://colab.research.google.com/ , create a new notebook and switch Runtime to GPU.
11+
12+
Step 2: Create a new Code Cell, with the following code
13+
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14+
15+
.. code-block:: python
16+
17+
!wget -c https://repo.continuum.io/archive/Anaconda3-5.1.0-Linux-x86_64.sh
18+
!chmod +x Anaconda3-5.1.0-Linux-x86_64.sh
19+
!bash ./Anaconda3-5.1.0-Linux-x86_64.sh -b -f -p /usr/local
20+
!conda install -q -y --prefix /usr/local -c pytorch -c tensorcomp tensor_comprehensions
21+
22+
import sys
23+
sys.path.append('/usr/local/lib/python3.6/site-packages/')
24+
25+
Step 3: Use TC normally, from Python/Torch environment
26+
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
27+
28+
As an example, paste and execute the following code in a new Code Cell:
29+
30+
.. code-block:: python
31+
32+
import tensor_comprehensions as tc
33+
import torch
34+
lang = """
35+
def matmul(float(M, K) A, float(K, N) B) -> (C) {
36+
C(m, n) +=! A(m, r_k) * B(r_k, n)
37+
}
38+
"""
39+
matmul = tc.define(lang, name="matmul")
40+
mat1, mat2 = torch.randn(3, 4).cuda(), torch.randn(4, 5).cuda()
41+
out = matmul(mat1, mat2)

0 commit comments

Comments
 (0)