@@ -260,10 +260,10 @@ def batch_triple_hadamard(float(B, D) U, float(B, D) V, float(B, D) W) -> (Z) {
260
260
}
261
261
)TC" ;
262
262
263
- auto checkFun = [=](const std::vector<at::Tensor>& inputs ,
264
- std::vector<at::Tensor>& outputs ) {
265
- at::Tensor diff = outputs [0 ].sub (inputs [0 ] * inputs [1 ] * inputs [2 ]);
266
- checkRtol (diff, inputs , D);
263
+ auto checkFun = [=](const std::vector<at::Tensor>& ins ,
264
+ std::vector<at::Tensor>& outs ) {
265
+ at::Tensor diff = outs [0 ].sub (ins [0 ] * ins [1 ] * ins [2 ]);
266
+ checkRtol (diff, ins , D);
267
267
};
268
268
Check (
269
269
TC,
@@ -289,8 +289,8 @@ def tensordot(float(N, C1, C2, H, W) I0, float(N, C2, C3, H, W) I1) -> (O) {
289
289
}
290
290
)TC" ;
291
291
// No defaults for this case
292
- auto checkFun = [](const std::vector<at::Tensor>& inputs ,
293
- std::vector<at::Tensor>& outputs ) { return true ; };
292
+ auto checkFun = [](const std::vector<at::Tensor>& ins ,
293
+ std::vector<at::Tensor>& outs ) { return true ; };
294
294
auto options = tc::CudaMappingOptions::makeNaiveMappingOptions ();
295
295
auto name = " tensordot" ;
296
296
Check (TC, name, options, inputs, checkFun);
@@ -314,13 +314,13 @@ def fun(float(B, R) LUT, int32(B, N) I) -> (O) {
314
314
}
315
315
)TC" ;
316
316
317
- auto checkFun = [=](const std::vector<at::Tensor>& inputs ,
318
- std::vector<at::Tensor>& outputs ) {
319
- at::Tensor LUT = inputs [0 ].toBackend (at::kCPU );
320
- at::Tensor I = inputs [1 ].toBackend (at::kCPU );
321
- at::Tensor O = outputs [0 ].toBackend (at::kCPU );
322
- auto LUTAccessor = LUT .accessor <float , 2 >();
323
- auto IAccessor = I .accessor <int , 2 >();
317
+ auto checkFun = [=](const std::vector<at::Tensor>& ins ,
318
+ std::vector<at::Tensor>& outs ) {
319
+ at::Tensor lut = ins [0 ].toBackend (at::kCPU );
320
+ at::Tensor in = ins [1 ].toBackend (at::kCPU );
321
+ at::Tensor O = outs [0 ].toBackend (at::kCPU );
322
+ auto LUTAccessor = lut .accessor <float , 2 >();
323
+ auto IAccessor = in .accessor <int , 2 >();
324
324
auto OAccessor = O.accessor <float , 2 >();
325
325
for (int b = 0 ; b < B; b++) {
326
326
for (int n = 0 ; n < N; n++) {
@@ -334,7 +334,7 @@ def fun(float(B, R) LUT, int32(B, N) I) -> (O) {
334
334
}
335
335
}
336
336
337
- checkRtol (O, inputs , 5e-7 );
337
+ checkRtol (O, ins , 5e-7 );
338
338
};
339
339
Check (
340
340
TC,
@@ -378,8 +378,8 @@ def spatial_batch_norm(
378
378
normalizedOut(n, c, h, w) = O(n, c, h, w)
379
379
})TC" ;
380
380
381
- auto checkFun = [=](const std::vector<at::Tensor>& inputs ,
382
- std::vector<at::Tensor>& outputs ) {
381
+ auto checkFun = [=](const std::vector<at::Tensor>& ins ,
382
+ std::vector<at::Tensor>& outs ) {
383
383
TC_CUDA_RUNTIMEAPI_ENFORCE (cudaDeviceSynchronize ());
384
384
double prec = 3e-7 ;
385
385
std::cout << " Checking expected output relative precision @" << prec;
@@ -396,8 +396,8 @@ def spatial_batch_norm(
396
396
at::Scalar (momentum[0 ]).toFloat (),
397
397
at::Scalar (eps[0 ]).toFloat (),
398
398
true );
399
- auto diff = O.sub (outputs [0 ]);
400
- checkRtol (diff, inputs , N * H * W, prec);
399
+ auto diff = O.sub (outs [0 ]);
400
+ checkRtol (diff, ins , N * H * W, prec);
401
401
};
402
402
403
403
auto name = " spatial_batch_norm" ;
0 commit comments