How improve Textcat-multi classify result accuracy used by jieba or pkusage? #13522
Unanswered
wuye251
asked this question in
Help: Model Advice
Replies: 0 comments
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Uh oh!
There was an error while loading. Please reload this page.
-
I'm use spacy.chinese model with jieba segmenter. But I find result is very bad. I don't know the reason. Put my code below. Thanks the good soul help! Spacy version:3.6.1 Python Version:3.10.
output
我讨厌这部电影 {'差评': 0.9159942269325256, '好评': 0.9901401400566101, '咨询商品': 0.9551239013671875, '售后-投诉': 0.8971258997917175, '售后-点赞': 0.3419587016105652, '售后-退换': 0.7432483434677124, '查询信用卡账单': 0.8540969491004944, '订票': 0.9098125100135803, '球类运动': 0.29566851258277893, '天气': 0.4786415100097656, '国家-编辑': 0.5186322331428528, '电商-客服-售后': 0.9906345009803772, '负例语料联动': 0.9211296439170837, '表扬': 0.5615023374557495, '电商-客服-售前': 0.33090463280677795, '验证未训练时字段展示': 0.2705373764038086}
查询账单 {'差评': 0.9369145035743713, '好评': 0.9800768494606018, '咨询商品': 0.9792625904083252, '售后-投诉': 0.5187459588050842, '售后-点赞': 0.8109645247459412, '售后-退换': 0.9886360168457031, '查询信用卡账单': 0.9981147050857544, '订票': 0.8363357186317444, '球类运动': 0.9094472527503967, '天气': 0.6167519092559814, '国家-编辑': 0.3675537109375, '电商-客服-售后': 0.9292000532150269, '负例语料联动': 0.8542944192886353, '表扬': 0.49599653482437134, '电商-客服-售前': 0.8967403769493103, '验证未训练时字段展示': 0.7517518997192383}
Beta Was this translation helpful? Give feedback.
All reactions