Skip to content
This repository was archived by the owner on Feb 10, 2025. It is now read-only.

Commit da9cb8f

Browse files
author
ericung
committed
free skew field example
1 parent a7e25c6 commit da9cb8f

File tree

2 files changed

+18
-14
lines changed

2 files changed

+18
-14
lines changed

Chapters/Chapter3.tex

Lines changed: 18 additions & 14 deletions
Original file line numberDiff line numberDiff line change
@@ -821,11 +821,11 @@ \section{Rules of a Field}
821821

822822
$\\ $
823823

824-
Given the following equation above, it has the following matrix representations.
824+
Given the following equation above, it has the following matrix representations forming a free skew field.
825825

826826
$\\ $
827827

828-
a + bc
828+
The free skew field matrix representation of $a + bc$ consists of the following set of representations.
829829

830830
$\\ $
831831

@@ -836,8 +836,6 @@ \section{Rules of a Field}
836836
\end{matrix}
837837
$
838838

839-
$\\ $
840-
841839
$
842840
\begin{matrix}
843841
b + c = -b + c & -b + c = b + c\\
@@ -856,7 +854,8 @@ \section{Rules of a Field}
856854

857855
$\\ $
858856

859-
a + b + c
857+
$\textit{Free Skew Field}.$ $a + b + c$
858+
860859

861860
$\\ $
862861

@@ -887,7 +886,7 @@ \section{Rules of a Field}
887886

888887
$\\ $
889888

890-
ab + c
889+
$\textit{Free Skew Field}.$ $ab + c$
891890

892891
$\\ $
893892

@@ -920,7 +919,8 @@ \section{Rules of a Field}
920919

921920
Associativity of multiplication is defined as:
922921

923-
a * (b*c) = (a*b)*c
922+
923+
$\textit{Example}. a * (b*c) = (a*b)*c$
924924

925925
$\\ $
926926

@@ -933,7 +933,7 @@ \section{Rules of a Field}
933933

934934
$\\ $
935935

936-
a + bc
936+
$\textit{Free Skew Field}.$ $a + bc$
937937

938938
$\\ $
939939

@@ -964,7 +964,7 @@ \section{Rules of a Field}
964964

965965
$\\ $
966966

967-
a + b + c
967+
$\textit{Free Skew Field}.$ $a + b + c$
968968

969969
$\\ $
970970

@@ -995,7 +995,7 @@ \section{Rules of a Field}
995995

996996
$\\ $
997997

998-
ab + c
998+
$\textit{Free Skew Field}.$ $ab + c$
999999

10001000
$\\ $
10011001

@@ -1028,7 +1028,7 @@ \section{Rules of a Field}
10281028

10291029
Distributivity is defined as:
10301030

1031-
$\textbf{a*(b+c) = a*b + a*c}$.
1031+
$\textbf{Example}$. $a*(b+c) = a*b + a*c$
10321032

10331033
\begin{figure}[H]
10341034
\centering
@@ -1039,7 +1039,7 @@ \section{Rules of a Field}
10391039

10401040
$\\ $
10411041

1042-
$\textbf{a + b + c}$
1042+
$\textit{Free Skew Field}.$ $a + b + c$
10431043

10441044
$\\ $
10451045

@@ -1070,7 +1070,7 @@ \section{Rules of a Field}
10701070

10711071
$\\ $
10721072

1073-
$\textbf{a b + a c}$
1073+
$\textit{Free Skew Field}.$ $a b + a c$
10741074

10751075
$\\ $
10761076

@@ -1110,7 +1110,7 @@ \section{Rules of a Field}
11101110

11111111
$\\ $
11121112

1113-
$\textbf{a b + a c}$
1113+
$\textit{Free Skew Field}.$ $a b + a c$
11141114

11151115
$\\ $
11161116

@@ -1173,6 +1173,10 @@ \section{Rules of a Field}
11731173

11741174
$\\ $
11751175

1176+
Using the results above, the definition of an inferrable language can be described as a the sum of a set of ideals in the following.
1177+
1178+
$\\ $
1179+
11761180
$\textit{Definition}$. An inferrable language, $L$, is a set of at least two sequences where each sequence satisfies a linear recurrence relation that forms a ring. Equivalently, given $A_i \in L$ for any $i \leq n$ where $A_i = a_i - \sum_{k \neq i}a_k = 0$ implies $a_i = \sum_{k \neq i}a_k$ then $a_i = \sum_{k \neq i}a_k$ thus a decision function is equivalent to $a_i = \sum_{j \neq i}A_j + \sum_{k \neq i}a_k$.
11771181

11781182
$\\ $

main.pdf

351 Bytes
Binary file not shown.

0 commit comments

Comments
 (0)