You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
{{ message }}
This repository was archived by the owner on Feb 10, 2025. It is now read-only.
Copy file name to clipboardExpand all lines: Chapters/Chapter3.tex
+18-14Lines changed: 18 additions & 14 deletions
Original file line number
Diff line number
Diff line change
@@ -821,11 +821,11 @@ \section{Rules of a Field}
821
821
822
822
$\\$
823
823
824
-
Given the following equation above, it has the following matrix representations.
824
+
Given the following equation above, it has the following matrix representations forming a free skew field.
825
825
826
826
$\\$
827
827
828
-
a + bc
828
+
The free skew field matrix representation of $a + bc$ consists of the following set of representations.
829
829
830
830
$\\$
831
831
@@ -836,8 +836,6 @@ \section{Rules of a Field}
836
836
\end{matrix}
837
837
$
838
838
839
-
$\\$
840
-
841
839
$
842
840
\begin{matrix}
843
841
b + c = -b + c & -b + c = b + c\\
@@ -856,7 +854,8 @@ \section{Rules of a Field}
856
854
857
855
$\\$
858
856
859
-
a + b + c
857
+
$\textit{Free Skew Field}.$$a + b + c$
858
+
860
859
861
860
$\\$
862
861
@@ -887,7 +886,7 @@ \section{Rules of a Field}
887
886
888
887
$\\$
889
888
890
-
ab + c
889
+
$\textit{Free Skew Field}.$$ab + c$
891
890
892
891
$\\$
893
892
@@ -920,7 +919,8 @@ \section{Rules of a Field}
920
919
921
920
Associativity of multiplication is defined as:
922
921
923
-
a * (b*c) = (a*b)*c
922
+
923
+
$\textit{Example}. a * (b*c) = (a*b)*c$
924
924
925
925
$\\$
926
926
@@ -933,7 +933,7 @@ \section{Rules of a Field}
933
933
934
934
$\\$
935
935
936
-
a + bc
936
+
$\textit{Free Skew Field}.$$a + bc$
937
937
938
938
$\\$
939
939
@@ -964,7 +964,7 @@ \section{Rules of a Field}
964
964
965
965
$\\$
966
966
967
-
a + b + c
967
+
$\textit{Free Skew Field}.$$a + b + c$
968
968
969
969
$\\$
970
970
@@ -995,7 +995,7 @@ \section{Rules of a Field}
995
995
996
996
$\\$
997
997
998
-
ab + c
998
+
$\textit{Free Skew Field}.$$ab + c$
999
999
1000
1000
$\\$
1001
1001
@@ -1028,7 +1028,7 @@ \section{Rules of a Field}
1028
1028
1029
1029
Distributivity is defined as:
1030
1030
1031
-
$\textbf{a*(b+c) = a*b + a*c}$.
1031
+
$\textbf{Example}$. $a*(b+c) = a*b + a*c$
1032
1032
1033
1033
\begin{figure}[H]
1034
1034
\centering
@@ -1039,7 +1039,7 @@ \section{Rules of a Field}
1039
1039
1040
1040
$\\$
1041
1041
1042
-
$\textbf{a + b + c}$
1042
+
$\textit{Free Skew Field}.$$a + b + c$
1043
1043
1044
1044
$\\$
1045
1045
@@ -1070,7 +1070,7 @@ \section{Rules of a Field}
1070
1070
1071
1071
$\\$
1072
1072
1073
-
$\textbf{a b + a c}$
1073
+
$\textit{Free Skew Field}.$$a b + a c$
1074
1074
1075
1075
$\\$
1076
1076
@@ -1110,7 +1110,7 @@ \section{Rules of a Field}
1110
1110
1111
1111
$\\$
1112
1112
1113
-
$\textbf{a b + a c}$
1113
+
$\textit{Free Skew Field}.$$a b + a c$
1114
1114
1115
1115
$\\$
1116
1116
@@ -1173,6 +1173,10 @@ \section{Rules of a Field}
1173
1173
1174
1174
$\\$
1175
1175
1176
+
Using the results above, the definition of an inferrable language can be described as a the sum of a set of ideals in the following.
1177
+
1178
+
$\\$
1179
+
1176
1180
$\textit{Definition}$. An inferrable language, $L$, is a set of at least two sequences where each sequence satisfies a linear recurrence relation that forms a ring. Equivalently, given $A_i \in L$ for any $i \leq n$ where $A_i = a_i - \sum_{k \neq i}a_k = 0$ implies $a_i = \sum_{k \neq i}a_k$ then $a_i = \sum_{k \neq i}a_k$ thus a decision function is equivalent to $a_i = \sum_{j \neq i}A_j + \sum_{k \neq i}a_k$.
0 commit comments