|
27 | 27 | },
|
28 | 28 | {
|
29 | 29 | "cell_type": "code",
|
30 |
| - "execution_count": 2, |
| 30 | + "execution_count": 1, |
31 | 31 | "metadata": {},
|
32 | 32 | "outputs": [],
|
33 | 33 | "source": [
|
|
66 | 66 | },
|
67 | 67 | {
|
68 | 68 | "cell_type": "code",
|
69 |
| - "execution_count": 3, |
| 69 | + "execution_count": 2, |
70 | 70 | "metadata": {},
|
71 | 71 | "outputs": [],
|
72 | 72 | "source": [
|
|
84 | 84 | },
|
85 | 85 | {
|
86 | 86 | "cell_type": "code",
|
87 |
| - "execution_count": 13, |
| 87 | + "execution_count": 3, |
88 | 88 | "metadata": {},
|
89 | 89 | "outputs": [
|
90 | 90 | {
|
|
254 | 254 | " -> FALSE\n",
|
255 | 255 | "asarray(NDArray.var(\"X\")).shape.length()\n",
|
256 | 256 | " -> NDArray.var(\"X\").ndim\n",
|
257 |
| - " -> Int(2)\n" |
| 257 | + " -> Int(2)\n", |
| 258 | + "unique_inverse(asarray(reshape(asarray(NDArray.var(\"y\")), (TupleInt(Int(-1)) + TupleInt.EMPTY)))).length()\n", |
| 259 | + " -> Int(2)\n", |
| 260 | + " -> Int(2)\n", |
| 261 | + "unique_inverse(asarray(reshape(asarray(NDArray.var(\"y\")), (TupleInt(Int(-1)) + TupleInt.EMPTY))))[Int(0)].shape[Int(0)]\n" |
258 | 262 | ]
|
259 | 263 | },
|
260 | 264 | {
|
261 |
| - "ename": "AttributeError", |
262 |
| - "evalue": "module '__main__' has no attribute 'unique_inverse'", |
| 265 | + "ename": "TypeError", |
| 266 | + "evalue": "'RuntimeExpr' object cannot be interpreted as an integer", |
263 | 267 | "output_type": "error",
|
264 | 268 | "traceback": [
|
265 | 269 | "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
|
266 |
| - "\u001b[0;31mAttributeError\u001b[0m Traceback (most recent call last)", |
267 |
| - "Cell \u001b[0;32mIn[13], line 640\u001b[0m\n\u001b[1;32m 626\u001b[0m \u001b[39m# Add values for the constants\u001b[39;00m\n\u001b[1;32m 627\u001b[0m egraph\u001b[39m.\u001b[39mregister(\n\u001b[1;32m 628\u001b[0m rewrite(X_arr\u001b[39m.\u001b[39mdtype, runtime_ruleset)\u001b[39m.\u001b[39mto(convert(X\u001b[39m.\u001b[39mdtype, DType)),\n\u001b[1;32m 629\u001b[0m rewrite(y_arr\u001b[39m.\u001b[39mdtype, runtime_ruleset)\u001b[39m.\u001b[39mto(convert(y\u001b[39m.\u001b[39mdtype, DType)),\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 636\u001b[0m rewrite(unique_values(y_arr)\u001b[39m.\u001b[39mshape)\u001b[39m.\u001b[39mto(TupleInt(Int(\u001b[39m3\u001b[39m))),\n\u001b[1;32m 637\u001b[0m )\n\u001b[0;32m--> 640\u001b[0m res \u001b[39m=\u001b[39m fit(X_arr, y_arr)\n\u001b[1;32m 642\u001b[0m \u001b[39m# X_obj, y_obj = egraph.save_object(X), egraph.save_object(y)\u001b[39;00m\n\u001b[1;32m 643\u001b[0m \n\u001b[1;32m 644\u001b[0m \u001b[39m# X_arr = NDArray(X_obj)\u001b[39;00m\n\u001b[1;32m 645\u001b[0m \u001b[39m# y_arr = NDArray(y_obj)\u001b[39;00m\n", |
268 |
| - "Cell \u001b[0;32mIn[2], line 15\u001b[0m, in \u001b[0;36mfit\u001b[0;34m(X, y)\u001b[0m\n\u001b[1;32m 13\u001b[0m \u001b[39mwith\u001b[39;00m config_context(array_api_dispatch\u001b[39m=\u001b[39m\u001b[39mTrue\u001b[39;00m):\n\u001b[1;32m 14\u001b[0m lda \u001b[39m=\u001b[39m LinearDiscriminantAnalysis(n_components\u001b[39m=\u001b[39m\u001b[39m2\u001b[39m)\n\u001b[0;32m---> 15\u001b[0m X_r2 \u001b[39m=\u001b[39m lda\u001b[39m.\u001b[39;49mfit(X, y)\u001b[39m.\u001b[39mtransform(X)\n\u001b[1;32m 16\u001b[0m \u001b[39mreturn\u001b[39;00m X_r2\n\u001b[1;32m 18\u001b[0m target_names \u001b[39m=\u001b[39m iris\u001b[39m.\u001b[39mtarget_names\n", |
| 270 | + "\u001b[0;31mTypeError\u001b[0m Traceback (most recent call last)", |
| 271 | + "Cell \u001b[0;32mIn[3], line 676\u001b[0m\n\u001b[1;32m 662\u001b[0m \u001b[39m# Add values for the constants\u001b[39;00m\n\u001b[1;32m 663\u001b[0m egraph\u001b[39m.\u001b[39mregister(\n\u001b[1;32m 664\u001b[0m rewrite(X_arr\u001b[39m.\u001b[39mdtype, runtime_ruleset)\u001b[39m.\u001b[39mto(convert(X\u001b[39m.\u001b[39mdtype, DType)),\n\u001b[1;32m 665\u001b[0m rewrite(y_arr\u001b[39m.\u001b[39mdtype, runtime_ruleset)\u001b[39m.\u001b[39mto(convert(y\u001b[39m.\u001b[39mdtype, DType)),\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 672\u001b[0m rewrite(unique_values(y_arr)\u001b[39m.\u001b[39mshape)\u001b[39m.\u001b[39mto(TupleInt(Int(\u001b[39m3\u001b[39m))),\n\u001b[1;32m 673\u001b[0m )\n\u001b[0;32m--> 676\u001b[0m res \u001b[39m=\u001b[39m fit(X_arr, y_arr)\n\u001b[1;32m 678\u001b[0m \u001b[39m# X_obj, y_obj = egraph.save_object(X), egraph.save_object(y)\u001b[39;00m\n\u001b[1;32m 679\u001b[0m \n\u001b[1;32m 680\u001b[0m \u001b[39m# X_arr = NDArray(X_obj)\u001b[39;00m\n\u001b[1;32m 681\u001b[0m \u001b[39m# y_arr = NDArray(y_obj)\u001b[39;00m\n", |
| 272 | + "Cell \u001b[0;32mIn[1], line 15\u001b[0m, in \u001b[0;36mfit\u001b[0;34m(X, y)\u001b[0m\n\u001b[1;32m 13\u001b[0m \u001b[39mwith\u001b[39;00m config_context(array_api_dispatch\u001b[39m=\u001b[39m\u001b[39mTrue\u001b[39;00m):\n\u001b[1;32m 14\u001b[0m lda \u001b[39m=\u001b[39m LinearDiscriminantAnalysis(n_components\u001b[39m=\u001b[39m\u001b[39m2\u001b[39m)\n\u001b[0;32m---> 15\u001b[0m X_r2 \u001b[39m=\u001b[39m lda\u001b[39m.\u001b[39;49mfit(X, y)\u001b[39m.\u001b[39mtransform(X)\n\u001b[1;32m 16\u001b[0m \u001b[39mreturn\u001b[39;00m X_r2\n\u001b[1;32m 18\u001b[0m target_names \u001b[39m=\u001b[39m iris\u001b[39m.\u001b[39mtarget_names\n", |
269 | 273 | "File \u001b[0;32m/usr/local/Caskroom/miniconda/base/envs/egg-smol-python/lib/python3.10/site-packages/sklearn/base.py:1151\u001b[0m, in \u001b[0;36m_fit_context.<locals>.decorator.<locals>.wrapper\u001b[0;34m(estimator, *args, **kwargs)\u001b[0m\n\u001b[1;32m 1144\u001b[0m estimator\u001b[39m.\u001b[39m_validate_params()\n\u001b[1;32m 1146\u001b[0m \u001b[39mwith\u001b[39;00m config_context(\n\u001b[1;32m 1147\u001b[0m skip_parameter_validation\u001b[39m=\u001b[39m(\n\u001b[1;32m 1148\u001b[0m prefer_skip_nested_validation \u001b[39mor\u001b[39;00m global_skip_validation\n\u001b[1;32m 1149\u001b[0m )\n\u001b[1;32m 1150\u001b[0m ):\n\u001b[0;32m-> 1151\u001b[0m \u001b[39mreturn\u001b[39;00m fit_method(estimator, \u001b[39m*\u001b[39;49margs, \u001b[39m*\u001b[39;49m\u001b[39m*\u001b[39;49mkwargs)\n",
|
270 |
| - "File \u001b[0;32m/usr/local/Caskroom/miniconda/base/envs/egg-smol-python/lib/python3.10/site-packages/sklearn/discriminant_analysis.py:628\u001b[0m, in \u001b[0;36mLinearDiscriminantAnalysis.fit\u001b[0;34m(self, X, y)\u001b[0m\n\u001b[1;32m 622\u001b[0m \u001b[39mif\u001b[39;00m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39mcovariance_estimator \u001b[39mis\u001b[39;00m \u001b[39mnot\u001b[39;00m \u001b[39mNone\u001b[39;00m:\n\u001b[1;32m 623\u001b[0m \u001b[39mraise\u001b[39;00m \u001b[39mValueError\u001b[39;00m(\n\u001b[1;32m 624\u001b[0m \u001b[39m\"\u001b[39m\u001b[39mcovariance estimator \u001b[39m\u001b[39m\"\u001b[39m\n\u001b[1;32m 625\u001b[0m \u001b[39m\"\u001b[39m\u001b[39mis not supported \u001b[39m\u001b[39m\"\u001b[39m\n\u001b[1;32m 626\u001b[0m \u001b[39m\"\u001b[39m\u001b[39mwith svd solver. Try another solver\u001b[39m\u001b[39m\"\u001b[39m\n\u001b[1;32m 627\u001b[0m )\n\u001b[0;32m--> 628\u001b[0m \u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49m_solve_svd(X, y)\n\u001b[1;32m 629\u001b[0m \u001b[39melif\u001b[39;00m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39msolver \u001b[39m==\u001b[39m \u001b[39m\"\u001b[39m\u001b[39mlsqr\u001b[39m\u001b[39m\"\u001b[39m:\n\u001b[1;32m 630\u001b[0m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39m_solve_lstsq(\n\u001b[1;32m 631\u001b[0m X,\n\u001b[1;32m 632\u001b[0m y,\n\u001b[1;32m 633\u001b[0m shrinkage\u001b[39m=\u001b[39m\u001b[39mself\u001b[39m\u001b[39m.\u001b[39mshrinkage,\n\u001b[1;32m 634\u001b[0m covariance_estimator\u001b[39m=\u001b[39m\u001b[39mself\u001b[39m\u001b[39m.\u001b[39mcovariance_estimator,\n\u001b[1;32m 635\u001b[0m )\n", |
271 |
| - "File \u001b[0;32m/usr/local/Caskroom/miniconda/base/envs/egg-smol-python/lib/python3.10/site-packages/sklearn/discriminant_analysis.py:500\u001b[0m, in \u001b[0;36mLinearDiscriminantAnalysis._solve_svd\u001b[0;34m(self, X, y)\u001b[0m\n\u001b[1;32m 497\u001b[0m n_samples, n_features \u001b[39m=\u001b[39m X\u001b[39m.\u001b[39mshape\n\u001b[1;32m 498\u001b[0m n_classes \u001b[39m=\u001b[39m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39mclasses_\u001b[39m.\u001b[39mshape[\u001b[39m0\u001b[39m]\n\u001b[0;32m--> 500\u001b[0m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39mmeans_ \u001b[39m=\u001b[39m _class_means(X, y)\n\u001b[1;32m 501\u001b[0m \u001b[39mif\u001b[39;00m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39mstore_covariance:\n\u001b[1;32m 502\u001b[0m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39mcovariance_ \u001b[39m=\u001b[39m _class_cov(X, y, \u001b[39mself\u001b[39m\u001b[39m.\u001b[39mpriors_)\n", |
272 |
| - "File \u001b[0;32m/usr/local/Caskroom/miniconda/base/envs/egg-smol-python/lib/python3.10/site-packages/sklearn/discriminant_analysis.py:115\u001b[0m, in \u001b[0;36m_class_means\u001b[0;34m(X, y)\u001b[0m\n\u001b[1;32m 99\u001b[0m \u001b[39m\u001b[39m\u001b[39m\"\"\"Compute class means.\u001b[39;00m\n\u001b[1;32m 100\u001b[0m \n\u001b[1;32m 101\u001b[0m \u001b[39mParameters\u001b[39;00m\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 112\u001b[0m \u001b[39m Class means.\u001b[39;00m\n\u001b[1;32m 113\u001b[0m \u001b[39m\"\"\"\u001b[39;00m\n\u001b[1;32m 114\u001b[0m xp, is_array_api_compliant \u001b[39m=\u001b[39m get_namespace(X)\n\u001b[0;32m--> 115\u001b[0m classes, y \u001b[39m=\u001b[39m xp\u001b[39m.\u001b[39;49munique_inverse(y)\n\u001b[1;32m 116\u001b[0m means \u001b[39m=\u001b[39m xp\u001b[39m.\u001b[39mzeros((classes\u001b[39m.\u001b[39mshape[\u001b[39m0\u001b[39m], X\u001b[39m.\u001b[39mshape[\u001b[39m1\u001b[39m]), device\u001b[39m=\u001b[39mdevice(X), dtype\u001b[39m=\u001b[39mX\u001b[39m.\u001b[39mdtype)\n\u001b[1;32m 118\u001b[0m \u001b[39mif\u001b[39;00m is_array_api_compliant:\n", |
273 |
| - "\u001b[0;31mAttributeError\u001b[0m: module '__main__' has no attribute 'unique_inverse'" |
| 274 | + "File \u001b[0;32m/usr/local/Caskroom/miniconda/base/envs/egg-smol-python/lib/python3.10/site-packages/sklearn/discriminant_analysis.py:629\u001b[0m, in \u001b[0;36mLinearDiscriminantAnalysis.fit\u001b[0;34m(self, X, y)\u001b[0m\n\u001b[1;32m 623\u001b[0m \u001b[39mif\u001b[39;00m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39mcovariance_estimator \u001b[39mis\u001b[39;00m \u001b[39mnot\u001b[39;00m \u001b[39mNone\u001b[39;00m:\n\u001b[1;32m 624\u001b[0m \u001b[39mraise\u001b[39;00m \u001b[39mValueError\u001b[39;00m(\n\u001b[1;32m 625\u001b[0m \u001b[39m\"\u001b[39m\u001b[39mcovariance estimator \u001b[39m\u001b[39m\"\u001b[39m\n\u001b[1;32m 626\u001b[0m \u001b[39m\"\u001b[39m\u001b[39mis not supported \u001b[39m\u001b[39m\"\u001b[39m\n\u001b[1;32m 627\u001b[0m \u001b[39m\"\u001b[39m\u001b[39mwith svd solver. Try another solver\u001b[39m\u001b[39m\"\u001b[39m\n\u001b[1;32m 628\u001b[0m )\n\u001b[0;32m--> 629\u001b[0m \u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49m_solve_svd(X, y)\n\u001b[1;32m 630\u001b[0m \u001b[39melif\u001b[39;00m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39msolver \u001b[39m==\u001b[39m \u001b[39m\"\u001b[39m\u001b[39mlsqr\u001b[39m\u001b[39m\"\u001b[39m:\n\u001b[1;32m 631\u001b[0m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39m_solve_lstsq(\n\u001b[1;32m 632\u001b[0m X,\n\u001b[1;32m 633\u001b[0m y,\n\u001b[1;32m 634\u001b[0m shrinkage\u001b[39m=\u001b[39m\u001b[39mself\u001b[39m\u001b[39m.\u001b[39mshrinkage,\n\u001b[1;32m 635\u001b[0m covariance_estimator\u001b[39m=\u001b[39m\u001b[39mself\u001b[39m\u001b[39m.\u001b[39mcovariance_estimator,\n\u001b[1;32m 636\u001b[0m )\n", |
| 275 | + "File \u001b[0;32m/usr/local/Caskroom/miniconda/base/envs/egg-smol-python/lib/python3.10/site-packages/sklearn/discriminant_analysis.py:501\u001b[0m, in \u001b[0;36mLinearDiscriminantAnalysis._solve_svd\u001b[0;34m(self, X, y)\u001b[0m\n\u001b[1;32m 498\u001b[0m n_samples, n_features \u001b[39m=\u001b[39m X\u001b[39m.\u001b[39mshape\n\u001b[1;32m 499\u001b[0m n_classes \u001b[39m=\u001b[39m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39mclasses_\u001b[39m.\u001b[39mshape[\u001b[39m0\u001b[39m]\n\u001b[0;32m--> 501\u001b[0m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39mmeans_ \u001b[39m=\u001b[39m _class_means(X, y)\n\u001b[1;32m 502\u001b[0m \u001b[39mif\u001b[39;00m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39mstore_covariance:\n\u001b[1;32m 503\u001b[0m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39mcovariance_ \u001b[39m=\u001b[39m _class_cov(X, y, \u001b[39mself\u001b[39m\u001b[39m.\u001b[39mpriors_)\n", |
| 276 | + "File \u001b[0;32m/usr/local/Caskroom/miniconda/base/envs/egg-smol-python/lib/python3.10/site-packages/sklearn/discriminant_analysis.py:120\u001b[0m, in \u001b[0;36m_class_means\u001b[0;34m(X, y)\u001b[0m\n\u001b[1;32m 118\u001b[0m \u001b[39mif\u001b[39;00m is_array_api_compliant:\n\u001b[1;32m 119\u001b[0m \u001b[39mprint\u001b[39m(classes\u001b[39m.\u001b[39mshape[\u001b[39m0\u001b[39m])\n\u001b[0;32m--> 120\u001b[0m \u001b[39mfor\u001b[39;00m i \u001b[39min\u001b[39;00m \u001b[39mrange\u001b[39;49m(classes\u001b[39m.\u001b[39;49mshape[\u001b[39m0\u001b[39;49m]):\n\u001b[1;32m 121\u001b[0m means[i, :] \u001b[39m=\u001b[39m xp\u001b[39m.\u001b[39mmean(X[y \u001b[39m==\u001b[39m i], axis\u001b[39m=\u001b[39m\u001b[39m0\u001b[39m)\n\u001b[1;32m 122\u001b[0m \u001b[39melse\u001b[39;00m:\n\u001b[1;32m 123\u001b[0m \u001b[39m# TODO: Explore the choice of using bincount + add.at as it seems sub optimal\u001b[39;00m\n\u001b[1;32m 124\u001b[0m \u001b[39m# from a performance-wise\u001b[39;00m\n", |
| 277 | + "\u001b[0;31mTypeError\u001b[0m: 'RuntimeExpr' object cannot be interpreted as an integer" |
274 | 278 | ]
|
275 | 279 | }
|
276 | 280 | ],
|
|
575 | 579 | "\n",
|
576 | 580 | "\n",
|
577 | 581 | "@egraph.class_\n",
|
| 582 | + "class Device(Expr): ...\n", |
| 583 | + "\n", |
| 584 | + "\n", |
| 585 | + "@egraph.class_\n", |
578 | 586 | "class NDArray(Expr):\n",
|
579 | 587 | " def __init__(self, py_array: PyObject) -> None:\n",
|
580 | 588 | " ...\n",
|
|
597 | 605 | " ...\n",
|
598 | 606 | "\n",
|
599 | 607 | " @property\n",
|
| 608 | + " def device(self) -> Device:\n", |
| 609 | + " ...\n", |
| 610 | + "\n", |
| 611 | + "\n", |
| 612 | + " @property\n", |
600 | 613 | " def shape(self) -> TupleInt:\n",
|
601 | 614 | " ...\n",
|
602 | 615 | "\n",
|
|
733 | 746 | "converter(type(None), OptionalDType, lambda x: OptionalDType.none)\n",
|
734 | 747 | "converter(DType, OptionalDType, lambda x: OptionalDType.some(x))\n",
|
735 | 748 | "\n",
|
| 749 | + "@egraph.class_\n", |
| 750 | + "class OptionalDevice(Expr):\n", |
| 751 | + " none: ClassVar[OptionalDevice]\n", |
| 752 | + "\n", |
| 753 | + " @classmethod\n", |
| 754 | + " def some(cls, value: Device) -> OptionalDevice:\n", |
| 755 | + " ...\n", |
| 756 | + "\n", |
| 757 | + "\n", |
| 758 | + "converter(type(None), OptionalDevice, lambda x: OptionalDevice.none)\n", |
| 759 | + "converter(Device, OptionalDevice, lambda x: OptionalDevice.some(x))\n", |
| 760 | + "\n", |
| 761 | + "\n", |
| 762 | + "\n", |
736 | 763 | "\n",
|
737 | 764 | "@egraph.function\n",
|
738 | 765 | "def asarray(a: NDArray, dtype: OptionalDType = OptionalDType.none, copy: OptionalBool = OptionalBool.none) -> NDArray:\n",
|
|
849 | 876 | " rewrite(abs(NDArray.scalar_float(f))).to(NDArray.scalar_float(f)),\n",
|
850 | 877 | " ]\n",
|
851 | 878 | "\n",
|
| 879 | + "@egraph.function\n", |
| 880 | + "def unique_inverse(x: NDArray) -> TupleNDArray:\n", |
| 881 | + " ...\n", |
| 882 | + "\n", |
| 883 | + "@egraph.register\n", |
| 884 | + "def _unique_inverse(x: NDArray):\n", |
| 885 | + " return [\n", |
| 886 | + " rewrite(unique_inverse(x).length()).to(Int(2)),\n", |
| 887 | + " ]\n", |
| 888 | + "\n", |
| 889 | + "@egraph.function\n", |
| 890 | + "def zeros(shape: TupleInt, dtype: OptionalDType = OptionalDType.none, device: OptionalDevice = OptionalDevice.none) -> NDArray:\n", |
| 891 | + " ...\n", |
852 | 892 | "\n",
|
853 | 893 | "linalg = sys.modules[__name__]\n",
|
854 | 894 | "\n",
|
|
922 | 962 | "# y_arr = NDArray(y_obj)"
|
923 | 963 | ]
|
924 | 964 | },
|
| 965 | + { |
| 966 | + "cell_type": "code", |
| 967 | + "execution_count": 4, |
| 968 | + "metadata": {}, |
| 969 | + "outputs": [], |
| 970 | + "source": [ |
| 971 | + "x = unique_inverse(asarray(reshape(asarray(NDArray.var(\"y\")), (TupleInt(Int(-1)) + TupleInt.EMPTY))))[Int(0)].shape[Int(0)]\n" |
| 972 | + ] |
| 973 | + }, |
| 974 | + { |
| 975 | + "cell_type": "code", |
| 976 | + "execution_count": 9, |
| 977 | + "metadata": {}, |
| 978 | + "outputs": [ |
| 979 | + { |
| 980 | + "ename": "TypeError", |
| 981 | + "evalue": "'RuntimeExpr' object cannot be interpreted as an integer", |
| 982 | + "output_type": "error", |
| 983 | + "traceback": [ |
| 984 | + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", |
| 985 | + "\u001b[0;31mTypeError\u001b[0m Traceback (most recent call last)", |
| 986 | + "Cell \u001b[0;32mIn[9], line 1\u001b[0m\n\u001b[0;32m----> 1\u001b[0m \u001b[39mrange\u001b[39;49m(Int(\u001b[39m10\u001b[39;49m))\n", |
| 987 | + "\u001b[0;31mTypeError\u001b[0m: 'RuntimeExpr' object cannot be interpreted as an integer" |
| 988 | + ] |
| 989 | + } |
| 990 | + ], |
| 991 | + "source": [ |
| 992 | + "range(Int(10))" |
| 993 | + ] |
| 994 | + }, |
925 | 995 | {
|
926 | 996 | "cell_type": "code",
|
927 | 997 | "execution_count": null,
|
|
0 commit comments