diff --git a/.github/workflows/pytest_imputation_beta.yml b/.github/workflows/pytest_imputation_beta.yml index e7f3efe7..82c61a5b 100644 --- a/.github/workflows/pytest_imputation_beta.yml +++ b/.github/workflows/pytest_imputation_beta.yml @@ -35,7 +35,6 @@ jobs: python -m pytest ./tests/test_imputation_tkcm.py python -m pytest ./tests/test_imputation_deepmvi.py python -m pytest ./tests/test_imputation_brits.py - python -m pytest ./tests/test_imputation_mpin.py python -m pytest ./tests/test_imputation_pristi.py python -m pytest ./tests/test_imputation_grin.py python -m pytest ./tests/test_imputation_gain.py diff --git a/.idea/imputegap.iml b/.idea/imputegap.iml index 5fe0bf86..a5ca65ce 100644 --- a/.idea/imputegap.iml +++ b/.idea/imputegap.iml @@ -2,7 +2,7 @@ - + diff --git a/.idea/misc.xml b/.idea/misc.xml index 3b46d595..8c3a99c1 100644 --- a/.idea/misc.xml +++ b/.idea/misc.xml @@ -3,5 +3,5 @@ - + \ No newline at end of file diff --git a/README.md b/README.md index 8dff3735..d015aa6e 100644 --- a/README.md +++ b/README.md @@ -20,7 +20,7 @@ Access to commonly used datasets in time series research (Datasets).
![Python](https://img.shields.io/badge/Python-v3.12-blue) -![Release](https://img.shields.io/badge/Release-v1.0.6-brightgreen) +![Release](https://img.shields.io/badge/Release-v1.0.7-brightgreen) ![License](https://img.shields.io/badge/License-GPLv3-blue?style=flat&logo=gnu) ![Coverage](https://img.shields.io/badge/Coverage-93%25-brightgreen) ![PyPI](https://img.shields.io/pypi/v/imputegap?label=PyPI&color=blue) @@ -40,13 +40,13 @@ Access to commonly used datasets in time series research (Datasets). # List of available imputation algorithms | **Family** | **Algorithm** | **Venue -- Year** | |--------------------|---------------------------|------------------------------| -| Deep Learning | BITGraph [[32]](#ref32) | ICLR -- 2024 | +| Deep Learning | BitGraph [[32]](#ref32) | ICLR -- 2024 | | Deep Learning | BayOTIDE [[30]](#ref30) | PMLR -- 2024 | -| Deep Learning | MPIN [[25]](#ref25) | PVLDB -- 2024 | | Deep Learning | MissNet [[27]](#ref27) | KDD -- 2024 | -| Deep Learning | PriSTI [[26]](#ref26) | ICDE -- 2023 | +| Deep Learning | MPIN [[25]](#ref25) | PVLDB -- 2024 | +| Deep Learning | PRISTI [[26]](#ref26) | ICDE -- 2023 | | Deep Learning | GRIN [[29]](#ref29) | ICLR -- 2022 | -| Deep Learning | HKMF-T [[31]](#ref31) | TKDE -- 2021 | +| Deep Learning | HKMF_T [[31]](#ref31) | TKDE -- 2021 | | Deep Learning | DeepMVI [[24]](#ref24) | PVLDB -- 2021 | | Deep Learning | MRNN [[22]](#ref22) | IEEE Trans on BE -- 2019 | | Deep Learning | BRITS [[23]](#ref23) | NeurIPS -- 2018 | @@ -60,18 +60,18 @@ Access to commonly used datasets in time series research (Datasets). | Matrix Completion | SPIRIT [[5]](#ref5) | VLDB -- 2005 | | Matrix Completion | IterativeSVD [[2]](#ref2) | BIOINFORMATICS -- 2001 | | Pattern Search | TKCM [[11]](#ref11) | EDBT -- 2017 | -| Pattern Search | ST-MVL [[9]](#ref9) | IJCAI -- 2016 | +| Pattern Search | STMVL [[9]](#ref9) | IJCAI -- 2016 | | Pattern Search | DynaMMo [[10]](#ref10) | KDD -- 2009 | | Machine Learning | IIM [[12]](#ref12) | ICDE -- 2019 | -| Machine Learning | XGBI [[13]](#ref13) | KDD -- 2016 | -| Machine Learning | Mice [[14]](#ref14) | Statistical Software -- 2011 | +| Machine Learning | XGBOOST [[13]](#ref13) | KDD -- 2016 | +| Machine Learning | MICE [[14]](#ref14) | Statistical Software -- 2011 | | Machine Learning | MissForest [[15]](#ref15) | BioInformatics -- 2011 | | Statistics | KNNImpute | - | | Statistics | Interpolation | - | -| Statistics | Min Impute | - | -| Statistics | Zero Impute | - | -| Statistics | Mean Impute | - | -| Statistics | Mean Impute By Series | - | +| Statistics | MinImpute | - | +| Statistics | ZeroImpute | - | +| Statistics | MeanImpute | - | +| Statistics | MeanImputeBySeries | - | --- @@ -155,7 +155,7 @@ ts.normalize(normalizer="z_score") # plot and print a subset of time series ts.plot(input_data=ts.data, nbr_series=9, nbr_val=100, save_path="./imputegap_assets") -ts.print(nbr_series=9, nbr_val=100) +ts.print(nbr_series=9, nbr_val=20) ``` --- @@ -235,8 +235,7 @@ imputer.score(ts.data, imputer.recov_data) ts.print_results(imputer.metrics) # plot the recovered time series -ts.plot(input_data=ts.data, incomp_data=ts_m, recov_data=imputer.recov_data, nbr_series=9, subplot=True, - save_path="./imputegap_assets") +ts.plot(input_data=ts.data, incomp_data=ts_m, recov_data=imputer.recov_data, nbr_series=9, subplot=True, algorithm=imputer.algorithm, save_path="./imputegap_assets") ``` --- @@ -270,9 +269,16 @@ imputer = Imputation.MatrixCompletion.CDRec(ts_m) # use Ray Tune to fine tune the imputation algorithm imputer.impute(user_def=False, params={"input_data": ts.data, "optimizer": "ray_tune"}) -# compute and print the imputation metrics +# compute the imputation metrics with optimized parameter values imputer.score(ts.data, imputer.recov_data) -ts.print_results(imputer.metrics) + +# compute the imputation metrics with default parameter values +imputer_def = Imputation.MatrixCompletion.CDRec(ts_m).impute() +imputer_def.score(ts.data, imputer_def.recov_data) + +# print the imputation metrics with default and optimized parameter values +ts.print_results(imputer_def.metrics, text="Imputation metrics with default parameter values") +ts.print_results(imputer.metrics, text="Imputation metrics with optimized parameter values") # plot the recovered time series ts.plot(input_data=ts.data, incomp_data=ts_m, recov_data=imputer.recov_data, nbr_series=9, subplot=True, @@ -357,7 +363,7 @@ imputer = Imputation.MatrixCompletion.CDRec(ts_m) imputer.impute() # compute and print the downstream results -downstream_config = {"task": "forecast", "model": "hw-add"} +downstream_config = {"task": "forecast", "model": "hw-add", "comparator": "ZeroImpute"} imputer.score(ts.data, imputer.recov_data, downstream=downstream_config) ts.print_results(imputer.downstream_metrics, algorithm=imputer.algorithm) ``` @@ -369,7 +375,7 @@ ts.print_results(imputer.downstream_metrics, algorithm=imputer.algorithm) ## Benchmark -ImputeGAP can serve as a common test-bed for comparing the effectiveness and efficiency of time series imputation algorithms[[33]](#ref33) . Users have full control over the benchmark by customizing various parameters, including the list of datasets to evaluate, the algorithms to compare, the choice of optimizer to fine-tune the algorithms on the chosen datasets, the missingness patterns, and the range of missing rates. +ImputeGAP can serve as a common test-bed for comparing the effectiveness and efficiency of time series imputation algorithms[[33]](#ref33) . Users have full control over the benchmark by customizing various parameters, including the list of datasets to evaluate, the algorithms to compare, the choice of optimizer to fine-tune the algorithms on the chosen datasets, the missingness patterns, and the range of missing rates. The default metrics evaluated include "RMSE", "MAE", "MI", "Pearson", and the runtime. The documentation for the benchmark is described [here](https://imputegap.readthedocs.io/en/latest/benchmark.html). @@ -381,22 +387,27 @@ The benchmarking module can be utilized as follows: ```python from imputegap.recovery.benchmark import Benchmark -save_dir = "./analysis" -nbr_run = 2 +save_dir = "./imputegap_assets/benchmark" +nbr_runs = 1 -datasets = ["eeg-alcohol", "eeg-reading"] +datasets = ["eeg-alcohol"] -optimizer = {"optimizer": "ray_tune", "options": {"n_calls": 1, "max_concurrent_trials": 1}} -optimizers = [optimizer] +optimizers = ["default_params"] -algorithms = ["MeanImpute", "CDRec", "STMVL", "IIM", "MRNN"] +algorithms = ["SoftImpute", "KNNImpute"] patterns = ["mcar"] range = [0.05, 0.1, 0.2, 0.4, 0.6, 0.8] # launch the evaluation -list_results, sum_scores = Benchmark().eval(algorithms=algorithms, datasets=datasets, patterns=patterns, x_axis=range, optimizers=optimizers, save_dir=save_dir, runs=nbr_run) +list_results, sum_scores = Benchmark().eval(algorithms=algorithms, datasets=datasets, patterns=patterns, x_axis=range, optimizers=optimizers, save_dir=save_dir, runs=nbr_runs) +``` + +You can change the optimizer using the following command: +```python +optimizer = {"optimizer": "ray_tune", "options": {"n_calls": 1, "max_concurrent_trials": 1}} +optimizers = [optimizer] ``` --- @@ -407,20 +418,6 @@ To add your own imputation algorithm in Python or C++, please refer to the detai --- - -## Articles - - -Mourad Khayati, Alberto Lerner, Zakhar Tymchenko, Philippe Cudre-Mauroux: Mind the Gap: An Experimental Evaluation of Imputation of Missing Values Techniques in Time Series. Proc. VLDB Endow. 13(5): 768-782 (2020) - -Mourad Khayati, Quentin Nater, Jacques Pasquier: ImputeVIS: An Interactive Evaluator to Benchmark Imputation Techniques for Time Series Data. Proc. VLDB Endow. 17(12): 4329-4332 (2024) - ---- - - - - - ## Citing If you use ImputeGAP in your research, please cite the paper: diff --git a/build/lib/imputegap/__init__.py b/build/lib/imputegap/__init__.py index 222a4c12..84ce1414 100644 --- a/build/lib/imputegap/__init__.py +++ b/build/lib/imputegap/__init__.py @@ -1 +1 @@ -__version__ = "1.0.5" \ No newline at end of file +__version__ = "1.0.7" \ No newline at end of file diff --git a/build/lib/imputegap/algorithms/bayotide.py b/build/lib/imputegap/algorithms/bayotide.py index e843a583..63e6e85c 100644 --- a/build/lib/imputegap/algorithms/bayotide.py +++ b/build/lib/imputegap/algorithms/bayotide.py @@ -66,6 +66,6 @@ def bay_otide(incomp_data, K_trend=20, K_season=2, n_season=5, K_bias=1, time_sc end_time = time.time() if logs: - print(f"\n\t\t> logs, imputation bay_otide - Execution Time: {(end_time - start_time):.4f} seconds\n") + print(f"\n\t> logs, imputation bay_otide - Execution Time: {(end_time - start_time):.4f} seconds\n") return recov_data diff --git a/build/lib/imputegap/algorithms/bit_graph.py b/build/lib/imputegap/algorithms/bit_graph.py index 9f00d15d..b32cc2eb 100644 --- a/build/lib/imputegap/algorithms/bit_graph.py +++ b/build/lib/imputegap/algorithms/bit_graph.py @@ -64,6 +64,6 @@ def bit_graph(incomp_data, node_number=-1, kernel_set=[1], dropout=0.1, subgraph end_time = time.time() if logs: - print(f"\n\t\t> logs, imputation bit graph - Execution Time: {(end_time - start_time):.4f} seconds\n") + print(f"\n\t> logs, imputation bit graph - Execution Time: {(end_time - start_time):.4f} seconds\n") return recov_data diff --git a/build/lib/imputegap/algorithms/brits.py b/build/lib/imputegap/algorithms/brits.py index 346ab9ba..4bc69301 100644 --- a/build/lib/imputegap/algorithms/brits.py +++ b/build/lib/imputegap/algorithms/brits.py @@ -49,6 +49,6 @@ def brits(incomp_data, model="brits", epoch=10, batch_size=7, nbr_features=1, hi end_time = time.time() if logs: - print(f"\n\t\t> logs, imputation brits - Execution Time: {(end_time - start_time):.4f} seconds\n") + print(f"\n\t> logs, imputation brits - Execution Time: {(end_time - start_time):.4f} seconds\n") return recov_data diff --git a/build/lib/imputegap/algorithms/cdrec.py b/build/lib/imputegap/algorithms/cdrec.py index bcad9d95..9d6fb16d 100644 --- a/build/lib/imputegap/algorithms/cdrec.py +++ b/build/lib/imputegap/algorithms/cdrec.py @@ -29,7 +29,7 @@ def native_cdrec(__py_matrix, __py_rank, __py_epsilon, __py_iterations): Khayati, M., Cudré-Mauroux, P. & Böhlen, M.H. Scalable recovery of missing blocks in time series with high and low cross-correlations. Knowl Inf Syst 62, 2257–2280 (2020). https://doi.org/10.1007/s10115-019-01421-7 """ - shared_lib = utils.load_share_lib("lib_cdrec.so") + shared_lib = utils.load_share_lib("lib_cdrec") __py_n = len(__py_matrix); __py_m = len(__py_matrix[0]); @@ -87,7 +87,7 @@ def cdrec(incomp_data, truncation_rank, iterations, epsilon, logs=True, lib_path """ - print(f"\t\t\t\t(PYTHON) CDRec: ({incomp_data.shape[0]},{incomp_data.shape[1]}) for rank {truncation_rank}, " + print(f"(PYTHON) CDRec: ({incomp_data.shape[0]},{incomp_data.shape[1]}) for rank {truncation_rank}, " f"epsilon {epsilon}, and iterations {iterations}...") start_time = time.time() # Record start time @@ -98,6 +98,6 @@ def cdrec(incomp_data, truncation_rank, iterations, epsilon, logs=True, lib_path end_time = time.time() if logs: - print(f"\n\t\t> logs, imputation cdrec - Execution Time: {(end_time - start_time):.4f} seconds\n") + print(f"\n\t> logs, imputation cdrec - Execution Time: {(end_time - start_time):.4f} seconds\n") return recov_data diff --git a/build/lib/imputegap/algorithms/cpp_integration.py b/build/lib/imputegap/algorithms/cpp_integration.py index 30ef7656..7985ad6b 100644 --- a/build/lib/imputegap/algorithms/cpp_integration.py +++ b/build/lib/imputegap/algorithms/cpp_integration.py @@ -25,7 +25,7 @@ def native_algo(__py_matrix, __py_param): """ - shared_lib = utils.load_share_lib("to_adapt.so") + shared_lib = utils.load_share_lib("to_adapt") __py_n = len(__py_matrix); __py_m = len(__py_matrix[0]); @@ -79,6 +79,6 @@ def your_algo(contamination, param, logs=True): end_time = time.time() if logs: - print(f"\n\t\t> logs, imputation algo - Execution Time: {(end_time - start_time):.4f} seconds\n") + print(f"\n\t> logs, imputation algo - Execution Time: {(end_time - start_time):.4f} seconds\n") return recov_data diff --git a/build/lib/imputegap/algorithms/deep_mvi.py b/build/lib/imputegap/algorithms/deep_mvi.py index 3317aabb..8fab88f7 100644 --- a/build/lib/imputegap/algorithms/deep_mvi.py +++ b/build/lib/imputegap/algorithms/deep_mvi.py @@ -41,6 +41,6 @@ def deep_mvi(incomp_data, max_epoch=1000, patience=2, lr=0.001, logs=True): end_time = time.time() if logs: - print(f"\n\t\t> logs, imputation deep mvi - Execution Time: {(end_time - start_time):.4f} seconds\n") + print(f"\n\t> logs, imputation deep mvi - Execution Time: {(end_time - start_time):.4f} seconds\n") return recov_data diff --git a/build/lib/imputegap/algorithms/dynammo.py b/build/lib/imputegap/algorithms/dynammo.py index 205f1bf4..acc9f6ff 100644 --- a/build/lib/imputegap/algorithms/dynammo.py +++ b/build/lib/imputegap/algorithms/dynammo.py @@ -29,7 +29,7 @@ def native_dynammo(__py_matrix, __py_h, __py_maxIter, __py_fast): L. Li, J. McCann, N. S. Pollard, and C. Faloutsos. Dynammo: mining and summarization of coevolving sequences with missing values. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Paris, France, June 28 - July 1, 2009, pages 507–516, 2009. """ - shared_lib = utils.load_share_lib("lib_dynammo.so") + shared_lib = utils.load_share_lib("lib_dynammo") __py_n = len(__py_matrix); __py_m = len(__py_matrix[0]); @@ -92,6 +92,6 @@ def dynammo(incomp_data, h, max_iteration, approximation, logs=True, lib_path=No end_time = time.time() if logs: - print(f"\n\t\t> logs, imputation DynaMMo - Execution Time: {(end_time - start_time):.4f} seconds\n") + print(f"\n\t> logs, imputation DynaMMo - Execution Time: {(end_time - start_time):.4f} seconds\n") return recov_data diff --git a/build/lib/imputegap/algorithms/gain.py b/build/lib/imputegap/algorithms/gain.py index 0d0a1917..912e8ed4 100644 --- a/build/lib/imputegap/algorithms/gain.py +++ b/build/lib/imputegap/algorithms/gain.py @@ -44,6 +44,6 @@ def gain(incomp_data, batch_size=32, hint_rate=0.9, alpha=10, epoch=100, logs=Tr end_time = time.time() if logs: - print(f"\n\t\t> logs, imputation gain - Execution Time: {(end_time - start_time):.4f} seconds\n") + print(f"\n\t> logs, imputation gain - Execution Time: {(end_time - start_time):.4f} seconds\n") return recov_data diff --git a/build/lib/imputegap/algorithms/grin.py b/build/lib/imputegap/algorithms/grin.py index 6de5ead0..f6626d29 100644 --- a/build/lib/imputegap/algorithms/grin.py +++ b/build/lib/imputegap/algorithms/grin.py @@ -60,6 +60,6 @@ def grin(incomp_data, d_hidden=32, lr=0.001, batch_size=32, window=10, alpha=10. end_time = time.time() if logs: - print(f"\n\t\t> logs, imputation grin - Execution Time: {(end_time - start_time):.4f} seconds\n") + print(f"\n\t> logs, imputation grin - Execution Time: {(end_time - start_time):.4f} seconds\n") return recov_data diff --git a/build/lib/imputegap/algorithms/grouse.py b/build/lib/imputegap/algorithms/grouse.py index e90f6833..e72d2636 100644 --- a/build/lib/imputegap/algorithms/grouse.py +++ b/build/lib/imputegap/algorithms/grouse.py @@ -24,7 +24,7 @@ def native_grouse(__py_matrix, __py_rank): D. Zhang and L. Balzano. Global convergence of a grassmannian gradient descent algorithm for subspace estimation. In Proceedings of the 19th International Conference on Artificial Intelligence and Statistics, AISTATS 2016, Cadiz, Spain, May 9-11, 2016, pages 1460–1468, 2016. """ - shared_lib = utils.load_share_lib("lib_grouse.so") + shared_lib = utils.load_share_lib("lib_grouse") __py_n = len(__py_matrix); __py_m = len(__py_matrix[0]); @@ -80,6 +80,6 @@ def grouse(incomp_data, max_rank, logs=True, lib_path=None): end_time = time.time() if logs: - print(f"\n\t\t> logs, imputation GROUSE - Execution Time: {(end_time - start_time):.4f} seconds\n") + print(f"\n\t> logs, imputation GROUSE - Execution Time: {(end_time - start_time):.4f} seconds\n") return recov_data diff --git a/build/lib/imputegap/algorithms/hkmf_t.py b/build/lib/imputegap/algorithms/hkmf_t.py index ab38585f..b6d3f819 100644 --- a/build/lib/imputegap/algorithms/hkmf_t.py +++ b/build/lib/imputegap/algorithms/hkmf_t.py @@ -48,6 +48,6 @@ def hkmf_t(incomp_data, tags=None, data_names=None, epoch=10, logs=True): end_time = time.time() if logs: - print(f"\n\t\t> logs, imputation hkmf_t - Execution Time: {(end_time - start_time):.4f} seconds\n") + print(f"\n\t> logs, imputation hkmf_t - Execution Time: {(end_time - start_time):.4f} seconds\n") return recov_data diff --git a/build/lib/imputegap/algorithms/iim.py b/build/lib/imputegap/algorithms/iim.py index 38b258f4..afbdb5be 100644 --- a/build/lib/imputegap/algorithms/iim.py +++ b/build/lib/imputegap/algorithms/iim.py @@ -45,6 +45,6 @@ def iim(incomp_data, number_neighbor, algo_code, logs=True): end_time = time.time() if logs: - print(f"\n\t\t> logs, imputation iim - Execution Time: {(end_time - start_time):.4f} seconds\n") + print(f"\n\t> logs, imputation iim - Execution Time: {(end_time - start_time):.4f} seconds\n") return recov_data diff --git a/build/lib/imputegap/algorithms/interpolation.py b/build/lib/imputegap/algorithms/interpolation.py index a1230012..fe1d93c5 100644 --- a/build/lib/imputegap/algorithms/interpolation.py +++ b/build/lib/imputegap/algorithms/interpolation.py @@ -30,7 +30,7 @@ def interpolation(incomp_data, method="linear", poly_order=2, logs=True): """ - print(f"\t\t\t\t(PYTHON) interpolation : ({incomp_data.shape[0]},{incomp_data.shape[1]}) for method {method}" + print(f"(PYTHON) interpolation : ({incomp_data.shape[0]},{incomp_data.shape[1]}) for method {method}" f", and polynomial order {poly_order}...") start_time = time.time() # Record start time @@ -70,6 +70,6 @@ def interpolation(incomp_data, method="linear", poly_order=2, logs=True): end_time = time.time() if logs: - print(f"\n\t\t> logs, imputation with interpolation - Execution Time: {(end_time - start_time):.4f} seconds\n") + print(f"\n\t> logs, imputation with interpolation - Execution Time: {(end_time - start_time):.4f} seconds\n") return recov_data diff --git a/build/lib/imputegap/algorithms/iterative_svd.py b/build/lib/imputegap/algorithms/iterative_svd.py index faed1b02..18b43585 100644 --- a/build/lib/imputegap/algorithms/iterative_svd.py +++ b/build/lib/imputegap/algorithms/iterative_svd.py @@ -25,7 +25,7 @@ def native_iterative_svd(__py_matrix, __py_rank): Olga Troyanskaya, Michael Cantor, Gavin Sherlock, Pat Brown, Trevor Hastie, Robert Tibshirani, David Botstein, Russ B. Altman, Missing value estimation methods for DNA microarrays , Bioinformatics, Volume 17, Issue 6, June 2001, Pages 520–525, https://doi.org/10.1093/bioinformatics/17.6.520 """ - shared_lib = utils.load_share_lib("lib_iterative_svd.so") + shared_lib = utils.load_share_lib("lib_iterative_svd") __py_n = len(__py_matrix); __py_m = len(__py_matrix[0]); @@ -82,6 +82,6 @@ def iterative_svd(incomp_data, truncation_rank, logs=True, lib_path=None): end_time = time.time() if logs: - print(f"\n\t\t> logs, imputation iterative svd - Execution Time: {(end_time - start_time):.4f} seconds\n") + print(f"\n\t> logs, imputation iterative svd - Execution Time: {(end_time - start_time):.4f} seconds\n") return recov_data diff --git a/build/lib/imputegap/algorithms/knn.py b/build/lib/imputegap/algorithms/knn.py index 97f35693..146fc32c 100644 --- a/build/lib/imputegap/algorithms/knn.py +++ b/build/lib/imputegap/algorithms/knn.py @@ -29,7 +29,7 @@ def knn(incomp_data, k=5, weights="uniform", logs=True): """ - print(f"\t\t\t\t(PYTHON) KNN: ({incomp_data.shape[0]},{incomp_data.shape[1]}) for k {k}, " + print(f"(PYTHON) KNNImpute: ({incomp_data.shape[0]},{incomp_data.shape[1]}) for k {k}, " f", and weights {weights}...") start_time = time.time() # Record start time @@ -74,6 +74,6 @@ def knn(incomp_data, k=5, weights="uniform", logs=True): end_time = time.time() if logs: - print(f"\n\t\t> logs, imputation knn - Execution Time: {(end_time - start_time):.4f} seconds\n") + print(f"\n\t> logs, imputation knn_impute - Execution Time: {(end_time - start_time):.4f} seconds\n") return recov_data diff --git a/build/lib/imputegap/algorithms/lib/lib_cdrec.dylib b/build/lib/imputegap/algorithms/lib/lib_cdrec.dylib new file mode 100644 index 00000000..4996676c Binary files /dev/null and b/build/lib/imputegap/algorithms/lib/lib_cdrec.dylib differ diff --git a/build/lib/imputegap/algorithms/lib/lib_dynammo.dylib b/build/lib/imputegap/algorithms/lib/lib_dynammo.dylib new file mode 100644 index 00000000..d74632c7 Binary files /dev/null and b/build/lib/imputegap/algorithms/lib/lib_dynammo.dylib differ diff --git a/build/lib/imputegap/algorithms/lib/lib_grouse.dylib b/build/lib/imputegap/algorithms/lib/lib_grouse.dylib new file mode 100644 index 00000000..f2a2faed Binary files /dev/null and b/build/lib/imputegap/algorithms/lib/lib_grouse.dylib differ diff --git a/build/lib/imputegap/algorithms/lib/lib_iterative_svd.dylib b/build/lib/imputegap/algorithms/lib/lib_iterative_svd.dylib new file mode 100644 index 00000000..4476ac45 Binary files /dev/null and b/build/lib/imputegap/algorithms/lib/lib_iterative_svd.dylib differ diff --git a/build/lib/imputegap/algorithms/lib/lib_rosl.dylib b/build/lib/imputegap/algorithms/lib/lib_rosl.dylib new file mode 100644 index 00000000..0fbc1996 Binary files /dev/null and b/build/lib/imputegap/algorithms/lib/lib_rosl.dylib differ diff --git a/build/lib/imputegap/algorithms/lib/lib_soft_impute.dylib b/build/lib/imputegap/algorithms/lib/lib_soft_impute.dylib new file mode 100644 index 00000000..45bb6e3e Binary files /dev/null and b/build/lib/imputegap/algorithms/lib/lib_soft_impute.dylib differ diff --git a/build/lib/imputegap/algorithms/lib/lib_spirit.dylib b/build/lib/imputegap/algorithms/lib/lib_spirit.dylib new file mode 100644 index 00000000..ed900873 Binary files /dev/null and b/build/lib/imputegap/algorithms/lib/lib_spirit.dylib differ diff --git a/build/lib/imputegap/algorithms/lib/lib_stmvl.dylib b/build/lib/imputegap/algorithms/lib/lib_stmvl.dylib new file mode 100644 index 00000000..0b84a73f Binary files /dev/null and b/build/lib/imputegap/algorithms/lib/lib_stmvl.dylib differ diff --git a/build/lib/imputegap/algorithms/lib/lib_svt.dylib b/build/lib/imputegap/algorithms/lib/lib_svt.dylib new file mode 100644 index 00000000..7dbffb24 Binary files /dev/null and b/build/lib/imputegap/algorithms/lib/lib_svt.dylib differ diff --git a/build/lib/imputegap/algorithms/lib/lib_tkcm.dylib b/build/lib/imputegap/algorithms/lib/lib_tkcm.dylib new file mode 100644 index 00000000..4d90ae1c Binary files /dev/null and b/build/lib/imputegap/algorithms/lib/lib_tkcm.dylib differ diff --git a/build/lib/imputegap/algorithms/mean_impute_by_series.py b/build/lib/imputegap/algorithms/mean_impute_by_series.py index bb6f7c4a..0276e974 100644 --- a/build/lib/imputegap/algorithms/mean_impute_by_series.py +++ b/build/lib/imputegap/algorithms/mean_impute_by_series.py @@ -38,7 +38,7 @@ def mean_impute_by_series(incomp_data, logs=True): end_time = time.time() if logs: - print(f"\n\t\t> logs, imputation mean impute (by series) - Execution Time: {(end_time - start_time):.4f} seconds\n") + print(f"\n\t> logs, imputation mean impute (by series) - Execution Time: {(end_time - start_time):.4f} seconds\n") return recov_data diff --git a/build/lib/imputegap/algorithms/mice.py b/build/lib/imputegap/algorithms/mice.py index ab73e320..d394078a 100644 --- a/build/lib/imputegap/algorithms/mice.py +++ b/build/lib/imputegap/algorithms/mice.py @@ -39,7 +39,7 @@ def mice(incomp_data, max_iter=3, tol=0.001, initial_strategy='mean', seed=42, l https://scikit-learn.org/stable/modules/generated/sklearn.impute.IterativeImputer.html#sklearn.impute.IterativeImputer """ - print("\t\t(PYTHON) MICE : Matrix Shape: (", incomp_data.shape[0], ", ", incomp_data.shape[1], ") for max_iter ", + print("(PYTHON) MICE : Matrix Shape: (", incomp_data.shape[0], ", ", incomp_data.shape[1], ") for max_iter ", max_iter, ", tol ", tol, " initial_strategy ", initial_strategy, ", and seed ", seed, "...\n\n\t\t\t" "Careful, this imputation algorithm might take a while to compute.") @@ -50,6 +50,6 @@ def mice(incomp_data, max_iter=3, tol=0.001, initial_strategy='mean', seed=42, l end_time = time.time() if logs: - print(f"\n\t\t> logs, imputation MICE - Execution Time: {(end_time - start_time):.4f} seconds\n") + print(f"\n\t> logs, imputation MICE - Execution Time: {(end_time - start_time):.4f} seconds\n") return recov_data diff --git a/build/lib/imputegap/algorithms/miss_forest.py b/build/lib/imputegap/algorithms/miss_forest.py index 3dd56645..0a5145d6 100644 --- a/build/lib/imputegap/algorithms/miss_forest.py +++ b/build/lib/imputegap/algorithms/miss_forest.py @@ -45,7 +45,7 @@ def miss_forest(incomp_data, n_estimators=10, max_iter=3, max_features='sqrt', s https://pypi.org/project/MissForest/ """ - print("\t\t(PYTHON) MISS FOREST : Matrix Shape: (", incomp_data.shape[0], ", ", incomp_data.shape[1], ") for n_estimators ", + print("(PYTHON) MISS FOREST : Matrix Shape: (", incomp_data.shape[0], ", ", incomp_data.shape[1], ") for n_estimators ", n_estimators, ", max_iter ", max_iter, " max_features ", max_features, ", and seed ", seed, "...") # Convert numpy array to pandas DataFrame if needed @@ -64,6 +64,6 @@ def miss_forest(incomp_data, n_estimators=10, max_iter=3, max_features='sqrt', s end_time = time.time() if logs: - print(f"\n\t\t> logs, imputation MISS FOREST - Execution Time: {(end_time - start_time):.4f} seconds\n") + print(f"\n\t> logs, imputation MISS FOREST - Execution Time: {(end_time - start_time):.4f} seconds\n") return np.array(recov_data) diff --git a/build/lib/imputegap/algorithms/miss_net.py b/build/lib/imputegap/algorithms/miss_net.py index a636065a..e120c7ba 100644 --- a/build/lib/imputegap/algorithms/miss_net.py +++ b/build/lib/imputegap/algorithms/miss_net.py @@ -46,7 +46,7 @@ def miss_net(incomp_data, alpha, beta, L, n_cl, max_iteration, tol, random_init, https://github.com/KoheiObata/MissNet/tree/main """ - print("\t\t(PYTHON) MISS NET: Matrix Shape: (", incomp_data.shape[0], ", ", incomp_data.shape[1], ") " + print("(PYTHON) MISS NET: Matrix Shape: (", incomp_data.shape[0], ", ", incomp_data.shape[1], ") " "for alpha ", alpha, ", beta ", beta, ", L ", L, ", n_cl ", n_cl, ", max_iteration ", max_iteration, "tol ", tol, " random_init ", random_init, "...") @@ -62,6 +62,6 @@ def miss_net(incomp_data, alpha, beta, L, n_cl, max_iteration, tol, random_init, recov_data[nan_mask] = incomp_data[nan_mask] if logs: - print(f"\n\t\t> logs, imputation miss_net - Execution Time: {(end_time - start_time):.4f} seconds\n") + print(f"\n\t> logs, imputation miss_net - Execution Time: {(end_time - start_time):.4f} seconds\n") return recov_data diff --git a/build/lib/imputegap/algorithms/mpin.py b/build/lib/imputegap/algorithms/mpin.py index 41f7e385..8e544153 100644 --- a/build/lib/imputegap/algorithms/mpin.py +++ b/build/lib/imputegap/algorithms/mpin.py @@ -52,6 +52,6 @@ def mpin(incomp_data=None, incre_mode="alone", window=2, k=10, lr=0.01, weight_d end_time = time.time() if logs: - print(f"\n\t\t> logs, imputation mpin - Execution Time: {(end_time - start_time):.4f} seconds\n") + print(f"\n\t> logs, imputation mpin - Execution Time: {(end_time - start_time):.4f} seconds\n") return recov_data diff --git a/build/lib/imputegap/algorithms/mrnn.py b/build/lib/imputegap/algorithms/mrnn.py index 53b8640d..e8ed7716 100644 --- a/build/lib/imputegap/algorithms/mrnn.py +++ b/build/lib/imputegap/algorithms/mrnn.py @@ -48,6 +48,6 @@ def mrnn(incomp_data, hidden_dim, learning_rate, iterations, sequence_length, lo end_time = time.time() if logs: - print(f"\n\t\t> logs, imputation mrnn - Execution Time: {(end_time - start_time):.4f} seconds\n") + print(f"\n\t> logs, imputation mrnn - Execution Time: {(end_time - start_time):.4f} seconds\n") return recov_data diff --git a/build/lib/imputegap/algorithms/pristi.py b/build/lib/imputegap/algorithms/pristi.py index ce00d3e0..a86967f1 100644 --- a/build/lib/imputegap/algorithms/pristi.py +++ b/build/lib/imputegap/algorithms/pristi.py @@ -44,6 +44,6 @@ def pristi(incomp_data, target_strategy="hybrid", unconditional=True, seed=42, d end_time = time.time() if logs: - print(f"\n\t\t> logs, imputation priSTI - Execution Time: {(end_time - start_time):.4f} seconds\n") + print(f"\n\t> logs, imputation priSTI - Execution Time: {(end_time - start_time):.4f} seconds\n") return recov_data diff --git a/build/lib/imputegap/algorithms/rosl.py b/build/lib/imputegap/algorithms/rosl.py index 41dd2c92..9ef33122 100644 --- a/build/lib/imputegap/algorithms/rosl.py +++ b/build/lib/imputegap/algorithms/rosl.py @@ -31,7 +31,7 @@ def native_rosl(__py_matrix, __py_rank, __py_regularization): ---------- X. Shu, F. Porikli, and N. Ahuja. Robust orthonormal subspace learning: Efficient recovery of corrupted low-rank matrices. In 2014 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2014, Columbus, OH, USA, June 23-28, 2014, pages 3874–3881, 2014. """ - shared_lib = utils.load_share_lib("lib_rosl.so") + shared_lib = utils.load_share_lib("lib_rosl") __py_n = len(__py_matrix); __py_m = len(__py_matrix[0]); @@ -96,6 +96,6 @@ def rosl(incomp_data, rank, regularization, logs=True, lib_path=None): end_time = time.time() if logs: - print(f"\n\t\t> logs, imputation ROSL - Execution Time: {(end_time - start_time):.4f} seconds\n") + print(f"\n\t> logs, imputation ROSL - Execution Time: {(end_time - start_time):.4f} seconds\n") return recov_data diff --git a/build/lib/imputegap/algorithms/soft_impute.py b/build/lib/imputegap/algorithms/soft_impute.py index df64c67c..980a1b3b 100644 --- a/build/lib/imputegap/algorithms/soft_impute.py +++ b/build/lib/imputegap/algorithms/soft_impute.py @@ -24,7 +24,7 @@ def native_soft_impute(__py_matrix, __py_max_rank): R. Mazumder, T. Hastie, and R. Tibshirani. Spectral regularization algorithms for learning large incomplete matrices. Journal of Machine Learning Research, 11:2287–2322, 2010. """ - shared_lib = utils.load_share_lib("lib_soft_impute.so") + shared_lib = utils.load_share_lib("lib_soft_impute") __py_n = len(__py_matrix); __py_m = len(__py_matrix[0]); @@ -81,6 +81,6 @@ def soft_impute(incomp_data, max_rank, logs=True, lib_path=None): end_time = time.time() if logs: - print(f"\n\t\t> logs, imputation Soft Impute - Execution Time: {(end_time - start_time):.4f} seconds\n") + print(f"\n\t> logs, imputation Soft Impute - Execution Time: {(end_time - start_time):.4f} seconds\n") return recov_data diff --git a/build/lib/imputegap/algorithms/spirit.py b/build/lib/imputegap/algorithms/spirit.py index 3d168954..65aaadc3 100644 --- a/build/lib/imputegap/algorithms/spirit.py +++ b/build/lib/imputegap/algorithms/spirit.py @@ -31,7 +31,7 @@ def native_spirit(__py_matrix, __py_k, __py_w, __py_lambda): S. Papadimitriou, J. Sun, and C. Faloutsos. Streaming pattern discovery in multiple time-series. In Proceedings of the 31st International Conference on Very Large Data Bases, Trondheim, Norway, August 30 - September 2, 2005, pages 697–708, 2005. """ - shared_lib = utils.load_share_lib("lib_spirit.so") + shared_lib = utils.load_share_lib("lib_spirit") __py_n = len(__py_matrix); __py_m = len(__py_matrix[0]); @@ -98,6 +98,6 @@ def spirit(incomp_data, k, w, lambda_value, logs=True, lib_path=None): end_time = time.time() if logs: - print(f"\n\t\t> logs, imputation SPIRIT - Execution Time: {(end_time - start_time):.4f} seconds\n") + print(f"\n\t> logs, imputation SPIRIT - Execution Time: {(end_time - start_time):.4f} seconds\n") return recov_data diff --git a/build/lib/imputegap/algorithms/stmvl.py b/build/lib/imputegap/algorithms/stmvl.py index bd75f55d..9eef0f14 100644 --- a/build/lib/imputegap/algorithms/stmvl.py +++ b/build/lib/imputegap/algorithms/stmvl.py @@ -39,7 +39,7 @@ def native_stmvl(__py_matrix, __py_window, __py_gamma, __py_alpha): School of Information Science and Technology, Southwest Jiaotong University; Microsoft Research; Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences. """ - shared_lib = utils.load_share_lib("lib_stmvl.so") + shared_lib = utils.load_share_lib("lib_stmvl") __py_sizen = len(__py_matrix); __py_sizem = len(__py_matrix[0]); @@ -84,6 +84,9 @@ def stmvl(incomp_data, window_size, gamma, alpha, logs=True): :return: recov_data, metrics : all time series with imputation data and their metrics """ + print(f"(PYTHON) ST-MVL: ({incomp_data.shape[0]},{incomp_data.shape[1]}) for window_size {window_size}, " + f"gamma {gamma}, and alpha {alpha}...") + start_time = time.time() # Record start time # Call the C++ function to perform recovery @@ -91,6 +94,6 @@ def stmvl(incomp_data, window_size, gamma, alpha, logs=True): end_time = time.time() if logs: - print(f"\n\t\t> logs, imputation stvml - Execution Time: {(end_time - start_time):.4f} seconds\n") + print(f"\n\t> logs, imputation stvml - Execution Time: {(end_time - start_time):.4f} seconds\n") return recov_data diff --git a/build/lib/imputegap/algorithms/svt.py b/build/lib/imputegap/algorithms/svt.py index 12d5256d..ea8522bc 100644 --- a/build/lib/imputegap/algorithms/svt.py +++ b/build/lib/imputegap/algorithms/svt.py @@ -25,7 +25,7 @@ def native_svt(__py_matrix, __py_tau): J. Cai, E. J. Candès, and Z. Shen. A singular value thresholding algorithm for matrix completion. SIAM Journal on Optimization, 20(4):1956–1982, 2010. [8] J. Cambronero, J. K. Feser, M. J. Smith, and """ - shared_lib = utils.load_share_lib("lib_svt.so") + shared_lib = utils.load_share_lib("lib_svt") __py_n = len(__py_matrix); __py_m = len(__py_matrix[0]); @@ -80,6 +80,6 @@ def svt(incomp_data, tau, logs=True, lib_path=None): end_time = time.time() if logs: - print(f"\n\t\t> logs, imputation SVT - Execution Time: {(end_time - start_time):.4f} seconds\n") + print(f"\n\t> logs, imputation SVT - Execution Time: {(end_time - start_time):.4f} seconds\n") return recov_data diff --git a/build/lib/imputegap/algorithms/tkcm.py b/build/lib/imputegap/algorithms/tkcm.py index 713fe644..59b35b5a 100644 --- a/build/lib/imputegap/algorithms/tkcm.py +++ b/build/lib/imputegap/algorithms/tkcm.py @@ -24,7 +24,7 @@ def native_tkcm(__py_matrix, __py_rank): K. Wellenzohn, M. H. Böhlen, A. Dignös, J. Gamper, and H. Mitterer. Continuous imputation of missing values in streams of pattern-determining time series. In Proceedings of the 20th International Conference on Extending Database Technology, EDBT 2017, Venice, Italy, March 21-24, 2017., pages 330–341, 2017. """ - shared_lib = utils.load_share_lib("lib_tkcm.so") + shared_lib = utils.load_share_lib("lib_tkcm") __py_n = len(__py_matrix); __py_m = len(__py_matrix[0]); @@ -81,6 +81,6 @@ def tkcm(incomp_data, rank, logs=True, lib_path=None): end_time = time.time() if logs: - print(f"\n\t\t> logs, imputation TKCM - Execution Time: {(end_time - start_time):.4f} seconds\n") + print(f"\n\t> logs, imputation TKCM - Execution Time: {(end_time - start_time):.4f} seconds\n") return recov_data diff --git a/build/lib/imputegap/algorithms/trmf.py b/build/lib/imputegap/algorithms/trmf.py index a80d46a7..db3cfe9d 100644 --- a/build/lib/imputegap/algorithms/trmf.py +++ b/build/lib/imputegap/algorithms/trmf.py @@ -57,6 +57,6 @@ def trmf(incomp_data, lags, K, lambda_f, lambda_x, lambda_w, eta, alpha, max_ite end_time = time.time() if logs: - print(f"\n\t\t> logs, imputation trmf - Execution Time: {(end_time - start_time):.4f} seconds\n") + print(f"\n\t> logs, imputation trmf - Execution Time: {(end_time - start_time):.4f} seconds\n") return recov_data diff --git a/build/lib/imputegap/algorithms/xgboost.py b/build/lib/imputegap/algorithms/xgboost.py index 29834896..bb6bc0e2 100644 --- a/build/lib/imputegap/algorithms/xgboost.py +++ b/build/lib/imputegap/algorithms/xgboost.py @@ -37,7 +37,7 @@ def xgboost(incomp_data, n_estimators=10, seed=42, logs=True): https://medium.com/@tzhaonj/imputing-missing-data-using-xgboost-802757cace6d """ - print("\t\t(PYTHON) XGBOOST : Matrix Shape: (", incomp_data.shape[0], ", ", incomp_data.shape[1], ")" + print("(PYTHON) XGBOOST : Matrix Shape: (", incomp_data.shape[0], ", ", incomp_data.shape[1], ")" " for n_estimators ", n_estimators, ", and seed ", seed, "...") if isinstance(incomp_data, np.ndarray): @@ -68,6 +68,6 @@ def xgboost(incomp_data, n_estimators=10, seed=42, logs=True): end_time = time.time() if logs: - print(f"\n\t\t> logs, imputation XGBOOST - Execution Time: {(end_time - start_time):.4f} seconds\n") + print(f"\n\t> logs, imputation XGBOOST - Execution Time: {(end_time - start_time):.4f} seconds\n") return np.array(recov_data) diff --git a/build/lib/imputegap/env/default_values.toml b/build/lib/imputegap/env/default_values.toml index e422936d..299eb3d4 100644 --- a/build/lib/imputegap/env/default_values.toml +++ b/build/lib/imputegap/env/default_values.toml @@ -87,7 +87,7 @@ approximation = true rank = 4 # ALGORITHM DEFAULT VALUES : STATISTICS -[knn] +[knn_impute] k = 5 weights = "uniform" diff --git a/imputegap/imputegap_assets/shap/.gitkeep b/build/lib/imputegap/imputegap_assets/benchmark/.gitkeep similarity index 100% rename from imputegap/imputegap_assets/shap/.gitkeep rename to build/lib/imputegap/imputegap_assets/benchmark/.gitkeep diff --git a/build/lib/imputegap/imputegap_assets/benchmark/_details/run_0/eeg-alcohol/eegalcohol_mcar_default_params_CORRELATION.jpg b/build/lib/imputegap/imputegap_assets/benchmark/_details/run_0/eeg-alcohol/eegalcohol_mcar_default_params_CORRELATION.jpg new file mode 100644 index 00000000..152cad2d Binary files /dev/null and b/build/lib/imputegap/imputegap_assets/benchmark/_details/run_0/eeg-alcohol/eegalcohol_mcar_default_params_CORRELATION.jpg differ diff --git a/build/lib/imputegap/imputegap_assets/benchmark/_details/run_0/eeg-alcohol/eegalcohol_mcar_default_params_MAE.jpg b/build/lib/imputegap/imputegap_assets/benchmark/_details/run_0/eeg-alcohol/eegalcohol_mcar_default_params_MAE.jpg new file mode 100644 index 00000000..96c91bec Binary files /dev/null and b/build/lib/imputegap/imputegap_assets/benchmark/_details/run_0/eeg-alcohol/eegalcohol_mcar_default_params_MAE.jpg differ diff --git a/build/lib/imputegap/imputegap_assets/benchmark/_details/run_0/eeg-alcohol/eegalcohol_mcar_default_params_MI.jpg b/build/lib/imputegap/imputegap_assets/benchmark/_details/run_0/eeg-alcohol/eegalcohol_mcar_default_params_MI.jpg new file mode 100644 index 00000000..e99cfb81 Binary files /dev/null and b/build/lib/imputegap/imputegap_assets/benchmark/_details/run_0/eeg-alcohol/eegalcohol_mcar_default_params_MI.jpg differ diff --git a/build/lib/imputegap/imputegap_assets/benchmark/_details/run_0/eeg-alcohol/eegalcohol_mcar_default_params_RMSE.jpg b/build/lib/imputegap/imputegap_assets/benchmark/_details/run_0/eeg-alcohol/eegalcohol_mcar_default_params_RMSE.jpg new file mode 100644 index 00000000..7ace0036 Binary files /dev/null and b/build/lib/imputegap/imputegap_assets/benchmark/_details/run_0/eeg-alcohol/eegalcohol_mcar_default_params_RMSE.jpg differ diff --git a/build/lib/imputegap/imputegap_assets/benchmark/_details/run_0/eeg-alcohol/eegalcohol_mcar_default_params_imputation_time.jpg b/build/lib/imputegap/imputegap_assets/benchmark/_details/run_0/eeg-alcohol/eegalcohol_mcar_default_params_imputation_time.jpg new file mode 100644 index 00000000..2e28c54f Binary files /dev/null and b/build/lib/imputegap/imputegap_assets/benchmark/_details/run_0/eeg-alcohol/eegalcohol_mcar_default_params_imputation_time.jpg differ diff --git a/build/lib/imputegap/imputegap_assets/benchmark/_details/run_0/eeg-alcohol/eegalcohol_mcar_default_params_log_imputation.jpg b/build/lib/imputegap/imputegap_assets/benchmark/_details/run_0/eeg-alcohol/eegalcohol_mcar_default_params_log_imputation.jpg new file mode 100644 index 00000000..6ec2c171 Binary files /dev/null and b/build/lib/imputegap/imputegap_assets/benchmark/_details/run_0/eeg-alcohol/eegalcohol_mcar_default_params_log_imputation.jpg differ diff --git a/build/lib/imputegap/imputegap_assets/benchmark/_details/run_0/eeg-alcohol/eegalcohol_mcar_metrics_subplot.jpg b/build/lib/imputegap/imputegap_assets/benchmark/_details/run_0/eeg-alcohol/eegalcohol_mcar_metrics_subplot.jpg new file mode 100644 index 00000000..cc67e9dc Binary files /dev/null and b/build/lib/imputegap/imputegap_assets/benchmark/_details/run_0/eeg-alcohol/eegalcohol_mcar_metrics_subplot.jpg differ diff --git a/build/lib/imputegap/imputegap_assets/benchmark/_details/run_0/eeg-alcohol/report_eeg-alcohol.txt b/build/lib/imputegap/imputegap_assets/benchmark/_details/run_0/eeg-alcohol/report_eeg-alcohol.txt new file mode 100644 index 00000000..2ff471db --- /dev/null +++ b/build/lib/imputegap/imputegap_assets/benchmark/_details/run_0/eeg-alcohol/report_eeg-alcohol.txt @@ -0,0 +1,83 @@ +Report for Dataset: eeg-alcohol +Generated on: 2025-03-21 15:54:48 +Run number: 0 +======================================================================================================================== + +RMSE: Root Mean Square Error - Measures the average magnitude of error. + ++-----------------+-----------------+-----------------+--------------------+--------------+---------------------------+ +| Dataset | Pattern | Algorithm | Optimizer | X Value | RMSE | ++-----------------+-----------------+-----------------+--------------------+--------------+---------------------------+ +| eegalcohol | mcar | SoftImpute | default_params | 0.05 | 0.4359915238 | +| eegalcohol | mcar | SoftImpute | default_params | 0.1 | 0.3665001858 | +| eegalcohol | mcar | SoftImpute | default_params | 0.2 | 0.3983300622 | +| eegalcohol | mcar | SoftImpute | default_params | 0.4 | 0.4355910162 | +| eegalcohol | mcar | SoftImpute | default_params | 0.6 | 0.4500113662 | +| eegalcohol | mcar | SoftImpute | default_params | 0.8 | 0.4655442240 | +| eegalcohol | mcar | KNNImpute | default_params | 0.05 | 0.2410259540 | +| eegalcohol | mcar | KNNImpute | default_params | 0.1 | 0.2889085181 | +| eegalcohol | mcar | KNNImpute | default_params | 0.2 | 0.3252384253 | +| eegalcohol | mcar | KNNImpute | default_params | 0.4 | 0.3382458476 | +| eegalcohol | mcar | KNNImpute | default_params | 0.6 | 0.3656435952 | +| eegalcohol | mcar | KNNImpute | default_params | 0.8 | 0.4985193265 | ++-----------------+-----------------+-----------------+--------------------+--------------+---------------------------+ + +MAE: Mean Absolute Error - Measures the average absolute error. + ++-----------------+-----------------+-----------------+--------------------+--------------+---------------------------+ +| Dataset | Pattern | Algorithm | Optimizer | X Value | MAE | ++-----------------+-----------------+-----------------+--------------------+--------------+---------------------------+ +| eegalcohol | mcar | SoftImpute | default_params | 0.05 | 0.3725965559 | +| eegalcohol | mcar | SoftImpute | default_params | 0.1 | 0.2989983613 | +| eegalcohol | mcar | SoftImpute | default_params | 0.2 | 0.3082464402 | +| eegalcohol | mcar | SoftImpute | default_params | 0.4 | 0.3335144216 | +| eegalcohol | mcar | SoftImpute | default_params | 0.6 | 0.3380858657 | +| eegalcohol | mcar | SoftImpute | default_params | 0.8 | 0.3508926604 | +| eegalcohol | mcar | KNNImpute | default_params | 0.05 | 0.1898483284 | +| eegalcohol | mcar | KNNImpute | default_params | 0.1 | 0.2299862373 | +| eegalcohol | mcar | KNNImpute | default_params | 0.2 | 0.2398150375 | +| eegalcohol | mcar | KNNImpute | default_params | 0.4 | 0.2509197576 | +| eegalcohol | mcar | KNNImpute | default_params | 0.6 | 0.2663072460 | +| eegalcohol | mcar | KNNImpute | default_params | 0.8 | 0.3727407178 | ++-----------------+-----------------+-----------------+--------------------+--------------+---------------------------+ + +MI: Mutual Information - Indicates dependency between variables. + ++-----------------+-----------------+-----------------+--------------------+--------------+---------------------------+ +| Dataset | Pattern | Algorithm | Optimizer | X Value | MI | ++-----------------+-----------------+-----------------+--------------------+--------------+---------------------------+ +| eegalcohol | mcar | SoftImpute | default_params | 0.05 | 1.4169232776 | +| eegalcohol | mcar | SoftImpute | default_params | 0.1 | 0.9078918431 | +| eegalcohol | mcar | SoftImpute | default_params | 0.2 | 0.8483406827 | +| eegalcohol | mcar | SoftImpute | default_params | 0.4 | 0.7286325588 | +| eegalcohol | mcar | SoftImpute | default_params | 0.6 | 0.6481512577 | +| eegalcohol | mcar | SoftImpute | default_params | 0.8 | 0.6150677913 | +| eegalcohol | mcar | KNNImpute | default_params | 0.05 | 1.5477828628 | +| eegalcohol | mcar | KNNImpute | default_params | 0.1 | 0.9934511614 | +| eegalcohol | mcar | KNNImpute | default_params | 0.2 | 1.0141220941 | +| eegalcohol | mcar | KNNImpute | default_params | 0.4 | 0.9534836632 | +| eegalcohol | mcar | KNNImpute | default_params | 0.6 | 0.7933983583 | +| eegalcohol | mcar | KNNImpute | default_params | 0.8 | 0.5872198066 | ++-----------------+-----------------+-----------------+--------------------+--------------+---------------------------+ + +CORRELATION: Correlation Coefficient - Indicates linear relationship between variables. + ++-----------------+-----------------+-----------------+--------------------+--------------+---------------------------+ +| Dataset | Pattern | Algorithm | Optimizer | X Value | CORRELATION | ++-----------------+-----------------+-----------------+--------------------+--------------+---------------------------+ +| eegalcohol | mcar | SoftImpute | default_params | 0.05 | 0.9530448037 | +| eegalcohol | mcar | SoftImpute | default_params | 0.1 | 0.9049909723 | +| eegalcohol | mcar | SoftImpute | default_params | 0.2 | 0.9161465703 | +| eegalcohol | mcar | SoftImpute | default_params | 0.4 | 0.9021032587 | +| eegalcohol | mcar | SoftImpute | default_params | 0.6 | 0.8893263437 | +| eegalcohol | mcar | SoftImpute | default_params | 0.8 | 0.8791443563 | +| eegalcohol | mcar | KNNImpute | default_params | 0.05 | 0.9810468571 | +| eegalcohol | mcar | KNNImpute | default_params | 0.1 | 0.9429448316 | +| eegalcohol | mcar | KNNImpute | default_params | 0.2 | 0.9441733384 | +| eegalcohol | mcar | KNNImpute | default_params | 0.4 | 0.9418540692 | +| eegalcohol | mcar | KNNImpute | default_params | 0.6 | 0.9285706344 | +| eegalcohol | mcar | KNNImpute | default_params | 0.8 | 0.8588039019 | ++-----------------+-----------------+-----------------+--------------------+--------------+---------------------------+ + +Dictionary of Results: +{'eegalcohol': {'mcar': {'SoftImpute': {'default_params': {'0.05': {'scores': {'RMSE': 0.4359915238078244, 'MAE': 0.3725965559420608, 'MI': 1.4169232775678364, 'CORRELATION': 0.9530448037164908}, 'times': {'contamination': 0.00027561187744140625, 'optimization': 0, 'imputation': 0.15315723419189453, 'log_imputation': -0.8148624850120225}}, '0.1': {'scores': {'RMSE': 0.3665001858394363, 'MAE': 0.2989983612840734, 'MI': 0.9078918430616858, 'CORRELATION': 0.9049909722894052}, 'times': {'contamination': 0.0004036426544189453, 'optimization': 0, 'imputation': 0.10621070861816406, 'log_imputation': -0.9738316936187855}}, '0.2': {'scores': {'RMSE': 0.39833006221984, 'MAE': 0.30824644022807457, 'MI': 0.8483406827418594, 'CORRELATION': 0.9161465703422209}, 'times': {'contamination': 0.0015327930450439453, 'optimization': 0, 'imputation': 0.08952975273132324, 'log_imputation': -1.048032614966155}}, '0.4': {'scores': {'RMSE': 0.435591016228979, 'MAE': 0.3335144215651955, 'MI': 0.7286325588353783, 'CORRELATION': 0.9021032587324183}, 'times': {'contamination': 0.03658604621887207, 'optimization': 0, 'imputation': 0.12557768821716309, 'log_imputation': -0.9010875162113435}}, '0.6': {'scores': {'RMSE': 0.4500113661547204, 'MAE': 0.338085865703361, 'MI': 0.6481512576687939, 'CORRELATION': 0.8893263437029546}, 'times': {'contamination': 0.08436226844787598, 'optimization': 0, 'imputation': 0.11329030990600586, 'log_imputation': -0.945807235187996}}, '0.8': {'scores': {'RMSE': 0.46554422402146944, 'MAE': 0.3508926604243284, 'MI': 0.6150677913271478, 'CORRELATION': 0.8791443563129441}, 'times': {'contamination': 0.13154006004333496, 'optimization': 0, 'imputation': 0.33798837661743164, 'log_imputation': -0.4710982348043248}}}}, 'KNNImpute': {'default_params': {'0.05': {'scores': {'RMSE': 0.24102595399583507, 'MAE': 0.18984832836399548, 'MI': 1.547782862758484, 'CORRELATION': 0.9810468571465141}, 'times': {'contamination': 0.0008156299591064453, 'optimization': 0, 'imputation': 0.051076412200927734, 'log_imputation': -1.291779616813155}}, '0.1': {'scores': {'RMSE': 0.28890851809839135, 'MAE': 0.22998623733608023, 'MI': 0.9934511613817691, 'CORRELATION': 0.942944831550703}, 'times': {'contamination': 0.0005509853363037109, 'optimization': 0, 'imputation': 0.02433300018310547, 'log_imputation': -1.6138043406113736}}, '0.2': {'scores': {'RMSE': 0.32523842533021824, 'MAE': 0.2398150375225743, 'MI': 1.0141220941333857, 'CORRELATION': 0.9441733384102147}, 'times': {'contamination': 0.0013000965118408203, 'optimization': 0, 'imputation': 0.03016376495361328, 'log_imputation': -1.5205144520419687}}, '0.4': {'scores': {'RMSE': 0.33824584758611187, 'MAE': 0.2509197576351218, 'MI': 0.9534836631617412, 'CORRELATION': 0.9418540692188737}, 'times': {'contamination': 0.005934953689575195, 'optimization': 0, 'imputation': 0.08333516120910645, 'log_imputation': -1.0791717201157554}}, '0.6': {'scores': {'RMSE': 0.3656435952078159, 'MAE': 0.26630724595251076, 'MI': 0.7933983583413302, 'CORRELATION': 0.9285706343976159}, 'times': {'contamination': 0.03005695343017578, 'optimization': 0, 'imputation': 0.09784293174743652, 'log_imputation': -1.0094705426576025}}, '0.8': {'scores': {'RMSE': 0.49851932645867886, 'MAE': 0.3727407177987301, 'MI': 0.5872198065951101, 'CORRELATION': 0.8588039019214768}, 'times': {'contamination': 0.06295108795166016, 'optimization': 0, 'imputation': 0.1400442123413086, 'log_imputation': -0.8537348347173945}}}}}}} diff --git a/build/lib/imputegap/imputegap_assets/benchmark/_details/run_0/eeg-alcohol/report_eeg-alcohol.xlsx b/build/lib/imputegap/imputegap_assets/benchmark/_details/run_0/eeg-alcohol/report_eeg-alcohol.xlsx new file mode 100644 index 00000000..202a6c52 Binary files /dev/null and b/build/lib/imputegap/imputegap_assets/benchmark/_details/run_0/eeg-alcohol/report_eeg-alcohol.xlsx differ diff --git a/build/lib/imputegap/imputegap_assets/benchmark/_heatmap/.gitkeep b/build/lib/imputegap/imputegap_assets/benchmark/_heatmap/.gitkeep new file mode 100644 index 00000000..e69de29b diff --git a/build/lib/imputegap/imputegap_assets/benchmark/_heatmap/benchmarking_rmse.jpg b/build/lib/imputegap/imputegap_assets/benchmark/_heatmap/benchmarking_rmse.jpg new file mode 100644 index 00000000..107ada01 Binary files /dev/null and b/build/lib/imputegap/imputegap_assets/benchmark/_heatmap/benchmarking_rmse.jpg differ diff --git a/build/lib/imputegap/imputegap_assets/benchmark/eegalcohol/eegalcohol_mcar_metrics_subplot.jpg b/build/lib/imputegap/imputegap_assets/benchmark/eegalcohol/eegalcohol_mcar_metrics_subplot.jpg new file mode 100644 index 00000000..cc67e9dc Binary files /dev/null and b/build/lib/imputegap/imputegap_assets/benchmark/eegalcohol/eegalcohol_mcar_metrics_subplot.jpg differ diff --git a/build/lib/imputegap/imputegap_assets/benchmark/eegalcohol/report_eegalcohol.txt b/build/lib/imputegap/imputegap_assets/benchmark/eegalcohol/report_eegalcohol.txt new file mode 100644 index 00000000..62b5d211 --- /dev/null +++ b/build/lib/imputegap/imputegap_assets/benchmark/eegalcohol/report_eegalcohol.txt @@ -0,0 +1,82 @@ +Report for Dataset: eegalcohol +Generated on: 2025-03-21 15:54:56 +======================================================================================================================== + +RMSE: Root Mean Square Error - Measures the average magnitude of error. + ++-----------------+-----------------+-----------------+--------------------+--------------+---------------------------+ +| Dataset | Pattern | Algorithm | Optimizer | X Value | RMSE | ++-----------------+-----------------+-----------------+--------------------+--------------+---------------------------+ +| eegalcohol | mcar | SoftImpute | default_params | 0.05 | 0.4359915238 | +| eegalcohol | mcar | SoftImpute | default_params | 0.1 | 0.3665001858 | +| eegalcohol | mcar | SoftImpute | default_params | 0.2 | 0.3983300622 | +| eegalcohol | mcar | SoftImpute | default_params | 0.4 | 0.4355910162 | +| eegalcohol | mcar | SoftImpute | default_params | 0.6 | 0.4500113662 | +| eegalcohol | mcar | SoftImpute | default_params | 0.8 | 0.4655442240 | +| eegalcohol | mcar | KNNImpute | default_params | 0.05 | 0.2410259540 | +| eegalcohol | mcar | KNNImpute | default_params | 0.1 | 0.2889085181 | +| eegalcohol | mcar | KNNImpute | default_params | 0.2 | 0.3252384253 | +| eegalcohol | mcar | KNNImpute | default_params | 0.4 | 0.3382458476 | +| eegalcohol | mcar | KNNImpute | default_params | 0.6 | 0.3656435952 | +| eegalcohol | mcar | KNNImpute | default_params | 0.8 | 0.4985193265 | ++-----------------+-----------------+-----------------+--------------------+--------------+---------------------------+ + +MAE: Mean Absolute Error - Measures the average absolute error. + ++-----------------+-----------------+-----------------+--------------------+--------------+---------------------------+ +| Dataset | Pattern | Algorithm | Optimizer | X Value | MAE | ++-----------------+-----------------+-----------------+--------------------+--------------+---------------------------+ +| eegalcohol | mcar | SoftImpute | default_params | 0.05 | 0.3725965559 | +| eegalcohol | mcar | SoftImpute | default_params | 0.1 | 0.2989983613 | +| eegalcohol | mcar | SoftImpute | default_params | 0.2 | 0.3082464402 | +| eegalcohol | mcar | SoftImpute | default_params | 0.4 | 0.3335144216 | +| eegalcohol | mcar | SoftImpute | default_params | 0.6 | 0.3380858657 | +| eegalcohol | mcar | SoftImpute | default_params | 0.8 | 0.3508926604 | +| eegalcohol | mcar | KNNImpute | default_params | 0.05 | 0.1898483284 | +| eegalcohol | mcar | KNNImpute | default_params | 0.1 | 0.2299862373 | +| eegalcohol | mcar | KNNImpute | default_params | 0.2 | 0.2398150375 | +| eegalcohol | mcar | KNNImpute | default_params | 0.4 | 0.2509197576 | +| eegalcohol | mcar | KNNImpute | default_params | 0.6 | 0.2663072460 | +| eegalcohol | mcar | KNNImpute | default_params | 0.8 | 0.3727407178 | ++-----------------+-----------------+-----------------+--------------------+--------------+---------------------------+ + +MI: Mutual Information - Indicates dependency between variables. + ++-----------------+-----------------+-----------------+--------------------+--------------+---------------------------+ +| Dataset | Pattern | Algorithm | Optimizer | X Value | MI | ++-----------------+-----------------+-----------------+--------------------+--------------+---------------------------+ +| eegalcohol | mcar | SoftImpute | default_params | 0.05 | 1.4169232776 | +| eegalcohol | mcar | SoftImpute | default_params | 0.1 | 0.9078918431 | +| eegalcohol | mcar | SoftImpute | default_params | 0.2 | 0.8483406827 | +| eegalcohol | mcar | SoftImpute | default_params | 0.4 | 0.7286325588 | +| eegalcohol | mcar | SoftImpute | default_params | 0.6 | 0.6481512577 | +| eegalcohol | mcar | SoftImpute | default_params | 0.8 | 0.6150677913 | +| eegalcohol | mcar | KNNImpute | default_params | 0.05 | 1.5477828628 | +| eegalcohol | mcar | KNNImpute | default_params | 0.1 | 0.9934511614 | +| eegalcohol | mcar | KNNImpute | default_params | 0.2 | 1.0141220941 | +| eegalcohol | mcar | KNNImpute | default_params | 0.4 | 0.9534836632 | +| eegalcohol | mcar | KNNImpute | default_params | 0.6 | 0.7933983583 | +| eegalcohol | mcar | KNNImpute | default_params | 0.8 | 0.5872198066 | ++-----------------+-----------------+-----------------+--------------------+--------------+---------------------------+ + +CORRELATION: Correlation Coefficient - Indicates linear relationship between variables. + ++-----------------+-----------------+-----------------+--------------------+--------------+---------------------------+ +| Dataset | Pattern | Algorithm | Optimizer | X Value | CORRELATION | ++-----------------+-----------------+-----------------+--------------------+--------------+---------------------------+ +| eegalcohol | mcar | SoftImpute | default_params | 0.05 | 0.9530448037 | +| eegalcohol | mcar | SoftImpute | default_params | 0.1 | 0.9049909723 | +| eegalcohol | mcar | SoftImpute | default_params | 0.2 | 0.9161465703 | +| eegalcohol | mcar | SoftImpute | default_params | 0.4 | 0.9021032587 | +| eegalcohol | mcar | SoftImpute | default_params | 0.6 | 0.8893263437 | +| eegalcohol | mcar | SoftImpute | default_params | 0.8 | 0.8791443563 | +| eegalcohol | mcar | KNNImpute | default_params | 0.05 | 0.9810468571 | +| eegalcohol | mcar | KNNImpute | default_params | 0.1 | 0.9429448316 | +| eegalcohol | mcar | KNNImpute | default_params | 0.2 | 0.9441733384 | +| eegalcohol | mcar | KNNImpute | default_params | 0.4 | 0.9418540692 | +| eegalcohol | mcar | KNNImpute | default_params | 0.6 | 0.9285706344 | +| eegalcohol | mcar | KNNImpute | default_params | 0.8 | 0.8588039019 | ++-----------------+-----------------+-----------------+--------------------+--------------+---------------------------+ + +Dictionary of Results: +{'eegalcohol': {'mcar': {'SoftImpute': {'default_params': {'0.05': {'scores': {'RMSE': 0.4359915238078244, 'MAE': 0.3725965559420608, 'MI': 1.4169232775678364, 'CORRELATION': 0.9530448037164908}, 'times': {'contamination': 0.00027561187744140625, 'optimization': 0.0, 'imputation': 0.15315723419189453, 'log_imputation': -0.8148624850120225}}, '0.1': {'scores': {'RMSE': 0.3665001858394363, 'MAE': 0.2989983612840734, 'MI': 0.9078918430616858, 'CORRELATION': 0.9049909722894052}, 'times': {'contamination': 0.0004036426544189453, 'optimization': 0.0, 'imputation': 0.10621070861816406, 'log_imputation': -0.9738316936187855}}, '0.2': {'scores': {'RMSE': 0.39833006221984, 'MAE': 0.30824644022807457, 'MI': 0.8483406827418594, 'CORRELATION': 0.9161465703422209}, 'times': {'contamination': 0.0015327930450439453, 'optimization': 0.0, 'imputation': 0.08952975273132324, 'log_imputation': -1.048032614966155}}, '0.4': {'scores': {'RMSE': 0.435591016228979, 'MAE': 0.3335144215651955, 'MI': 0.7286325588353783, 'CORRELATION': 0.9021032587324183}, 'times': {'contamination': 0.03658604621887207, 'optimization': 0.0, 'imputation': 0.12557768821716309, 'log_imputation': -0.9010875162113435}}, '0.6': {'scores': {'RMSE': 0.4500113661547204, 'MAE': 0.338085865703361, 'MI': 0.6481512576687939, 'CORRELATION': 0.8893263437029546}, 'times': {'contamination': 0.08436226844787598, 'optimization': 0.0, 'imputation': 0.11329030990600586, 'log_imputation': -0.945807235187996}}, '0.8': {'scores': {'RMSE': 0.46554422402146944, 'MAE': 0.3508926604243284, 'MI': 0.6150677913271478, 'CORRELATION': 0.8791443563129441}, 'times': {'contamination': 0.13154006004333496, 'optimization': 0.0, 'imputation': 0.33798837661743164, 'log_imputation': -0.4710982348043248}}}}, 'KNNImpute': {'default_params': {'0.05': {'scores': {'RMSE': 0.24102595399583507, 'MAE': 0.18984832836399548, 'MI': 1.547782862758484, 'CORRELATION': 0.9810468571465141}, 'times': {'contamination': 0.0008156299591064453, 'optimization': 0.0, 'imputation': 0.051076412200927734, 'log_imputation': -1.291779616813155}}, '0.1': {'scores': {'RMSE': 0.28890851809839135, 'MAE': 0.22998623733608023, 'MI': 0.9934511613817691, 'CORRELATION': 0.942944831550703}, 'times': {'contamination': 0.0005509853363037109, 'optimization': 0.0, 'imputation': 0.02433300018310547, 'log_imputation': -1.6138043406113736}}, '0.2': {'scores': {'RMSE': 0.32523842533021824, 'MAE': 0.2398150375225743, 'MI': 1.0141220941333857, 'CORRELATION': 0.9441733384102147}, 'times': {'contamination': 0.0013000965118408203, 'optimization': 0.0, 'imputation': 0.03016376495361328, 'log_imputation': -1.5205144520419687}}, '0.4': {'scores': {'RMSE': 0.33824584758611187, 'MAE': 0.2509197576351218, 'MI': 0.9534836631617412, 'CORRELATION': 0.9418540692188737}, 'times': {'contamination': 0.005934953689575195, 'optimization': 0.0, 'imputation': 0.08333516120910645, 'log_imputation': -1.0791717201157554}}, '0.6': {'scores': {'RMSE': 0.3656435952078159, 'MAE': 0.26630724595251076, 'MI': 0.7933983583413302, 'CORRELATION': 0.9285706343976159}, 'times': {'contamination': 0.03005695343017578, 'optimization': 0.0, 'imputation': 0.09784293174743652, 'log_imputation': -1.0094705426576025}}, '0.8': {'scores': {'RMSE': 0.49851932645867886, 'MAE': 0.3727407177987301, 'MI': 0.5872198065951101, 'CORRELATION': 0.8588039019214768}, 'times': {'contamination': 0.06295108795166016, 'optimization': 0.0, 'imputation': 0.1400442123413086, 'log_imputation': -0.8537348347173945}}}}}}} diff --git a/build/lib/imputegap/imputegap_assets/benchmark/eegalcohol/report_eegalcohol.xlsx b/build/lib/imputegap/imputegap_assets/benchmark/eegalcohol/report_eegalcohol.xlsx new file mode 100644 index 00000000..ec8cf72c Binary files /dev/null and b/build/lib/imputegap/imputegap_assets/benchmark/eegalcohol/report_eegalcohol.xlsx differ diff --git a/build/lib/imputegap/imputegap_assets/downstream/.gitkeep b/build/lib/imputegap/imputegap_assets/downstream/.gitkeep new file mode 100644 index 00000000..e69de29b diff --git a/build/lib/imputegap/imputegap_assets/shap/eeg-alcohol_CDRec_pycatch_shap_all.png b/build/lib/imputegap/imputegap_assets/shap/eeg-alcohol_CDRec_pycatch_shap_all.png new file mode 100644 index 00000000..312bc77c Binary files /dev/null and b/build/lib/imputegap/imputegap_assets/shap/eeg-alcohol_CDRec_pycatch_shap_all.png differ diff --git a/build/lib/imputegap/imputegap_assets/shap/eeg-alcohol_CDRec_pycatch_shap_cat.png b/build/lib/imputegap/imputegap_assets/shap/eeg-alcohol_CDRec_pycatch_shap_cat.png new file mode 100644 index 00000000..530f0517 Binary files /dev/null and b/build/lib/imputegap/imputegap_assets/shap/eeg-alcohol_CDRec_pycatch_shap_cat.png differ diff --git a/build/lib/imputegap/imputegap_assets/shap/eeg-alcohol_CDRec_pycatch_values.txt b/build/lib/imputegap/imputegap_assets/shap/eeg-alcohol_CDRec_pycatch_values.txt new file mode 100644 index 00000000..85a91920 --- /dev/null +++ b/build/lib/imputegap/imputegap_assets/shap/eeg-alcohol_CDRec_pycatch_values.txt @@ -0,0 +1,22 @@ +Feature : 5 CDRec with a score of 31.1 Correlation Time reversibility CO_trev_1_num +Feature : 10 CDRec with a score of 20.85 Geometry Goodness of exponential fit to embedding distance distribution CO_Embed2_Dist_tau_d_expfit_meandiff +Feature : 2 CDRec with a score of 12.12 Correlation First 1/e crossing of the ACF CO_f1ecac +Feature : 21 CDRec with a score of 9.13 Trend Error of 3-point rolling mean forecast FC_LocalSimple_mean3_stderr +Feature : 8 CDRec with a score of 5.16 Geometry Transition matrix column variance SB_TransitionMatrix_3ac_sumdiagcov +Feature : 15 CDRec with a score of 4.71 Transformation Power in the lowest 20% of frequencies SP_Summaries_welch_rect_area_5_1 +Feature : 17 CDRec with a score of 4.04 Trend Entropy of successive pairs in symbolized series SB_MotifThree_quantile_hh +Feature : 1 CDRec with a score of 3.42 Geometry 10-bin histogram mode DN_HistogramMode_10 +Feature : 6 CDRec with a score of 2.09 Geometry Proportion of high incremental changes in the series MD_hrv_classic_pnn40 +Feature : 4 CDRec with a score of 2.07 Correlation Histogram-based automutual information (lag 2, 5 bins) CO_HistogramAMI_even_2_5 +Feature : 20 CDRec with a score of 1.61 Transformation Centroid frequency SP_Summaries_welch_rect_centroid +Feature : 13 CDRec with a score of 1.27 Geometry Positive outlier timing DN_OutlierInclude_p_001_mdrmd +Feature : 0 CDRec with a score of 1.05 Geometry 5-bin histogram mode DN_HistogramMode_5 +Feature : 18 CDRec with a score of 0.63 Geometry Rescaled range fluctuation analysis (low-scale scaling) SC_FluctAnal_2_rsrangefit_50_1_logi_prop_r1 +Feature : 12 CDRec with a score of 0.41 Correlation Change in autocorrelation timescale after incremental differencing FC_LocalSimple_mean1_tauresrat +Feature : 14 CDRec with a score of 0.33 Geometry Negative outlier timing DN_OutlierInclude_n_001_mdrmd +Feature : 3 CDRec with a score of 0.0 Correlation First minimum of the ACF CO_FirstMin_ac +Feature : 7 CDRec with a score of 0.0 Geometry Longest stretch of above-mean values SB_BinaryStats_mean_longstretch1 +Feature : 9 CDRec with a score of 0.0 Trend Wangs periodicity metric PD_PeriodicityWang_th0_01 +Feature : 11 CDRec with a score of 0.0 Correlation First minimum of the AMI function IN_AutoMutualInfoStats_40_gaussian_fmmi +Feature : 16 CDRec with a score of 0.0 Geometry Longest stretch of decreasing values SB_BinaryStats_diff_longstretch0 +Feature : 19 CDRec with a score of 0.0 Geometry Detrended fluctuation analysis (low-scale scaling) SC_FluctAnal_2_dfa_50_1_2_logi_prop_r1 diff --git a/build/lib/imputegap/imputegap_assets/shap/grouped/.gitkeep b/build/lib/imputegap/imputegap_assets/shap/grouped/.gitkeep new file mode 100644 index 00000000..e69de29b diff --git a/build/lib/imputegap/imputegap_assets/shap/grouped/eeg-alcohol_CDRec_pycatch_DTL_Beeswarm.png b/build/lib/imputegap/imputegap_assets/shap/grouped/eeg-alcohol_CDRec_pycatch_DTL_Beeswarm.png new file mode 100644 index 00000000..519bad13 Binary files /dev/null and b/build/lib/imputegap/imputegap_assets/shap/grouped/eeg-alcohol_CDRec_pycatch_DTL_Beeswarm.png differ diff --git a/build/lib/imputegap/imputegap_assets/shap/grouped/eeg-alcohol_CDRec_pycatch_DTL_Waterfall.png b/build/lib/imputegap/imputegap_assets/shap/grouped/eeg-alcohol_CDRec_pycatch_DTL_Waterfall.png new file mode 100644 index 00000000..4c5fb5ce Binary files /dev/null and b/build/lib/imputegap/imputegap_assets/shap/grouped/eeg-alcohol_CDRec_pycatch_DTL_Waterfall.png differ diff --git a/build/lib/imputegap/imputegap_assets/shap/grouped/eeg-alcohol_CDRec_pycatch_shap_agg_reverse.png b/build/lib/imputegap/imputegap_assets/shap/grouped/eeg-alcohol_CDRec_pycatch_shap_agg_reverse.png new file mode 100644 index 00000000..c986664c Binary files /dev/null and b/build/lib/imputegap/imputegap_assets/shap/grouped/eeg-alcohol_CDRec_pycatch_shap_agg_reverse.png differ diff --git a/build/lib/imputegap/imputegap_assets/shap/grouped/eeg-alcohol_CDRec_pycatch_shap_reverse.png b/build/lib/imputegap/imputegap_assets/shap/grouped/eeg-alcohol_CDRec_pycatch_shap_reverse.png new file mode 100644 index 00000000..34a1b20f Binary files /dev/null and b/build/lib/imputegap/imputegap_assets/shap/grouped/eeg-alcohol_CDRec_pycatch_shap_reverse.png differ diff --git a/build/lib/imputegap/imputegap_assets/shap/per_categories/.gitkeep b/build/lib/imputegap/imputegap_assets/shap/per_categories/.gitkeep new file mode 100644 index 00000000..e69de29b diff --git a/build/lib/imputegap/imputegap_assets/shap/per_categories/eeg-alcohol_CDRec_pycatch_shap_correlation.png b/build/lib/imputegap/imputegap_assets/shap/per_categories/eeg-alcohol_CDRec_pycatch_shap_correlation.png new file mode 100644 index 00000000..30cb48aa Binary files /dev/null and b/build/lib/imputegap/imputegap_assets/shap/per_categories/eeg-alcohol_CDRec_pycatch_shap_correlation.png differ diff --git a/build/lib/imputegap/imputegap_assets/shap/per_categories/eeg-alcohol_CDRec_pycatch_shap_geometry.png b/build/lib/imputegap/imputegap_assets/shap/per_categories/eeg-alcohol_CDRec_pycatch_shap_geometry.png new file mode 100644 index 00000000..3765d6f8 Binary files /dev/null and b/build/lib/imputegap/imputegap_assets/shap/per_categories/eeg-alcohol_CDRec_pycatch_shap_geometry.png differ diff --git a/build/lib/imputegap/imputegap_assets/shap/per_categories/eeg-alcohol_CDRec_pycatch_shap_transformation.png b/build/lib/imputegap/imputegap_assets/shap/per_categories/eeg-alcohol_CDRec_pycatch_shap_transformation.png new file mode 100644 index 00000000..a3726d5f Binary files /dev/null and b/build/lib/imputegap/imputegap_assets/shap/per_categories/eeg-alcohol_CDRec_pycatch_shap_transformation.png differ diff --git a/build/lib/imputegap/imputegap_assets/shap/per_categories/eeg-alcohol_CDRec_pycatch_shap_trend.png b/build/lib/imputegap/imputegap_assets/shap/per_categories/eeg-alcohol_CDRec_pycatch_shap_trend.png new file mode 100644 index 00000000..d04183bc Binary files /dev/null and b/build/lib/imputegap/imputegap_assets/shap/per_categories/eeg-alcohol_CDRec_pycatch_shap_trend.png differ diff --git a/build/lib/imputegap/recovery/benchmark.py b/build/lib/imputegap/recovery/benchmark.py index e25cc722..cef2dbc9 100644 --- a/build/lib/imputegap/recovery/benchmark.py +++ b/build/lib/imputegap/recovery/benchmark.py @@ -4,7 +4,6 @@ import time import numpy as np import matplotlib.pyplot as plt - import xlsxwriter from imputegap.tools import utils @@ -187,9 +186,9 @@ def avg_results(self, *datasets): for j, algo in enumerate(algorithms_list): comprehensive_matrix[i, j] = average_rmse_matrix[dataset].get(algo, np.nan) - print("\nVisualization of datasets:", datasets_list) - print("Visualization of algorithms:", algorithms_list) - print("Visualization of matrix:\n", comprehensive_matrix, "\n\n") + print("\nvisualization of datasets:", *datasets_list) + print("visualization of algorithms:", *algorithms_list) + print(f"visualization of aggregate matrix :\n {comprehensive_matrix}\n\n") return comprehensive_matrix, algorithms_list, datasets_list @@ -215,6 +214,7 @@ def generate_heatmap(self, scores_list, algos, sets, save_dir="./reports", displ Bool True if the matrix has been generated """ + save_dir = save_dir + "/_heatmap/" if not os.path.exists(save_dir): os.makedirs(save_dir) @@ -226,6 +226,7 @@ def generate_heatmap(self, scores_list, algos, sets, save_dir="./reports", displ y_size = cell_size*nbr_datasets fig, ax = plt.subplots(figsize=(x_size, y_size)) + fig.canvas.manager.set_window_title("benchmark heatmap") cmap = plt.cm.Greys norm = plt.Normalize(vmin=0, vmax=2) # Normalizing values between 0 and 2 (RMSE) @@ -307,21 +308,28 @@ def generate_reports_txt(self, runs_plots_scores, save_dir="./reports", dataset= "MI": "Mutual Information - Indicates dependency between variables.", "CORRELATION": "Correlation Coefficient - Indicates linear relationship between variables." } + first_metric = True for metric, description in metrics.items(): # Write the metric description file.write(f"{metric}: {description}\n\n") - column_widths = [15, 15, 15, 15, 12, 25] + column_widths = [15, 15, 15, 18, 12, 25] # Create a table header - headers = ["Dataset", "Algorithm", "Optimizer", "Pattern", "X Value", metric] + headers = ["Dataset", "Pattern", "Algorithm", "Optimizer", "Rate", metric] header_row = "|".join(f" {header:^{width}} " for header, width in zip(headers, column_widths)) separator_row = "+" + "+".join(f"{'-' * (width + 2)}" for width in column_widths) + "+" file.write(f"{separator_row}\n") file.write(f"|{header_row}|\n") file.write(f"{separator_row}\n") + if first_metric and run ==-1 : + print(f"\n{metric}: {description}\n") + print(separator_row) + print(f"|{header_row}|") + print(separator_row) + # Extract and write results for the current metric for dataset, algo_items in runs_plots_scores.items(): for algorithm, optimizer_items in algo_items.items(): @@ -335,12 +343,17 @@ def generate_reports_txt(self, runs_plots_scores, save_dir="./reports", dataset= row = "|".join( f" {value:^{width}} " for value, width in zip(row_values, column_widths)) file.write(f"|{row}|\n") + if first_metric and run ==-1 : + print(f"|{row}|") file.write(f"{separator_row}\n\n") + if first_metric and run ==-1 : + print(separator_row + "\n") + first_metric = False file.write("Dictionary of Results:\n") file.write(str(runs_plots_scores) + "\n") - print(f"\nReport recorded in {save_path}") + print(f"\nreports recorded in the following directory : {save_path}") def generate_reports_excel(self, runs_plots_scores, save_dir="./reports", dataset="", run=-1): """ @@ -440,9 +453,8 @@ def generate_reports_excel(self, runs_plots_scores, save_dir="./reports", datase # Close the workbook workbook.close() - print(f"\nExcel report recorded in {save_path}") - def generate_plots(self, runs_plots_scores, ticks, subplot=False, y_size=4, save_dir="./reports"): + def generate_plots(self, runs_plots_scores, ticks, subplot=False, y_size=4, save_dir="./reports", display=False): """ Generate and save plots for each metric and pattern based on provided scores. @@ -456,6 +468,8 @@ def generate_plots(self, runs_plots_scores, ticks, subplot=False, y_size=4, save If True, generates a single figure with subplots for all metrics (default is False). save_dir : str, optional Directory to save generated plots (default is "./reports"). + display : bool, optional + Display or not the plots (default is False). Returns ------- @@ -475,6 +489,8 @@ def generate_plots(self, runs_plots_scores, ticks, subplot=False, y_size=4, save if subplot: fig, axes = plt.subplots(nrows=3, ncols=2, figsize=(x_size*1.90, y_size*2.90)) # Adjusted figsize + fig.canvas.manager.set_window_title("benchmark analysis") + axes = axes.ravel() # Flatten the 2D array of axes to a 1D array # Iterate over each metric, generating separate plots, including new timing metrics @@ -522,8 +538,8 @@ def generate_plots(self, runs_plots_scores, ticks, subplot=False, y_size=4, save # Save plot only if there is data to display if has_data: ylabel_metric = { - "imputation_time": "Imputation Time (sec)", - "log_imputation": "Imputation Time (log)", + "imputation_time": "Runtime Linear Scale (sec)", + "log_imputation": "Runtime Log Scale", }.get(metric, metric) ax.set_title(metric) @@ -534,8 +550,10 @@ def generate_plots(self, runs_plots_scores, ticks, subplot=False, y_size=4, save # Set y-axis limits with padding below 0 for visibility if metric == "imputation_time": ax.set_ylim(-10, 90) + ax.set_title("Runtime Linear Scale") elif metric == "log_imputation": ax.set_ylim(-4.5, 2.5) + ax.set_title("Runtime Log Scale") elif metric == "MAE": ax.set_ylim(-0.1, 2.4) elif metric == "MI": @@ -544,12 +562,13 @@ def generate_plots(self, runs_plots_scores, ticks, subplot=False, y_size=4, save ax.set_ylim(-0.1, 2.6) elif metric == "CORRELATION": ax.set_ylim(-0.75, 1.1) + ax.set_title("Pearson Correlation") # Customize x-axis ticks ax.set_xticks(ticks) ax.set_xticklabels([f"{int(tick * 100)}%" for tick in ticks]) ax.grid(True, zorder=0) - ax.legend(loc='upper left', bbox_to_anchor=(1, 1)) + ax.legend(loc='upper left', fontsize=7, frameon=True, fancybox=True, framealpha=0.8) if not subplot: filename = f"{dataset}_{pattern}_{optimizer}_{metric}.jpg" @@ -562,12 +581,14 @@ def generate_plots(self, runs_plots_scores, ticks, subplot=False, y_size=4, save filename = f"{dataset}_{pattern}_metrics_subplot.jpg" filepath = os.path.join(save_dir, filename) plt.savefig(filepath) - plt.close() - print("\nAll plots recorded in", save_dir) + if display: + plt.show() + + print("\nplots recorded in the following directory : ", save_dir) def eval(self, algorithms=["cdrec"], datasets=["eeg-alcohol"], patterns=["mcar"], - x_axis=[0.05, 0.1, 0.2, 0.4, 0.6, 0.8], optimizers=["user_def"], save_dir="./reports", runs=1): + x_axis=[0.05, 0.1, 0.2, 0.4, 0.6, 0.8], optimizers=["default_params"], save_dir="./reports", runs=1): """ Execute a comprehensive evaluation of imputation algorithms over multiple datasets and patterns. @@ -603,6 +624,9 @@ def eval(self, algorithms=["cdrec"], datasets=["eeg-alcohol"], patterns=["mcar"] not_optimized = ["none"] mean_group = ["mean", "MeanImpute", "min", "MinImpute", "zero", "ZeroImpute", "MeanImputeBySeries"] + if "mpin" in algorithms or "MPIN" in algorithms: + raise ValueError("The 'mpin' algorithm is not compatible with this setup.") + for i_run in range(0, abs(runs)): for dataset in datasets: runs_plots_scores = {} @@ -714,33 +738,34 @@ def eval(self, algorithms=["cdrec"], datasets=["eeg-alcohol"], patterns=["mcar"] "times": dic_timing } - save_dir_runs = save_dir + "/run_" + str(i_run) + "/" + dataset - print("\n\truns saved in : ", save_dir_runs) + save_dir_runs = save_dir + "/_details/run_" + str(i_run) + "/" + dataset + print("\nruns saved in : ", save_dir_runs) self.generate_plots(runs_plots_scores=runs_plots_scores, ticks=x_axis, subplot=True, y_size=y_p_size, save_dir=save_dir_runs) self.generate_plots(runs_plots_scores=runs_plots_scores, ticks=x_axis, subplot=False, y_size=y_p_size, save_dir=save_dir_runs) self.generate_reports_txt(runs_plots_scores, save_dir_runs, dataset, i_run) self.generate_reports_excel(runs_plots_scores, save_dir_runs, dataset, i_run) run_storage.append(runs_plots_scores) - print("============================================================================\n\n\n\n\n\n") + print("\n\n\n\n\n\n\n\n\n\n\n\n=end_of_the_evaluation===============================================" + "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\nresults of the analysis:\n") scores_list, algos, sets = self.avg_results(*run_storage) - _ = self.generate_heatmap(scores_list, algos, sets, save_dir=save_dir, display=False) + _ = self.generate_heatmap(scores_list, algos, sets, save_dir=save_dir, display=True) run_averaged = self.average_runs_by_names(run_storage) - save_dir_agg = save_dir + "/aggregation" - print("\n\n\taggragation of results saved in : ", save_dir_agg) + print("\n\nthe results of the analysis has been saved in : ", save_dir, "\n\n") for scores in run_averaged: all_keys = list(scores.keys()) dataset_name = str(all_keys[0]) - save_dir_agg_set = save_dir_agg + "/" + dataset_name + save_dir_agg_set = save_dir + "/" + dataset_name - self.generate_plots(runs_plots_scores=scores, ticks=x_axis, subplot=True, y_size=y_p_size, save_dir=save_dir_agg_set) - self.generate_plots(runs_plots_scores=scores, ticks=x_axis, subplot=False, y_size=y_p_size, save_dir=save_dir_agg_set) self.generate_reports_txt(scores, save_dir_agg_set, dataset_name, -1) + self.generate_plots(runs_plots_scores=scores, ticks=x_axis, subplot=True, y_size=y_p_size, save_dir=save_dir_agg_set) + # self.generate_plots(runs_plots_scores=scores, ticks=x_axis, subplot=False, y_size=y_p_size, save_dir=save_dir_agg_set) self.generate_reports_excel(scores, save_dir_agg_set, dataset_name, -1) + print("\n\n") return run_averaged, scores_list diff --git a/build/lib/imputegap/recovery/downstream.py b/build/lib/imputegap/recovery/downstream.py index eafbddca..0d7e6cf4 100644 --- a/build/lib/imputegap/recovery/downstream.py +++ b/build/lib/imputegap/recovery/downstream.py @@ -6,14 +6,6 @@ from imputegap.tools import utils -from darts import TimeSeries -from darts.metrics import mae as darts_mae, mse as darts_mse -from sklearn.metrics import mean_absolute_error, mean_squared_error -from sktime.forecasting.base import ForecastingHorizon - - - - class Downstream: @@ -53,7 +45,7 @@ class Downstream: - def __init__(self, input_data, recov_data, incomp_data, downstream): + def __init__(self, input_data, recov_data, incomp_data, algorithm, downstream): """ Initialize the Downstream class @@ -65,6 +57,8 @@ def __init__(self, input_data, recov_data, incomp_data, downstream): The imputed time series. incomp_data : numpy.ndarray The time series with contamination (NaN values). + algorithm : str + Name of the algorithm to analyse. downstream : dict Information about the model to launch with its parameters """ @@ -72,6 +66,7 @@ def __init__(self, input_data, recov_data, incomp_data, downstream): self.recov_data = recov_data self.incomp_data = incomp_data self.downstream = downstream + self.algorithm = algorithm self.split = 0.8 self.sktime_models = utils.list_of_downstreams_sktime() @@ -92,31 +87,39 @@ def downstream_analysis(self): model = self.downstream.get("model", "naive") params = self.downstream.get("params", None) plots = self.downstream.get("plots", True) - + comparator = self.downstream.get("comparator", None) + model = model.lower() evaluator = evaluator.lower() if not params: - print("\n\t\t\t\tThe params for model of downstream analysis are empty or missing. Default ones loaded...") + print("\n\t(DOWNSTREAM) The params for model of downstream analysis are empty or missing. Default ones loaded...") loader = "forecaster-" + str(model) params = utils.load_parameters(query="default", algorithm=loader) - print("\n\t\t\t\tDownstream analysis launched for <", evaluator, "> on the model <", model, + print("\n(DOWNSTREAM) Analysis launched for <", evaluator, "> on the model <", model, "> with parameters :\n\t\t\t\t\t", params, " \n\n") if evaluator in ["forecast", "forecaster", "forecasting"]: y_train_all, y_test_all, y_pred_all = [], [], [] - mae, mse = [], [] + mae, mse, smape = [], [], [] for x in range(3): # Iterate over recov_data, input_data, and mean_impute if x == 0: - data = self.recov_data - elif x == 1: data = self.input_data + elif x == 1: + data = self.recov_data elif x == 2: from imputegap.recovery.imputation import Imputation - zero_impute = Imputation.Statistics.ZeroImpute(self.incomp_data).impute() - data = zero_impute.recov_data + + if comparator is not None: + impt = utils.config_impute_algorithm(self.incomp_data, algorithm=comparator) + impt.impute() + data = impt.recov_data + else: + comparator = "zero-impute" + zero_impute = Imputation.Statistics.ZeroImpute(self.incomp_data).impute() + data = zero_impute.recov_data data_len = data.shape[1] train_len = int(data_len * self.split) @@ -128,6 +131,10 @@ def downstream_analysis(self): if model in self.sktime_models: # --- SKTIME APPROACH --- + from sklearn.metrics import mean_absolute_error, mean_squared_error + from sktime.forecasting.base import ForecastingHorizon + from sktime.performance_metrics.forecasting import MeanAbsolutePercentageError + y_pred = np.zeros_like(y_test) for series_idx in range(data.shape[0]): @@ -146,10 +153,17 @@ def downstream_analysis(self): # Compute metrics using sktime mae.append(mean_absolute_error(y_test, y_pred)) mse.append(mean_squared_error(y_test, y_pred)) + scoring_m = MeanAbsolutePercentageError(symmetric=True) + smape.append(scoring_m.evaluate(y_test, y_pred)*100) # Compute SMAPE + else: # --- DARTS APPROACH --- # Convert entire matrix to a Darts multivariate TimeSeries object + from darts import TimeSeries + from darts.metrics import mae as darts_mae, mse as darts_mse + from darts.metrics import smape as darts_smape + y_train_ts = TimeSeries.from_values(y_train.T) # Shape: (time_steps, n_series) y_test_ts = TimeSeries.from_values(y_test.T) # Shape: (time_steps, n_series) @@ -175,11 +189,12 @@ def downstream_analysis(self): # Compute metrics safely mae_score = darts_mae(y_test_ts, y_pred_ts) mse_score = darts_mse(y_test_ts, y_pred_ts) - + smape_score = darts_smape(y_test_ts, y_pred_ts) # Compute metrics using Darts mae.append(mae_score) mse.append(mse_score) + smape.append(smape_score) # Store for plotting y_train_all.append(y_train) @@ -188,23 +203,24 @@ def downstream_analysis(self): if plots: # Global plot with all rows and columns - self._plot_downstream(y_train_all, y_test_all, y_pred_all, self.incomp_data, model, evaluator) + self._plot_downstream(y_train_all, y_test_all, y_pred_all, self.incomp_data, self.algorithm, comparator, model, evaluator) # Save metrics in a dictionary - metrics = {"DOWNSTREAM-RECOV-MAE": mae[0], "DOWNSTREAM-INPUT-MAE": mae[1], - "DOWNSTREAM-MEANI-MAE": mae[2], "DOWNSTREAM-RECOV-MSE": mse[0], - "DOWNSTREAM-INPUT-MSE": mse[1], "DOWNSTREAM-MEANI-MSE": mse[2]} - - print("\n\t\t\t\tDownstream analysis complete. " + "*" * 58 + "\n") + al_name = "DOWNSTREAM-" + self.algorithm.upper() + "-MSE" + al_name_s = "DOWNSTREAM-" + self.algorithm.upper() + "-SMAPE" + al_name_c = "DOWNSTREAM-" + comparator.upper() + "-MSE" + al_name_cs = "DOWNSTREAM-" + comparator.upper() + "-SMAPE" + metrics = {"DOWNSTREAM-ORIGIN-MSE": mse[0], al_name: mse[1], al_name_c: mse[2], + "DOWNSTREAM-ORIGIN-SMAPE": smape[0], al_name_s: smape[1], al_name_cs: smape[2] } return metrics else: - print("\t\t\t\tNo evaluator found... list possible : 'forecaster'" + "*" * 30 + "\n") + print("\tNo evaluator found... list possible : 'forecaster'" + "*" * 30 + "\n") return None @staticmethod - def _plot_downstream(y_train, y_test, y_pred, incomp_data, model=None, type=None, title="Ground Truth vs Predictions", max_series=1, save_path="./imputegap_assets"): + def _plot_downstream(y_train, y_test, y_pred, incomp_data, algorithm, comparison, model=None, type=None, title="", max_series=1, save_path="./imputegap_assets/downstream"): """ Plot ground truth vs. predictions for contaminated series (series with NaN values). @@ -220,6 +236,10 @@ def _plot_downstream(y_train, y_test, y_pred, incomp_data, model=None, type=None Incomplete data array of shape (n_series, total_len), used to identify contaminated series. model : str Name of the current model used + algorithm : str + Name of the current algorithm used + comparison : str + Name of the current algorithm used as comparison type : str Name of the current type used title : str @@ -235,6 +255,7 @@ def _plot_downstream(y_train, y_test, y_pred, incomp_data, model=None, type=None x_size = 24 fig, axs = plt.subplots(3, max_series, figsize=(x_size, 15)) + fig.canvas.manager.set_window_title("downstream evaluation") fig.suptitle(title, fontsize=16) # Iterate over the three data types (recov_data, input_data, mean_impute) @@ -258,40 +279,41 @@ def _plot_downstream(y_train, y_test, y_pred, incomp_data, model=None, type=None full_series = np.concatenate([s_y_train[series_idx], s_y_test[series_idx]]) # Plot training data - ax.plot(range(len(s_y_train[series_idx])), s_y_train[series_idx], label="Training Data", color="green") + ax.plot(range(len(s_y_train[series_idx])), s_y_train[series_idx], color="green") # Plot ground truth (testing data) ax.plot( range(len(s_y_train[series_idx]), len(full_series)), s_y_test[series_idx], - label="Ground Truth", + label="ground truth", color="green" ) + label = type + " " + model # Plot forecasted data ax.plot( range(len(s_y_train[series_idx]), len(full_series)), s_y_pred[series_idx], - label="Forecast", + label=label, linestyle="--", marker=None, color="red" ) # Add a vertical line at the split point - ax.axvline(x=len(s_y_train[series_idx]), color="orange", linestyle="--", label="Split Point") + ax.axvline(x=len(s_y_train[series_idx]), color="orange", linestyle="--") # Add labels, title, and grid if row_idx == 0: - ax.set_title(f"IMPUTATED DATA (RECOVERY), series {series_idx}") + ax.set_title(f"original data, series_{series_idx}") elif row_idx == 1: - ax.set_title(f"ORIGINAL DATA (GROUND TRUTH), series {series_idx}") + ax.set_title(f"{algorithm.lower()} imputation, series_{series_idx}") else: - ax.set_title(f"BAD IMPUTER (ZERO IMP), series {series_idx}") + ax.set_title(f"{comparison.lower()} imputation, series_{series_idx}") ax.set_xlabel("Timestamp") ax.set_ylabel("Value") - ax.legend() + ax.legend(loc='upper left', fontsize=7, frameon=True, fancybox=True, framealpha=0.8) ax.grid() # Adjust layout diff --git a/build/lib/imputegap/recovery/evaluation.py b/build/lib/imputegap/recovery/evaluation.py index ea2e449a..47fe912d 100644 --- a/build/lib/imputegap/recovery/evaluation.py +++ b/build/lib/imputegap/recovery/evaluation.py @@ -1,7 +1,4 @@ import numpy as np -from sklearn.metrics import mutual_info_score -from scipy.stats import pearsonr - class Evaluation: """ @@ -126,6 +123,8 @@ def compute_mi(self): float The mutual information (MI) score for NaN positions in the contamination dataset. """ + from sklearn.metrics import mutual_info_score + nan_locations = np.isnan(self.incomp_data) # Discretize the continuous data into bins @@ -151,6 +150,8 @@ def compute_correlation(self): float The Pearson correlation coefficient for NaN positions in the contamination dataset. """ + from scipy.stats import pearsonr + nan_locations = np.isnan(self.incomp_data) input_data_values = self.input_data[nan_locations] imputed_values = self.recov_data[nan_locations] diff --git a/build/lib/imputegap/recovery/explainer.py b/build/lib/imputegap/recovery/explainer.py index efb4c1c2..1fda9a7f 100644 --- a/build/lib/imputegap/recovery/explainer.py +++ b/build/lib/imputegap/recovery/explainer.py @@ -13,7 +13,6 @@ from matplotlib import pyplot as plt from sklearn.ensemble import RandomForestRegressor -from imputegap.recovery.imputation import Imputation from imputegap.recovery.manager import TimeSeries from imputegap.tools import utils @@ -366,7 +365,7 @@ def convert_results(tmp, file, algo, descriptions, features, categories, mean_fe result_display = sorted(result_display, key=lambda tup: (tup[1], tup[2]), reverse=True) - with open(to_save + "_results.txt", 'w') as file_output: + with open(to_save + "_values.txt", 'w') as file_output: for (x, algo, rate, description, feature, category, mean_features) in result_display: file_output.write( f"Feature : {x:<5} {algo:<10} with a score of {rate:<10} {category:<18} {description:<65} {feature}\n") @@ -410,8 +409,12 @@ def execute_shap_model(x_dataset, x_information, y_dataset, file, algorithm, spl plots_categories = config[extractor]['categories'] path_file = "./imputegap_assets/shap/" - if not os.path.exists(path_file): - path_file = "./imputegap" + path_file[1:] + path_file_details = "./imputegap_assets/shap/grouped/" + path_file_categories = "./imputegap_assets/shap/per_categories/" + + os.makedirs(path_file, exist_ok=True) + os.makedirs(path_file_details, exist_ok=True) + os.makedirs(path_file_categories, exist_ok=True) x_features, x_categories, x_descriptions = [], [], [] x_fs, x_cs, x_ds, alphas = [], [], [], [] @@ -451,8 +454,7 @@ def execute_shap_model(x_dataset, x_information, y_dataset, file, algorithm, spl print("\t SHAP_MODEL >> descriptions shape:", x_descriptions.shape, "\n") print("\t SHAP_MODEL >> features OK:", np.all(np.all(x_features == x_features[0, :], axis=1))) print("\t SHAP_MODEL >> categories OK:", np.all(np.all(x_categories == x_categories[0, :], axis=1))) - print("\t SHAP_MODEL >> descriptions OK:", np.all(np.all(x_descriptions == x_descriptions[0, :], axis=1)), - "\n\n") + print("\t SHAP_MODEL >> descriptions OK:", np.all(np.all(x_descriptions == x_descriptions[0, :], axis=1)), "\n\n") model = RandomForestRegressor() model.fit(x_train, y_train) @@ -470,7 +472,7 @@ def execute_shap_model(x_dataset, x_information, y_dataset, file, algorithm, spl series_names.append("Series " + str(names + np.array(x_train).shape[0])) shap.summary_plot(shval, x_test, plot_size=(25, 10), feature_names=optimal_display, show=display) - alpha = os.path.join(path_file + file + "_" + algorithm + "_" + extractor + "_shap_plot.png") + alpha = os.path.join(path_file + file + "_" + algorithm + "_" + extractor + "_shap_all.png") plt.title("SHAP Details Results") os.makedirs(path_file, exist_ok=True) plt.savefig(alpha) @@ -478,14 +480,14 @@ def execute_shap_model(x_dataset, x_information, y_dataset, file, algorithm, spl alphas.append(alpha) shap.summary_plot(np.array(shval).T, np.array(x_test).T, feature_names=series_names, show=display) - alpha = os.path.join(path_file + file + "_" + algorithm + "_" + extractor + "_shap_reverse_plot.png") + alpha = os.path.join(path_file_details + file + "_" + algorithm + "_" + extractor + "_shap_reverse.png") plt.title("SHAP Features by Series") plt.savefig(alpha) plt.close() alphas.append(alpha) shap.plots.waterfall(shval_x[0], show=display) - alpha = os.path.join(path_file + file + "_" + algorithm + "_" + extractor + "_DTL_Waterfall.png") + alpha = os.path.join(path_file_details + file + "_" + algorithm + "_" + extractor + "_DTL_Waterfall.png") plt.title("SHAP Waterfall Results") fig = plt.gcf() # Get the current figure created by SHAP fig.set_size_inches(20, 10) # Ensure the size is correct @@ -494,7 +496,7 @@ def execute_shap_model(x_dataset, x_information, y_dataset, file, algorithm, spl alphas.append(alpha) shap.plots.beeswarm(shval_x, show=display, plot_size=(22, 10)) - alpha = os.path.join(path_file + file + "_" + algorithm + "_" + extractor + "_DTL_Beeswarm.png") + alpha = os.path.join(path_file_details + file + "_" + algorithm + "_" + extractor + "_DTL_Beeswarm.png") plt.title("SHAP Beeswarm Results") plt.savefig(alpha) plt.close() @@ -550,7 +552,7 @@ def execute_shap_model(x_dataset, x_information, y_dataset, file, algorithm, spl mean_features = np.array(mean_features) shap.summary_plot(np.array(geometry).T, np.array(geometryT).T, plot_size=(20, 10), feature_names=geometryDesc, show=display) - alpha = os.path.join(path_file + file + "_" + algorithm + "_" + extractor + "_shap_" + plots_categories[0].lower() + "_plot.png") + alpha = os.path.join(path_file_categories + file + "_" + algorithm + "_" + extractor + "_shap_" + plots_categories[0].lower() + ".png") plt.title("SHAP details of " + plots_categories[0].lower()) plt.savefig(alpha) plt.close() @@ -558,7 +560,7 @@ def execute_shap_model(x_dataset, x_information, y_dataset, file, algorithm, spl shap.summary_plot(np.array(transformation).T, np.array(transformationT).T, plot_size=(20, 10), feature_names=transformationDesc, show=display) - alpha = os.path.join(path_file + file + "_" + algorithm + "_" + extractor + "_shap_" + plots_categories[2].lower() + "_plot.png") + alpha = os.path.join(path_file_categories + file + "_" + algorithm + "_" + extractor + "_shap_" + plots_categories[2].lower() + ".png") plt.title("SHAP details of " + plots_categories[1].lower()) plt.savefig(alpha) plt.close() @@ -566,7 +568,7 @@ def execute_shap_model(x_dataset, x_information, y_dataset, file, algorithm, spl shap.summary_plot(np.array(correlation).T, np.array(correlationT).T, plot_size=(20, 10), feature_names=correlationDesc, show=display) - alpha = os.path.join(path_file + file + "_" + algorithm + "_" + extractor + "_shap_" + plots_categories[1].lower() + "_plot.png") + alpha = os.path.join(path_file_categories + file + "_" + algorithm + "_" + extractor + "_shap_" + plots_categories[1].lower() + ".png") plt.title("SHAP details of " + plots_categories[1].lower()) plt.savefig(alpha) plt.close() @@ -574,7 +576,7 @@ def execute_shap_model(x_dataset, x_information, y_dataset, file, algorithm, spl shap.summary_plot(np.array(trend).T, np.array(trendT).T, plot_size=(20, 8), feature_names=trendDesc, show=display) - alpha = os.path.join(path_file + file + "_" + algorithm + "_" + extractor + "_shap_" + plots_categories[3].lower() + "_plot.png") + alpha = os.path.join(path_file_categories + file + "_" + algorithm + "_" + extractor + "_shap_" + plots_categories[3].lower() + ".png") plt.title("SHAP details of " + plots_categories[3].lower()) plt.savefig(alpha) plt.close() @@ -594,7 +596,7 @@ def execute_shap_model(x_dataset, x_information, y_dataset, file, algorithm, spl aggregation_test = np.array(aggregation_test).T shap.summary_plot(aggregation_features, aggregation_test, feature_names=plots_categories, show=display) - alpha = os.path.join(path_file + file + "_" + algorithm + "_" + extractor + "_shap_aggregate_plot.png") + alpha = os.path.join(path_file + file + "_" + algorithm + "_" + extractor + "_shap_cat.png") plt.title("SHAP Aggregation Results") plt.gca().axes.get_xaxis().set_visible(False) plt.savefig(alpha) @@ -602,7 +604,7 @@ def execute_shap_model(x_dataset, x_information, y_dataset, file, algorithm, spl alphas.append(alpha) shap.summary_plot(np.array(aggregation_features).T, np.array(aggregation_test).T, feature_names=series_names, show=display) - alpha = os.path.join(path_file + file + "_" + algorithm + "_" + extractor + "_shap_aggregate_reverse_plot.png") + alpha = os.path.join(path_file_details + file + "_" + algorithm + "_" + extractor + "_shap_agg_reverse.png") plt.title("SHAP Aggregation Features by Series") plt.savefig(alpha) plt.close() diff --git a/build/lib/imputegap/recovery/imputation.py b/build/lib/imputegap/recovery/imputation.py index 6a3a1a23..70842d99 100644 --- a/build/lib/imputegap/recovery/imputation.py +++ b/build/lib/imputegap/recovery/imputation.py @@ -1,43 +1,11 @@ import re - -from imputegap.algorithms.bayotide import bay_otide -from imputegap.algorithms.bit_graph import bit_graph -from imputegap.algorithms.brits import brits -from imputegap.algorithms.deep_mvi import deep_mvi -from imputegap.algorithms.dynammo import dynammo -from imputegap.algorithms.gain import gain -from imputegap.algorithms.grin import grin -from imputegap.algorithms.grouse import grouse -from imputegap.algorithms.hkmf_t import hkmf_t -from imputegap.algorithms.interpolation import interpolation -from imputegap.algorithms.iterative_svd import iterative_svd -from imputegap.algorithms.knn import knn -from imputegap.algorithms.mean_impute import mean_impute -from imputegap.algorithms.mean_impute_by_series import mean_impute_by_series -from imputegap.algorithms.mice import mice -from imputegap.algorithms.miss_forest import miss_forest -from imputegap.algorithms.miss_net import miss_net -from imputegap.algorithms.mpin import mpin -from imputegap.algorithms.pristi import pristi -from imputegap.algorithms.rosl import rosl -from imputegap.algorithms.soft_impute import soft_impute -from imputegap.algorithms.spirit import spirit -from imputegap.algorithms.svt import svt -from imputegap.algorithms.tkcm import tkcm -from imputegap.algorithms.trmf import trmf -from imputegap.algorithms.xgboost import xgboost +from imputegap.tools import utils from imputegap.recovery.downstream import Downstream from imputegap.recovery.evaluation import Evaluation -from imputegap.algorithms.cdrec import cdrec -from imputegap.algorithms.iim import iim -from imputegap.algorithms.min_impute import min_impute -from imputegap.algorithms.mrnn import mrnn -from imputegap.algorithms.stmvl import stmvl -from imputegap.algorithms.zero_impute import zero_impute -from imputegap.tools import utils - -not_optimized = ["knn", "interpolation", "iterative_svd", "grouse", "dynammo", "rosl", "soft_impute", "spirit", "svt", "tkcm", "deep_mvi", "brits", "mpin", "pristi"] +not_optimized = ["knn", "interpolation", "iterative_svd", "grouse", "dynammo", "rosl", "soft_impute", "spirit", "svt", + "tkcm", "deep_mvi", "brits", "mpin", "pristi", "bay_otide", "bit_graph", "gain", "grin", "hkmf_t", + "mice", "miss_forest", "miss_net", "trmf", "xgboost"] class BaseImputer: @@ -108,12 +76,17 @@ def score(self, input_data, recov_data=None, downstream=None): Returns ------- None + + Example + ------- + >>> imputer.score(ts.data, imputer.recov_data) # upstream + >>> imputer.score(ts.data, imputer.recov_data, {"task": "forecast", "model": "hw-add", "comparator": "ZeroImputation"}) # downstream """ if self.recov_data is None: self.recov_data = recov_data if isinstance(downstream, dict) and downstream is not None: - self.downstream_metrics = Downstream(input_data, self.recov_data, self.incomp_data, downstream).downstream_analysis() + self.downstream_metrics = Downstream(input_data, self.recov_data, self.incomp_data, self.algorithm, downstream).downstream_analysis() else: self.metrics = Evaluation(input_data, self.recov_data, self.incomp_data).compute_all_metrics() @@ -182,7 +155,7 @@ def _optimize(self, parameters={}): raise ValueError( f"\n\tThis algorithm '{self.algorithm}' is not optimized for this optimizer. " f"\n\tPlease use `run_tune` to optimize the hyperparameters for:\n\t\t {', '.join(not_optimized)}" - "\n\tPlease use update your call :\n\t\t.impute(user_def=False, params={'input_data': ts_1.data, 'optimizer': 'ray_tune'})" + "\n\tPlease use update your call :\n\t\t.impute(user_def=False, params={'input_data': ts.data, 'optimizer': 'ray_tune'})" ) input_data = ( @@ -376,8 +349,8 @@ class Statistics: Imputation method that replaces missing values with the minimum value of the ground truth by series. Interpolation : Imputation method that replaces missing values with the Interpolation - KNN : - Imputation method that replaces missing values with KNN logic + KNNImpute : + Imputation method that replaces missing values with KNNImpute logic """ class ZeroImpute(BaseImputer): @@ -406,6 +379,8 @@ def impute(self, params=None): self : ZeroImpute The object with `recov_data` set. """ + from imputegap.algorithms.zero_impute import zero_impute + self.recov_data = zero_impute(self.incomp_data, params) return self @@ -436,6 +411,8 @@ def impute(self, params=None): self : MinImpute The object with `recov_data` set. """ + from imputegap.algorithms.mean_impute import mean_impute + self.recov_data = mean_impute(self.incomp_data, params) return self @@ -466,6 +443,8 @@ def impute(self, params=None): self : MinImpute The object with `recov_data` set. """ + from imputegap.algorithms.min_impute import min_impute + self.recov_data = min_impute(self.incomp_data, params) return self @@ -490,6 +469,8 @@ def impute(self): self : MeanImputeBySeries The object with `recov_data` set. """ + from imputegap.algorithms.mean_impute_by_series import mean_impute_by_series + self.recov_data = mean_impute_by_series(self.incomp_data, logs=self.logs) return self @@ -526,9 +507,11 @@ def impute(self, user_def=True, params=None): >>> interpolation_imputer = Imputation.Statistics.Interpolation(incomp_data) >>> interpolation_imputer.impute() # default parameters for imputation > or >>> interpolation_imputer.impute(user_def=True, params={"method":"linear", "poly_order":2}) # user-defined > or - >>> interpolation_imputer.impute(user_def=False, params={"input_data": ts_1.data, "optimizer": "ray_tune"}) # automl with ray_tune + >>> interpolation_imputer.impute(user_def=False, params={"input_data": ts.data, "optimizer": "ray_tune"}) # automl with ray_tune >>> recov_data = interpolation_imputer.recov_data """ + from imputegap.algorithms.interpolation import interpolation + if params is not None: method, poly_order = self._check_params(user_def, params) else: @@ -539,16 +522,16 @@ def impute(self, user_def=True, params=None): return self - class KNN(BaseImputer): + class KNNImpute(BaseImputer): """ - KNN class to impute missing values with K-Nearest Neighbor algorithm + KNNImpute class to impute missing values with K-Nearest Neighbor algorithm Methods ------- impute(self, params=None): Perform imputation by replacing missing values with K-Nearest Neighbor """ - algorithm = "knn" + algorithm = "knn_impute" def impute(self, user_def=True, params=None): """ @@ -559,7 +542,7 @@ def impute(self, user_def=True, params=None): user_def : bool, optional Whether to use user-defined or default parameters (default is True). params : dict, optional - Parameters of the KNN algorithm, if None, default ones are loaded. + Parameters of the KNNImpute algorithm, if None, default ones are loaded. **Algorithm parameters:** k : int, optional @@ -569,17 +552,19 @@ def impute(self, user_def=True, params=None): Returns ------- - self : KNN + self : KNNImpute The object with `recov_data` set. Example ------- - >>> knn_imputer = Imputation.Statistics.KNN(incomp_data) + >>> knn_imputer = Imputation.Statistics.KNNImpute(incomp_data) >>> knn_imputer.impute() # default parameters for imputation > or >>> knn_imputer.impute(user_def=True, params={'k': 5, 'weights': "uniform"}) # user-defined > or - >>> knn_imputer.impute(user_def=False, params={"input_data": ts_1.data, "optimizer": "ray_tune"}) # automl with ray_tune + >>> knn_imputer.impute(user_def=False, params={"input_data": ts.data, "optimizer": "ray_tune"}) # automl with ray_tune >>> recov_data = knn_imputer.recov_data """ + from imputegap.algorithms.knn import knn + if params is not None: k, weights = self._check_params(user_def, params) else: @@ -719,13 +704,14 @@ def impute(self, user_def=True, params=None): >>> cdrec_imputer = Imputation.MatrixCompletion.CDRec(incomp_data) >>> cdrec_imputer.impute() # default parameters for imputation > or >>> cdrec_imputer.impute(user_def=True, params={'rank': 5, 'epsilon': 0.01, 'iterations': 100}) # user-defined > or - >>> cdrec_imputer.impute(user_def=False, params={"input_data": ts_1.data, "optimizer": "bayesian", "options": {"n_calls": 2}}) # automl with bayesian + >>> cdrec_imputer.impute(user_def=False, params={"input_data": ts.data, "optimizer": "bayesian", "options": {"n_calls": 2}}) # automl with bayesian >>> recov_data = cdrec_imputer.recov_data References ---------- Khayati, M., Cudré-Mauroux, P. & Böhlen, M.H. Scalable recovery of missing blocks in time series with high and low cross-correlations. Knowl Inf Syst 62, 2257–2280 (2020). https://doi.org/10.1007/s10115-019-01421-7 """ + from imputegap.algorithms.cdrec import cdrec if params is not None: rank, epsilon, iterations = self._check_params(user_def, params) @@ -777,13 +763,14 @@ def impute(self, user_def=True, params=None): >>> i_svd_imputer = Imputation.MatrixCompletion.IterativeSVD(incomp_data) >>> i_svd_imputer.impute() # default parameters for imputation > or >>> i_svd_imputer.impute(params={'rank': 5}) # user-defined > or - >>> i_svd_imputer.impute(user_def=False, params={"input_data": ts_1.data, "optimizer": "ray_tune"}) # automl with ray_tune + >>> i_svd_imputer.impute(user_def=False, params={"input_data": ts.data, "optimizer": "ray_tune"}) # automl with ray_tune >>> recov_data = i_svd_imputer.recov_data References ---------- Olga Troyanskaya, Michael Cantor, Gavin Sherlock, Pat Brown, Trevor Hastie, Robert Tibshirani, David Botstein, Russ B. Altman, Missing value estimation methods for DNA microarrays , Bioinformatics, Volume 17, Issue 6, June 2001, Pages 520–525, https://doi.org/10.1093/bioinformatics/17.6.520 """ + from imputegap.algorithms.iterative_svd import iterative_svd if params is not None: rank = self._check_params(user_def, params)[0] @@ -834,13 +821,14 @@ def impute(self, user_def=True, params=None): >>> grouse_imputer = Imputation.MatrixCompletion.GROUSE(incomp_data) >>> grouse_imputer.impute() # default parameters for imputation > or >>> grouse_imputer.impute(params={'max_rank': 5}) # user-defined > or - >>> grouse_imputer.impute(user_def=False, params={"input_data": ts_1.data, "optimizer": "ray_tune"}) # automl with ray_tune + >>> grouse_imputer.impute(user_def=False, params={"input_data": ts.data, "optimizer": "ray_tune"}) # automl with ray_tune >>> recov_data = grouse_imputer.recov_data References ---------- D. Zhang and L. Balzano. Global convergence of a grassmannian gradient descent algorithm for subspace estimation. In Proceedings of the 19th International Conference on Artificial Intelligence and Statistics, AISTATS 2016, Cadiz, Spain, May 9-11, 2016, pages 1460–1468, 2016. """ + from imputegap.algorithms.grouse import grouse if params is not None: max_rank = self._check_params(user_def, params)[0] @@ -894,13 +882,15 @@ def impute(self, user_def=True, params=None): >>> rosl_imputer = Imputation.MatrixCompletion.ROSL(incomp_data) >>> rosl_imputer.impute() # default parameters for imputation > or >>> rosl_imputer.impute(params={'rank': 5, 'regularization': 10}) # user-defined > or - >>> rosl_imputer.impute(user_def=False, params={"input_data": ts_1.data, "optimizer": "ray_tune"}) # automl with ray_tune + >>> rosl_imputer.impute(user_def=False, params={"input_data": ts.data, "optimizer": "ray_tune"}) # automl with ray_tune >>> recov_data = rosl_imputer.recov_data References ---------- X. Shu, F. Porikli, and N. Ahuja. Robust orthonormal subspace learning: Efficient recovery of corrupted low-rank matrices. In 2014 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2014, Columbus, OH, USA, June 23-28, 2014, pages 3874–3881, 2014. """ + from imputegap.algorithms.rosl import rosl + if params is not None: rank, regularization = self._check_params(user_def, params) else: @@ -950,13 +940,15 @@ def impute(self, user_def=True, params=None): >>> soft_impute_imputer = Imputation.MatrixCompletion.SoftImpute(incomp_data) >>> soft_impute_imputer.impute() # default parameters for imputation > or >>> soft_impute_imputer.impute(params={'max_rank': 5}) # user-defined > or - >>> soft_impute_imputer.impute(user_def=False, params={"input_data": ts_1.data, "optimizer": "ray_tune"}) # automl with ray_tune + >>> soft_impute_imputer.impute(user_def=False, params={"input_data": ts.data, "optimizer": "ray_tune"}) # automl with ray_tune >>> recov_data = soft_impute_imputer.recov_data References ---------- R. Mazumder, T. Hastie, and R. Tibshirani. Spectral regularization algorithms for learning large incomplete matrices. Journal of Machine Learning Research, 11:2287–2322, 2010. """ + from imputegap.algorithms.soft_impute import soft_impute + if params is not None: max_rank = self._check_params(user_def, params)[0] else: @@ -1013,13 +1005,15 @@ def impute(self, user_def=True, params=None): >>> spirit_imputer = Imputation.MatrixCompletion.SPIRIT(incomp_data) >>> spirit_imputer.impute() # default parameters for imputation > or >>> spirit_imputer.impute(params={'k': 2, 'w': 5, 'lambda_value': 0.85}) # user-defined > or - >>> spirit_imputer.impute(user_def=False, params={"input_data": ts_1.data, "optimizer": "ray_tune"}) # automl with ray_tune + >>> spirit_imputer.impute(user_def=False, params={"input_data": ts.data, "optimizer": "ray_tune"}) # automl with ray_tune >>> recov_data = spirit_imputer.recov_data References ---------- S. Papadimitriou, J. Sun, and C. Faloutsos. Streaming pattern discovery in multiple time-series. In Proceedings of the 31st International Conference on Very Large Data Bases, Trondheim, Norway, August 30 - September 2, 2005, pages 697–708, 2005. """ + from imputegap.algorithms.spirit import spirit + if params is not None: k, w, lambda_value = self._check_params(user_def, params) else: @@ -1070,13 +1064,15 @@ def impute(self, user_def=True, params=None): >>> svt_imputer = Imputation.MatrixCompletion.SVT(incomp_data) >>> svt_imputer.impute() # default parameters for imputation > or >>> svt_imputer.impute(params={'tau': 1}) # user-defined > or - >>> svt_imputer.impute(user_def=False, params={"input_data": ts_1.data, "optimizer": "ray_tune"}) # automl with ray_tune + >>> svt_imputer.impute(user_def=False, params={"input_data": ts.data, "optimizer": "ray_tune"}) # automl with ray_tune >>> recov_data = svt_imputer.recov_data References ---------- J. Cai, E. J. Candès, and Z. Shen. A singular value thresholding algorithm for matrix completion. SIAM Journal on Optimization, 20(4):1956–1982, 2010. [8] J. Cambronero, J. K. Feser, M. J. Smith, and """ + from imputegap.algorithms.svt import svt + if params is not None: tau = self._check_params(user_def, params)[0] else: @@ -1143,13 +1139,15 @@ def impute(self, user_def=True, params=None): >>> trmf_imputer = Imputation.MatrixCompletion.TRMF(incomp_data) >>> trmf_imputer.impute() >>> trmf_imputer.impute(params={"lags":[], "K":-1, "lambda_f":1.0, "lambda_x":1.0, "lambda_w":1.0, "eta":1.0, "alpha":1000.0, "max_iter":100}) - >>> trmf_imputer.impute(user_def=False, params={"input_data": ts_1.data, "optimizer": "ray_tune"}) + >>> trmf_imputer.impute(user_def=False, params={"input_data": ts.data, "optimizer": "ray_tune"}) >>> recov_data = trmf_imputer.recov_data References ---------- H.-F. Yu, N. Rao, and I. S. Dhillon, "Temporal Regularized Matrix Factorization for High-dimensional Time Series Prediction," in *Advances in Neural Information Processing Systems*, vol. 29, 2016. [Online]. Available: https://proceedings.neurips.cc/paper_files/paper/2016/file/85422afb467e9456013a2a51d4dff702-Paper.pdf """ + from imputegap.algorithms.trmf import trmf + if params is not None: lags, K, lambda_f, lambda_x, lambda_w, eta, alpha, max_iter = self._check_params(user_def, params) else: @@ -1229,7 +1227,7 @@ def impute(self, user_def=True, params=None): >>> mf_imputer = Imputation.MachineLearning.MissForest(incomp_data) >>> mf_imputer.impute() # default parameters for imputation > or >>> mf_imputer.impute(user_def=True, params={"n_estimators":10, "max_iter":3, "max_features":"sqrt", "seed": 42}) # user defined > or - >>> mf_imputer.impute(user_def=False, params={"input_data": ts_1.data, "optimizer": "ray_tune"}) # automl with ray_tune + >>> mf_imputer.impute(user_def=False, params={"input_data": ts.data, "optimizer": "ray_tune"}) # automl with ray_tune >>> recov_data = mf_imputer.recov_data References @@ -1238,6 +1236,8 @@ def impute(self, user_def=True, params=None): https://github.com/yuenshingyan/MissForest https://pypi.org/project/MissForest/ """ + from imputegap.algorithms.miss_forest import miss_forest + if params is not None: n_estimators, max_iter, max_features, seed = self._check_params(user_def, params) else: @@ -1291,7 +1291,7 @@ def impute(self, user_def=True, params=None): >>> mice_imputer = Imputation.MachineLearning.MICE(incomp_data) >>> mice_imputer.impute() # default parameters for imputation > or >>> mice_imputer.impute(user_def=True, params={"max_iter":3, "tol":0.001, "initial_strategy":"mean", "seed": 42}) # user defined > or - >>> mice_imputer.impute(user_def=False, params={"input_data": ts_1.data, "optimizer": "ray_tune"}) # automl with ray_tune + >>> mice_imputer.impute(user_def=False, params={"input_data": ts.data, "optimizer": "ray_tune"}) # automl with ray_tune >>> recov_data = mice_imputer.recov_data References @@ -1301,6 +1301,8 @@ def impute(self, user_def=True, params=None): S. F. Buck, (1960). “A Method of Estimation of Missing Values in Multivariate Data Suitable for use with an Electronic Computer”. Journal of the Royal Statistical Society 22(2): 302-306. https://scikit-learn.org/stable/modules/generated/sklearn.impute.IterativeImputer.html#sklearn.impute.IterativeImputer """ + from imputegap.algorithms.mice import mice + if params is not None: max_iter, tol, initial_strategy, seed = self._check_params(user_def, params) else: @@ -1349,7 +1351,7 @@ def impute(self, user_def=True, params=None): >>> mxgboost_imputer = Imputation.MachineLearning.XGBOOST(incomp_data) >>> mxgboost_imputer.impute() # default parameters for imputation > or >>> mxgboost_imputer.impute(user_def=True, params={"n_estimators":3, "seed": 42}) # user defined > or - >>> mxgboost_imputer.impute(user_def=False, params={"input_data": ts_1.data, "optimizer": "ray_tune"}) # automl with ray_tune + >>> mxgboost_imputer.impute(user_def=False, params={"input_data": ts.data, "optimizer": "ray_tune"}) # automl with ray_tune >>> recov_data = mxgboost_imputer.recov_data References @@ -1358,6 +1360,8 @@ def impute(self, user_def=True, params=None): https://dl.acm.org/doi/10.1145/2939672.2939785 https://medium.com/@tzhaonj/imputing-missing-data-using-xgboost-802757cace6d """ + from imputegap.algorithms.xgboost import xgboost + if params is not None: n_estimators, seed = self._check_params(user_def, params) else: @@ -1404,7 +1408,7 @@ def impute(self, user_def=True, params=None): >>> iim_imputer = Imputation.MachineLearning.IIM(incomp_data) >>> iim_imputer.impute() # default parameters for imputation > or >>> iim_imputer.impute(user_def=True, params={'learning_neighbors': 10}) # user-defined > or - >>> iim_imputer.impute(user_def=False, params={"input_data": ts_1.data, "optimizer": "bayesian", "options": {"n_calls": 2}}) # automl with bayesian + >>> iim_imputer.impute(user_def=False, params={"input_data": ts.data, "optimizer": "bayesian", "options": {"n_calls": 2}}) # automl with bayesian >>> recov_data = iim_imputer.recov_data References @@ -1412,6 +1416,8 @@ def impute(self, user_def=True, params=None): A. Zhang, S. Song, Y. Sun and J. Wang, "Learning Individual Models for Imputation," 2019 IEEE 35th International Conference on Data Engineering (ICDE), Macao, China, 2019, pp. 160-171, doi: 10.1109/ICDE.2019.00023. keywords: {Data models;Adaptation models;Computational modeling;Predictive models;Numerical models;Aggregates;Regression tree analysis;Missing values;Data imputation} """ + from imputegap.algorithms.iim import iim + if params is not None: learning_neighbours, algo_code = self._check_params(user_def, params) else: @@ -1481,7 +1487,7 @@ def impute(self, user_def=True, params=None): >>> stmvl_imputer = Imputation.PatternSearch.STMVL(incomp_data) >>> stmvl_imputer.impute() # default parameters for imputation > or >>> stmvl_imputer.impute(user_def=True, params={'window_size': 7, 'learning_rate':0.01, 'gamma':0.85, 'alpha': 7}) # user-defined > or - >>> stmvl_imputer.impute(user_def=False, params={"input_data": ts_1.data, "optimizer": "bayesian", "options": {"n_calls": 2}}) # automl with bayesian + >>> stmvl_imputer.impute(user_def=False, params={"input_data": ts.data, "optimizer": "bayesian", "options": {"n_calls": 2}}) # automl with bayesian >>> recov_data = stmvl_imputer.recov_data References @@ -1489,6 +1495,8 @@ def impute(self, user_def=True, params=None): Yi, X., Zheng, Y., Zhang, J., & Li, T. ST-MVL: Filling Missing Values in Geo-Sensory Time Series Data. School of Information Science and Technology, Southwest Jiaotong University; Microsoft Research; Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences. """ + from imputegap.algorithms.stmvl import stmvl + if params is not None: window_size, gamma, alpha = self._check_params(user_def, params) else: @@ -1541,13 +1549,15 @@ def impute(self, user_def=True, params=None): >>> dynammo_imputer = Imputation.PatternSearch.DynaMMo(incomp_data) >>> dynammo_imputer.impute() # default parameters for imputation > or >>> dynammo_imputer.impute(params={'h': 5, 'max_iteration': 100, 'approximation': True}) # user-defined > or - >>> dynammo_imputer.impute(user_def=False, params={"input_data": ts_1.data, "optimizer": "ray_tune"}) # automl with ray_tune + >>> dynammo_imputer.impute(user_def=False, params={"input_data": ts.data, "optimizer": "ray_tune"}) # automl with ray_tune >>> recov_data = dynammo_imputer.recov_data References ---------- L. Li, J. McCann, N. S. Pollard, and C. Faloutsos. Dynammo: mining and summarization of coevolving sequences with missing values. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Paris, France, June 28 - July 1, 2009, pages 507–516, 2009. """ + from imputegap.algorithms.dynammo import dynammo + if params is not None: h, max_iteration, approximation = self._check_params(user_def, params) else: @@ -1596,13 +1606,15 @@ def impute(self, user_def=True, params=None): >>> tkcm_imputer = Imputation.PatternSearch.TKCM(incomp_data) >>> tkcm_imputer.impute() # default parameters for imputation > or >>> tkcm_imputer.impute(params={'rank': 5}) # user-defined > or - >>> tkcm_imputer.impute(user_def=False, params={"input_data": ts_1.data, "optimizer": "ray_tune"}) # automl with ray_tune + >>> tkcm_imputer.impute(user_def=False, params={"input_data": ts.data, "optimizer": "ray_tune"}) # automl with ray_tune >>> recov_data = tkcm_imputer.recov_data References ---------- K. Wellenzohn, M. H. Böhlen, A. Dignös, J. Gamper, and H. Mitterer. Continuous imputation of missing values in streams of pattern-determining time series. In Proceedings of the 20th International Conference on Extending Database Technology, EDBT 2017, Venice, Italy, March 21-24, 2017., pages 330–341, 2017. """ + from imputegap.algorithms.tkcm import tkcm + if params is not None: rank = self._check_params(user_def, params)[0] else: @@ -1683,13 +1695,15 @@ def impute(self, user_def=True, params=None): >>> mrnn_imputer = Imputation.DeepLearning.MRNN(incomp_data) >>> mrnn_imputer.impute() # default parameters for imputation > or >>> mrnn_imputer.impute(user_def=True, params={'hidden_dim': 10, 'learning_rate':0.01, 'iterations':50, 'sequence_length': 7}) # user-defined > or - >>> mrnn_imputer.impute(user_def=False, params={"input_data": ts_1.data, "optimizer": "bayesian", "options": {"n_calls": 2}}) # automl with bayesian + >>> mrnn_imputer.impute(user_def=False, params={"input_data": ts.data, "optimizer": "bayesian", "options": {"n_calls": 2}}) # automl with bayesian >>> recov_data = mrnn_imputer.recov_data References ---------- J. Yoon, W. R. Zame and M. van der Schaar, "Estimating Missing Data in Temporal Data Streams Using Multi-Directional Recurrent Neural Networks," in IEEE Transactions on Biomedical Engineering, vol. 66, no. 5, pp. 1477-1490, May 2019, doi: 10.1109/TBME.2018.2874712. keywords: {Time measurement;Interpolation;Estimation;Medical diagnostic imaging;Correlation;Recurrent neural networks;Biomedical measurement;Missing data;temporal data streams;imputation;recurrent neural nets} """ + from imputegap.algorithms.mrnn import mrnn + if params is not None: hidden_dim, learning_rate, iterations, sequence_length = self._check_params(user_def, params) else: @@ -1746,13 +1760,15 @@ def impute(self, user_def=True, params=None): >>> brits_imputer = Imputation.DeepLearning.BRITS(incomp_data) >>> brits_imputer.impute() # default parameters for imputation > or >>> brits_imputer.impute(params={"model": "brits", "epoch": 2, "batch_size": 10, "nbr_features": 1, "hidden_layer": 64}) # user-defined > or - >>> brits_imputer.impute(user_def=False, params={"input_data": ts_1.data, "optimizer": "ray_tune"}) # automl with ray_tune + >>> brits_imputer.impute(user_def=False, params={"input_data": ts.data, "optimizer": "ray_tune"}) # automl with ray_tune >>> recov_data = brits_imputer.recov_data References ---------- Cao, W., Wang, D., Li, J., Zhou, H., Li, L. & Li, Y. BRITS: Bidirectional Recurrent Imputation for Time Series. Advances in Neural Information Processing Systems, 31 (2018). https://proceedings.neurips.cc/paper_files/paper/2018/file/734e6bfcd358e25ac1db0a4241b95651-Paper.pdf """ + from imputegap.algorithms.brits import brits + if params is not None: model, epoch, batch_size, nbr_features, hidden_layer = self._check_params(user_def, params) else: @@ -1804,7 +1820,7 @@ def impute(self, user_def=True, params=None): >>> deep_mvi_imputer = Imputation.DeepLearning.DeepMVI(incomp_data) >>> deep_mvi_imputer.impute() # default parameters for imputation > or >>> deep_mvi_imputer.impute(params={"max_epoch": 10, "patience": 2}) # user-defined > or - >>> deep_mvi_imputer.impute(user_def=False, params={"input_data": ts_1.data, "optimizer": "ray_tune"}) # automl with ray_tune + >>> deep_mvi_imputer.impute(user_def=False, params={"input_data": ts.data, "optimizer": "ray_tune"}) # automl with ray_tune >>> recov_data = deep_mvi_imputer.recov_data References @@ -1812,6 +1828,8 @@ def impute(self, user_def=True, params=None): P. Bansal, P. Deshpande, and S. Sarawagi. Missing value imputation on multidimensional time series. arXiv preprint arXiv:2103.01600, 2023 https://github.com/pbansal5/DeepMVI """ + from imputegap.algorithms.deep_mvi import deep_mvi + if params is not None: max_epoch, patience, lr = self._check_params(user_def, params) else: @@ -1823,6 +1841,7 @@ def impute(self, user_def=True, params=None): class MPIN(BaseImputer): """ MPIN class to impute missing values using Multi-attribute Sensor Data Streams via Message Propagation algorithm. + Need torch-cluster to work. Methods ------- @@ -1834,6 +1853,7 @@ class MPIN(BaseImputer): def impute(self, user_def=True, params=None): """ Perform imputation using the MPIN algorithm. + Need torch-cluster to work. Parameters ---------- @@ -1874,7 +1894,7 @@ def impute(self, user_def=True, params=None): >>> mpin_imputer = Imputation.DeepLearning.MPIN(incomp_data) >>> mpin_imputer.impute() # default parameters for imputation > or >>> mpin_imputer.impute(params={"incre_mode": "data+state", "window": 1, "k": 15, "learning_rate": 0.001, "weight_decay": 0.2, "epochs": 6, "num_of_iteration": 6, "threshold": 0.50, "base": "GCN"}) # user-defined > or - >>> mpin_imputer.impute(user_def=False, params={"input_data": ts_1.data, "optimizer": "ray_tune"}) # automl with ray_tune + >>> mpin_imputer.impute(user_def=False, params={"input_data": ts.data, "optimizer": "ray_tune"}) # automl with ray_tune >>> recov_data = mpin_imputer.recov_data References @@ -1882,6 +1902,8 @@ def impute(self, user_def=True, params=None): Li, X., Li, H., Lu, H., Jensen, C.S., Pandey, V. & Markl, V. Missing Value Imputation for Multi-attribute Sensor Data Streams via Message Propagation (Extended Version). arXiv (2023). https://arxiv.org/abs/2311.07344 https://github.com/XLI-2020/MPIN """ + from imputegap.algorithms.mpin import mpin + if params is not None: incre_mode, window, k, learning_rate, weight_decay, epochs, num_of_iteration, threshold, base = self._check_params(user_def, params) else: @@ -1935,7 +1957,7 @@ def impute(self, user_def=True, params=None): >>> pristi_imputer = Imputation.DeepLearning.PRISTI(incomp_data) >>> pristi_imputer.impute() # default parameters for imputation > or >>> pristi_imputer.impute(params={"target_strategy":"hybrid", "unconditional":True, "seed":42, "device":"cpu"}) # user-defined > or - >>> pristi_imputer.impute(user_def=False, params={"input_data": ts_1.data, "optimizer": "ray_tune"}) # automl with ray_tune + >>> pristi_imputer.impute(user_def=False, params={"input_data": ts.data, "optimizer": "ray_tune"}) # automl with ray_tune >>> recov_data = pristi_imputer.recov_data References @@ -1943,6 +1965,8 @@ def impute(self, user_def=True, params=None): M. Liu, H. Huang, H. Feng, L. Sun, B. Du and Y. Fu, "PriSTI: A Conditional Diffusion Framework for Spatiotemporal Imputation," 2023 IEEE 39th International Conference on Data Engineering (ICDE), Anaheim, CA, USA, 2023, pp. 1927-1939, doi: 10.1109/ICDE55515.2023.00150. https://github.com/LMZZML/PriSTI """ + from imputegap.algorithms.pristi import pristi + if params is not None: target_strategy, unconditional, seed, device = self._check_params(user_def, params) else: @@ -2002,7 +2026,7 @@ def impute(self, user_def=True, params=None): >>> miss_net_imputer = Imputation.DeepLearning.MissNet(incomp_data) >>> miss_net_imputer.impute() # default parameters for imputation > or >>> miss_net_imputer.impute(user_def=True, params={'alpha': 0.5, 'beta':0.1, 'L':10, 'n_cl': 1, 'max_iteration':20, 'tol':5, 'random_init':False}) # user-defined > or - >>> miss_net_imputer.impute(user_def=False, params={"input_data": ts_1.data, "optimizer": "ray_tune"}) # auto-ml with ray_tune + >>> miss_net_imputer.impute(user_def=False, params={"input_data": ts.data, "optimizer": "ray_tune"}) # auto-ml with ray_tune >>> recov_data = miss_net_imputer.recov_data References @@ -2010,6 +2034,8 @@ def impute(self, user_def=True, params=None): Kohei Obata, Koki Kawabata, Yasuko Matsubara, and Yasushi Sakurai. 2024. Mining of Switching Sparse Networks for Missing Value Imputation in Multivariate Time Series. In Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD '24). Association for Computing Machinery, New York, NY, USA, 2296–2306. https://doi.org/10.1145/3637528.3671760 https://github.com/KoheiObata/MissNet/tree/main """ + from imputegap.algorithms.miss_net import miss_net + if params is not None: alpha, beta, L, n_cl, max_iteration, tol, random_init = self._check_params(user_def, params) else: @@ -2069,7 +2095,7 @@ def impute(self, user_def=True, params=None): >>> gain_imputer = Imputation.DeepLearning.GAIN(incomp_data) >>> gain_imputer.impute() # default parameters for imputation > or >>> gain_imputer.impute(user_def=True, params={"batch_size":32, "hint_rate":0.9, "alpha":10, "epoch":100}) # user defined> or - >>> gain_imputer.impute(user_def=False, params={"input_data": ts_1.data, "optimizer": "ray_tune"}) # auto-ml with ray_tune + >>> gain_imputer.impute(user_def=False, params={"input_data": ts.data, "optimizer": "ray_tune"}) # auto-ml with ray_tune >>> recov_data = gain_imputer.recov_data References @@ -2077,6 +2103,8 @@ def impute(self, user_def=True, params=None): J. Yoon, J. Jordon, and M. van der Schaar, "GAIN: Missing Data Imputation using Generative Adversarial Nets," CoRR, vol. abs/1806.02920, 2018. Available: http://arxiv.org/abs/1806.02920. """ + from imputegap.algorithms.gain import gain + if params is not None: batch_size, hint_rate, alpha, epoch = self._check_params(user_def, params) else: @@ -2148,7 +2176,7 @@ def impute(self, user_def=True, params=None): >>> grin_imputer = Imputation.DeepLearning.GRIN(incomp_data) >>> grin_imputer.impute() # default parameters for imputation > or >>> grin_imputer.impute(user_def=True, params={"d_hidden":32, "lr":0.001, "batch_size":32, "window":1, "alpha":10.0, "patience":4, "epochs":20, "workers":2}) # user defined> or - >>> grin_imputer.impute(user_def=False, params={"input_data": ts_1.data, "optimizer": "ray_tune"}) # auto-ml with ray_tune + >>> grin_imputer.impute(user_def=False, params={"input_data": ts.data, "optimizer": "ray_tune"}) # auto-ml with ray_tune >>> recov_data = grin_imputer.recov_data References @@ -2156,6 +2184,7 @@ def impute(self, user_def=True, params=None): A. Cini, I. Marisca, and C. Alippi, "Multivariate Time Series Imputation by Graph Neural Networks," CoRR, vol. abs/2108.00298, 2021 https://github.com/Graph-Machine-Learning-Group/grin """ + from imputegap.algorithms.grin import grin if params is not None: d_hidden, lr, batch_size, window, alpha, patience, epochs, workers = self._check_params(user_def, params) @@ -2233,7 +2262,7 @@ def impute(self, user_def=True, params=None): >>> bay_otide_imputer = Imputation.DeepLearning.BayOTIDE(incomp_data) >>> bay_otide_imputer.impute() # default parameters for imputation > or >>> bay_otide_imputer.impute(user_def=True, params={"K_trend":20, "K_season":2, "n_season":5, "K_bias":1, "time_scale":1, "a0":0.6, "b0":2.5, "v":0.5}) # user defined> or - >>> bay_otide_imputer.impute(user_def=False, params={"input_data": ts_1.data, "optimizer": "ray_tune"}) # auto-ml with ray_tune + >>> bay_otide_imputer.impute(user_def=False, params={"input_data": ts.data, "optimizer": "ray_tune"}) # auto-ml with ray_tune >>> recov_data = bay_otide_imputer.recov_data References @@ -2241,6 +2270,7 @@ def impute(self, user_def=True, params=None): S. Fang, Q. Wen, Y. Luo, S. Zhe, and L. Sun, "BayOTIDE: Bayesian Online Multivariate Time Series Imputation with Functional Decomposition," CoRR, vol. abs/2308.14906, 2024. [Online]. Available: https://arxiv.org/abs/2308.14906. https://github.com/xuangu-fang/BayOTIDE """ + from imputegap.algorithms.bayotide import bay_otide if params is not None: K_trend, K_season, n_season, K_bias, time_scale, a0, b0, v = self._check_params(user_def, params) @@ -2299,7 +2329,7 @@ def impute(self, user_def=True, params=None): >>> hkmf_t_imputer = Imputation.DeepLearning.HKMF_T(incomp_data) >>> hkmf_t_imputer.impute() # default parameters for imputation > or >>> hkmf_t_imputer.impute(user_def=True, params={"tags":None, "data_names":None, "epoch":5}) # user defined> or - >>> hkmf_t_imputer.impute(user_def=False, params={"input_data": ts_1.data, "optimizer": "ray_tune"}) # auto-ml with ray_tune + >>> hkmf_t_imputer.impute(user_def=False, params={"input_data": ts.data, "optimizer": "ray_tune"}) # auto-ml with ray_tune >>> recov_data = hkmf_t_imputer.recov_data References @@ -2307,6 +2337,7 @@ def impute(self, user_def=True, params=None): L. Wang, S. Wu, T. Wu, X. Tao and J. Lu, "HKMF-T: Recover From Blackouts in Tagged Time Series With Hankel Matrix Factorization," in IEEE Transactions on Knowledge and Data Engineering, vol. 33, no. 11, pp. 3582-3593, 1 Nov. 2021, doi: 10.1109/TKDE.2020.2971190. keywords: {Time series analysis;Matrix decomposition;Market research;Meteorology;Sparse matrices;Indexes;Software;Tagged time series;missing value imputation;blackouts;hankel matrix factorization} https://github.com/wangliang-cs/hkmf-t?tab=readme-ov-file """ + from imputegap.algorithms.hkmf_t import hkmf_t if params is not None: tags, data_names, epoch = self._check_params(user_def, params) @@ -2386,7 +2417,7 @@ def impute(self, user_def=True, params=None): >>> bit_graph_imputer = Imputation.DeepLearning.BitGraph(incomp_data) >>> bit_graph_imputer.impute() # default parameters for imputation > or >>> bit_graph_imputer.impute(user_def=True, params={"node_number":-1, "kernel_set":[1], "dropout":0.1, "subgraph_size":5, "node_dim":3, "seq_len":1, "lr":0.001, "epoch":10, "seed":42}) # user defined> or - >>> bit_graph_imputer.impute(user_def=False, params={"input_data": ts_1.data, "optimizer": "ray_tune"}) # auto-ml with ray_tune + >>> bit_graph_imputer.impute(user_def=False, params={"input_data": ts.data, "optimizer": "ray_tune"}) # auto-ml with ray_tune >>> recov_data = bit_graph_imputer.recov_data References @@ -2395,6 +2426,8 @@ def impute(self, user_def=True, params=None): https://github.com/chenxiaodanhit/BiTGraph """ + from imputegap.algorithms.bit_graph import bit_graph + if params is not None: node_number, kernel_set, dropout, subgraph_size, node_dim, seq_len, lr, epoch, seed = self._check_params(user_def, params) else: diff --git a/build/lib/imputegap/recovery/manager.py b/build/lib/imputegap/recovery/manager.py index de9ace68..cb62be1a 100644 --- a/build/lib/imputegap/recovery/manager.py +++ b/build/lib/imputegap/recovery/manager.py @@ -1,28 +1,45 @@ import datetime import os +import platform import time import numpy as np import matplotlib -from scipy.stats import zscore -from sklearn.preprocessing import MinMaxScaler import importlib.resources -from scipy.stats import norm - from imputegap.tools import utils -# Use Agg backend if in a headless or CI environment -if os.getenv('DISPLAY') is None or os.getenv('CI') is not None: - matplotlib.use("Agg") - print("Running in a headless environment or CI. Using Agg backend.") -else: - try: - matplotlib.use("TkAgg") - if importlib.util.find_spec("tkinter") is None: - print("tkinter is not available.") - except (ImportError, RuntimeError): +from matplotlib import pyplot as plt # type: ignore + + +def select_backend(): + system = platform.system() + headless = os.getenv('DISPLAY') is None or os.getenv('CI') is not None + + if headless: matplotlib.use("Agg") + return + + if system == "Darwin": # macOS + try: + matplotlib.use("MacOSX") + except (ImportError, RuntimeError): + try: + if importlib.util.find_spec("tkinter") is not None: + matplotlib.use("TkAgg") + else: + raise ImportError + except (ImportError, RuntimeError): + matplotlib.use("Agg") + else: # Windows or Linux + try: + if importlib.util.find_spec("tkinter") is not None: + matplotlib.use("TkAgg") + else: + raise ImportError + except (ImportError, RuntimeError): + matplotlib.use("Agg") -from matplotlib import pyplot as plt # type: ignore +# Call the backend selector +select_backend() class TimeSeries: @@ -132,6 +149,11 @@ def load_series(self, data, nbr_series=None, nbr_val=None, header=False, replace ------- TimeSeries The TimeSeries object with the loaded data. + + Example + ------- + >>> ts.load_series(utils.search_path("eeg-alcohol"), nbr_series=50, nbr_val=100) + """ if data is not None: @@ -184,11 +206,11 @@ def print(self, nbr_val=10, nbr_series=7, view_by_series=False): ------- None """ - print("\nTime Series set :") - to_print = self.data nbr_tot_series, nbr_tot_values = to_print.shape - print_col, print_row = "Timestamp", "Series" + print_col, print_row = "timestamp", "Series" + + print(f"\nshape of {self.name} : {self.data.shape}\n\tnumber of series = { nbr_tot_series}\n\tnumber of values = {nbr_tot_values}\n") if nbr_val == -1: nbr_val = to_print.shape[1] @@ -198,7 +220,7 @@ def print(self, nbr_val=10, nbr_series=7, view_by_series=False): if not view_by_series: to_print = to_print.T - print_col, print_row = "Series", "Timestamp" + print_col, print_row = "Series", "timestamp" header_format = "{:<15}" # Fixed size for headers value_format = "{:>15.10f}" # Fixed size for values @@ -210,16 +232,13 @@ def print(self, nbr_val=10, nbr_series=7, view_by_series=False): # Print each limited series with fixed size for i, series in enumerate(to_print): - print(header_format.format(f"{print_row} {i + 1}"), end="") + print(header_format.format(f"{print_row}_{i + 1}"), end="") print("".join([value_format.format(elem) for elem in series])) if nbr_series < nbr_tot_series: print("...") - print("\nshape of the time series :", self.data.shape, "\n\tnumber of series =", nbr_tot_series, - "\n\tnumber of values =", nbr_tot_values, "\n\n") - - def print_results(self, metrics, algorithm="", text="Imputation Results of"): + def print_results(self, metrics, algorithm="", text="Results of the analysis"): """ Prints the results of the imputation process. @@ -235,6 +254,10 @@ def print_results(self, metrics, algorithm="", text="Imputation Results of"): Returns ------- None + + Example + ------- + >>> ts.print_results(imputer.metrics, imputer.algorithm) """ if algorithm != "": @@ -262,6 +285,10 @@ def normalize(self, normalizer="z_score"): ------- numpy.ndarray The normalized time series data. + + Example + ------- + >>> ts.normalize(normalizer="z_score") """ print("Normalization of the original time series dataset with ", normalizer) self.data = self.data.T @@ -282,6 +309,8 @@ def normalize(self, normalizer="z_score"): end_time = time.time() elif normalizer == "z_lib": + from scipy.stats import zscore + start_time = time.time() # Record start time self.data = zscore(self.data, axis=0) @@ -289,6 +318,8 @@ def normalize(self, normalizer="z_score"): end_time = time.time() elif normalizer == "m_lib": + from sklearn.preprocessing import MinMaxScaler + start_time = time.time() # Record start time scaler = MinMaxScaler() @@ -311,10 +342,10 @@ def normalize(self, normalizer="z_score"): self.data = self.data.T - print(f"\n\t\t> logs, normalization {normalizer} - Execution Time: {(end_time - start_time):.4f} seconds\n") + print(f"\n\t> logs, normalization {normalizer} - Execution Time: {(end_time - start_time):.4f} seconds\n") def plot(self, input_data, incomp_data=None, recov_data=None, nbr_series=None, nbr_val=None, series_range=None, - subplot=False, size=(16, 8), save_path="./imputegap_assets", display=True): + subplot=False, size=(16, 8), algorithm=None, save_path="./imputegap_assets", display=True): """ Plot the time series data, including raw, contaminated, or imputed data. @@ -336,6 +367,8 @@ def plot(self, input_data, incomp_data=None, recov_data=None, nbr_series=None, n Print one time series by subplot or all in the same plot. size : tuple, optional Size of the plot in inches. Default is (16, 8). + algorithm : str, optional + Name of the algorithm used for imputation. save_path : str, optional Path to save the plot locally. display : bool, optional @@ -345,8 +378,17 @@ def plot(self, input_data, incomp_data=None, recov_data=None, nbr_series=None, n ------- str or None The file path of the saved plot, if applicable. + + Example + ------- + >>> ts.plot(input_data=ts.data, nbr_series=9, nbr_val=100, save_path="./imputegap_assets") # plain data + >>> ts.plot(ts.data, ts_m, nbr_series=9, subplot=True, save_path="./imputegap_assets") # contamination + >>> ts.plot(input_data=ts.data, incomp_data=ts_m, recov_data=imputer.recov_data, nbr_series=9, subplot=True, save_path="./imputegap_assets") # imputation """ number_of_series = 0 + if algorithm is None: + algorithm = "imputegap" + algorithm.lower() if nbr_series is None or nbr_series == -1: nbr_series = input_data.shape[0] @@ -381,6 +423,7 @@ def plot(self, input_data, incomp_data=None, recov_data=None, nbr_series=None, n y_size = y_size_screen fig, axes = plt.subplots(n_rows, n_cols, figsize=(x_size, y_size), squeeze=False) + fig.canvas.manager.set_window_title(algorithm) axes = axes.flatten() else: plt.figure(figsize=size) @@ -407,28 +450,28 @@ def plot(self, input_data, incomp_data=None, recov_data=None, nbr_series=None, n if incomp_data is None and recov_data is None: # plot only raw matrix ax.plot(timestamps, input_data[i, :nbr_val], linewidth=2.5, - color=color, linestyle='-', label=f'TS {i + 1}') + color=color, linestyle='-', label=f'Series {i + 1}') if incomp_data is not None and recov_data is None: # plot infected matrix if np.isnan(incomp_data[i, :]).any(): ax.plot(timestamps, input_data[i, :nbr_val], linewidth=1.5, - color=color, linestyle='--', label=f'TS-INCOMP {i + 1}') + color=color, linestyle='--', label=f'Missing Data {i + 1}') if np.isnan(incomp_data[i, :]).any() or not subplot: ax.plot(np.arange(min(incomp_data.shape[1], nbr_val)), incomp_data[i, :nbr_val], - color=color, linewidth=2.5, linestyle='-', label=f'TS-INPUT {i + 1}') + color=color, linewidth=2.5, linestyle='-', label=f'Series {i + 1}') if recov_data is not None: # plot imputed matrix if np.isnan(incomp_data[i, :]).any(): ax.plot(np.arange(min(recov_data.shape[1], nbr_val)), recov_data[i, :nbr_val], - linestyle='-', color="r", label=f'TS-RECOV {i + 1}') + linestyle='-', color="r", label=f'Imputed Data {i + 1}') ax.plot(timestamps, input_data[i, :nbr_val], linewidth=1.5, - linestyle='--', color=color, label=f'TS-INCOM {i + 1}') + linestyle='--', color=color, label=f'Missing Data {i + 1}') if np.isnan(incomp_data[i, :]).any() or not subplot: ax.plot(np.arange(min(incomp_data.shape[1], nbr_val)), incomp_data[i, :nbr_val], - color=color, linewidth=2.5, linestyle='-', label=f'TS-INPUT {i + 1}') + color=color, linewidth=2.5, linestyle='-', label=f'Series {i + 1}') # Label and legend for subplot if subplot: @@ -466,7 +509,7 @@ def plot(self, input_data, incomp_data=None, recov_data=None, nbr_series=None, n now = datetime.datetime.now() current_time = now.strftime("%y_%m_%d_%H_%M_%S") - file_path = os.path.join(save_path + "/" + current_time + "_plot.jpg") + file_path = os.path.join(save_path + "/" + current_time + "_" + algorithm + "_plot.jpg") plt.savefig(file_path, bbox_inches='tight') print("plots saved in ", file_path) @@ -481,13 +524,13 @@ class Contamination: Methods ------- - missing_completely_at_random(ts, series_rate=0.2, missing_rate=0.2, block_size=10, offset=0.1, seed=True, explainer=False) : + mcar(ts, series_rate=0.2, missing_rate=0.2, block_size=10, offset=0.1, seed=True, explainer=False) : Apply Missing Completely at Random (MCAR) contamination to the time series data. - missing_percentage(ts, series_rate=0.2, missing_rate=0.2, offset=0.1) : + aligned(ts, series_rate=0.2, missing_rate=0.2, offset=0.1) : Apply missing percentage contamination to the time series data. - missing_percentage_at_random(ts, series_rate=0.2, missing_rate=0.2, offset=0.1, seed=True) : + missing_percentage_at_random(ts, series_rate=0.2, missing_rate=0.2, offset=0.1, seed=True) : Apply missing percentage contamination at random to the time series data. blackout(ts, missing_rate=0.2, offset=0.1) : @@ -506,7 +549,7 @@ class Contamination: Apply Overlapping contamination to the time series data. """ - def missing_completely_at_random(input_data, rate_dataset=0.2, rate_series=0.2, block_size=10, offset=0.1, seed=True, explainer=False): + def mcar(input_data, rate_dataset=0.2, rate_series=0.2, block_size=10, offset=0.1, seed=True, explainer=False): """ Apply Missing Completely at Random (MCAR) contamination to the time series data. @@ -531,6 +574,14 @@ def missing_completely_at_random(input_data, rate_dataset=0.2, rate_series=0.2, ------- numpy.ndarray The contaminated time series data. + + Example + ------- + >>> ts_m = ts.Contamination.mcar(ts.data, rate_dataset=0.2, rate_series=0.4, block_size=10, seed=True) + + References + ---------- + https://imputegap.readthedocs.io/en/latest/patterns.html """ if seed: @@ -555,16 +606,16 @@ def missing_completely_at_random(input_data, rate_dataset=0.2, rate_series=0.2, values_nbr = int(NS * rate_series) if not explainer: - print(f"\n\n\tMCAR contamination has been called with :" - f"\n\t\ta number of series impacted {rate_dataset * 100}%" - f"\n\t\ta missing rate of {rate_series * 100}%" - f"\n\t\ta starting position at {offset_nbr}" - f"\n\t\ta block size of {block_size}" - f"\n\t\tvalues to remove by series {values_nbr}" - f"\n\t\twith a seed option set to {seed}" - f"\n\t\twith a seed value set to {seed_value}" - f"\n\t\tshape of the set {ts_contaminated.shape}" - f"\n\t\tthis selection of series {series_selected}\n\n") + print(f"\n\nMCAR contamination has been called with :" + f"\n\ta number of series impacted {rate_dataset * 100}%" + f"\n\ta missing rate of {rate_series * 100}%" + f"\n\ta starting position at {offset_nbr}" + f"\n\ta block size of {block_size}" + f"\n\tvalues to remove by series {values_nbr}" + f"\n\twith a seed option set to {seed}" + f"\n\twith a seed value set to {seed_value}" + f"\n\tshape of the set {ts_contaminated.shape}" + f"\n\tthis selection of series {series_selected}\n\n") if offset_nbr + values_nbr > NS: raise ValueError( @@ -604,9 +655,9 @@ def missing_completely_at_random(input_data, rate_dataset=0.2, rate_series=0.2, return ts_contaminated - def missing_percentage(input_data, rate_dataset=0.2, rate_series=0.2, offset=0.1): + def aligned(input_data, rate_dataset=0.2, rate_series=0.2, offset=0.1): """ - Apply missing percentage contamination to the time series data. + Apply aligned missing blocks contamination to the time series data. Parameters ---------- @@ -623,6 +674,14 @@ def missing_percentage(input_data, rate_dataset=0.2, rate_series=0.2, offset=0.1 ------- numpy.ndarray The contaminated time series data. + + Example + ------- + >>> ts_m = ts.Contamination.aligned(ts.data, rate_dataset=0.2, rate_series=0.4, offset=0.1) + + References + ---------- + https://imputegap.readthedocs.io/en/latest/patterns.html """ ts_contaminated = input_data.copy() @@ -637,13 +696,13 @@ def missing_percentage(input_data, rate_dataset=0.2, rate_series=0.2, offset=0.1 values_nbr = int(NS * rate_series) - print("\n\n\tMISSING PERCENTAGE contamination has been called with :" - "\n\t\ta number of series impacted ", rate_dataset * 100, "%", - "\n\t\ta missing rate of ", rate_series * 100, "%", - "\n\t\ta starting position at ", offset, - "\n\t\tshape of the set ", ts_contaminated.shape, - "\n\t\tthis selection of series : ", 1, "->", nbr_series_impacted, - "\n\t\tvalues : ", offset_nbr, "->", offset_nbr + values_nbr, "\n\n") + print("\n\nALIGNED (missing percentage) contamination has been called with :" + "\n\ta number of series impacted ", rate_dataset * 100, "%", + "\n\ta missing rate of ", rate_series * 100, "%", + "\n\ta starting position at ", offset, + "\n\tshape of the set ", ts_contaminated.shape, + "\n\tthis selection of series : ", 1, "->", nbr_series_impacted, + "\n\tvalues : ", offset_nbr, "->", offset_nbr + values_nbr, "\n\n") if offset_nbr + values_nbr > NS: @@ -664,7 +723,7 @@ def missing_percentage(input_data, rate_dataset=0.2, rate_series=0.2, offset=0.1 return ts_contaminated - def percentage_shift(input_data, rate_dataset=0.2, rate_series=0.2, offset=0.1, seed=True): + def scattered(input_data, rate_dataset=0.2, rate_series=0.2, offset=0.1, seed=True): """ Apply percentage shift contamination with random starting position to the time series data. @@ -685,6 +744,14 @@ def percentage_shift(input_data, rate_dataset=0.2, rate_series=0.2, offset=0.1, ------- numpy.ndarray The contaminated time series data. + + Example + ------- + >>> ts_m = ts.Contamination.scattered(ts.data, rate_dataset=0.2, rate_series=0.4, offset=0.1) + + References + ---------- + https://imputegap.readthedocs.io/en/latest/patterns.html """ if seed: @@ -703,13 +770,13 @@ def percentage_shift(input_data, rate_dataset=0.2, rate_series=0.2, offset=0.1, values_nbr = int(NS * rate_series) - print("\n\n\tMISSING PERCENTAGE AT RANDOM contamination has been called with :" - "\n\t\ta number of series impacted ", rate_dataset * 100, "%", - "\n\t\ta missing rate of ", rate_series * 100, "%", - "\n\t\ta starting position at ", offset, - "\n\t\tshape of the set ", ts_contaminated.shape, - "\n\t\tthis selection of series : ", 1, "->", nbr_series_impacted, - "\n\t\tvalues : ", offset_nbr, "->", offset_nbr + values_nbr, "\n\n") + print("\n\nSCATTER (missing percentage AT RANDOM) contamination has been called with :" + "\n\ta number of series impacted ", rate_dataset * 100, "%", + "\n\ta missing rate of ", rate_series * 100, "%", + "\n\ta starting position at ", offset, + "\n\tshape of the set ", ts_contaminated.shape, + "\n\tthis selection of series : ", 1, "->", nbr_series_impacted, + "\n\tvalues : ", offset_nbr, "->", offset_nbr + values_nbr, "\n\n") if offset_nbr + values_nbr > NS: @@ -750,8 +817,16 @@ def blackout(input_data, series_rate=0.2, offset=0.1): ------- numpy.ndarray The contaminated time series data. + + Example + ------- + >>> ts_m = ts.Contamination.blackout(ts.data, series_rate=0.2) + + References + ---------- + https://imputegap.readthedocs.io/en/latest/patterns.html """ - return TimeSeries.Contamination.missing_percentage(input_data, rate_dataset=1, rate_series=series_rate, offset=offset) + return TimeSeries.Contamination.aligned(input_data, rate_dataset=1, rate_series=series_rate, offset=offset) def gaussian(input_data, rate_dataset=0.2, rate_series=0.2, std_dev=0.2, offset=0.1, seed=True): """ @@ -776,7 +851,16 @@ def gaussian(input_data, rate_dataset=0.2, rate_series=0.2, std_dev=0.2, offset= ------- numpy.ndarray The contaminated time series data. + + Example + ------- + >>> ts_m = ts.Contamination.gaussian(ts.data, rate_series=0.2, std_dev=0.2, offset=0.1, seed=True) + + References + ---------- + https://imputegap.readthedocs.io/en/latest/patterns.html """ + from scipy.stats import norm ts_contaminated = input_data.copy() M, NS = ts_contaminated.shape @@ -795,16 +879,16 @@ def gaussian(input_data, rate_dataset=0.2, rate_series=0.2, std_dev=0.2, offset= offset_nbr = int(offset * NS) values_nbr = int(NS * rate_series) - print(f"\n\n\tGAUSSIAN contamination has been called with :" - f"\n\t\ta number of series impacted {rate_dataset * 100}%" - f"\n\t\ta missing rate of {rate_series * 100}%" - f"\n\t\ta starting position at {offset_nbr}" - f"\n\t\tvalues to remove by series {values_nbr}" - f"\n\t\twith a seed option set to {seed}" - f"\n\t\twith a seed value set to {seed_value}" - f"\n\t\tGaussian std_dev {std_dev}" - f"\n\t\tshape of the set {ts_contaminated.shape}" - f"\n\t\tthis selection of series {nbr_series_impacted}\n\n") + print(f"\n\nGAUSSIAN contamination has been called with :" + f"\n\ta number of series impacted {rate_dataset * 100}%" + f"\n\ta missing rate of {rate_series * 100}%" + f"\n\ta starting position at {offset_nbr}" + f"\n\tvalues to remove by series {values_nbr}" + f"\n\twith a seed option set to {seed}" + f"\n\twith a seed value set to {seed_value}" + f"\n\tGaussian std_dev {std_dev}" + f"\n\tshape of the set {ts_contaminated.shape}" + f"\n\tthis selection of series {nbr_series_impacted}\n\n") if offset_nbr + values_nbr > NS: raise ValueError( @@ -859,6 +943,14 @@ def distribution(input_data, rate_dataset=0.2, rate_series=0.2, probabilities=No ------- numpy.ndarray The contaminated time series data. + + Example + ------- + >>> ts_m = ts.Contamination.distribution(ts.data, rate_dataset=0.2, rate_series=0.2, probabilities=probabilities, offset=0.1, seed=True) + + References + ---------- + https://imputegap.readthedocs.io/en/latest/patterns.html """ ts_contaminated = input_data.copy() @@ -878,16 +970,16 @@ def distribution(input_data, rate_dataset=0.2, rate_series=0.2, probabilities=No offset_nbr = int(offset * NS) values_nbr = int(NS * rate_series) - print(f"\n\n\tGAUSSIAN contamination has been called with :" - f"\n\t\ta number of series impacted {rate_dataset * 100}%" - f"\n\t\ta missing rate of {rate_series * 100}%" - f"\n\t\ta starting position at {offset_nbr}" - f"\n\t\tvalues to remove by series {values_nbr}" - f"\n\t\twith a seed option set to {seed}" - f"\n\t\twith a seed value set to {seed_value}" - f"\n\t\tshape of the set {ts_contaminated.shape}" - f"\n\t\tprobabilities list {np.array(probabilities).shape}" - f"\n\t\tthis selection of series {nbr_series_impacted}\n\n") + print(f"\n\nDISTRIBUTION contamination has been called with :" + f"\n\ta number of series impacted {rate_dataset * 100}%" + f"\n\ta missing rate of {rate_series * 100}%" + f"\n\ta starting position at {offset_nbr}" + f"\n\tvalues to remove by series {values_nbr}" + f"\n\twith a seed option set to {seed}" + f"\n\twith a seed value set to {seed_value}" + f"\n\tshape of the set {ts_contaminated.shape}" + f"\n\tprobabilities list {np.array(probabilities).shape}" + f"\n\tthis selection of series {nbr_series_impacted}\n\n") if offset_nbr + values_nbr > NS: raise ValueError( @@ -932,6 +1024,14 @@ def disjoint(input_data, rate_series=0.1, limit=1, offset=0.1): ------- numpy.ndarray The contaminated time series data. + + Example + ------- + >>> ts_m = ts.Contamination.disjoint(ts.data, rate_series=0.1, limit=1, offset=0.1) + + References + ---------- + https://imputegap.readthedocs.io/en/latest/patterns.html """ ts_contaminated = input_data.copy() M, NS = ts_contaminated.shape @@ -943,12 +1043,12 @@ def disjoint(input_data, rate_series=0.1, limit=1, offset=0.1): values_nbr = int(NS * rate_series) - print(f"\n\n\tDISJOINT contamination has been called with :" - f"\n\t\ta missing rate of {rate_series * 100}%" - f"\n\t\ta starting position at {offset_nbr}" - f"\n\t\tvalues to remove by series {values_nbr}" - f"\n\t\tlimit to stop {limit}" - f"\n\t\tshape of the set {ts_contaminated.shape}") + print(f"\n\nDISJOINT contamination has been called with :" + f"\n\ta missing rate of {rate_series * 100}%" + f"\n\ta starting position at {offset_nbr}" + f"\n\tvalues to remove by series {values_nbr}" + f"\n\tlimit to stop {limit}" + f"\n\tshape of the set {ts_contaminated.shape}") if offset_nbr + values_nbr > NS: @@ -998,6 +1098,14 @@ def overlap(input_data, rate_series=0.2, limit=1, shift=0.05, offset=0.1): ------- numpy.ndarray The contaminated time series data. + + Example + ------- + >>> ts_m = ts.Contamination.overlap(ts.data, rate_series=0.1, limit=1, shift=0.05, offset=0.1) + + References + ---------- + https://imputegap.readthedocs.io/en/latest/patterns.html """ ts_contaminated = input_data.copy() M, NS = ts_contaminated.shape @@ -1008,15 +1116,15 @@ def overlap(input_data, rate_series=0.2, limit=1, shift=0.05, offset=0.1): offset_nbr = int(offset * NS) values_nbr = int(NS * rate_series) - print(f"\n\n\tOVERLAP contamination has been called with :" - f"\n\t\ta missing rate of {rate_series * 100}%" - f"\n\t\ta offset of {offset*100}%" - f"\n\t\ta starting position at {offset_nbr}" - f"\n\t\tvalues to remove by series {values_nbr}" - f"\n\t\ta shift overlap of {shift * 100} %" - f"\n\t\ta shift in number {int(shift * NS)}" - f"\n\t\tlimit to stop {limit}" - f"\n\t\tshape of the set {ts_contaminated.shape}") + print(f"\n\nOVERLAP contamination has been called with :" + f"\n\ta missing rate of {rate_series * 100}%" + f"\n\ta offset of {offset*100}%" + f"\n\ta starting position at {offset_nbr}" + f"\n\tvalues to remove by series {values_nbr}" + f"\n\ta shift overlap of {shift * 100} %" + f"\n\ta shift in number {int(shift * NS)}" + f"\n\tlimit to stop {limit}" + f"\n\tshape of the set {ts_contaminated.shape}") if offset_nbr + values_nbr > NS: raise ValueError( @@ -1050,3 +1158,8 @@ def overlap(input_data, rate_series=0.2, limit=1, shift=0.05, offset=0.1): return ts_contaminated + missing_completely_at_random = mcar + mp = aligned + missing_percentage = aligned + + diff --git a/build/lib/imputegap/recovery/optimization.py b/build/lib/imputegap/recovery/optimization.py index 77496a31..8e11bcb9 100644 --- a/build/lib/imputegap/recovery/optimization.py +++ b/build/lib/imputegap/recovery/optimization.py @@ -1,25 +1,11 @@ -import os import time from itertools import product import numpy as np - from imputegap.recovery.imputation import Imputation from imputegap.tools import utils from imputegap.tools.algorithm_parameters import SEARCH_SPACES, ALL_ALGO_PARAMS, PARAM_NAMES, SEARCH_SPACES_PSO, RAYTUNE_PARAMS import imputegap.tools.algorithm_parameters as sh_params -# RAY TUNE IMPORT -from ray import tune -import ray - -# PSO IMPORT -from functools import partial -import pyswarms as ps - -# BAYESIAN IMPORT -import skopt -from skopt.space import Integer - from pyswarms.utils.reporter import Reporter reporter = Reporter() @@ -289,6 +275,10 @@ def optimize(self, input_data, incomp_data, metrics=["RMSE"], algorithm="cdrec", tuple A tuple containing the best parameters and their corresponding score. """ + # BAYESIAN IMPORT + import skopt + from skopt.space import Integer + start_time = time.time() # Record start time search_spaces = SEARCH_SPACES @@ -416,6 +406,9 @@ def optimize(self, input_data, incomp_data, metrics, algorithm, n_particles, c1, tuple A tuple containing the best parameters and their corresponding score. """ + from functools import partial + import pyswarms as ps + start_time = time.time() # Record start time if not isinstance(metrics, list): @@ -620,6 +613,9 @@ def optimize(self, input_data, incomp_data, metrics=["RMSE"], algorithm="cdrec", tuple A tuple containing the best parameters and their corresponding score. """ + from ray import tune + import ray + if not ray.is_initialized(): ray.init() used_metric = metrics[0] diff --git a/build/lib/imputegap/runner_benchmark.py b/build/lib/imputegap/runner_benchmark.py index baed387b..740e808d 100644 --- a/build/lib/imputegap/runner_benchmark.py +++ b/build/lib/imputegap/runner_benchmark.py @@ -1,45 +1,17 @@ -import numpy as np - from imputegap.recovery.benchmark import Benchmark -# define analysis global variables -reconstruction = False -save_dir = "./analysis" +save_dir = "./imputegap_assets/benchmark" nbr_run = 1 -# define the datasets to evaluate -datasets_full = ["eeg-alcohol", "eeg-reading", "fmri-objectviewing", "fmri-stoptask", "chlorine", "drift"] -datasets = ["chlorine", "eeg-reading"] +datasets = ["eeg-alcohol"] -# define the optimizer to fine-tine the algorithms -optimiser_bayesian = {"optimizer": "bayesian", "options": {"n_calls": 2, "n_random_starts": 50, "acq_func": "gp_hedge", "metrics": "RMSE"}} -optimiser_greedy = {"optimizer": "greedy", "options": {"n_calls": 250, "metrics": "RMSE"}} -optimiser_pso = {"optimizer": "pso", "options": {"n_particles": 50, "iterations": 10, "metrics": "RMSE"}} -optimiser_sh = {"optimizer": "sh", "options": {"num_configs": 10, "num_iterations": 5, "metrics": "RMSE"}} -optimiser_ray = {"optimizer": "ray_tune", "options": {"n_calls": 1, "max_concurrent_trials": 1}} -optimizers = [optimiser_ray] +optimizers = ["default_params"] -# define the algorithms for the imputation -algorithms = ["MeanImpute", "CDRec", "STMVL", "IIM", "MRNN"] +algorithms = ["SoftImpute", "KNNImpute"] -# define the missing pattern to contaminate the time series -patterns_full = ["mcar", "mp", "blackout", "disjoint", "overlap", "gaussian"] patterns = ["mcar"] -# define missing values percentages to see the evolution of the imputation range = [0.05, 0.1, 0.2, 0.4, 0.6, 0.8] - -if not reconstruction: - # launch the analysis - list_results, sum_scores = Benchmark().eval(algorithms=algorithms, datasets=datasets, patterns=patterns, x_axis=range, optimizers=optimizers, save_dir=save_dir, runs=nbr_run) -else: - test_plots = {'eegreading': {'mp': {'mean': {'ray_tune': {'0.05': {'scores': {'RMSE': 0.9585345039764159, 'MAE': 0.71318962961796, 'MI': 0.0, 'CORRELATION': 0.0}, 'times': {'contamination': 0.0001308917999267578, 'optimization': 0.0, 'imputation': 0.0005505084991455078, 'log_imputation': -3.25923597169041}}, '0.1': {'scores': {'RMSE': 1.158802114694506, 'MAE': 0.9654264194724749, 'MI': 0.0, 'CORRELATION': 0.0}, 'times': {'contamination': 0.00028133392333984375, 'optimization': 0.0, 'imputation': 0.0002911090850830078, 'log_imputation': -3.5359442406627037}}, '0.2': {'scores': {'RMSE': 0.9366041090001302, 'MAE': 0.713304743455646, 'MI': 0.0, 'CORRELATION': 0.0}, 'times': {'contamination': 0.00025653839111328125, 'optimization': 0.0, 'imputation': 0.0002605915069580078, 'log_imputation': -3.5840397426578834}}, '0.4': {'scores': {'RMSE': 1.0599636170074507, 'MAE': 0.8381968262587581, 'MI': 0.0, 'CORRELATION': 0.0}, 'times': {'contamination': 0.0006632804870605469, 'optimization': 0.0, 'imputation': 0.00026726722717285156, 'log_imputation': -3.573054292012613}}, '0.6': {'scores': {'RMSE': 1.0562417941470534, 'MAE': 0.8508551190781458, 'MI': 0.0, 'CORRELATION': 0.0}, 'times': {'contamination': 0.0013227462768554688, 'optimization': 0.0, 'imputation': 0.0002796649932861328, 'log_imputation': -3.553361892492057}}, '0.7': {'scores': {'RMSE': 1.040204405772873, 'MAE': 0.8335213108852025, 'MI': 0.0, 'CORRELATION': 0.0}, 'times': {'contamination': 0.0017957687377929688, 'optimization': 0.0, 'imputation': 0.00025272369384765625, 'log_imputation': -3.597354039342816}}}}, 'cdrec': {'ray_tune': {'0.05': {'scores': {'RMSE': 1.1697500835978993, 'MAE': 0.9591122423282666, 'MI': 0.874795673555792, 'CORRELATION': -0.6435768999074719}, 'times': {'contamination': 0.00013375282287597656, 'optimization': 7.705925226211548, 'imputation': 0.03410458564758301, 'log_imputation': -1.4671872225457172}}, '0.1': {'scores': {'RMSE': 1.160748195036071, 'MAE': 0.9801100319738002, 'MI': 0.24843228556023436, 'CORRELATION': -0.1457168801420723}, 'times': {'contamination': 0.0010766983032226562, 'optimization': 7.705925226211548, 'imputation': 0.0187838077545166, 'log_imputation': -1.7262163652567906}}, '0.2': {'scores': {'RMSE': 0.9258702230012604, 'MAE': 0.7412912028091162, 'MI': 0.09990051537425793, 'CORRELATION': 0.018312853013798043}, 'times': {'contamination': 0.0012714862823486328, 'optimization': 7.705925226211548, 'imputation': 0.06531453132629395, 'log_imputation': -1.184990185145398}}, '0.4': {'scores': {'RMSE': 1.0158290954098952, 'MAE': 0.7699069240021237, 'MI': 0.043509996942918995, 'CORRELATION': 0.026854101443570477}, 'times': {'contamination': 0.002095460891723633, 'optimization': 7.705925226211548, 'imputation': 0.06960487365722656, 'log_imputation': -1.1573603504995333}}, '0.6': {'scores': {'RMSE': 1.074841191421588, 'MAE': 0.8305870491121395, 'MI': 0.04052775735888883, 'CORRELATION': 0.02240964134518767}, 'times': {'contamination': 0.003614664077758789, 'optimization': 7.705925226211548, 'imputation': 0.11719846725463867, 'log_imputation': -0.9310780680722405}}, '0.7': {'scores': {'RMSE': 1.028461165376999, 'MAE': 0.8037932945848046, 'MI': 0.04862782947355959, 'CORRELATION': 0.28310309461657}, 'times': {'contamination': 0.004042148590087891, 'optimization': 7.705925226211548, 'imputation': 0.14756202697753906, 'log_imputation': -0.8310253877423743}}}}, 'stmvl': {'ray_tune': {'0.05': {'scores': {'RMSE': 0.7277001471585042, 'MAE': 0.6187129093081218, 'MI': 0.849293361425945, 'CORRELATION': 0.6050898026864381}, 'times': {'contamination': 0.0003566741943359375, 'optimization': 401.3516755104065, 'imputation': 13.703130722045898, 'log_imputation': 1.1368198007314763}}, '0.1': {'scores': {'RMSE': 0.9169700690065775, 'MAE': 0.7874056676843385, 'MI': 0.3666479681879978, 'CORRELATION': 0.5010483466574436}, 'times': {'contamination': 0.00020051002502441406, 'optimization': 401.3516755104065, 'imputation': 13.661174535751343, 'log_imputation': 1.1354880399360694}}, '0.2': {'scores': {'RMSE': 0.7183875117312635, 'MAE': 0.5896797263562054, 'MI': 0.24774404354441104, 'CORRELATION': 0.46263398990236104}, 'times': {'contamination': 0.0002193450927734375, 'optimization': 401.3516755104065, 'imputation': 13.761161088943481, 'log_imputation': 1.1386550787575944}}, '0.4': {'scores': {'RMSE': 0.8742119003541577, 'MAE': 0.6297161236774441, 'MI': 0.12171661757737935, 'CORRELATION': 0.2830622046394087}, 'times': {'contamination': 0.0006110668182373047, 'optimization': 401.3516755104065, 'imputation': 14.14597225189209, 'log_imputation': 1.1506328018545884}}, '0.6': {'scores': {'RMSE': 20.12875114987835, 'MAE': 3.972851513364007, 'MI': 0.005760162876990282, 'CORRELATION': -0.0020763310368411936}, 'times': {'contamination': 0.001154184341430664, 'optimization': 401.3516755104065, 'imputation': 8.714907884597778, 'log_imputation': 0.9402628010361087}}, '0.7': {'scores': {'RMSE': 0.9089996638242581, 'MAE': 0.7155219794334919, 'MI': 0.0, 'CORRELATION': 0.0}, 'times': {'contamination': 0.001634359359741211, 'optimization': 401.3516755104065, 'imputation': 8.389863967895508, 'log_imputation': 0.9237549192945785}}}}, 'iim': {'ray_tune': {'0.05': {'scores': {'RMSE': 0.9917499844047692, 'MAE': 0.6835294570359077, 'MI': 1.0383833294554503, 'CORRELATION': 0.39342144548050073}, 'times': {'contamination': 0.00010991096496582031, 'optimization': 87.12388730049133, 'imputation': 0.1563720703125, 'log_imputation': -0.8058408138870692}}, '0.1': {'scores': {'RMSE': 0.5640999644452854, 'MAE': 0.436875650594336, 'MI': 0.9382015646212765, 'CORRELATION': 0.8446597946056835}, 'times': {'contamination': 0.000209808349609375, 'optimization': 87.12388730049133, 'imputation': 1.0088622570037842, 'log_imputation': 0.003831874753497683}}, '0.2': {'scores': {'RMSE': 0.5524062619653164, 'MAE': 0.4527739222276905, 'MI': 0.4682825796414235, 'CORRELATION': 0.734130718955202}, 'times': {'contamination': 0.00021195411682128906, 'optimization': 87.12388730049133, 'imputation': 6.273438930511475, 'log_imputation': 0.7975056746615543}}, '0.4': {'scores': {'RMSE': 0.6703666990440234, 'MAE': 0.5167364139824571, 'MI': 0.25478017143468495, 'CORRELATION': 0.6160285049199379}, 'times': {'contamination': 0.0006020069122314453, 'optimization': 87.12388730049133, 'imputation': 48.24830389022827, 'log_imputation': 1.683482050859879}}, '0.6': {'scores': {'RMSE': 0.846371619650148, 'MAE': 0.6521374554849746, 'MI': 0.10898611984678795, 'CORRELATION': 0.37877848480193976}, 'times': {'contamination': 0.0012598037719726562, 'optimization': 87.12388730049133, 'imputation': 148.6065971851349, 'log_imputation': 2.1720380897576836}}, '0.7': {'scores': {'RMSE': 0.939708165479016, 'MAE': 0.7342180002582285, 'MI': 0.0747388622783703, 'CORRELATION': 0.3115372974410071}, 'times': {'contamination': 0.0016543865203857422, 'optimization': 87.12388730049133, 'imputation': 240.74761581420898, 'log_imputation': 2.3815619948874964}}}}, 'mrnn': {'ray_tune': {'0.05': {'scores': {'RMSE': 0.5647614331747706, 'MAE': 0.4956801381604213, 'MI': 0.602588078427742, 'CORRELATION': 0.7892828777307545}, 'times': {'contamination': 0.00017881393432617188, 'optimization': 23.75439763069153, 'imputation': 9.659311532974243, 'log_imputation': 0.9849461731975306}}, '0.1': {'scores': {'RMSE': 1.4942930218243802, 'MAE': 1.2039603558089516, 'MI': 0.47511351289726134, 'CORRELATION': -0.24282448220213368}, 'times': {'contamination': 0.00033783912658691406, 'optimization': 23.75439763069153, 'imputation': 9.660546064376831, 'log_imputation': 0.985001675695301}}, '0.2': {'scores': {'RMSE': 1.493030946284299, 'MAE': 1.2759205639542883, 'MI': 0.14247255829853323, 'CORRELATION': 0.17585501858419272}, 'times': {'contamination': 0.0004456043243408203, 'optimization': 23.75439763069153, 'imputation': 9.614870071411133, 'log_imputation': 0.982943419864104}}, '0.4': {'scores': {'RMSE': 1.6610979347034713, 'MAE': 1.32902912214158, 'MI': 0.07259583818478979, 'CORRELATION': -0.04241780698399349}, 'times': {'contamination': 0.0007512569427490234, 'optimization': 23.75439763069153, 'imputation': 9.778327465057373, 'log_imputation': 0.9902645771992502}}, '0.6': {'scores': {'RMSE': 1.6248154262874046, 'MAE': 1.3587893211292972, 'MI': 0.04243232622955761, 'CORRELATION': -0.05349772421574814}, 'times': {'contamination': 0.0013408660888671875, 'optimization': 23.75439763069153, 'imputation': 9.961318492889404, 'log_imputation': 0.9983168260028805}}, '0.7': {'scores': {'RMSE': 1.3781088381679387, 'MAE': 1.102321907630172, 'MI': 0.013439658692967605, 'CORRELATION': -0.01874660352385742}, 'times': {'contamination': 0.0019338130950927734, 'optimization': 23.75439763069153, 'imputation': 9.934946298599243, 'log_imputation': 0.9971655239586622}}}}, 'knn': {'ray_tune': {'0.05': {'scores': {'RMSE': 1.0891820888848962, 'MAE': 0.8741423177191895, 'MI': 1.0726621001615337, 'CORRELATION': 0.23766946742758965}, 'times': {'contamination': 0.0002646446228027344, 'optimization': 5.975560188293457, 'imputation': 0.004753589630126953, 'log_imputation': -2.3229783129452315}}, '0.1': {'scores': {'RMSE': 0.6835893631062424, 'MAE': 0.5234507579018903, 'MI': 0.7407074666713884, 'CORRELATION': 0.7645134370284421}, 'times': {'contamination': 0.00014519691467285156, 'optimization': 5.975560188293457, 'imputation': 0.006691694259643555, 'log_imputation': -2.174463909966519}}, '0.2': {'scores': {'RMSE': 0.5992380715293445, 'MAE': 0.4859085244932665, 'MI': 0.4086948138880703, 'CORRELATION': 0.6965923314128772}, 'times': {'contamination': 0.0002143383026123047, 'optimization': 5.975560188293457, 'imputation': 0.013432025909423828, 'log_imputation': -1.8718584791459945}}, '0.4': {'scores': {'RMSE': 0.6868836297408376, 'MAE': 0.5093608359137556, 'MI': 0.2868485602164113, 'CORRELATION': 0.6240763887663399}, 'times': {'contamination': 0.0005633831024169922, 'optimization': 5.975560188293457, 'imputation': 0.039768218994140625, 'log_imputation': -1.4004638583058664}}, '0.6': {'scores': {'RMSE': 0.7785967363211405, 'MAE': 0.6158636946887723, 'MI': 0.19729389232186453, 'CORRELATION': 0.5576154866890136}, 'times': {'contamination': 0.001161813735961914, 'optimization': 5.975560188293457, 'imputation': 0.0798337459564209, 'log_imputation': -1.0978134922993485}}, '0.7': {'scores': {'RMSE': 0.867427846592856, 'MAE': 0.6717590115075687, 'MI': 0.1554022092659651, 'CORRELATION': 0.5020021909165999}, 'times': {'contamination': 0.0016968250274658203, 'optimization': 5.975560188293457, 'imputation': 0.1084587574005127, 'log_imputation': -0.9647353755339024}}}}, 'interpolation': {'ray_tune': {'0.05': {'scores': {'RMSE': 0.652962872644497, 'MAE': 0.5073890992493721, 'MI': 0.8457271995908064, 'CORRELATION': 0.8055318132299937}, 'times': {'contamination': 8.559226989746094e-05, 'optimization': 5.141337633132935, 'imputation': 0.0051326751708984375, 'log_imputation': -2.289656219851888}}, '0.1': {'scores': {'RMSE': 1.0026771443357805, 'MAE': 0.8585128588487265, 'MI': 0.7175551546841298, 'CORRELATION': 0.2953791171260645}, 'times': {'contamination': 0.00017213821411132812, 'optimization': 5.141337633132935, 'imputation': 0.005180835723876953, 'log_imputation': -2.2856001782870616}}, '0.2': {'scores': {'RMSE': 0.8233555140431951, 'MAE': 0.6703672843514312, 'MI': 0.13551988197466275, 'CORRELATION': 0.015002239969896275}, 'times': {'contamination': 0.00030040740966796875, 'optimization': 5.141337633132935, 'imputation': 0.005160808563232422, 'log_imputation': -2.287282250496757}}, '0.4': {'scores': {'RMSE': 0.9363419996773169, 'MAE': 0.7074318048367104, 'MI': 0.08116508553549509, 'CORRELATION': -0.08485974486524711}, 'times': {'contamination': 0.0009136199951171875, 'optimization': 5.141337633132935, 'imputation': 0.004884481430053711, 'log_imputation': -2.3111815371695186}}, '0.6': {'scores': {'RMSE': 0.8950363345080617, 'MAE': 0.6884297374643212, 'MI': 0.08082734535733935, 'CORRELATION': 0.057185769477410595}, 'times': {'contamination': 0.0019223690032958984, 'optimization': 5.141337633132935, 'imputation': 0.0045621395111083984, 'log_imputation': -2.340831438047068}}, '0.7': {'scores': {'RMSE': 0.9120956983333071, 'MAE': 0.7040561838341391, 'MI': 0.09963198754695206, 'CORRELATION': 0.2045739832314467}, 'times': {'contamination': 0.002409696578979492, 'optimization': 5.141337633132935, 'imputation': 0.003817319869995117, 'log_imputation': -2.4182414470843363}}}}, 'iter_svd': {'ray_tune': {'0.05': {'scores': {'RMSE': 0.9678965095170196, 'MAE': 0.7832040083975756, 'MI': 0.6701866174566358, 'CORRELATION': 0.2906340418705714}, 'times': {'contamination': 0.00011491775512695312, 'optimization': 6.1171875, 'imputation': 0.16927814483642578, 'log_imputation': -0.7713991091659277}}, '0.1': {'scores': {'RMSE': 1.206641825424519, 'MAE': 0.9957142418212448, 'MI': 0.25957158894434323, 'CORRELATION': 0.3379497812910825}, 'times': {'contamination': 0.0002319812774658203, 'optimization': 6.1171875, 'imputation': 0.025690555572509766, 'log_imputation': -1.5902265037731111}}, '0.2': {'scores': {'RMSE': 2.744919655781878, 'MAE': 1.0715001061469325, 'MI': 0.09892723156881575, 'CORRELATION': 0.19989476403758802}, 'times': {'contamination': 0.00040030479431152344, 'optimization': 6.1171875, 'imputation': 0.20974421501159668, 'log_imputation': -0.6783100086789446}}, '0.4': {'scores': {'RMSE': 2.325212272472014, 'MAE': 1.0008159007710338, 'MI': 0.039044612581955955, 'CORRELATION': 0.18525435207618218}, 'times': {'contamination': 0.001310586929321289, 'optimization': 6.1171875, 'imputation': 0.12171530723571777, 'log_imputation': -0.9146548003240639}}, '0.6': {'scores': {'RMSE': 1.5405789466020037, 'MAE': 0.8730700982169517, 'MI': 0.02272278491667953, 'CORRELATION': 0.13522799408559083}, 'times': {'contamination': 0.0025451183319091797, 'optimization': 6.1171875, 'imputation': 0.11439800262451172, 'log_imputation': -0.9415815582066798}}, '0.7': {'scores': {'RMSE': 1.841900634203058, 'MAE': 1.0796597078220702, 'MI': 0.02557622581974515, 'CORRELATION': 0.16934790654103044}, 'times': {'contamination': 0.0034818649291992188, 'optimization': 6.1171875, 'imputation': 0.13515305519104004, 'log_imputation': -0.8691741324468487}}}}, 'grouse': {'ray_tune': {'0.05': {'scores': {'RMSE': 0.7612079759584908, 'MAE': 0.6174023101930106, 'MI': 0.9720614292082763, 'CORRELATION': 0.5230250494004521}, 'times': {'contamination': 0.0002720355987548828, 'optimization': 5.722500801086426, 'imputation': 0.04196357727050781, 'log_imputation': -1.3771274965838058}}, '0.1': {'scores': {'RMSE': 0.7161433320631904, 'MAE': 0.6159111612486882, 'MI': 0.6397891170137576, 'CORRELATION': 0.7446871990437298}, 'times': {'contamination': 0.00019860267639160156, 'optimization': 5.722500801086426, 'imputation': 0.03328585624694824, 'log_imputation': -1.4777402667567205}}, '0.2': {'scores': {'RMSE': 0.6898292077596729, 'MAE': 0.5578803290483622, 'MI': 0.2578762805889524, 'CORRELATION': 0.5664833343935345}, 'times': {'contamination': 0.00022554397583007812, 'optimization': 5.722500801086426, 'imputation': 0.0313875675201416, 'log_imputation': -1.5032423400347081}}, '0.4': {'scores': {'RMSE': 2.1034364753786474, 'MAE': 1.3168644171392099, 'MI': 0.08186758416407369, 'CORRELATION': -0.11621144175246101}, 'times': {'contamination': 0.0006256103515625, 'optimization': 5.722500801086426, 'imputation': 0.030426025390625, 'log_imputation': -1.5167547766480622}}, '0.6': {'scores': {'RMSE': 2.3833534619751133, 'MAE': 1.5821816756647928, 'MI': 0.054626775241568545, 'CORRELATION': 0.015738449816948538}, 'times': {'contamination': 0.0012514591217041016, 'optimization': 5.722500801086426, 'imputation': 0.028280258178710938, 'log_imputation': -1.5485166300562665}}, '0.7': {'scores': {'RMSE': 7.180320793620952, 'MAE': 4.468603088484079, 'MI': 0.04077789644280901, 'CORRELATION': 0.06730823975418755}, 'times': {'contamination': 0.0017271041870117188, 'optimization': 5.722500801086426, 'imputation': 0.02826690673828125, 'log_imputation': -1.5487217139723333}}}}, 'dynammo': {'ray_tune': {'0.05': {'scores': {'RMSE': 0.7151415190942114, 'MAE': 0.4970782244594254, 'MI': 1.000759224589441, 'CORRELATION': 0.6184557637516255}, 'times': {'contamination': 9.775161743164062e-05, 'optimization': 7.155381441116333, 'imputation': 0.37074732780456543, 'log_imputation': -0.4309219705056871}}, '0.1': {'scores': {'RMSE': 0.596699604024305, 'MAE': 0.47938493632400186, 'MI': 0.775707195092484, 'CORRELATION': 0.8215645013506228}, 'times': {'contamination': 0.00023412704467773438, 'optimization': 7.155381441116333, 'imputation': 0.28595781326293945, 'log_imputation': -0.5436980326699488}}, '0.2': {'scores': {'RMSE': 0.5449085417487771, 'MAE': 0.43145124521055284, 'MI': 0.4427805840998743, 'CORRELATION': 0.7430502246596334}, 'times': {'contamination': 0.0002410411834716797, 'optimization': 7.155381441116333, 'imputation': 0.26209354400634766, 'log_imputation': -0.5815436766381012}}, '0.4': {'scores': {'RMSE': 0.6779705022363695, 'MAE': 0.5174517186640625, 'MI': 0.2637670732890106, 'CORRELATION': 0.5964668677202103}, 'times': {'contamination': 0.0006296634674072266, 'optimization': 7.155381441116333, 'imputation': 0.25553178787231445, 'log_imputation': -0.5925550664145126}}, '0.6': {'scores': {'RMSE': 0.7411789471267709, 'MAE': 0.5759604675111509, 'MI': 0.1463028452878696, 'CORRELATION': 0.4736194559909744}, 'times': {'contamination': 0.0011439323425292969, 'optimization': 7.155381441116333, 'imputation': 0.24941730499267578, 'log_imputation': -0.6030734177295504}}, '0.7': {'scores': {'RMSE': 0.793531390474089, 'MAE': 0.6252896196336124, 'MI': 0.12414974056261635, 'CORRELATION': 0.42841122847547475}, 'times': {'contamination': 0.001678466796875, 'optimization': 7.155381441116333, 'imputation': 0.2493579387664795, 'log_imputation': -0.6031768006656235}}}}, 'rosl': {'ray_tune': {'0.05': {'scores': {'RMSE': 1.0499537991118213, 'MAE': 0.8595954149037424, 'MI': 1.0993381984756705, 'CORRELATION': 0.6146787951828591}, 'times': {'contamination': 8.320808410644531e-05, 'optimization': 8.010011911392212, 'imputation': 0.6821448802947998, 'log_imputation': -0.16612337603230268}}, '0.1': {'scores': {'RMSE': 0.8867665835064245, 'MAE': 0.7010242781890926, 'MI': 0.5907204950909528, 'CORRELATION': 0.5334857453342065}, 'times': {'contamination': 0.0007736682891845703, 'optimization': 8.010011911392212, 'imputation': 0.8041999340057373, 'log_imputation': -0.09463596687218417}}, '0.2': {'scores': {'RMSE': 0.6880103343296596, 'MAE': 0.5541578539667452, 'MI': 0.24039836995684236, 'CORRELATION': 0.5427450775696447}, 'times': {'contamination': 0.00044655799865722656, 'optimization': 8.010011911392212, 'imputation': 0.9774386882781982, 'log_imputation': -0.00991047503446148}}, '0.4': {'scores': {'RMSE': 0.8651150824896394, 'MAE': 0.6877854522472314, 'MI': 0.1690613590574013, 'CORRELATION': 0.5410193369282997}, 'times': {'contamination': 0.001178741455078125, 'optimization': 8.010011911392212, 'imputation': 1.1973018646240234, 'log_imputation': 0.07820365885488725}}, '0.6': {'scores': {'RMSE': 0.9166362987192727, 'MAE': 0.721692537549043, 'MI': 0.02863175412827265, 'CORRELATION': 0.17277873288296303}, 'times': {'contamination': 0.002458333969116211, 'optimization': 8.010011911392212, 'imputation': 0.9381327629089355, 'log_imputation': -0.027735696675609416}}, '0.7': {'scores': {'RMSE': 0.906714486614649, 'MAE': 0.7137640362967337, 'MI': 0.018810170348030363, 'CORRELATION': 0.13788600397722242}, 'times': {'contamination': 0.003499269485473633, 'optimization': 8.010011911392212, 'imputation': 0.9922640323638916, 'log_imputation': -0.0033727506872492066}}}}, 'soft_imp': {'ray_tune': {'0.05': {'scores': {'RMSE': 2.0339216249617187, 'MAE': 1.2856996084517671, 'MI': 0.5586713713860293, 'CORRELATION': 0.19929770644664235}, 'times': {'contamination': 0.0002562999725341797, 'optimization': 6.165367603302002, 'imputation': 0.22596025466918945, 'log_imputation': -0.6459679444625233}}, '0.1': {'scores': {'RMSE': 2.996560504376057, 'MAE': 1.4890970543941768, 'MI': 0.10872128825197942, 'CORRELATION': -0.016649529237395322}, 'times': {'contamination': 0.0008714199066162109, 'optimization': 6.165367603302002, 'imputation': 0.24814844131469727, 'log_imputation': -0.6052884483753903}}, '0.2': {'scores': {'RMSE': 1.674129766854418, 'MAE': 0.8151640130294245, 'MI': 0.07665032967200101, 'CORRELATION': 0.12879732925631815}, 'times': {'contamination': 0.0010998249053955078, 'optimization': 6.165367603302002, 'imputation': 0.31171655654907227, 'log_imputation': -0.5062401299434305}}, '0.4': {'scores': {'RMSE': 1.4601220841860667, 'MAE': 0.8047931166368179, 'MI': 0.03296470473019845, 'CORRELATION': 0.13220172740281755}, 'times': {'contamination': 0.001886606216430664, 'optimization': 6.165367603302002, 'imputation': 0.44722557067871094, 'log_imputation': -0.34947337308411147}}, '0.6': {'scores': {'RMSE': 1.1510735383091752, 'MAE': 0.8067332887552809, 'MI': 0.025369317779971253, 'CORRELATION': 0.11787398625935817}, 'times': {'contamination': 0.0030333995819091797, 'optimization': 6.165367603302002, 'imputation': 0.44750356674194336, 'log_imputation': -0.3492034988728261}}, '0.7': {'scores': {'RMSE': 1.119056736039775, 'MAE': 0.8055779569701397, 'MI': 0.011612902407302311, 'CORRELATION': 0.11214948799086549}, 'times': {'contamination': 0.003826141357421875, 'optimization': 6.165367603302002, 'imputation': 0.44806480407714844, 'log_imputation': -0.34865916899792637}}}}, 'spirit': {'ray_tune': {'0.05': {'scores': {'RMSE': 100.0, 'MAE': 100.0, 'MI': 0.0, 'CORRELATION': 0.0}, 'times': {'contamination': 0.0008153915405273438, 'optimization': 14.221216917037964, 'imputation': 0.02103590965270996, 'log_imputation': -1.6770387031092828}}, '0.1': {'scores': {'RMSE': 100.0, 'MAE': 100.0, 'MI': 0.0, 'CORRELATION': 0.0}, 'times': {'contamination': 0.00013113021850585938, 'optimization': 14.221216917037964, 'imputation': 0.020754098892211914, 'log_imputation': -1.6828961182062343}}, '0.2': {'scores': {'RMSE': 100.0, 'MAE': 100.0, 'MI': 0.0, 'CORRELATION': 0.0}, 'times': {'contamination': 0.00020623207092285156, 'optimization': 14.221216917037964, 'imputation': 0.020871877670288086, 'log_imputation': -1.6804384792927793}}, '0.4': {'scores': {'RMSE': 100.0, 'MAE': 100.0, 'MI': 0.0, 'CORRELATION': 0.0}, 'times': {'contamination': 0.000583648681640625, 'optimization': 14.221216917037964, 'imputation': 0.020839691162109375, 'log_imputation': -1.681108721437079}}, '0.6': {'scores': {'RMSE': 100.0, 'MAE': 100.0, 'MI': 0.0, 'CORRELATION': 0.0}, 'times': {'contamination': 0.0011415481567382812, 'optimization': 14.221216917037964, 'imputation': 0.022094011306762695, 'log_imputation': -1.655725428074281}}, '0.7': {'scores': {'RMSE': 100.0, 'MAE': 100.0, 'MI': 0.0, 'CORRELATION': 0.0}, 'times': {'contamination': 0.0016748905181884766, 'optimization': 14.221216917037964, 'imputation': 0.020914793014526367, 'log_imputation': -1.6795464291036162}}}}, 'svt': {'ray_tune': {'0.05': {'scores': {'RMSE': 0.7117792258361312, 'MAE': 0.5168498358882081, 'MI': 0.9483793484273644, 'CORRELATION': 0.6542386230995083}, 'times': {'contamination': 9.989738464355469e-05, 'optimization': 45.67361259460449, 'imputation': 72.4662275314331, 'log_imputation': 1.8601356532745885}}, '0.1': {'scores': {'RMSE': 0.6394665297027734, 'MAE': 0.5211957976023045, 'MI': 0.8056798218248341, 'CORRELATION': 0.8508068326214364}, 'times': {'contamination': 0.0003097057342529297, 'optimization': 45.67361259460449, 'imputation': 75.2989776134491, 'log_imputation': 1.8767890795227222}}, '0.2': {'scores': {'RMSE': 0.5458488691493897, 'MAE': 0.4403496209659646, 'MI': 0.47611060408121514, 'CORRELATION': 0.7634239025059351}, 'times': {'contamination': 0.00045990943908691406, 'optimization': 45.67361259460449, 'imputation': 30.695201635360718, 'log_imputation': 1.4870704905860637}}, '0.4': {'scores': {'RMSE': 0.663135828087241, 'MAE': 0.4976907262970949, 'MI': 0.3313924262852707, 'CORRELATION': 0.6726174187230454}, 'times': {'contamination': 0.0017871856689453125, 'optimization': 45.67361259460449, 'imputation': 16.311678886413574, 'log_imputation': 1.2124986632831212}}, '0.6': {'scores': {'RMSE': 0.7020778058013225, 'MAE': 0.539085026607538, 'MI': 0.20478746906130402, 'CORRELATION': 0.5760668454355408}, 'times': {'contamination': 0.002444744110107422, 'optimization': 45.67361259460449, 'imputation': 93.80211400985718, 'log_imputation': 1.972212626145269}}, '0.7': {'scores': {'RMSE': 0.7658534267181207, 'MAE': 0.6009953789367053, 'MI': 0.17185882455524978, 'CORRELATION': 0.5331757977769946}, 'times': {'contamination': 0.0033347606658935547, 'optimization': 45.67361259460449, 'imputation': 72.77504920959473, 'log_imputation': 1.861982507775544}}}}, 'tkcm': {'ray_tune': {'0.05': {'scores': {'RMSE': 100.0, 'MAE': 100.0, 'MI': 0.0, 'CORRELATION': 0.0}, 'times': {'contamination': 0.0007822513580322266, 'optimization': 5.649405241012573, 'imputation': 0.0011343955993652344, 'log_imputation': -2.9452354669063388}}, '0.1': {'scores': {'RMSE': 100.0, 'MAE': 100.0, 'MI': 0.0, 'CORRELATION': 0.0}, 'times': {'contamination': 0.0006322860717773438, 'optimization': 5.649405241012573, 'imputation': 0.0011126995086669922, 'log_imputation': -2.9536221037224304}}, '0.2': {'scores': {'RMSE': 100.0, 'MAE': 100.0, 'MI': 0.0, 'CORRELATION': 0.0}, 'times': {'contamination': 0.0009708404541015625, 'optimization': 5.649405241012573, 'imputation': 0.0010807514190673828, 'log_imputation': -2.9662741855488983}}, '0.4': {'scores': {'RMSE': 100.0, 'MAE': 100.0, 'MI': 0.0, 'CORRELATION': 0.0}, 'times': {'contamination': 0.0028562545776367188, 'optimization': 5.649405241012573, 'imputation': 0.0011017322540283203, 'log_imputation': -2.957923936088881}}, '0.6': {'scores': {'RMSE': 100.0, 'MAE': 100.0, 'MI': 0.0, 'CORRELATION': 0.0}, 'times': {'contamination': 0.0057315826416015625, 'optimization': 5.649405241012573, 'imputation': 0.0011334419250488281, 'log_imputation': -2.945600727215425}}, '0.7': {'scores': {'RMSE': 100.0, 'MAE': 100.0, 'MI': 0.0, 'CORRELATION': 0.0}, 'times': {'contamination': 0.006317853927612305, 'optimization': 5.649405241012573, 'imputation': 0.0009458065032958984, 'log_imputation': -3.0241977041334356}}}}, 'brits': {'ray_tune': {'0.05': {'scores': {'RMSE': 1.3419411368774041, 'MAE': 1.1638434066271077, 'MI': 0.8951096093875868, 'CORRELATION': -0.5585099483296528}, 'times': {'contamination': 0.0003306865692138672, 'optimization': 228.5102288722992, 'imputation': 95.61461043357849, 'log_imputation': 1.980524259910658}}, '0.1': {'scores': {'RMSE': 1.2073040959274337, 'MAE': 0.9690312583388463, 'MI': 0.32167770615560765, 'CORRELATION': 0.10410551896912013}, 'times': {'contamination': 0.0002052783966064453, 'optimization': 228.5102288722992, 'imputation': 98.19476699829102, 'log_imputation': 1.992088343954746}}, '0.2': {'scores': {'RMSE': 1.0096095214334058, 'MAE': 0.8017626333243341, 'MI': 0.1545999150691882, 'CORRELATION': 0.04321071858521189}, 'times': {'contamination': 0.00027251243591308594, 'optimization': 228.5102288722992, 'imputation': 91.76230263710022, 'log_imputation': 1.9626643029973887}}, '0.4': {'scores': {'RMSE': 1.1021171834537435, 'MAE': 0.8109044008529219, 'MI': 0.06990935579232271, 'CORRELATION': 0.027418538197488553}, 'times': {'contamination': 0.0007600784301757812, 'optimization': 228.5102288722992, 'imputation': 92.40596151351929, 'log_imputation': 1.9656999903641312}}, '0.6': {'scores': {'RMSE': 0.9644643680536452, 'MAE': 0.7465535671618042, 'MI': 0.034792659544221505, 'CORRELATION': 0.17675436980090672}, 'times': {'contamination': 0.0012924671173095703, 'optimization': 228.5102288722992, 'imputation': 92.13396763801575, 'log_imputation': 1.9644197739326628}}, '0.7': {'scores': {'RMSE': 0.9815275917177589, 'MAE': 0.751919619563092, 'MI': 0.017952595001480262, 'CORRELATION': -0.05597093175861781}, 'times': {'contamination': 0.0018129348754882812, 'optimization': 228.5102288722992, 'imputation': 96.6255190372467, 'log_imputation': 1.9850918398051054}}}}, 'deep_mvi': {'ray_tune': {'0.05': {'scores': {'RMSE': 1.034412355455737, 'MAE': 0.8490322354281984, 'MI': 0.7750911481750873, 'CORRELATION': -0.0026999728861952163}, 'times': {'contamination': 0.00013065338134765625, 'optimization': 2490.3838233947754, 'imputation': 172.29269313812256, 'log_imputation': 2.2362668595891644}}, '0.1': {'scores': {'RMSE': 1.0247023047728139, 'MAE': 0.8590129463082453, 'MI': 0.26134381836602716, 'CORRELATION': 0.3645815707005265}, 'times': {'contamination': 0.00035500526428222656, 'optimization': 2490.3838233947754, 'imputation': 172.1408417224884, 'log_imputation': 2.2358839222182225}}, '0.2': {'scores': {'RMSE': 0.9110420539797002, 'MAE': 0.745272313719031, 'MI': 0.10485836951846873, 'CORRELATION': 0.0054087048337242045}, 'times': {'contamination': 0.00034427642822265625, 'optimization': 2490.3838233947754, 'imputation': 171.6305854320526, 'log_imputation': 2.2345946838666526}}, '0.4': {'scores': {'RMSE': 0.8460413026141097, 'MAE': 0.653976961624171, 'MI': 0.07200416729866779, 'CORRELATION': 0.24419152512191655}, 'times': {'contamination': 0.0006928443908691406, 'optimization': 2490.3838233947754, 'imputation': 52.72139310836792, 'log_imputation': 1.7219868775207656}}, '0.6': {'scores': {'RMSE': 0.9333885896416907, 'MAE': 0.7180889165842521, 'MI': 0.05628639258400244, 'CORRELATION': 0.14594274067119267}, 'times': {'contamination': 0.001840353012084961, 'optimization': 2490.3838233947754, 'imputation': 52.330716133117676, 'log_imputation': 1.7187566779946477}}, '0.7': {'scores': {'RMSE': 0.9662179231561216, 'MAE': 0.744413195682356, 'MI': 0.0587647716462166, 'CORRELATION': 0.14330531126837864}, 'times': {'contamination': 0.0018398761749267578, 'optimization': 2490.3838233947754, 'imputation': 50.53941249847412, 'log_imputation': 1.7036301891043986}}}}, 'mpin': {'ray_tune': {'0.05': {'scores': {'RMSE': 0.9925272461717889, 'MAE': 0.7461083558118482, 'MI': 0.5348692435514593, 'CORRELATION': -0.007667736330282676}, 'times': {'contamination': 0.00036644935607910156, 'optimization': 7.812181711196899, 'imputation': 0.5112149715423584, 'log_imputation': -0.29139643582966285}}, '0.1': {'scores': {'RMSE': 1.1680441592588726, 'MAE': 0.9781717371399381, 'MI': 0.11371116243625422, 'CORRELATION': -0.016646509270680725}, 'times': {'contamination': 0.0002243518829345703, 'optimization': 7.812181711196899, 'imputation': 0.4404561519622803, 'log_imputation': -0.35609731973472436}}, '0.2': {'scores': {'RMSE': 0.9408439748172953, 'MAE': 0.7285930425690125, 'MI': 0.04098822429350485, 'CORRELATION': 0.04181051886506206}, 'times': {'contamination': 0.00023174285888671875, 'optimization': 7.812181711196899, 'imputation': 0.4183802604675293, 'log_imputation': -0.37842881403623974}}, '0.4': {'scores': {'RMSE': 1.0052976858981615, 'MAE': 0.786965308522399, 'MI': 0.01344178556294245, 'CORRELATION': 0.024681873992244058}, 'times': {'contamination': 0.0006501674652099609, 'optimization': 7.812181711196899, 'imputation': 0.40064024925231934, 'log_imputation': -0.3972454226158039}}, '0.6': {'scores': {'RMSE': 0.9548251319263584, 'MAE': 0.7511442207051872, 'MI': 0.00930135623468233, 'CORRELATION': -0.01575182086616044}, 'times': {'contamination': 0.0012600421905517578, 'optimization': 7.812181711196899, 'imputation': 0.4070866107940674, 'log_imputation': -0.39031318146702354}}, '0.7': {'scores': {'RMSE': 0.9446318662376141, 'MAE': 0.744122264330064, 'MI': 0.007539213289227095, 'CORRELATION': -0.018240287271113223}, 'times': {'contamination': 0.0017695426940917969, 'optimization': 7.812181711196899, 'imputation': 0.39906764030456543, 'log_imputation': -0.3989534869665162}}}}, 'pristi': {'ray_tune': {'0.05': {'scores': {'RMSE': 55.960116992995445, 'MAE': 46.4096472319626, 'MI': 0.42064699601068534, 'CORRELATION': 0.04507016986244122}, 'times': {'contamination': 0.00011730194091796875, 'optimization': 76.60794115066528, 'imputation': 29.775820016860962, 'log_imputation': 1.47386373065503}}, '0.1': {'scores': {'RMSE': 57.538277532977055, 'MAE': 46.82173605706819, 'MI': 0.08824583086697571, 'CORRELATION': 0.0434011572132245}, 'times': {'contamination': 0.00023126602172851562, 'optimization': 76.60794115066528, 'imputation': 30.05645751953125, 'log_imputation': 1.4779377929381963}}, '0.2': {'scores': {'RMSE': 60.808746540345666, 'MAE': 48.85156592826631, 'MI': 0.03497257877394178, 'CORRELATION': -0.028840216845075817}, 'times': {'contamination': 0.00027680397033691406, 'optimization': 76.60794115066528, 'imputation': 30.277715921401978, 'log_imputation': 1.4811231099249287}}, '0.4': {'scores': {'RMSE': 61.76763817066328, 'MAE': 49.5988990990065, 'MI': 0.007898084001455433, 'CORRELATION': 0.0030498998829152878}, 'times': {'contamination': 0.0006997585296630859, 'optimization': 76.60794115066528, 'imputation': 28.5592999458313, 'log_imputation': 1.4557475576773615}}, '0.6': {'scores': {'RMSE': 61.98612564576895, 'MAE': 49.755647879167334, 'MI': 0.004322458488836388, 'CORRELATION': 0.01233963956767782}, 'times': {'contamination': 0.0013575553894042969, 'optimization': 76.60794115066528, 'imputation': 32.24260687828064, 'log_imputation': 1.5084301481170062}}, '0.7': {'scores': {'RMSE': 62.379540899173236, 'MAE': 50.156074239740796, 'MI': 0.0031404425022982423, 'CORRELATION': 0.009111022593762223}, 'times': {'contamination': 0.0018019676208496094, 'optimization': 76.60794115066528, 'imputation': 35.09843707084656, 'log_imputation': 1.545287777815695}}}}}}} - Benchmark().generate_plots(runs_plots_scores=test_plots, ticks=range, subplot=False, y_size=max(4, int(len(algorithms)*0.28)), save_dir=save_dir) - Benchmark().generate_plots(runs_plots_scores=test_plots, ticks=range, subplot=True, y_size=max(4, int(len(algorithms)*0.28)),save_dir=save_dir) - Benchmark().generate_reports_txt(runs_plots_scores=test_plots, save_dir=save_dir, dataset="chlorine", run=0) - Benchmark().generate_reports_excel(runs_plots_scores=test_plots, save_dir=save_dir, dataset="chlorine", run=0) - - Benchmark().generate_heatmap(np.array([[1.12395851, 0.6470281, 0.67607129, 0.52176976, 0.52304288, 0.36444636, 0.89733918, 0.35040938, 0.35273418, 0.96177331, 0.53492822, 1.20178291, 54.63150047, 0.89519623, 0.36984999, 100., 0.91834629, 0.4267107, 100.], [1.10116065, 1.06258333, 0.95263409, 0.67823842, 2.30571521, 0.76078378, 0.87041159, 1.77119164, 0.78415296, 1.03505842, 1.00102834, 1.36935127, 60.07340763, 0.88553276, 1.73914404, 100., 4.04583674, 0.67136028, 100.]]), - np.array(['brits', 'cdrec', 'deep_mvi', 'dynammo', 'grouse', 'iim', 'interpolation', 'iter_svd', 'knn', 'mean', 'mpin', 'mrnn', 'pristi', 'rosl', 'soft_imp', 'spirit', 'stmvl', 'svt', 'tkcm']), - np.array(['eegalcohol', 'eegreading']), save_dir=save_dir, display=False) +# launch the evaluation +list_results, sum_scores = Benchmark().eval(algorithms=algorithms, datasets=datasets, patterns=patterns, x_axis=range, optimizers=optimizers, save_dir=save_dir, runs=nbr_run) \ No newline at end of file diff --git a/build/lib/imputegap/runner_contamination.py b/build/lib/imputegap/runner_contamination.py index 2da2b2c2..cd9ec977 100644 --- a/build/lib/imputegap/runner_contamination.py +++ b/build/lib/imputegap/runner_contamination.py @@ -1,11 +1,11 @@ from imputegap.recovery.manager import TimeSeries from imputegap.tools import utils -# initialize the TimeSeries() object +# initialize the time series object ts = TimeSeries() print(f"Missingness patterns : {ts.patterns}") -# load and normalize the timeseries +# load and normalize the dataset ts.load_series(utils.search_path("eeg-alcohol")) ts.normalize(normalizer="z_score") diff --git a/build/lib/imputegap/runner_downstream.py b/build/lib/imputegap/runner_downstream.py index 4aeb6c7d..e7cdecfb 100644 --- a/build/lib/imputegap/runner_downstream.py +++ b/build/lib/imputegap/runner_downstream.py @@ -2,11 +2,11 @@ from imputegap.recovery.manager import TimeSeries from imputegap.tools import utils -# initialize the TimeSeries() object +# initialize the time series object ts = TimeSeries() print(f"ImputeGAP downstream models for forcasting : {ts.downstream_models}") -# load and normalize the timeseries +# load and normalize the dataset ts.load_series(utils.search_path("forecast-economy")) ts.normalize(normalizer="min_max") @@ -17,7 +17,7 @@ imputer = Imputation.MatrixCompletion.CDRec(ts_m) imputer.impute() -# compute print the downstream results -downstream_config = {"task": "forecast", "model": "hw-add"} +# compute and print the downstream results +downstream_config = {"task": "forecast", "model": "hw-add", "comparator": "ZeroImpute"} imputer.score(ts.data, imputer.recov_data, downstream=downstream_config) -ts.print_results(imputer.downstream_metrics, algorithm=imputer.algorithm) \ No newline at end of file +ts.print_results(imputer.downstream_metrics, algorithm="hw-add") \ No newline at end of file diff --git a/build/lib/imputegap/runner_explainer.py b/build/lib/imputegap/runner_explainer.py index 3ba45d1d..e7d67bab 100644 --- a/build/lib/imputegap/runner_explainer.py +++ b/build/lib/imputegap/runner_explainer.py @@ -2,10 +2,10 @@ from imputegap.recovery.explainer import Explainer from imputegap.tools import utils -# initialize the TimeSeries() object +# initialize the time series object ts = TimeSeries() -# load and normalize the timeseries +# load and normalize the dataset ts.load_series(utils.search_path("eeg-alcohol")) ts.normalize(normalizer="z_score") diff --git a/build/lib/imputegap/runner_imputation.py b/build/lib/imputegap/runner_imputation.py index f0539772..db2ad428 100644 --- a/build/lib/imputegap/runner_imputation.py +++ b/build/lib/imputegap/runner_imputation.py @@ -2,11 +2,11 @@ from imputegap.recovery.manager import TimeSeries from imputegap.tools import utils -# initialize the TimeSeries() object +# initialize the time series object ts = TimeSeries() print(f"Imputation algorithms : {ts.algorithms}") -# load and normalize the timeseries +# load and normalize the dataset ts.load_series(utils.search_path("eeg-alcohol")) ts.normalize(normalizer="z_score") @@ -15,11 +15,11 @@ # impute the contaminated series imputer = Imputation.MatrixCompletion.CDRec(ts_m) -imputer.impute() # could also use a dictionary for params: params={"rank": 5, "epsilon": 0.01, "iterations": 100} +imputer.impute() # compute and print the imputation metrics imputer.score(ts.data, imputer.recov_data) ts.print_results(imputer.metrics) # plot the recovered time series -ts.plot(input_data=ts.data, incomp_data=ts_m, recov_data=imputer.recov_data, nbr_series=9, subplot=True, save_path="./imputegap_assets") \ No newline at end of file +ts.plot(input_data=ts.data, incomp_data=ts_m, recov_data=imputer.recov_data, nbr_series=9, subplot=True, algorithm=imputer.algorithm, save_path="./imputegap_assets") \ No newline at end of file diff --git a/build/lib/imputegap/runner_loading.py b/build/lib/imputegap/runner_loading.py index 22c24023..894aad36 100644 --- a/build/lib/imputegap/runner_loading.py +++ b/build/lib/imputegap/runner_loading.py @@ -1,16 +1,14 @@ from imputegap.recovery.manager import TimeSeries from imputegap.tools import utils -# initialize the TimeSeries() +# initialize the time series object ts = TimeSeries() print(f"ImputeGAP datasets : {ts.datasets}") - -# load the timeseries from file or from the code +# load and normalize the dataset ts.load_series(utils.search_path("eeg-alcohol")) +ts.normalize(normalizer="z_score") -# plot a subset of time series -ts.plot(input_data=ts.data, save_path="./imputegap_assets") - -# print a subset of time series -ts.print(nbr_series=9, nbr_val=20) +# plot and print a subset of time series +ts.plot(input_data=ts.data, nbr_series=9, nbr_val=100, save_path="./imputegap_assets") +ts.print(nbr_series=9, nbr_val=20) \ No newline at end of file diff --git a/build/lib/imputegap/runner_optimization.py b/build/lib/imputegap/runner_optimization.py index f0ccd167..47c16066 100644 --- a/build/lib/imputegap/runner_optimization.py +++ b/build/lib/imputegap/runner_optimization.py @@ -2,11 +2,10 @@ from imputegap.recovery.manager import TimeSeries from imputegap.tools import utils -# initialize the TimeSeries() object +# initialize the time series object ts = TimeSeries() -print(f"AutoML Optimizers : {ts.optimizers}") -# load and normalize the timeseries +# load and normalize the dataset ts.load_series(utils.search_path("eeg-alcohol")) ts.normalize(normalizer="z_score") @@ -17,12 +16,19 @@ # use Ray Tune to fine tune the imputation algorithm imputer.impute(user_def=False, params={"input_data": ts.data, "optimizer": "ray_tune"}) -# compute and print the imputation metrics +# compute the imputation metrics with optimized parameter values imputer.score(ts.data, imputer.recov_data) -ts.print_results(imputer.metrics) + +# compute the imputation metrics with default parameter values +imputer_def = Imputation.MatrixCompletion.CDRec(ts_m).impute() +imputer_def.score(ts.data, imputer_def.recov_data) + +# print the imputation metrics with default and optimized parameter values +ts.print_results(imputer_def.metrics, text="Imputation metrics with default parameter values") +ts.print_results(imputer.metrics, text="Imputation metrics with optimized parameter values") # plot the recovered time series ts.plot(input_data=ts.data, incomp_data=ts_m, recov_data=imputer.recov_data, nbr_series=9, subplot=True, save_path="./imputegap_assets", display=True) # save hyperparameters -utils.save_optimization(optimal_params=imputer.parameters, algorithm=imputer.algorithm, dataset="eeg-alcohol", optimizer="ray_tune") \ No newline at end of file +utils.save_optimization(optimal_params=imputer.parameters, algorithm=imputer.algorithm, dataset="eeg-alcohol", optimizer="ray_tune") diff --git a/build/lib/imputegap/tools/algorithm_parameters.py b/build/lib/imputegap/tools/algorithm_parameters.py index 5d8f3b1a..296d451a 100644 --- a/build/lib/imputegap/tools/algorithm_parameters.py +++ b/build/lib/imputegap/tools/algorithm_parameters.py @@ -61,7 +61,7 @@ 'cdrec': { "rank": tune.grid_search([i for i in range(2, 16, 1)]), "eps": tune.loguniform(1e-6, 1), - "iters": tune.grid_search([i * 100 for i in range(1, 3)]) + "iters": tune.grid_search([i * 50 for i in range(1, 4)]) }, "iim": { "learning_neighbors": tune.grid_search([i for i in range(1, 20)]) # Up to 100 learning neighbors @@ -157,6 +157,12 @@ "device": tune.choice(["cpu"]) # Allow switching between CPU and GPU }, + "knn_impute": { + "k": tune.grid_search([1, 12, 1]), + "weights": tune.choice(["uniform", "distance"]) + }, + + "knn": { "k": tune.grid_search([1, 12, 1]), "weights": tune.choice(["uniform", "distance"]) diff --git a/build/lib/imputegap/tools/utils.py b/build/lib/imputegap/tools/utils.py index 3bc09422..13bfab9b 100644 --- a/build/lib/imputegap/tools/utils.py +++ b/build/lib/imputegap/tools/utils.py @@ -2,9 +2,8 @@ import os import toml import importlib.resources -import numpy as __numpy_import; - - +import numpy as __numpy_import +import platform def config_impute_algorithm(incomp_data, algorithm): """ @@ -62,8 +61,8 @@ def config_impute_algorithm(incomp_data, algorithm): imputer = Imputation.DeepLearning.PRISTI(incomp_data) # 3rd generation - elif algorithm == "knn" or algorithm == "KNN": - imputer = Imputation.Statistics.KNN(incomp_data) + elif algorithm == "knn" or algorithm == "KNN" or algorithm == "knn_impute" or algorithm == "KNNImpute": + imputer = Imputation.Statistics.KNNImpute(incomp_data) elif algorithm == "interpolation" or algorithm == "Interpolation": imputer = Imputation.Statistics.Interpolation(incomp_data) elif algorithm == "mean_series" or algorithm == "MeanImputeBySeries": @@ -120,9 +119,9 @@ def config_contamination(ts, pattern, dataset_rate=0.4, series_rate=0.4, block_s """ if pattern == "mcar" or pattern == "missing_completely_at_random": incomp_data = ts.Contamination.mcar(input_data=ts.data, rate_dataset=dataset_rate, rate_series=series_rate, block_size=block_size, offset=offset, seed=seed, explainer=explainer) - elif pattern == "mp" or pattern == "missing_percentage": + elif pattern == "mp" or pattern == "missing_percentage" or pattern == "aligned": incomp_data = ts.Contamination.aligned(input_data=ts.data, rate_dataset=dataset_rate, rate_series=series_rate, offset=offset) - elif pattern == "ps" or pattern == "percentage_shift": + elif pattern == "ps" or pattern == "percentage_shift" or pattern == "scattered": incomp_data = ts.Contamination.scattered(input_data=ts.data, rate_dataset=dataset_rate, rate_series=series_rate, offset=offset, seed=seed) elif pattern == "disjoint": incomp_data = ts.Contamination.disjoint(input_data=ts.data, rate_series=dataset_rate, limit=1, offset=offset) @@ -364,7 +363,7 @@ def load_parameters(query: str = "default", algorithm: str = "cdrec", dataset: s with open(filepath, "r") as _: config = toml.load(filepath) - print("\n\t\t\t\t(SYS) Inner files loaded : ", filepath, "\n") + print("\n(SYS) Inner files loaded : ", filepath, "\n") if algorithm == "cdrec": truncation_rank = int(config[algorithm]['rank']) @@ -450,7 +449,7 @@ def load_parameters(query: str = "default", algorithm: str = "cdrec", dataset: s seed = int(config[algorithm]['seed']) device = str(config[algorithm]['device']) return (target_strategy, unconditional, seed, device) - elif algorithm == "knn": + elif algorithm == "knn" or algorithm == "knn_impute": k = int(config[algorithm]['k']) weights = str(config[algorithm]['weights']) return (k, weights) @@ -755,18 +754,25 @@ def load_share_lib(name="lib_cdrec", lib=True): ctypes.CDLL The loaded shared library object. """ + system = platform.system() + if system == "Windows": + ext = ".so" + elif system == "Darwin": + ext = ".dylib" # macOS uses .dylib for dynamic libraries + else: + ext = ".so" if lib: - lib_path = importlib.resources.files('imputegap.algorithms.lib').joinpath("./" + str(name)) + lib_path = importlib.resources.files('imputegap.algorithms.lib').joinpath("./" + str(name) + ext) else: - local_path_lin = './algorithms/lib/' + name + '.so' + local_path_lin = './algorithms/lib/' + name + ext if not os.path.exists(local_path_lin): - local_path_lin = './imputegap/algorithms/lib/' + name + '.so' + local_path_lin = './imputegap/algorithms/lib/' + name + ext lib_path = os.path.join(local_path_lin) - print("\t\t(SYS) lib loaded from:", lib_path) + print("\n(SYS) Wrapper files loaded for C++ : ", lib_path, "\n") return ctypes.CDLL(lib_path) @@ -895,7 +901,7 @@ def save_optimization(optimal_params, algorithm="cdrec", dataset="", optimizer=" "seed": 42, # Default seed "device": "cpu" # Default device } - elif algorithm == "knn": + elif algorithm == "knn" or algorithm == "knn_impute": params_to_save = { "k": int(optimal_params[0]), "weights": str(optimal_params[1]) @@ -988,9 +994,9 @@ def save_optimization(optimal_params, algorithm="cdrec", dataset="", optimizer=" try: with open(file_name, 'w') as file: toml.dump(params_to_save, file) - print(f"\n\t\t(SYS) Optimization parameters successfully saved to {file_name}") + print(f"\n(SYS) Optimization parameters successfully saved to {file_name}") except Exception as e: - print(f"\n\t\t(SYS) An error occurred while saving the file: {e}") + print(f"\n(SYS) An error occurred while saving the file: {e}") def list_of_algorithms(): @@ -1010,7 +1016,7 @@ def list_of_algorithms(): "XGBOOST", "MICE", "MissForest", - "KNN", + "KNNImpute", "Interpolation", "MinImpute", "MeanImpute", @@ -1031,9 +1037,9 @@ def list_of_algorithms(): def list_of_patterns(): return sorted([ - "missing_completely_at_random", - "missing_percentage", - "percentage_shift", + "mcar", + "aligned", + "scattered", "disjoint", "overlap", "gaussian", diff --git a/build/lib/imputegap/wrapper/AlgoCollection/Makefile b/build/lib/imputegap/wrapper/AlgoCollection/Makefile index 10938eea..3dfccf58 100644 --- a/build/lib/imputegap/wrapper/AlgoCollection/Makefile +++ b/build/lib/imputegap/wrapper/AlgoCollection/Makefile @@ -13,6 +13,7 @@ all: libAlgoCollection.so AlgoCollection.dll +# ================================================================================================================================== libAlgoCollection.so: g++ -O3 -D ARMA_DONT_USE_WRAPPER -fPIC -rdynamic -shared -o libAlgoCollection.so -Wall -Werror -Wextra -pedantic \ @@ -23,6 +24,7 @@ libAlgoCollection.so: Algebra/CentroidDecomposition.cpp Algebra/RSVD.cpp Stats/Correlation.cpp shared/SharedLibFunctions.cpp \ -lopenblas -larpack -lmlpack +# ================================================================================================================================== libSTMVL.so: g++ -O3 -D ARMA_DONT_USE_WRAPPER -fPIC -rdynamic -shared -o lib_stmvl.so -Wall -Werror -Wextra -pedantic \ @@ -30,18 +32,44 @@ libSTMVL.so: Algorithms/ST_MVL.cpp shared/SharedSTMVL.cpp \ -lopenblas -larpack -lmlpack +libSTMVL.dylib: + clang++ -dynamiclib -O3 -fPIC -std=c++17 -o lib_stmvl.dylib \ + -I/opt/homebrew/include \ + -L/opt/homebrew/lib -L/opt/homebrew/opt/openblas/lib \ + Algorithms/ST_MVL.cpp shared/SharedSTMVL.cpp \ + -larmadillo -lopenblas -larpack +# ================================================================================================================================== + libIterativeSVD.so: g++ -O3 -D ARMA_DONT_USE_WRAPPER -fPIC -rdynamic -shared -o lib_iterative_svd.so -Wall -Werror -Wextra -pedantic \ -Wconversion -Wsign-conversion -msse2 -msse3 -msse4 -msse4.1 -msse4.2 -fopenmp -std=gnu++14 \ Algebra/RSVD.cpp Algorithms/IterativeSVD.cpp shared/SharedLibIterativeSVD.cpp \ -lopenblas -larpack +libIterativeSVD.dylib: + clang++ -dynamiclib -O3 -fPIC -std=c++17 -o lib_iterative_svd.dylib \ + -I/opt/homebrew/include \ + -L/opt/homebrew/lib -L/opt/homebrew/opt/openblas/lib \ + Algebra/RSVD.cpp Algorithms/IterativeSVD.cpp shared/SharedLibIterativeSVD.cpp \ + -larmadillo -lopenblas -larpack + +# ================================================================================================================================== + libGROUSE.so: g++ -O3 -D ARMA_DONT_USE_WRAPPER -fPIC -rdynamic -shared -o lib_grouse.so -Wall -Werror -Wextra -pedantic \ -Wconversion -Wsign-conversion -msse2 -msse3 -msse4 -msse4.1 -msse4.2 -fopenmp -std=gnu++14 \ Algorithms/GROUSE.cpp shared/SharedLibGROUSE.cpp \ -lopenblas -larpack +libGROUSE.dylib: + clang++ -dynamiclib -O3 -fPIC -std=c++17 -o lib_grouse.dylib \ + -I/opt/homebrew/include \ + -L/opt/homebrew/lib -L/opt/homebrew/opt/openblas/lib \ + Algorithms/GROUSE.cpp shared/SharedLibGROUSE.cpp \ + -larmadillo -lopenblas -larpack + +# ================================================================================================================================== + libDynaMMo.so: g++ -O3 -D ARMA_DONT_USE_WRAPPER -fPIC -rdynamic -shared -o lib_dynammo.so -Wall -Werror -Wextra -pedantic \ @@ -49,48 +77,122 @@ libDynaMMo.so: Algebra/Auxiliary.cpp Algorithms/DynaMMo.cpp shared/SharedLibDynaMMo.cpp \ -lopenblas -larpack +libDynaMMo.dylib: + clang++ -dynamiclib -O3 -fPIC -std=c++17 -o lib_dynammo.dylib \ + -I/opt/homebrew/include \ + -L/opt/homebrew/lib -L/opt/homebrew/opt/openblas/lib \ + Algebra/Auxiliary.cpp Algorithms/DynaMMo.cpp shared/SharedLibDynaMMo.cpp \ + -larmadillo -lopenblas -larpack + +# ================================================================================================================================== + libNMF.so: g++ -O3 -D ARMA_DONT_USE_WRAPPER -fPIC -rdynamic -shared -o lib_rosl.so -Wall -Werror -Wextra -pedantic \ -Wconversion -Wsign-conversion -msse2 -msse3 -msse4 -msse4.1 -msse4.2 -fopenmp -I/usr/include/ensmallen -std=gnu++14 \ Algorithms/NMFMissingValueRecovery.cpp shared/SharedLibNMF.cpp \ -lopenblas -larpack +libNMF.dylib: + clang++ -dynamiclib -O3 -fPIC -std=c++17 -o lib_nmf.dylib \ + -I/opt/homebrew/include -I/opt/homebrew/include/ensmallen \ + -L/opt/homebrew/lib -L/opt/homebrew/opt/openblas/lib \ + Algorithms/NMFMissingValueRecovery.cpp shared/SharedLibNMF.cpp \ + -larmadillo -lopenblas -larpack + +# ================================================================================================================================== + libROSL.so: g++ -O3 -D ARMA_DONT_USE_WRAPPER -fPIC -rdynamic -shared -o lib_rosl.so -Wall -Werror -Wextra -pedantic \ -Wconversion -Wsign-conversion -msse2 -msse3 -msse4 -msse4.1 -msse4.2 -fopenmp -std=gnu++14 \ Algebra/Auxiliary.cpp Algorithms/ROSL.cpp shared/SharedLibROSL.cpp \ -lopenblas -larpack +libROSL.dylib: + clang++ -dynamiclib -O3 -fPIC -std=c++17 -o lib_rosl.dylib \ + -I/opt/homebrew/include \ + -L/opt/homebrew/lib -L/opt/homebrew/opt/openblas/lib \ + Algebra/Auxiliary.cpp Algorithms/ROSL.cpp shared/SharedLibROSL.cpp \ + -larmadillo -lopenblas -larpack + +# ================================================================================================================================== + libSoftImpute.so: g++ -O3 -D ARMA_DONT_USE_WRAPPER -fPIC -rdynamic -shared -o lib_soft_impute.so -Wall -Werror -Wextra -pedantic \ -Wconversion -Wsign-conversion -msse2 -msse3 -msse4 -msse4.1 -msse4.2 -fopenmp -std=gnu++14 \ Algebra/RSVD.cpp Algorithms/SoftImpute.cpp shared/SharedLibSoftImpute.cpp \ -lopenblas -larpack +libSoftImpute.dylib: + clang++ -dynamiclib -O3 -fPIC -std=c++17 -o lib_soft_impute.dylib \ + -I/opt/homebrew/include \ + -L/opt/homebrew/lib -L/opt/homebrew/opt/openblas/lib \ + Algebra/RSVD.cpp Algorithms/SoftImpute.cpp shared/SharedLibSoftImpute.cpp \ + -larmadillo -lopenblas -larpack + +# ================================================================================================================================== + libSPIRIT.so: g++ -O3 -D ARMA_DONT_USE_WRAPPER -fPIC -rdynamic -shared -o lib_spirit.so -Wall -Werror -Wextra -pedantic \ -Wconversion -Wsign-conversion -msse2 -msse3 -msse4 -msse4.1 -msse4.2 -fopenmp -std=gnu++14 \ Algorithms/SPIRIT.cpp shared/SharedLibSPIRIT.cpp \ -lopenblas -larpack +libSPIRIT.dylib: + clang++ -dynamiclib -O3 -fPIC -std=c++17 -o lib_spirit.dylib \ + -I/opt/homebrew/include \ + -L/opt/homebrew/lib -L/opt/homebrew/opt/openblas/lib \ + Algorithms/SPIRIT.cpp shared/SharedLibSPIRIT.cpp \ + -larmadillo -lopenblas -larpack + +# ================================================================================================================================== + libSVT.so: g++ -O3 -D ARMA_DONT_USE_WRAPPER -fPIC -rdynamic -shared -o lib_svt.so -Wall -Werror -Wextra -pedantic \ -Wconversion -Wsign-conversion -msse2 -msse3 -msse4 -msse4.1 -msse4.2 -fopenmp -std=gnu++14 \ Algorithms/SVT.cpp shared/SharedLibSVT.cpp \ -lopenblas -larpack +libSVT.dylib: + clang++ -dynamiclib -O3 -fPIC -std=c++17 -o lib_svt.dylib \ + -I/opt/homebrew/include \ + -L/opt/homebrew/lib -L/opt/homebrew/opt/openblas/lib \ + Algorithms/SVT.cpp shared/SharedLibSVT.cpp \ + -larmadillo -lopenblas -larpack + +# ================================================================================================================================== + libTKCM.so: g++ -O3 -D ARMA_DONT_USE_WRAPPER -fPIC -rdynamic -shared -o lib_tkcm.so -Wall -Werror -Wextra -pedantic \ -Wconversion -Wsign-conversion -msse2 -msse3 -msse4 -msse4.1 -msse4.2 -fopenmp -std=gnu++14 \ Algorithms/TKCM.cpp shared/SharedLibTKCM.cpp \ -lopenblas -larpack +libTKCM.dylib: + clang++ -dynamiclib -O3 -fPIC -std=c++17 -o lib_tkcm.dylib \ + -I/opt/homebrew/include \ + -L/opt/homebrew/lib -L/opt/homebrew/opt/openblas/lib \ + Algorithms/TKCM.cpp shared/SharedLibTKCM.cpp \ + -larmadillo -lopenblas -larpack + +# ================================================================================================================================== libCDREC.so: g++ -O3 -D ARMA_DONT_USE_WRAPPER -fPIC -rdynamic -shared -o lib_cdrec.so -Wall -Werror -Wextra -pedantic \ -Wconversion -Wsign-conversion -msse2 -msse3 -msse4 -msse4.1 -msse4.2 -fopenmp -std=gnu++14 \ Stats/Correlation.cpp Algorithms/CDMissingValueRecovery.cpp Algebra/Auxiliary.cpp \ Algebra/CentroidDecomposition.cpp shared/SharedLibCDREC.cpp \ -lopenblas -larpack -lmlpack + +libCDREC.dylib: + clang++ -dynamiclib -O3 -fPIC -std=c++17 -o lib_cdrec.dylib \ + -I/opt/homebrew/include \ + -L/opt/homebrew/lib \ + -L/opt/homebrew/opt/openblas/lib \ + Stats/Correlation.cpp Algorithms/CDMissingValueRecovery.cpp Algebra/Auxiliary.cpp \ + Algebra/CentroidDecomposition.cpp shared/SharedLibCDREC.cpp \ + -larmadillo -lopenblas -larpack +# ================================================================================================================================== + + libAlgoCollection.dll: g++ -O3 -D ARMA_DONT_USE_WRAPPER -shared -o libAlgoCollection.dll -Wall -Werror -Wextra -pedantic -Wconversion -Wsign-conversion -msse2 -msse3 -msse4 -msse4.1 -msse4.2 -fopenmp -std=gnu++14 -fPIC \ diff --git a/build/lib/imputegap/wrapper/AlgoPython/GRIN/logs/grin/2025-03-21_10-04-56_42/epoch=19-step=20.ckpt b/build/lib/imputegap/wrapper/AlgoPython/GRIN/logs/grin/2025-03-21_10-04-56_42/epoch=19-step=20.ckpt new file mode 100644 index 00000000..51ad7318 Binary files /dev/null and b/build/lib/imputegap/wrapper/AlgoPython/GRIN/logs/grin/2025-03-21_10-04-56_42/epoch=19-step=20.ckpt differ diff --git a/build/lib/imputegap/wrapper/AlgoPython/GRIN/logs/grin/2025-03-21_10-04-56_42/model/version_0/events.out.tfevents.1742547910.diufpc048844.345185.0 b/build/lib/imputegap/wrapper/AlgoPython/GRIN/logs/grin/2025-03-21_10-04-56_42/model/version_0/events.out.tfevents.1742547910.diufpc048844.345185.0 new file mode 100644 index 00000000..71d928c8 Binary files /dev/null and b/build/lib/imputegap/wrapper/AlgoPython/GRIN/logs/grin/2025-03-21_10-04-56_42/model/version_0/events.out.tfevents.1742547910.diufpc048844.345185.0 differ diff --git a/build/lib/imputegap/wrapper/AlgoPython/GRIN/logs/grin/2025-03-21_10-04-56_42/model/version_0/events.out.tfevents.1742547938.diufpc048844.345185.1 b/build/lib/imputegap/wrapper/AlgoPython/GRIN/logs/grin/2025-03-21_10-04-56_42/model/version_0/events.out.tfevents.1742547938.diufpc048844.345185.1 new file mode 100644 index 00000000..bbe769d3 Binary files /dev/null and b/build/lib/imputegap/wrapper/AlgoPython/GRIN/logs/grin/2025-03-21_10-04-56_42/model/version_0/events.out.tfevents.1742547938.diufpc048844.345185.1 differ diff --git a/build/lib/imputegap/wrapper/AlgoPython/GRIN/logs/grin/2025-03-21_10-04-56_42/model/version_0/hparams.yaml b/build/lib/imputegap/wrapper/AlgoPython/GRIN/logs/grin/2025-03-21_10-04-56_42/model/version_0/hparams.yaml new file mode 100644 index 00000000..15c3a699 --- /dev/null +++ b/build/lib/imputegap/wrapper/AlgoPython/GRIN/logs/grin/2025-03-21_10-04-56_42/model/version_0/hparams.yaml @@ -0,0 +1,9231 @@ +adj: !!python/object/apply:numpy.core.multiarray._reconstruct + args: + - !!python/name:numpy.ndarray '' + - !!python/tuple + - 0 + - !!binary | + Yg== + state: !!python/tuple + - 1 + - !!python/tuple + - 256 + - 256 + - !!python/object/apply:numpy.dtype + args: + - f8 + - false + - true + state: !!python/tuple + - 3 + - < + - null + - null + - null + - -1 + - -1 + - 0 + - false + - !!binary | + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAA= +d_ff: 16 +d_hidden: 32 +d_in: 1 +ff_dropout: 0.1 diff --git a/build/lib/imputegap/wrapper/AlgoPython/MissNet/temp/model.pkl b/build/lib/imputegap/wrapper/AlgoPython/MissNet/temp/model.pkl new file mode 100644 index 00000000..bfc2cd50 Binary files /dev/null and b/build/lib/imputegap/wrapper/AlgoPython/MissNet/temp/model.pkl differ diff --git a/dist/imputegap-1.0.5-py3-none-any.whl b/dist/imputegap-1.0.5-py3-none-any.whl deleted file mode 100644 index d33e0d4b..00000000 Binary files a/dist/imputegap-1.0.5-py3-none-any.whl and /dev/null differ diff --git a/dist/imputegap-1.0.5.tar.gz b/dist/imputegap-1.0.5.tar.gz deleted file mode 100644 index c6133b25..00000000 Binary files a/dist/imputegap-1.0.5.tar.gz and /dev/null differ diff --git a/docs/generation/build/doctrees/algorithms.doctree b/docs/generation/build/doctrees/algorithms.doctree index b24248c8..564875eb 100644 Binary files a/docs/generation/build/doctrees/algorithms.doctree and b/docs/generation/build/doctrees/algorithms.doctree differ diff --git a/docs/generation/build/doctrees/benchmark.doctree b/docs/generation/build/doctrees/benchmark.doctree index 510e7822..a238f0d8 100644 Binary files a/docs/generation/build/doctrees/benchmark.doctree and b/docs/generation/build/doctrees/benchmark.doctree differ diff --git a/docs/generation/build/doctrees/downstream.doctree b/docs/generation/build/doctrees/downstream.doctree index f07823a4..d66bfaea 100644 Binary files a/docs/generation/build/doctrees/downstream.doctree and b/docs/generation/build/doctrees/downstream.doctree differ diff --git a/docs/generation/build/doctrees/environment.pickle b/docs/generation/build/doctrees/environment.pickle index d6f94d6e..c4b0e66d 100644 Binary files a/docs/generation/build/doctrees/environment.pickle and b/docs/generation/build/doctrees/environment.pickle differ diff --git a/docs/generation/build/doctrees/imputegap.benchmark.doctree b/docs/generation/build/doctrees/imputegap.benchmark.doctree index c056c660..29294090 100644 Binary files a/docs/generation/build/doctrees/imputegap.benchmark.doctree and b/docs/generation/build/doctrees/imputegap.benchmark.doctree differ diff --git a/docs/generation/build/doctrees/imputegap.imputation.doctree b/docs/generation/build/doctrees/imputegap.imputation.doctree index 5cc40fd8..86836b0b 100644 Binary files a/docs/generation/build/doctrees/imputegap.imputation.doctree and b/docs/generation/build/doctrees/imputegap.imputation.doctree differ diff --git a/docs/generation/build/doctrees/imputegap.manager.doctree b/docs/generation/build/doctrees/imputegap.manager.doctree index 6fce4d9b..ac83162e 100644 Binary files a/docs/generation/build/doctrees/imputegap.manager.doctree and b/docs/generation/build/doctrees/imputegap.manager.doctree differ diff --git a/docs/generation/build/doctrees/tutorials.doctree b/docs/generation/build/doctrees/tutorials.doctree index dc2b083b..b174a4b8 100644 Binary files a/docs/generation/build/doctrees/tutorials.doctree and b/docs/generation/build/doctrees/tutorials.doctree differ diff --git a/docs/generation/build/html/.buildinfo b/docs/generation/build/html/.buildinfo index 307ef32b..391dab99 100644 --- a/docs/generation/build/html/.buildinfo +++ b/docs/generation/build/html/.buildinfo @@ -1,4 +1,4 @@ # Sphinx build info version 1 # This file records the configuration used when building these files. When it is not found, a full rebuild will be done. -config: 3d55fe9f60c2c205b605c2c11ade8564 +config: c8d7b76c62793a2d8b7f8b85a32f39f8 tags: 645f666f9bcd5a90fca523b33c5a78b7 diff --git a/docs/generation/build/html/algorithms.html b/docs/generation/build/html/algorithms.html index a6742128..a298aac8 100644 --- a/docs/generation/build/html/algorithms.html +++ b/docs/generation/build/html/algorithms.html @@ -6,7 +6,7 @@ - Algorithms - imputegap 1.0.5 documentation + Algorithms - imputegap 1.0.7 documentation @@ -168,7 +168,7 @@
@@ -195,7 +195,7 @@
- imputegap 1.0.5 documentation + imputegap 1.0.7 documentation
diff --git a/docs/generation/build/html/autosummary/imputegap.algorithms.cdrec.html b/docs/generation/build/html/autosummary/imputegap.algorithms.cdrec.html index 0b98d003..09e108e6 100644 --- a/docs/generation/build/html/autosummary/imputegap.algorithms.cdrec.html +++ b/docs/generation/build/html/autosummary/imputegap.algorithms.cdrec.html @@ -6,7 +6,7 @@ - imputegap.algorithms.cdrec - imputegap 1.0.5 documentation + imputegap.algorithms.cdrec - imputegap 1.0.7 documentation @@ -168,7 +168,7 @@
@@ -195,7 +195,7 @@
- imputegap 1.0.5 documentation + imputegap 1.0.7 documentation @@ -318,7 +318,7 @@
- + diff --git a/docs/generation/build/html/autosummary/imputegap.algorithms.html b/docs/generation/build/html/autosummary/imputegap.algorithms.html index f0012ef6..2a0efffa 100644 --- a/docs/generation/build/html/autosummary/imputegap.algorithms.html +++ b/docs/generation/build/html/autosummary/imputegap.algorithms.html @@ -6,7 +6,7 @@ - imputegap.algorithms - imputegap 1.0.5 documentation + imputegap.algorithms - imputegap 1.0.7 documentation @@ -168,7 +168,7 @@
@@ -195,7 +195,7 @@
- imputegap 1.0.5 documentation + imputegap 1.0.7 documentation @@ -305,7 +305,7 @@
- + diff --git a/docs/generation/build/html/autosummary/imputegap.algorithms.iim.html b/docs/generation/build/html/autosummary/imputegap.algorithms.iim.html index 3d56c0ac..53b3d3f0 100644 --- a/docs/generation/build/html/autosummary/imputegap.algorithms.iim.html +++ b/docs/generation/build/html/autosummary/imputegap.algorithms.iim.html @@ -6,7 +6,7 @@ - imputegap.algorithms.iim - imputegap 1.0.5 documentation + imputegap.algorithms.iim - imputegap 1.0.7 documentation @@ -168,7 +168,7 @@
@@ -195,7 +195,7 @@
- imputegap 1.0.5 documentation + imputegap 1.0.7 documentation @@ -315,7 +315,7 @@
- + diff --git a/docs/generation/build/html/autosummary/imputegap.algorithms.mean_impute.html b/docs/generation/build/html/autosummary/imputegap.algorithms.mean_impute.html index 8def0a54..f7ab1533 100644 --- a/docs/generation/build/html/autosummary/imputegap.algorithms.mean_impute.html +++ b/docs/generation/build/html/autosummary/imputegap.algorithms.mean_impute.html @@ -6,7 +6,7 @@ - imputegap.algorithms.mean_impute - imputegap 1.0.5 documentation + imputegap.algorithms.mean_impute - imputegap 1.0.7 documentation @@ -168,7 +168,7 @@
@@ -195,7 +195,7 @@
- imputegap 1.0.5 documentation + imputegap 1.0.7 documentation @@ -315,7 +315,7 @@
- + diff --git a/docs/generation/build/html/autosummary/imputegap.algorithms.min_impute.html b/docs/generation/build/html/autosummary/imputegap.algorithms.min_impute.html index f8fc2a0f..75820896 100644 --- a/docs/generation/build/html/autosummary/imputegap.algorithms.min_impute.html +++ b/docs/generation/build/html/autosummary/imputegap.algorithms.min_impute.html @@ -6,7 +6,7 @@ - imputegap.algorithms.min_impute - imputegap 1.0.5 documentation + imputegap.algorithms.min_impute - imputegap 1.0.7 documentation @@ -168,7 +168,7 @@
@@ -195,7 +195,7 @@
- imputegap 1.0.5 documentation + imputegap 1.0.7 documentation @@ -315,7 +315,7 @@
- + diff --git a/docs/generation/build/html/autosummary/imputegap.algorithms.mrnn.html b/docs/generation/build/html/autosummary/imputegap.algorithms.mrnn.html index ca20f875..7e122a5a 100644 --- a/docs/generation/build/html/autosummary/imputegap.algorithms.mrnn.html +++ b/docs/generation/build/html/autosummary/imputegap.algorithms.mrnn.html @@ -6,7 +6,7 @@ - imputegap.algorithms.mrnn - imputegap 1.0.5 documentation + imputegap.algorithms.mrnn - imputegap 1.0.7 documentation @@ -168,7 +168,7 @@
@@ -195,7 +195,7 @@
- imputegap 1.0.5 documentation + imputegap 1.0.7 documentation @@ -315,7 +315,7 @@
- + diff --git a/docs/generation/build/html/autosummary/imputegap.algorithms.stmvl.html b/docs/generation/build/html/autosummary/imputegap.algorithms.stmvl.html index ca622a00..eb03d550 100644 --- a/docs/generation/build/html/autosummary/imputegap.algorithms.stmvl.html +++ b/docs/generation/build/html/autosummary/imputegap.algorithms.stmvl.html @@ -6,7 +6,7 @@ - imputegap.algorithms.stmvl - imputegap 1.0.5 documentation + imputegap.algorithms.stmvl - imputegap 1.0.7 documentation @@ -168,7 +168,7 @@
@@ -195,7 +195,7 @@
- imputegap 1.0.5 documentation + imputegap 1.0.7 documentation @@ -318,7 +318,7 @@
- + diff --git a/docs/generation/build/html/autosummary/imputegap.algorithms.zero_impute.html b/docs/generation/build/html/autosummary/imputegap.algorithms.zero_impute.html index 588e3f58..427c0ee7 100644 --- a/docs/generation/build/html/autosummary/imputegap.algorithms.zero_impute.html +++ b/docs/generation/build/html/autosummary/imputegap.algorithms.zero_impute.html @@ -6,7 +6,7 @@ - imputegap.algorithms.zero_impute - imputegap 1.0.5 documentation + imputegap.algorithms.zero_impute - imputegap 1.0.7 documentation @@ -168,7 +168,7 @@
@@ -195,7 +195,7 @@
- imputegap 1.0.5 documentation + imputegap 1.0.7 documentation @@ -315,7 +315,7 @@
- + diff --git a/docs/generation/build/html/autosummary/imputegap.recovery.benchmark.html b/docs/generation/build/html/autosummary/imputegap.recovery.benchmark.html index cf147572..f2042f23 100644 --- a/docs/generation/build/html/autosummary/imputegap.recovery.benchmark.html +++ b/docs/generation/build/html/autosummary/imputegap.recovery.benchmark.html @@ -6,7 +6,7 @@ - imputegap.recovery.benchmark - imputegap 1.0.5 documentation + imputegap.recovery.benchmark - imputegap 1.0.7 documentation @@ -168,7 +168,7 @@
@@ -195,7 +195,7 @@
- imputegap 1.0.5 documentation + imputegap 1.0.7 documentation @@ -315,7 +315,7 @@
- + diff --git a/docs/generation/build/html/autosummary/imputegap.recovery.benchmarking.html b/docs/generation/build/html/autosummary/imputegap.recovery.benchmarking.html index 5126d6ae..9e76c227 100644 --- a/docs/generation/build/html/autosummary/imputegap.recovery.benchmarking.html +++ b/docs/generation/build/html/autosummary/imputegap.recovery.benchmarking.html @@ -6,7 +6,7 @@ - imputegap.recovery.benchmark - imputegap 1.0.5 documentation + imputegap.recovery.benchmark - imputegap 1.0.7 documentation @@ -168,7 +168,7 @@
@@ -195,7 +195,7 @@
- imputegap 1.0.5 documentation + imputegap 1.0.7 documentation @@ -312,7 +312,7 @@
- + diff --git a/docs/generation/build/html/autosummary/imputegap.recovery.evaluation.html b/docs/generation/build/html/autosummary/imputegap.recovery.evaluation.html index 7ee1f731..8dbe3bc6 100644 --- a/docs/generation/build/html/autosummary/imputegap.recovery.evaluation.html +++ b/docs/generation/build/html/autosummary/imputegap.recovery.evaluation.html @@ -6,7 +6,7 @@ - imputegap.recovery.evaluation - imputegap 1.0.5 documentation + imputegap.recovery.evaluation - imputegap 1.0.7 documentation @@ -168,7 +168,7 @@
@@ -195,7 +195,7 @@
- imputegap 1.0.5 documentation + imputegap 1.0.7 documentation @@ -315,7 +315,7 @@
- + diff --git a/docs/generation/build/html/autosummary/imputegap.recovery.explainer.html b/docs/generation/build/html/autosummary/imputegap.recovery.explainer.html index 7ed9d685..a818fdff 100644 --- a/docs/generation/build/html/autosummary/imputegap.recovery.explainer.html +++ b/docs/generation/build/html/autosummary/imputegap.recovery.explainer.html @@ -6,7 +6,7 @@ - imputegap.recovery.explainer - imputegap 1.0.5 documentation + imputegap.recovery.explainer - imputegap 1.0.7 documentation @@ -168,7 +168,7 @@
@@ -195,7 +195,7 @@
- imputegap 1.0.5 documentation + imputegap 1.0.7 documentation @@ -315,7 +315,7 @@
- + diff --git a/docs/generation/build/html/autosummary/imputegap.recovery.imputation.html b/docs/generation/build/html/autosummary/imputegap.recovery.imputation.html index 310e1f0a..73111386 100644 --- a/docs/generation/build/html/autosummary/imputegap.recovery.imputation.html +++ b/docs/generation/build/html/autosummary/imputegap.recovery.imputation.html @@ -6,7 +6,7 @@ - imputegap.recovery.imputation - imputegap 1.0.5 documentation + imputegap.recovery.imputation - imputegap 1.0.7 documentation @@ -168,7 +168,7 @@
@@ -195,7 +195,7 @@
- imputegap 1.0.5 documentation + imputegap 1.0.7 documentation @@ -318,7 +318,7 @@
- + diff --git a/docs/generation/build/html/autosummary/imputegap.recovery.manager.html b/docs/generation/build/html/autosummary/imputegap.recovery.manager.html index b6b52ec8..a5f6a607 100644 --- a/docs/generation/build/html/autosummary/imputegap.recovery.manager.html +++ b/docs/generation/build/html/autosummary/imputegap.recovery.manager.html @@ -6,7 +6,7 @@ - imputegap.recovery.manager - imputegap 1.0.5 documentation + imputegap.recovery.manager - imputegap 1.0.7 documentation @@ -168,7 +168,7 @@
@@ -195,7 +195,7 @@
- imputegap 1.0.5 documentation + imputegap 1.0.7 documentation @@ -315,7 +315,7 @@
- + diff --git a/docs/generation/build/html/autosummary/imputegap.recovery.optimization.html b/docs/generation/build/html/autosummary/imputegap.recovery.optimization.html index 9c7981dc..8fff3134 100644 --- a/docs/generation/build/html/autosummary/imputegap.recovery.optimization.html +++ b/docs/generation/build/html/autosummary/imputegap.recovery.optimization.html @@ -6,7 +6,7 @@ - imputegap.recovery.optimization - imputegap 1.0.5 documentation + imputegap.recovery.optimization - imputegap 1.0.7 documentation @@ -168,7 +168,7 @@
@@ -195,7 +195,7 @@
- imputegap 1.0.5 documentation + imputegap 1.0.7 documentation @@ -318,7 +318,7 @@
- + diff --git a/docs/generation/build/html/autosummary/imputegap.tools.algorithm_parameters.html b/docs/generation/build/html/autosummary/imputegap.tools.algorithm_parameters.html index 4ee6e212..a4b89182 100644 --- a/docs/generation/build/html/autosummary/imputegap.tools.algorithm_parameters.html +++ b/docs/generation/build/html/autosummary/imputegap.tools.algorithm_parameters.html @@ -6,7 +6,7 @@ - imputegap.tools.algorithm_parameters - imputegap 1.0.5 documentation + imputegap.tools.algorithm_parameters - imputegap 1.0.7 documentation @@ -168,7 +168,7 @@
@@ -195,7 +195,7 @@
- imputegap 1.0.5 documentation + imputegap 1.0.7 documentation @@ -305,7 +305,7 @@
- + diff --git a/docs/generation/build/html/autosummary/imputegap.tools.html b/docs/generation/build/html/autosummary/imputegap.tools.html index e9c9f81b..c9a187cb 100644 --- a/docs/generation/build/html/autosummary/imputegap.tools.html +++ b/docs/generation/build/html/autosummary/imputegap.tools.html @@ -6,7 +6,7 @@ - imputegap.tools - imputegap 1.0.5 documentation + imputegap.tools - imputegap 1.0.7 documentation @@ -168,7 +168,7 @@
@@ -195,7 +195,7 @@
- imputegap 1.0.5 documentation + imputegap 1.0.7 documentation @@ -305,7 +305,7 @@
- + diff --git a/docs/generation/build/html/autosummary/imputegap.tools.utils.html b/docs/generation/build/html/autosummary/imputegap.tools.utils.html index 07373f8a..f359cd8c 100644 --- a/docs/generation/build/html/autosummary/imputegap.tools.utils.html +++ b/docs/generation/build/html/autosummary/imputegap.tools.utils.html @@ -6,7 +6,7 @@ - imputegap.tools.utils - imputegap 1.0.5 documentation + imputegap.tools.utils - imputegap 1.0.7 documentation @@ -168,7 +168,7 @@
@@ -195,7 +195,7 @@
- imputegap 1.0.5 documentation + imputegap 1.0.7 documentation @@ -336,7 +336,7 @@
- + diff --git a/docs/generation/build/html/autosummary/imputegap.wrapper.html b/docs/generation/build/html/autosummary/imputegap.wrapper.html index 9db9aca1..a55c8a22 100644 --- a/docs/generation/build/html/autosummary/imputegap.wrapper.html +++ b/docs/generation/build/html/autosummary/imputegap.wrapper.html @@ -6,7 +6,7 @@ - imputegap.wrapper - imputegap 1.0.5 documentation + imputegap.wrapper - imputegap 1.0.7 documentation @@ -168,7 +168,7 @@
@@ -195,7 +195,7 @@
- imputegap 1.0.5 documentation + imputegap 1.0.7 documentation @@ -305,7 +305,7 @@
- + diff --git a/docs/generation/build/html/benchmark.html b/docs/generation/build/html/benchmark.html index 7c0ea959..a83b47fc 100644 --- a/docs/generation/build/html/benchmark.html +++ b/docs/generation/build/html/benchmark.html @@ -6,7 +6,7 @@ - Benchmark - imputegap 1.0.5 documentation + Benchmark - imputegap 1.0.7 documentation @@ -168,7 +168,7 @@
@@ -195,7 +195,7 @@
- imputegap 1.0.5 documentation + imputegap 1.0.7 documentation @@ -272,26 +272,25 @@

Benchmark

-

ImputeGAP can serve as a common test-bed for comparing the effectiveness and efficiency of time series imputation algorithms [33]. Users have full control over the benchmark by customizing various parameters, including the list of datasets to evaluate, the algorithms to compare, the choice of optimizer to fine-tune the algorithms on the chosen datasets, the missingness patterns, and the range of missing rates.

+

ImputeGAP can serve as a common test-bed for comparing the effectiveness and efficiency of time series imputation algorithms [33]. Users have full control over the benchmark by customizing various parameters, including the list of datasets to evaluate, the algorithms to compare, the choice of optimizer to fine-tune the algorithms on the chosen datasets, the missingness patterns, and the range of missing rates. The default metrics evaluated include “RMSE”, “MAE”, “MI”, “Pearson”, and the runtime.

The benchmarking module can be utilized as follows:

from imputegap.recovery.benchmark import Benchmark
 
-save_dir = "./analysis"
-nbr_run = 2
+save_dir = "./imputegap_assets/benchmark"
+nbr_runs = 1
 
-datasets = ["eeg-alcohol", "eeg-reading"]
+datasets = ["eeg-alcohol"]
 
-optimizer = {"optimizer": "ray_tune", "options": {"n_calls": 1, "max_concurrent_trials": 1}}
-optimizers = [optimizer]
+optimizers = ["default_params"]
 
-algorithms = ["MeanImpute", "CDRec", "STMVL", "IIM", "MRNN"]
+algorithms = ["SoftImpute", "KNNImpute"]
 
 patterns = ["mcar"]
 
 range = [0.05, 0.1, 0.2, 0.4, 0.6, 0.8]
 
 # launch the evaluation
-list_results, sum_scores = Benchmark().eval(algorithms=algorithms, datasets=datasets, patterns=patterns, x_axis=range, optimizers=optimizers, save_dir=save_dir, runs=nbr_run)
+list_results, sum_scores = Benchmark().eval(algorithms=algorithms, datasets=datasets, patterns=patterns, x_axis=range, optimizers=optimizers, save_dir=save_dir, runs=nbr_runs)
 
diff --git a/docs/generation/build/html/contributors.html b/docs/generation/build/html/contributors.html index 6ef9a6d3..baa3df48 100644 --- a/docs/generation/build/html/contributors.html +++ b/docs/generation/build/html/contributors.html @@ -6,7 +6,7 @@ - Contributors - imputegap 1.0.5 documentation + Contributors - imputegap 1.0.7 documentation @@ -168,7 +168,7 @@
@@ -195,7 +195,7 @@
- imputegap 1.0.5 documentation + imputegap 1.0.7 documentation @@ -337,7 +337,7 @@

Core Contributors +

diff --git a/docs/generation/build/html/datasets.html b/docs/generation/build/html/datasets.html index 7b56eda7..e5bc2238 100644 --- a/docs/generation/build/html/datasets.html +++ b/docs/generation/build/html/datasets.html @@ -6,7 +6,7 @@ - Datasets - imputegap 1.0.5 documentation + Datasets - imputegap 1.0.7 documentation @@ -168,7 +168,7 @@
@@ -195,7 +195,7 @@
- imputegap 1.0.5 documentation + imputegap 1.0.7 documentation @@ -350,7 +350,7 @@

Datasets

- + diff --git a/docs/generation/build/html/downstream.html b/docs/generation/build/html/downstream.html index 91d29316..d2748667 100644 --- a/docs/generation/build/html/downstream.html +++ b/docs/generation/build/html/downstream.html @@ -6,7 +6,7 @@ - Downstream Evaluation - imputegap 1.0.5 documentation + Downstream Evaluation - imputegap 1.0.7 documentation @@ -168,7 +168,7 @@ @@ -355,7 +355,7 @@

Downstream Evaluation - + diff --git a/docs/generation/build/html/explainer.html b/docs/generation/build/html/explainer.html index b5791fd5..28bf88b0 100644 --- a/docs/generation/build/html/explainer.html +++ b/docs/generation/build/html/explainer.html @@ -6,7 +6,7 @@ - Explainer - imputegap 1.0.5 documentation + Explainer - imputegap 1.0.7 documentation @@ -168,7 +168,7 @@
@@ -195,7 +195,7 @@
- imputegap 1.0.5 documentation + imputegap 1.0.7 documentation @@ -343,7 +343,7 @@

Explainer +

diff --git a/docs/generation/build/html/genindex.html b/docs/generation/build/html/genindex.html index 524fef29..b7fdebbe 100644 --- a/docs/generation/build/html/genindex.html +++ b/docs/generation/build/html/genindex.html @@ -4,7 +4,7 @@ - Index - imputegap 1.0.5 documentation + Index - imputegap 1.0.7 documentation @@ -166,7 +166,7 @@
@@ -193,7 +193,7 @@
- imputegap 1.0.5 documentation + imputegap 1.0.7 documentation @@ -328,7 +328,7 @@

_

  • (imputegap.recovery.imputation.Imputation.Statistics.Interpolation method)
  • -
  • (imputegap.recovery.imputation.Imputation.Statistics.KNN method) +
  • (imputegap.recovery.imputation.Imputation.Statistics.KNNImpute method)
  • (imputegap.recovery.imputation.Imputation.Statistics.MeanImpute method)
  • @@ -404,7 +404,7 @@

    A

  • (imputegap.recovery.imputation.Imputation.Statistics.Interpolation attribute)
  • -
  • (imputegap.recovery.imputation.Imputation.Statistics.KNN attribute) +
  • (imputegap.recovery.imputation.Imputation.Statistics.KNNImpute attribute)
  • (imputegap.recovery.imputation.Imputation.Statistics.MeanImpute attribute)
  • @@ -611,7 +611,7 @@

    I

  • Imputation.Statistics.Interpolation (class in imputegap.recovery.imputation)
  • -
  • Imputation.Statistics.KNN (class in imputegap.recovery.imputation) +
  • Imputation.Statistics.KNNImpute (class in imputegap.recovery.imputation)
  • Imputation.Statistics.MeanImpute (class in imputegap.recovery.imputation)
  • @@ -678,7 +678,7 @@

    I

  • (imputegap.recovery.imputation.Imputation.Statistics.Interpolation method)
  • -
  • (imputegap.recovery.imputation.Imputation.Statistics.KNN method) +
  • (imputegap.recovery.imputation.Imputation.Statistics.KNNImpute method)
  • (imputegap.recovery.imputation.Imputation.Statistics.MeanImpute method)
  • @@ -911,7 +911,7 @@

    L

  • (imputegap.recovery.imputation.Imputation.Statistics.Interpolation attribute)
  • -
  • (imputegap.recovery.imputation.Imputation.Statistics.KNN attribute) +
  • (imputegap.recovery.imputation.Imputation.Statistics.KNNImpute attribute)
  • (imputegap.recovery.imputation.Imputation.Statistics.MeanImpute attribute)
  • @@ -935,6 +935,10 @@

    M

  • mean_impute() (in module imputegap.algorithms.mean_impute)
  • min_impute() (in module imputegap.algorithms.min_impute) +
  • +
  • missing_completely_at_random() (imputegap.recovery.manager.TimeSeries.Contamination method) +
  • +
  • missing_percentage() (imputegap.recovery.manager.TimeSeries.Contamination method)
  • module @@ -981,6 +985,8 @@

    M

  • @@ -1126,7 +1132,7 @@

    S

  • (imputegap.recovery.imputation.Imputation.Statistics.Interpolation method)
  • -
  • (imputegap.recovery.imputation.Imputation.Statistics.KNN method) +
  • (imputegap.recovery.imputation.Imputation.Statistics.KNNImpute method)
  • (imputegap.recovery.imputation.Imputation.Statistics.MeanImpute method)
  • @@ -1140,6 +1146,8 @@

    S

    - + diff --git a/docs/generation/build/html/getting_started.html b/docs/generation/build/html/getting_started.html index c6812c3b..9f700600 100644 --- a/docs/generation/build/html/getting_started.html +++ b/docs/generation/build/html/getting_started.html @@ -6,7 +6,7 @@ - Getting Started - imputegap 1.0.5 documentation + Getting Started - imputegap 1.0.7 documentation @@ -168,7 +168,7 @@
    @@ -195,7 +195,7 @@
    - imputegap 1.0.5 documentation + imputegap 1.0.7 documentation @@ -367,7 +367,7 @@

    Troubleshooting +

    diff --git a/docs/generation/build/html/imputegap.algorithm_parameters.html b/docs/generation/build/html/imputegap.algorithm_parameters.html index 85340c89..d00fd340 100644 --- a/docs/generation/build/html/imputegap.algorithm_parameters.html +++ b/docs/generation/build/html/imputegap.algorithm_parameters.html @@ -6,7 +6,7 @@ - imputegap.tools.algorithm_parameters package - imputegap 1.0.5 documentation + imputegap.tools.algorithm_parameters package - imputegap 1.0.7 documentation @@ -168,7 +168,7 @@
    @@ -195,7 +195,7 @@
    - imputegap 1.0.5 documentation + imputegap 1.0.7 documentation @@ -346,7 +346,7 @@

    Submodule Documentation

    - + diff --git a/docs/generation/build/html/imputegap.algorithms.html b/docs/generation/build/html/imputegap.algorithms.html index 8cb820f2..b6bbda12 100644 --- a/docs/generation/build/html/imputegap.algorithms.html +++ b/docs/generation/build/html/imputegap.algorithms.html @@ -6,7 +6,7 @@ - Submodules - imputegap 1.0.5 documentation + Submodules - imputegap 1.0.7 documentation @@ -168,7 +168,7 @@
    @@ -195,7 +195,7 @@
    - imputegap 1.0.5 documentation + imputegap 1.0.7 documentation @@ -314,7 +314,7 @@

    Submodule Documentation

    - + diff --git a/docs/generation/build/html/imputegap.benchmark.html b/docs/generation/build/html/imputegap.benchmark.html index 115e706d..4dcd3f63 100644 --- a/docs/generation/build/html/imputegap.benchmark.html +++ b/docs/generation/build/html/imputegap.benchmark.html @@ -6,7 +6,7 @@ - imputegap.recovery.benchmark package - imputegap 1.0.5 documentation + imputegap.recovery.benchmark package - imputegap 1.0.7 documentation @@ -168,7 +168,7 @@
    @@ -195,7 +195,7 @@
    - imputegap 1.0.5 documentation + imputegap 1.0.7 documentation @@ -353,7 +353,7 @@

    Returns
    -eval(algorithms=['cdrec'], datasets=['eeg-alcohol'], patterns=['mcar'], x_axis=[0.05, 0.1, 0.2, 0.4, 0.6, 0.8], optimizers=['user_def'], save_dir='./reports', runs=1)[source]
    +eval(algorithms=['cdrec'], datasets=['eeg-alcohol'], patterns=['mcar'], x_axis=[0.05, 0.1, 0.2, 0.4, 0.6, 0.8], optimizers=['default_params'], save_dir='./reports', runs=1)[source]

    Execute a comprehensive evaluation of imputation algorithms over multiple datasets and patterns.

    Parameters

    @@ -417,7 +417,7 @@

    Returns
    -generate_plots(runs_plots_scores, ticks, subplot=False, y_size=4, save_dir='./reports')[source]
    +generate_plots(runs_plots_scores, ticks, subplot=False, y_size=4, save_dir='./reports', display=False)[source]

    Generate and save plots for each metric and pattern based on provided scores.

    Parameters

    @@ -430,6 +430,8 @@

    Parameters¶<

    save_dirstr, optional

    Directory to save generated plots (default is “./reports”).

    +
    displaybool, optional

    Display or not the plots (default is False).

    +

    @@ -570,7 +572,7 @@

    Returns
    -eval(algorithms=['cdrec'], datasets=['eeg-alcohol'], patterns=['mcar'], x_axis=[0.05, 0.1, 0.2, 0.4, 0.6, 0.8], optimizers=['user_def'], save_dir='./reports', runs=1)[source]
    +eval(algorithms=['cdrec'], datasets=['eeg-alcohol'], patterns=['mcar'], x_axis=[0.05, 0.1, 0.2, 0.4, 0.6, 0.8], optimizers=['default_params'], save_dir='./reports', runs=1)[source]

    Execute a comprehensive evaluation of imputation algorithms over multiple datasets and patterns.

    Parameters

    @@ -634,7 +636,7 @@

    Returns
    -generate_plots(runs_plots_scores, ticks, subplot=False, y_size=4, save_dir='./reports')[source]
    +generate_plots(runs_plots_scores, ticks, subplot=False, y_size=4, save_dir='./reports', display=False)[source]

    Generate and save plots for each metric and pattern based on provided scores.

    Parameters

    @@ -647,6 +649,8 @@

    Parameters

    save_dirstr, optional

    Directory to save generated plots (default is “./reports”).

    +
    displaybool, optional

    Display or not the plots (default is False).

    +

    @@ -792,7 +796,7 @@

    Notes<

    - + diff --git a/docs/generation/build/html/imputegap.cdrec.html b/docs/generation/build/html/imputegap.cdrec.html index be82e9bf..51bcf400 100644 --- a/docs/generation/build/html/imputegap.cdrec.html +++ b/docs/generation/build/html/imputegap.cdrec.html @@ -6,7 +6,7 @@ - imputegap.algorithms.cdrec package - imputegap 1.0.5 documentation + imputegap.algorithms.cdrec package - imputegap 1.0.7 documentation @@ -168,7 +168,7 @@
    @@ -195,7 +195,7 @@
    - imputegap 1.0.5 documentation + imputegap 1.0.7 documentation @@ -421,7 +421,7 @@

    References +

    diff --git a/docs/generation/build/html/imputegap.evaluation.html b/docs/generation/build/html/imputegap.evaluation.html index 582a256a..d31f5e82 100644 --- a/docs/generation/build/html/imputegap.evaluation.html +++ b/docs/generation/build/html/imputegap.evaluation.html @@ -6,7 +6,7 @@ - imputegap.recovery.evaluation package - imputegap 1.0.5 documentation + imputegap.recovery.evaluation package - imputegap 1.0.7 documentation @@ -168,7 +168,7 @@
    @@ -195,7 +195,7 @@
    - imputegap 1.0.5 documentation + imputegap 1.0.7 documentation @@ -574,7 +574,7 @@

    Returns

    - + diff --git a/docs/generation/build/html/imputegap.explainer.html b/docs/generation/build/html/imputegap.explainer.html index b7f28292..85ab8275 100644 --- a/docs/generation/build/html/imputegap.explainer.html +++ b/docs/generation/build/html/imputegap.explainer.html @@ -6,7 +6,7 @@ - imputegap.recovery.explainer package - imputegap 1.0.5 documentation + imputegap.recovery.explainer package - imputegap 1.0.7 documentation @@ -168,7 +168,7 @@
    @@ -195,7 +195,7 @@
    - imputegap 1.0.5 documentation + imputegap 1.0.7 documentation @@ -690,7 +690,7 @@

    Notes

    - + diff --git a/docs/generation/build/html/imputegap.html b/docs/generation/build/html/imputegap.html index 8cf090b3..3590e383 100644 --- a/docs/generation/build/html/imputegap.html +++ b/docs/generation/build/html/imputegap.html @@ -6,7 +6,7 @@ - ImputeGAP Package - imputegap 1.0.5 documentation + ImputeGAP Package - imputegap 1.0.7 documentation @@ -168,7 +168,7 @@
    @@ -195,7 +195,7 @@
    - imputegap 1.0.5 documentation + imputegap 1.0.7 documentation @@ -289,6 +289,7 @@

    SubpackagesTimeSeries.print_results() +
  • select_backend()
  • @@ -545,7 +546,7 @@

    Submodules +

    diff --git a/docs/generation/build/html/imputegap.iim.html b/docs/generation/build/html/imputegap.iim.html index 685f82df..3f6a8141 100644 --- a/docs/generation/build/html/imputegap.iim.html +++ b/docs/generation/build/html/imputegap.iim.html @@ -6,7 +6,7 @@ - imputegap.algorithms.iim package - imputegap 1.0.5 documentation + imputegap.algorithms.iim package - imputegap 1.0.7 documentation @@ -168,7 +168,7 @@
    @@ -195,7 +195,7 @@
    - imputegap 1.0.5 documentation + imputegap 1.0.7 documentation @@ -397,7 +397,7 @@

    References +

    diff --git a/docs/generation/build/html/imputegap.imputation.html b/docs/generation/build/html/imputegap.imputation.html index 70dcd155..107742ec 100644 --- a/docs/generation/build/html/imputegap.imputation.html +++ b/docs/generation/build/html/imputegap.imputation.html @@ -6,7 +6,7 @@ - imputegap.recovery.imputation package - imputegap 1.0.5 documentation + imputegap.recovery.imputation package - imputegap 1.0.7 documentation @@ -168,7 +168,7 @@
    @@ -195,7 +195,7 @@
    - imputegap 1.0.5 documentation + imputegap 1.0.7 documentation @@ -362,7 +362,7 @@

    Returns

    Example

    >>> imputer.score(ts.data, imputer.recov_data) # upstream
    ->>> imputer.score(ts.data, imputer.recov_data, downstream={"task": "forecast", "model": "hw-add"}) # downstream
    +>>> imputer.score(ts.data, imputer.recov_data, {"task": "forecast", "model": "hw-add", "comparator": "ZeroImputation"}) # downstream
     
    @@ -497,7 +497,7 @@

    Example
    >>> brits_imputer = Imputation.DeepLearning.BRITS(incomp_data)
     >>> brits_imputer.impute()  # default parameters for imputation > or
     >>> brits_imputer.impute(params={"model": "brits", "epoch": 2, "batch_size": 10, "nbr_features": 1, "hidden_layer": 64})  # user-defined > or
    ->>> brits_imputer.impute(user_def=False, params={"input_data": ts_1.data, "optimizer": "ray_tune"})  # automl with ray_tune
    +>>> brits_imputer.impute(user_def=False, params={"input_data": ts.data, "optimizer": "ray_tune"})  # automl with ray_tune
     >>> recov_data = brits_imputer.recov_data
     
    @@ -536,7 +536,7 @@
    Returns
    Example
    >>> imputer.score(ts.data, imputer.recov_data) # upstream
    ->>> imputer.score(ts.data, imputer.recov_data, downstream={"task": "forecast", "model": "hw-add"}) # downstream
    +>>> imputer.score(ts.data, imputer.recov_data, {"task": "forecast", "model": "hw-add", "comparator": "ZeroImputation"}) # downstream
     
    @@ -624,7 +624,7 @@
    Example
    >>> bay_otide_imputer = Imputation.DeepLearning.BayOTIDE(incomp_data)
     >>> bay_otide_imputer.impute()  # default parameters for imputation > or
     >>> bay_otide_imputer.impute(user_def=True, params={"K_trend":20, "K_season":2, "n_season":5, "K_bias":1, "time_scale":1, "a0":0.6, "b0":2.5, "v":0.5})  # user defined> or
    ->>> bay_otide_imputer.impute(user_def=False, params={"input_data": ts_1.data, "optimizer": "ray_tune"})  # auto-ml with ray_tune
    +>>> bay_otide_imputer.impute(user_def=False, params={"input_data": ts.data, "optimizer": "ray_tune"})  # auto-ml with ray_tune
     >>> recov_data = bay_otide_imputer.recov_data
     
    @@ -664,7 +664,7 @@

    Returns
    Example
    >>> imputer.score(ts.data, imputer.recov_data) # upstream
    ->>> imputer.score(ts.data, imputer.recov_data, downstream={"task": "forecast", "model": "hw-add"}) # downstream
    +>>> imputer.score(ts.data, imputer.recov_data, {"task": "forecast", "model": "hw-add", "comparator": "ZeroImputation"}) # downstream
     
    @@ -751,7 +751,7 @@
    Example
    >>> bit_graph_imputer = Imputation.DeepLearning.BitGraph(incomp_data)
     >>> bit_graph_imputer.impute()  # default parameters for imputation > or
     >>> bit_graph_imputer.impute(user_def=True, params={"node_number":-1, "kernel_set":[1], "dropout":0.1, "subgraph_size":5, "node_dim":3, "seq_len":1, "lr":0.001, "epoch":10, "seed":42})  # user defined> or
    ->>> bit_graph_imputer.impute(user_def=False, params={"input_data": ts_1.data, "optimizer": "ray_tune"})  # auto-ml with ray_tune
    +>>> bit_graph_imputer.impute(user_def=False, params={"input_data": ts.data, "optimizer": "ray_tune"})  # auto-ml with ray_tune
     >>> recov_data = bit_graph_imputer.recov_data
     
    @@ -791,7 +791,7 @@
    Returns
    Example
    >>> imputer.score(ts.data, imputer.recov_data) # upstream
    ->>> imputer.score(ts.data, imputer.recov_data, downstream={"task": "forecast", "model": "hw-add"}) # downstream
    +>>> imputer.score(ts.data, imputer.recov_data, {"task": "forecast", "model": "hw-add", "comparator": "ZeroImputation"}) # downstream
     
    @@ -867,7 +867,7 @@
    Example
    >>> deep_mvi_imputer = Imputation.DeepLearning.DeepMVI(incomp_data)
     >>> deep_mvi_imputer.impute()  # default parameters for imputation > or
     >>> deep_mvi_imputer.impute(params={"max_epoch": 10, "patience": 2})  # user-defined > or
    ->>> deep_mvi_imputer.impute(user_def=False, params={"input_data": ts_1.data, "optimizer": "ray_tune"})  # automl with ray_tune
    +>>> deep_mvi_imputer.impute(user_def=False, params={"input_data": ts.data, "optimizer": "ray_tune"})  # automl with ray_tune
     >>> recov_data = deep_mvi_imputer.recov_data
     
    @@ -907,7 +907,7 @@
    Returns
    Example
    >>> imputer.score(ts.data, imputer.recov_data) # upstream
    ->>> imputer.score(ts.data, imputer.recov_data, downstream={"task": "forecast", "model": "hw-add"}) # downstream
    +>>> imputer.score(ts.data, imputer.recov_data, {"task": "forecast", "model": "hw-add", "comparator": "ZeroImputation"}) # downstream
     
    @@ -982,7 +982,7 @@
    Example
    >>> gain_imputer = Imputation.DeepLearning.GAIN(incomp_data)
     >>> gain_imputer.impute()  # default parameters for imputation > or
     >>> gain_imputer.impute(user_def=True, params={"batch_size":32, "hint_rate":0.9, "alpha":10, "epoch":100})  # user defined> or
    ->>> gain_imputer.impute(user_def=False, params={"input_data": ts_1.data, "optimizer": "ray_tune"})  # auto-ml with ray_tune
    +>>> gain_imputer.impute(user_def=False, params={"input_data": ts.data, "optimizer": "ray_tune"})  # auto-ml with ray_tune
     >>> recov_data = gain_imputer.recov_data
     
    @@ -1023,7 +1023,7 @@
    Returns
    Example
    >>> imputer.score(ts.data, imputer.recov_data) # upstream
    ->>> imputer.score(ts.data, imputer.recov_data, downstream={"task": "forecast", "model": "hw-add"}) # downstream
    +>>> imputer.score(ts.data, imputer.recov_data, {"task": "forecast", "model": "hw-add", "comparator": "ZeroImputation"}) # downstream
     
    @@ -1107,7 +1107,7 @@
    Example
    >>> grin_imputer = Imputation.DeepLearning.GRIN(incomp_data)
     >>> grin_imputer.impute()  # default parameters for imputation > or
     >>> grin_imputer.impute(user_def=True, params={"d_hidden":32, "lr":0.001, "batch_size":32, "window":1, "alpha":10.0, "patience":4, "epochs":20, "workers":2})  # user defined> or
    ->>> grin_imputer.impute(user_def=False, params={"input_data": ts_1.data, "optimizer": "ray_tune"})  # auto-ml with ray_tune
    +>>> grin_imputer.impute(user_def=False, params={"input_data": ts.data, "optimizer": "ray_tune"})  # auto-ml with ray_tune
     >>> recov_data = grin_imputer.recov_data
     
    @@ -1147,7 +1147,7 @@
    Returns
    Example
    >>> imputer.score(ts.data, imputer.recov_data) # upstream
    ->>> imputer.score(ts.data, imputer.recov_data, downstream={"task": "forecast", "model": "hw-add"}) # downstream
    +>>> imputer.score(ts.data, imputer.recov_data, {"task": "forecast", "model": "hw-add", "comparator": "ZeroImputation"}) # downstream
     
    @@ -1226,7 +1226,7 @@
    Example
    >>> hkmf_t_imputer = Imputation.DeepLearning.HKMF_T(incomp_data)
     >>> hkmf_t_imputer.impute()  # default parameters for imputation > or
     >>> hkmf_t_imputer.impute(user_def=True, params={"tags":None, "data_names":None, "epoch":5})  # user defined> or
    ->>> hkmf_t_imputer.impute(user_def=False, params={"input_data": ts_1.data, "optimizer": "ray_tune"})  # auto-ml with ray_tune
    +>>> hkmf_t_imputer.impute(user_def=False, params={"input_data": ts.data, "optimizer": "ray_tune"})  # auto-ml with ray_tune
     >>> recov_data = hkmf_t_imputer.recov_data
     
    @@ -1266,7 +1266,7 @@
    Returns
    Example
    >>> imputer.score(ts.data, imputer.recov_data) # upstream
    ->>> imputer.score(ts.data, imputer.recov_data, downstream={"task": "forecast", "model": "hw-add"}) # downstream
    +>>> imputer.score(ts.data, imputer.recov_data, {"task": "forecast", "model": "hw-add", "comparator": "ZeroImputation"}) # downstream
     
    @@ -1279,7 +1279,8 @@
    Example class MPIN(incomp_data)[source]

    Bases: BaseImputer

    -

    MPIN class to impute missing values using Multi-attribute Sensor Data Streams via Message Propagation algorithm.

    +

    MPIN class to impute missing values using Multi-attribute Sensor Data Streams via Message Propagation algorithm. +Need torch-cluster to work.

    Methods
    @@ -1307,7 +1308,8 @@
    Parameters
    impute(user_def=True, params=None)[source]
    -

    Perform imputation using the MPIN algorithm.

    +

    Perform imputation using the MPIN algorithm. +Need torch-cluster to work.

    Parameters
    @@ -1350,7 +1352,7 @@
    Example
    >>> mpin_imputer = Imputation.DeepLearning.MPIN(incomp_data)
     >>> mpin_imputer.impute()  # default parameters for imputation > or
     >>> mpin_imputer.impute(params={"incre_mode": "data+state", "window": 1, "k": 15, "learning_rate": 0.001, "weight_decay": 0.2, "epochs": 6, "num_of_iteration": 6, "threshold": 0.50, "base": "GCN"})  # user-defined > or
    ->>> mpin_imputer.impute(user_def=False, params={"input_data": ts_1.data, "optimizer": "ray_tune"})  # automl with ray_tune
    +>>> mpin_imputer.impute(user_def=False, params={"input_data": ts.data, "optimizer": "ray_tune"})  # automl with ray_tune
     >>> recov_data = mpin_imputer.recov_data
     
    @@ -1390,7 +1392,7 @@
    Returns
    Example
    >>> imputer.score(ts.data, imputer.recov_data) # upstream
    ->>> imputer.score(ts.data, imputer.recov_data, downstream={"task": "forecast", "model": "hw-add"}) # downstream
    +>>> imputer.score(ts.data, imputer.recov_data, {"task": "forecast", "model": "hw-add", "comparator": "ZeroImputation"}) # downstream
     
    @@ -1478,7 +1480,7 @@
    Example
    >>> mrnn_imputer = Imputation.DeepLearning.MRNN(incomp_data)
     >>> mrnn_imputer.impute()  # default parameters for imputation > or
     >>> mrnn_imputer.impute(user_def=True, params={'hidden_dim': 10, 'learning_rate':0.01, 'iterations':50, 'sequence_length': 7})  # user-defined > or
    ->>> mrnn_imputer.impute(user_def=False, params={"input_data": ts_1.data, "optimizer": "bayesian", "options": {"n_calls": 2}})  # automl with bayesian
    +>>> mrnn_imputer.impute(user_def=False, params={"input_data": ts.data, "optimizer": "bayesian", "options": {"n_calls": 2}})  # automl with bayesian
     >>> recov_data = mrnn_imputer.recov_data
     
    @@ -1519,7 +1521,7 @@
    Returns
    Example
    >>> imputer.score(ts.data, imputer.recov_data) # upstream
    ->>> imputer.score(ts.data, imputer.recov_data, downstream={"task": "forecast", "model": "hw-add"}) # downstream
    +>>> imputer.score(ts.data, imputer.recov_data, {"task": "forecast", "model": "hw-add", "comparator": "ZeroImputation"}) # downstream
     
    @@ -1607,7 +1609,7 @@
    Example
    >>> miss_net_imputer = Imputation.DeepLearning.MissNet(incomp_data)
     >>> miss_net_imputer.impute()  # default parameters for imputation > or
     >>> miss_net_imputer.impute(user_def=True, params={'alpha': 0.5, 'beta':0.1, 'L':10, 'n_cl': 1, 'max_iteration':20, 'tol':5, 'random_init':False})  # user-defined > or
    ->>> miss_net_imputer.impute(user_def=False, params={"input_data": ts_1.data, "optimizer": "ray_tune"})  # auto-ml with ray_tune
    +>>> miss_net_imputer.impute(user_def=False, params={"input_data": ts.data, "optimizer": "ray_tune"})  # auto-ml with ray_tune
     >>> recov_data = miss_net_imputer.recov_data
     
    @@ -1647,7 +1649,7 @@
    Returns
    Example
    >>> imputer.score(ts.data, imputer.recov_data) # upstream
    ->>> imputer.score(ts.data, imputer.recov_data, downstream={"task": "forecast", "model": "hw-add"}) # downstream
    +>>> imputer.score(ts.data, imputer.recov_data, {"task": "forecast", "model": "hw-add", "comparator": "ZeroImputation"}) # downstream
     
    @@ -1724,7 +1726,7 @@
    Example
    >>> pristi_imputer = Imputation.DeepLearning.PRISTI(incomp_data)
     >>> pristi_imputer.impute()  # default parameters for imputation > or
     >>> pristi_imputer.impute(params={"target_strategy":"hybrid", "unconditional":True, "seed":42, "device":"cpu"})  # user-defined > or
    ->>> pristi_imputer.impute(user_def=False, params={"input_data": ts_1.data, "optimizer": "ray_tune"})  # automl with ray_tune
    +>>> pristi_imputer.impute(user_def=False, params={"input_data": ts.data, "optimizer": "ray_tune"})  # automl with ray_tune
     >>> recov_data = pristi_imputer.recov_data
     
    @@ -1764,7 +1766,7 @@
    Returns
    Example
    >>> imputer.score(ts.data, imputer.recov_data) # upstream
    ->>> imputer.score(ts.data, imputer.recov_data, downstream={"task": "forecast", "model": "hw-add"}) # downstream
    +>>> imputer.score(ts.data, imputer.recov_data, {"task": "forecast", "model": "hw-add", "comparator": "ZeroImputation"}) # downstream
     
    @@ -1859,7 +1861,7 @@
    Example
    >>> iim_imputer = Imputation.MachineLearning.IIM(incomp_data)
     >>> iim_imputer.impute()  # default parameters for imputation > or
     >>> iim_imputer.impute(user_def=True, params={'learning_neighbors': 10})  # user-defined  > or
    ->>> iim_imputer.impute(user_def=False, params={"input_data": ts_1.data, "optimizer": "bayesian", "options": {"n_calls": 2}})  # automl with bayesian
    +>>> iim_imputer.impute(user_def=False, params={"input_data": ts.data, "optimizer": "bayesian", "options": {"n_calls": 2}})  # automl with bayesian
     >>> recov_data = iim_imputer.recov_data
     
    @@ -1899,7 +1901,7 @@
    Returns
    Example
    >>> imputer.score(ts.data, imputer.recov_data) # upstream
    ->>> imputer.score(ts.data, imputer.recov_data, downstream={"task": "forecast", "model": "hw-add"}) # downstream
    +>>> imputer.score(ts.data, imputer.recov_data, {"task": "forecast", "model": "hw-add", "comparator": "ZeroImputation"}) # downstream
     
    @@ -1975,7 +1977,7 @@
    Example
    >>> mice_imputer = Imputation.MachineLearning.MICE(incomp_data)
     >>> mice_imputer.impute()  # default parameters for imputation > or
     >>> mice_imputer.impute(user_def=True, params={"max_iter":3, "tol":0.001, "initial_strategy":"mean", "seed": 42})  # user defined > or
    ->>> mice_imputer.impute(user_def=False, params={"input_data": ts_1.data, "optimizer": "ray_tune"})  # automl with ray_tune
    +>>> mice_imputer.impute(user_def=False, params={"input_data": ts.data, "optimizer": "ray_tune"})  # automl with ray_tune
     >>> recov_data = mice_imputer.recov_data
     
    @@ -2017,7 +2019,7 @@
    Returns
    Example
    >>> imputer.score(ts.data, imputer.recov_data) # upstream
    ->>> imputer.score(ts.data, imputer.recov_data, downstream={"task": "forecast", "model": "hw-add"}) # downstream
    +>>> imputer.score(ts.data, imputer.recov_data, {"task": "forecast", "model": "hw-add", "comparator": "ZeroImputation"}) # downstream
     
    @@ -2098,7 +2100,7 @@
    Example
    >>> mf_imputer = Imputation.MachineLearning.MissForest(incomp_data)
     >>> mf_imputer.impute()  # default parameters for imputation > or
     >>> mf_imputer.impute(user_def=True, params={"n_estimators":10, "max_iter":3, "max_features":"sqrt", "seed": 42})  # user defined > or
    ->>> mf_imputer.impute(user_def=False, params={"input_data": ts_1.data, "optimizer": "ray_tune"})  # automl with ray_tune
    +>>> mf_imputer.impute(user_def=False, params={"input_data": ts.data, "optimizer": "ray_tune"})  # automl with ray_tune
     >>> recov_data = mf_imputer.recov_data
     
    @@ -2139,7 +2141,7 @@
    Returns
    Example
    >>> imputer.score(ts.data, imputer.recov_data) # upstream
    ->>> imputer.score(ts.data, imputer.recov_data, downstream={"task": "forecast", "model": "hw-add"}) # downstream
    +>>> imputer.score(ts.data, imputer.recov_data, {"task": "forecast", "model": "hw-add", "comparator": "ZeroImputation"}) # downstream
     
    @@ -2209,7 +2211,7 @@
    Example
    >>> mxgboost_imputer = Imputation.MachineLearning.XGBOOST(incomp_data)
     >>> mxgboost_imputer.impute()  # default parameters for imputation > or
     >>> mxgboost_imputer.impute(user_def=True, params={"n_estimators":3, "seed": 42})  # user defined > or
    ->>> mxgboost_imputer.impute(user_def=False, params={"input_data": ts_1.data, "optimizer": "ray_tune"})  # automl with ray_tune
    +>>> mxgboost_imputer.impute(user_def=False, params={"input_data": ts.data, "optimizer": "ray_tune"})  # automl with ray_tune
     >>> recov_data = mxgboost_imputer.recov_data
     
    @@ -2250,7 +2252,7 @@
    Returns
    Example
    >>> imputer.score(ts.data, imputer.recov_data) # upstream
    ->>> imputer.score(ts.data, imputer.recov_data, downstream={"task": "forecast", "model": "hw-add"}) # downstream
    +>>> imputer.score(ts.data, imputer.recov_data, {"task": "forecast", "model": "hw-add", "comparator": "ZeroImputation"}) # downstream
     
    @@ -2478,7 +2480,7 @@
    Example
    >>> cdrec_imputer = Imputation.MatrixCompletion.CDRec(incomp_data)
     >>> cdrec_imputer.impute()  # default parameters for imputation > or
     >>> cdrec_imputer.impute(user_def=True, params={'rank': 5, 'epsilon': 0.01, 'iterations': 100})  # user-defined > or
    ->>> cdrec_imputer.impute(user_def=False, params={"input_data": ts_1.data, "optimizer": "bayesian", "options": {"n_calls": 2}})  # automl with bayesian
    +>>> cdrec_imputer.impute(user_def=False, params={"input_data": ts.data, "optimizer": "bayesian", "options": {"n_calls": 2}})  # automl with bayesian
     >>> recov_data = cdrec_imputer.recov_data
     
    @@ -2517,7 +2519,7 @@
    Returns
    Example
    >>> imputer.score(ts.data, imputer.recov_data) # upstream
    ->>> imputer.score(ts.data, imputer.recov_data, downstream={"task": "forecast", "model": "hw-add"}) # downstream
    +>>> imputer.score(ts.data, imputer.recov_data, {"task": "forecast", "model": "hw-add", "comparator": "ZeroImputation"}) # downstream
     
    @@ -2588,7 +2590,7 @@
    Example
    >>> grouse_imputer = Imputation.MatrixCompletion.GROUSE(incomp_data)
     >>> grouse_imputer.impute()  # default parameters for imputation > or
     >>> grouse_imputer.impute(params={'max_rank': 5}) # user-defined  > or
    ->>> grouse_imputer.impute(user_def=False, params={"input_data": ts_1.data, "optimizer": "ray_tune"})  # automl with ray_tune
    +>>> grouse_imputer.impute(user_def=False, params={"input_data": ts.data, "optimizer": "ray_tune"})  # automl with ray_tune
     >>> recov_data = grouse_imputer.recov_data
     
    @@ -2629,7 +2631,7 @@
    Returns
    Example
    >>> imputer.score(ts.data, imputer.recov_data) # upstream
    ->>> imputer.score(ts.data, imputer.recov_data, downstream={"task": "forecast", "model": "hw-add"}) # downstream
    +>>> imputer.score(ts.data, imputer.recov_data, {"task": "forecast", "model": "hw-add", "comparator": "ZeroImputation"}) # downstream
     
    @@ -2704,7 +2706,7 @@
    Example
    >>> i_svd_imputer = Imputation.MatrixCompletion.IterativeSVD(incomp_data)
     >>> i_svd_imputer.impute()  # default parameters for imputation > or
     >>> i_svd_imputer.impute(params={'rank': 5}) # user-defined  > or
    ->>> i_svd_imputer.impute(user_def=False, params={"input_data": ts_1.data, "optimizer": "ray_tune"})  # automl with ray_tune
    +>>> i_svd_imputer.impute(user_def=False, params={"input_data": ts.data, "optimizer": "ray_tune"})  # automl with ray_tune
     >>> recov_data = i_svd_imputer.recov_data
     
    @@ -2743,7 +2745,7 @@
    Returns
    Example
    >>> imputer.score(ts.data, imputer.recov_data) # upstream
    ->>> imputer.score(ts.data, imputer.recov_data, downstream={"task": "forecast", "model": "hw-add"}) # downstream
    +>>> imputer.score(ts.data, imputer.recov_data, {"task": "forecast", "model": "hw-add", "comparator": "ZeroImputation"}) # downstream
     
    @@ -2817,7 +2819,7 @@
    Example
    >>> rosl_imputer = Imputation.MatrixCompletion.ROSL(incomp_data)
     >>> rosl_imputer.impute()  # default parameters for imputation > or
     >>> rosl_imputer.impute(params={'rank': 5, 'regularization': 10}) # user-defined  > or
    ->>> rosl_imputer.impute(user_def=False, params={"input_data": ts_1.data, "optimizer": "ray_tune"})  # automl with ray_tune
    +>>> rosl_imputer.impute(user_def=False, params={"input_data": ts.data, "optimizer": "ray_tune"})  # automl with ray_tune
     >>> recov_data = rosl_imputer.recov_data
     
    @@ -2858,7 +2860,7 @@
    Returns
    Example
    >>> imputer.score(ts.data, imputer.recov_data) # upstream
    ->>> imputer.score(ts.data, imputer.recov_data, downstream={"task": "forecast", "model": "hw-add"}) # downstream
    +>>> imputer.score(ts.data, imputer.recov_data, {"task": "forecast", "model": "hw-add", "comparator": "ZeroImputation"}) # downstream
     
    @@ -2933,7 +2935,7 @@
    Example
    >>> spirit_imputer = Imputation.MatrixCompletion.SPIRIT(incomp_data)
     >>> spirit_imputer.impute()  # default parameters for imputation > or
     >>> spirit_imputer.impute(params={'k': 2, 'w': 5, 'lambda_value': 0.85}) # user-defined  > or
    ->>> spirit_imputer.impute(user_def=False, params={"input_data": ts_1.data, "optimizer": "ray_tune"})  # automl with ray_tune
    +>>> spirit_imputer.impute(user_def=False, params={"input_data": ts.data, "optimizer": "ray_tune"})  # automl with ray_tune
     >>> recov_data = spirit_imputer.recov_data
     
    @@ -2974,7 +2976,7 @@
    Returns
    Example
    >>> imputer.score(ts.data, imputer.recov_data) # upstream
    ->>> imputer.score(ts.data, imputer.recov_data, downstream={"task": "forecast", "model": "hw-add"}) # downstream
    +>>> imputer.score(ts.data, imputer.recov_data, {"task": "forecast", "model": "hw-add", "comparator": "ZeroImputation"}) # downstream
     
    @@ -3043,7 +3045,7 @@
    Example
    >>> svt_imputer = Imputation.MatrixCompletion.SVT(incomp_data)
     >>> svt_imputer.impute()  # default parameters for imputation > or
     >>> svt_imputer.impute(params={'tau': 1}) # user-defined  > or
    ->>> svt_imputer.impute(user_def=False, params={"input_data": ts_1.data, "optimizer": "ray_tune"})  # automl with ray_tune
    +>>> svt_imputer.impute(user_def=False, params={"input_data": ts.data, "optimizer": "ray_tune"})  # automl with ray_tune
     >>> recov_data = svt_imputer.recov_data
     
    @@ -3084,7 +3086,7 @@
    Returns
    Example
    >>> imputer.score(ts.data, imputer.recov_data) # upstream
    ->>> imputer.score(ts.data, imputer.recov_data, downstream={"task": "forecast", "model": "hw-add"}) # downstream
    +>>> imputer.score(ts.data, imputer.recov_data, {"task": "forecast", "model": "hw-add", "comparator": "ZeroImputation"}) # downstream
     
    @@ -3155,7 +3157,7 @@
    Example
    >>> soft_impute_imputer = Imputation.MatrixCompletion.SoftImpute(incomp_data)
     >>> soft_impute_imputer.impute()  # default parameters for imputation > or
     >>> soft_impute_imputer.impute(params={'max_rank': 5}) # user-defined  > or
    ->>> soft_impute_imputer.impute(user_def=False, params={"input_data": ts_1.data, "optimizer": "ray_tune"})  # automl with ray_tune
    +>>> soft_impute_imputer.impute(user_def=False, params={"input_data": ts.data, "optimizer": "ray_tune"})  # automl with ray_tune
     >>> recov_data = soft_impute_imputer.recov_data
     
    @@ -3196,7 +3198,7 @@
    Returns
    Example
    >>> imputer.score(ts.data, imputer.recov_data) # upstream
    ->>> imputer.score(ts.data, imputer.recov_data, downstream={"task": "forecast", "model": "hw-add"}) # downstream
    +>>> imputer.score(ts.data, imputer.recov_data, {"task": "forecast", "model": "hw-add", "comparator": "ZeroImputation"}) # downstream
     
    @@ -3281,7 +3283,7 @@
    Example
    >>> trmf_imputer = Imputation.MatrixCompletion.TRMF(incomp_data)
     >>> trmf_imputer.impute()
     >>> trmf_imputer.impute(params={"lags":[], "K":-1, "lambda_f":1.0, "lambda_x":1.0, "lambda_w":1.0, "eta":1.0, "alpha":1000.0, "max_iter":100})
    ->>> trmf_imputer.impute(user_def=False, params={"input_data": ts_1.data, "optimizer": "ray_tune"})
    +>>> trmf_imputer.impute(user_def=False, params={"input_data": ts.data, "optimizer": "ray_tune"})
     >>> recov_data = trmf_imputer.recov_data
     
    @@ -3320,7 +3322,7 @@
    Returns
    Example
    >>> imputer.score(ts.data, imputer.recov_data) # upstream
    ->>> imputer.score(ts.data, imputer.recov_data, downstream={"task": "forecast", "model": "hw-add"}) # downstream
    +>>> imputer.score(ts.data, imputer.recov_data, {"task": "forecast", "model": "hw-add", "comparator": "ZeroImputation"}) # downstream
     
    @@ -3412,7 +3414,7 @@
    Example
    >>> dynammo_imputer = Imputation.PatternSearch.DynaMMo(incomp_data)
     >>> dynammo_imputer.impute()  # default parameters for imputation > or
     >>> dynammo_imputer.impute(params={'h': 5, 'max_iteration': 100, 'approximation': True}) # user-defined  > or
    ->>> dynammo_imputer.impute(user_def=False, params={"input_data": ts_1.data, "optimizer": "ray_tune"})  # automl with ray_tune
    +>>> dynammo_imputer.impute(user_def=False, params={"input_data": ts.data, "optimizer": "ray_tune"})  # automl with ray_tune
     >>> recov_data = dynammo_imputer.recov_data
     
    @@ -3453,7 +3455,7 @@
    Returns
    Example
    >>> imputer.score(ts.data, imputer.recov_data) # upstream
    ->>> imputer.score(ts.data, imputer.recov_data, downstream={"task": "forecast", "model": "hw-add"}) # downstream
    +>>> imputer.score(ts.data, imputer.recov_data, {"task": "forecast", "model": "hw-add", "comparator": "ZeroImputation"}) # downstream
     
    @@ -3533,7 +3535,7 @@
    Example
    >>> stmvl_imputer = Imputation.PatternSearch.STMVL(incomp_data)
     >>> stmvl_imputer.impute()  # default parameters for imputation > or
     >>> stmvl_imputer.impute(user_def=True, params={'window_size': 7, 'learning_rate':0.01, 'gamma':0.85, 'alpha': 7})  # user-defined  > or
    ->>> stmvl_imputer.impute(user_def=False, params={"input_data": ts_1.data, "optimizer": "bayesian", "options": {"n_calls": 2}})  # automl with bayesian
    +>>> stmvl_imputer.impute(user_def=False, params={"input_data": ts.data, "optimizer": "bayesian", "options": {"n_calls": 2}})  # automl with bayesian
     >>> recov_data = stmvl_imputer.recov_data
     
    @@ -3573,7 +3575,7 @@
    Returns
    Example
    >>> imputer.score(ts.data, imputer.recov_data) # upstream
    ->>> imputer.score(ts.data, imputer.recov_data, downstream={"task": "forecast", "model": "hw-add"}) # downstream
    +>>> imputer.score(ts.data, imputer.recov_data, {"task": "forecast", "model": "hw-add", "comparator": "ZeroImputation"}) # downstream
     
    @@ -3641,7 +3643,7 @@
    Example
    >>> tkcm_imputer = Imputation.PatternSearch.TKCM(incomp_data)
     >>> tkcm_imputer.impute()  # default parameters for imputation > or
     >>> tkcm_imputer.impute(params={'rank': 5})  # user-defined > or
    ->>> tkcm_imputer.impute(user_def=False, params={"input_data": ts_1.data, "optimizer": "ray_tune"})  # automl with ray_tune
    +>>> tkcm_imputer.impute(user_def=False, params={"input_data": ts.data, "optimizer": "ray_tune"})  # automl with ray_tune
     >>> recov_data = tkcm_imputer.recov_data
     
    @@ -3682,7 +3684,7 @@
    Returns
    Example
    >>> imputer.score(ts.data, imputer.recov_data) # upstream
    ->>> imputer.score(ts.data, imputer.recov_data, downstream={"task": "forecast", "model": "hw-add"}) # downstream
    +>>> imputer.score(ts.data, imputer.recov_data, {"task": "forecast", "model": "hw-add", "comparator": "ZeroImputation"}) # downstream
     
    @@ -3710,7 +3712,7 @@

    Subclasses

    Interpolation :

    Imputation method that replaces missing values with the Interpolation

    -
    KNN :

    Imputation method that replaces missing values with KNN logic

    +
    KNNImpute :

    Imputation method that replaces missing values with KNNImpute logic

    @@ -3767,7 +3769,7 @@
    Example
    >>> interpolation_imputer = Imputation.Statistics.Interpolation(incomp_data)
     >>> interpolation_imputer.impute()  # default parameters for imputation > or
     >>> interpolation_imputer.impute(user_def=True, params={"method":"linear", "poly_order":2})  # user-defined > or
    ->>> interpolation_imputer.impute(user_def=False, params={"input_data": ts_1.data, "optimizer": "ray_tune"})  # automl with ray_tune
    +>>> interpolation_imputer.impute(user_def=False, params={"input_data": ts.data, "optimizer": "ray_tune"})  # automl with ray_tune
     >>> recov_data = interpolation_imputer.recov_data
     
    @@ -3802,7 +3804,7 @@
    Returns
    Example
    >>> imputer.score(ts.data, imputer.recov_data) # upstream
    ->>> imputer.score(ts.data, imputer.recov_data, downstream={"task": "forecast", "model": "hw-add"}) # downstream
    +>>> imputer.score(ts.data, imputer.recov_data, {"task": "forecast", "model": "hw-add", "comparator": "ZeroImputation"}) # downstream
     
    @@ -3812,10 +3814,10 @@
    Example
    -
    -class KNN(incomp_data)[source]
    +
    +class KNNImpute(incomp_data)[source]

    Bases: BaseImputer

    -

    KNN class to impute missing values with K-Nearest Neighbor algorithm

    +

    KNNImpute class to impute missing values with K-Nearest Neighbor algorithm

    Methods
    @@ -3823,8 +3825,8 @@
    Methods
    -
    -__init__(incomp_data)
    +
    +__init__(incomp_data)

    Initialize the BaseImputer with an infected time series matrix.

    Parameters
    @@ -3836,20 +3838,20 @@
    Parameters
    -
    -algorithm = 'knn'
    +
    +algorithm = 'knn_impute'
    -
    -impute(user_def=True, params=None)[source]
    +
    +impute(user_def=True, params=None)[source]

    Impute missing values by replacing them with the K-Nearest Neighbor value

    Parameters
    user_defbool, optional

    Whether to use user-defined or default parameters (default is True).

    -
    paramsdict, optional

    Parameters of the KNN algorithm, if None, default ones are loaded.

    +
    paramsdict, optional

    Parameters of the KNNImpute algorithm, if None, default ones are loaded.

    Algorithm parameters: k : int, optional

    @@ -3865,16 +3867,16 @@
    Parameters
    Returns
    -
    selfKNN

    The object with recov_data set.

    +
    selfKNNImpute

    The object with recov_data set.

    Example
    -
    >>> knn_imputer = Imputation.Statistics.KNN(incomp_data)
    +
    >>> knn_imputer = Imputation.Statistics.KNNImpute(incomp_data)
     >>> knn_imputer.impute()  # default parameters for imputation > or
     >>> knn_imputer.impute(user_def=True, params={'k': 5, 'weights': "uniform"})  # user-defined > or
    ->>> knn_imputer.impute(user_def=False, params={"input_data": ts_1.data, "optimizer": "ray_tune"})  # automl with ray_tune
    +>>> knn_imputer.impute(user_def=False, params={"input_data": ts.data, "optimizer": "ray_tune"})  # automl with ray_tune
     >>> recov_data = knn_imputer.recov_data
     
    @@ -3882,13 +3884,13 @@
    Example
    -
    -logs = True
    +
    +logs = True
    -
    -score(input_data, recov_data=None, downstream=None)
    +
    +score(input_data, recov_data=None, downstream=None)

    Compute evaluation metrics for the imputed time series.

    Parameters
    @@ -3909,7 +3911,7 @@
    Returns
    Example
    >>> imputer.score(ts.data, imputer.recov_data) # upstream
    ->>> imputer.score(ts.data, imputer.recov_data, downstream={"task": "forecast", "model": "hw-add"}) # downstream
    +>>> imputer.score(ts.data, imputer.recov_data, {"task": "forecast", "model": "hw-add", "comparator": "ZeroImputation"}) # downstream
     
    @@ -3996,7 +3998,7 @@
    Returns
    Example
    >>> imputer.score(ts.data, imputer.recov_data) # upstream
    ->>> imputer.score(ts.data, imputer.recov_data, downstream={"task": "forecast", "model": "hw-add"}) # downstream
    +>>> imputer.score(ts.data, imputer.recov_data, {"task": "forecast", "model": "hw-add", "comparator": "ZeroImputation"}) # downstream
     
    @@ -4075,7 +4077,7 @@
    Returns
    Example
    >>> imputer.score(ts.data, imputer.recov_data) # upstream
    ->>> imputer.score(ts.data, imputer.recov_data, downstream={"task": "forecast", "model": "hw-add"}) # downstream
    +>>> imputer.score(ts.data, imputer.recov_data, {"task": "forecast", "model": "hw-add", "comparator": "ZeroImputation"}) # downstream
     
    @@ -4162,7 +4164,7 @@
    Returns
    Example
    >>> imputer.score(ts.data, imputer.recov_data) # upstream
    ->>> imputer.score(ts.data, imputer.recov_data, downstream={"task": "forecast", "model": "hw-add"}) # downstream
    +>>> imputer.score(ts.data, imputer.recov_data, {"task": "forecast", "model": "hw-add", "comparator": "ZeroImputation"}) # downstream
     
    @@ -4249,7 +4251,7 @@
    Returns
    Example
    >>> imputer.score(ts.data, imputer.recov_data) # upstream
    ->>> imputer.score(ts.data, imputer.recov_data, downstream={"task": "forecast", "model": "hw-add"}) # downstream
    +>>> imputer.score(ts.data, imputer.recov_data, {"task": "forecast", "model": "hw-add", "comparator": "ZeroImputation"}) # downstream
     
    @@ -4589,12 +4591,12 @@

    ReturnsImputation.Statistics.Interpolation.score() -
  • Imputation.Statistics.KNN
  • -
    -overlap(rate_series=0.2, limit=1, shift=0.05, offset=0.1)[source]
    -

    Apply overlap contamination to the time series data.

    +
    +missing_completely_at_random(rate_dataset=0.2, rate_series=0.2, block_size=10, offset=0.1, seed=True, explainer=False)
    +

    Apply Missing Completely at Random (MCAR) contamination to the time series data.

    Parameters
    input_datanumpy.ndarray

    The time series dataset to contaminate.

    -
    rate_seriesfloat, optional

    Percentage of missing values per series (default is 0.2).

    +
    rate_datasetfloat, optional

    Percentage of series to contaminate (default is 0.2).

    -
    limitfloat, optional

    Percentage expressing the limit index of the end of the contamination (default is 1: all length).

    +
    rate_seriesfloat, optional

    Percentage of missing values per series (default is 0.2).

    -
    shiftfloat, optional

    Percentage of shift inside each the last disjoint contamination.

    +
    block_sizeint, optional

    Size of the block of missing data (default is 10).

    offsetfloat, optional

    Size of the uncontaminated section at the beginning of the series (default is 0.1).

    +
    seedbool, optional

    Whether to use a seed for reproducibility (default is True).

    +
    +
    explainerbool, optional

    Whether to apply MCAR to specific series for explanation purposes (default is False).

    +
    @@ -598,7 +602,7 @@
    Returns
    Example
    -
    >>> ts_m = ts.Contamination.overlap(ts.data, rate_series=0.1, limit=1, shift=0.05, offset=0.1)
    +
    >>> ts_m = ts.Contamination.mcar(ts.data, rate_dataset=0.2, rate_series=0.4, block_size=10, seed=True)
     
    @@ -611,9 +615,9 @@
    References
    -
    -scattered(rate_dataset=0.2, rate_series=0.2, offset=0.1, seed=True)[source]
    -

    Apply percentage shift contamination with random starting position to the time series data.

    +
    +missing_percentage(rate_dataset=0.2, rate_series=0.2, offset=0.1)
    +

    Apply aligned missing blocks contamination to the time series data.

    Parameters
    @@ -625,8 +629,6 @@
    Parameters
    offsetfloat, optional

    Size of the uncontaminated section at the beginning of the series (default is 0.1).

    -
    seedbool, optional

    Whether to use a seed for reproducibility (default is True).

    -
    @@ -638,7 +640,7 @@
    Returns
    Example
    -
    >>> ts_m = ts.Contamination.scattered(ts.data, rate_dataset=0.2, rate_series=0.4, offset=0.1)
    +
    >>> ts_m = ts.Contamination.aligned(ts.data, rate_dataset=0.2, rate_series=0.4, offset=0.1)
     
    @@ -650,6 +652,124 @@
    References
    +
    +
    +mp(rate_dataset=0.2, rate_series=0.2, offset=0.1)
    +

    Apply aligned missing blocks contamination to the time series data.

    +
    +
    Parameters
    +
    +
    input_datanumpy.ndarray

    The time series dataset to contaminate.

    +
    +
    rate_datasetfloat, optional

    Percentage of series to contaminate (default is 0.2).

    +
    +
    rate_seriesfloat, optional

    Percentage of missing values per series (default is 0.2).

    +
    +
    offsetfloat, optional

    Size of the uncontaminated section at the beginning of the series (default is 0.1).

    +
    +
    +
    +
    +
    Returns
    +
    +
    numpy.ndarray

    The contaminated time series data.

    +
    +
    +
    +
    +
    Example
    +
    >>> ts_m = ts.Contamination.aligned(ts.data, rate_dataset=0.2, rate_series=0.4, offset=0.1)
    +
    +
    +
    +
    +
    References
    +
    +
    +
    +
    + +
    +
    +overlap(rate_series=0.2, limit=1, shift=0.05, offset=0.1)[source]
    +

    Apply overlap contamination to the time series data.

    +
    +
    Parameters
    +
    +
    input_datanumpy.ndarray

    The time series dataset to contaminate.

    +
    +
    rate_seriesfloat, optional

    Percentage of missing values per series (default is 0.2).

    +
    +
    limitfloat, optional

    Percentage expressing the limit index of the end of the contamination (default is 1: all length).

    +
    +
    shiftfloat, optional

    Percentage of shift inside each the last disjoint contamination.

    +
    +
    offsetfloat, optional

    Size of the uncontaminated section at the beginning of the series (default is 0.1).

    +
    +
    +
    +
    +
    Returns
    +
    +
    numpy.ndarray

    The contaminated time series data.

    +
    +
    +
    +
    +
    Example
    +
    >>> ts_m = ts.Contamination.overlap(ts.data, rate_series=0.1, limit=1, shift=0.05, offset=0.1)
    +
    +
    +
    +
    +
    References
    +
    +
    +
    +
    + +
    +
    +scattered(rate_dataset=0.2, rate_series=0.2, offset=0.1, seed=True)[source]
    +

    Apply percentage shift contamination with random starting position to the time series data.

    +
    +
    Parameters
    +
    +
    input_datanumpy.ndarray

    The time series dataset to contaminate.

    +
    +
    rate_datasetfloat, optional

    Percentage of series to contaminate (default is 0.2).

    +
    +
    rate_seriesfloat, optional

    Percentage of missing values per series (default is 0.2).

    +
    +
    offsetfloat, optional

    Size of the uncontaminated section at the beginning of the series (default is 0.1).

    +
    +
    seedbool, optional

    Whether to use a seed for reproducibility (default is True).

    +
    +
    +
    +
    +
    Returns
    +
    +
    numpy.ndarray

    The contaminated time series data.

    +
    +
    +
    +
    +
    Example
    +
    >>> ts_m = ts.Contamination.scattered(ts.data, rate_dataset=0.2, rate_series=0.4, offset=0.1)
    +
    +
    +
    +
    +
    References
    +
    +
    +
    +
    + @@ -659,15 +779,15 @@
    References

    Imports a matrix of time series data.

    The data can be provided as a list or a NumPy array. The format is (Series, Values), where series are separated by space, and values are separated by newline characters.

    -
    -

    Parameters

    +
    +

    Parameters

    datalist or numpy.ndarray, optional

    The matrix of time series data to import.

    -
    -

    Returns

    +
    +

    Returns

    TimeSeries

    The TimeSeries object with the imported data.

    @@ -681,8 +801,8 @@

    Returns

    Loads time series data from a file or predefined dataset.

    The data is loaded as a matrix of shape (Values, Series). You can limit the number of series or values per series for computational efficiency.

    -
    -

    Parameters

    +
    +

    Parameters

    datastr

    The file path or name of a predefined dataset (e.g., ‘bafu.txt’).

    @@ -696,15 +816,15 @@

    Parameters

    -
    -

    Returns

    +
    +

    Returns

    TimeSeries

    The TimeSeries object with the loaded data.

    -
    -

    Example

    +
    +

    Example

    >>> ts.load_series(utils.search_path("eeg-alcohol"), nbr_series=50, nbr_val=100)
     
    @@ -717,22 +837,22 @@

    Example

    Normalize the time series dataset.

    Supported normalization techniques are “z_score” and “min_max”. The method also logs the execution time for the normalization process.

    -
    -

    Parameters

    +
    +

    Parameters

    normalizerstr, optional

    The normalization technique to use. Options are “z_score” or “min_max”. Default is “z_score”.

    -
    -

    Returns

    +
    +

    Returns

    numpy.ndarray

    The normalized time series data.

    -
    -

    Example

    +
    +

    Example

    >>> ts.normalize(normalizer="z_score")
     
    @@ -741,10 +861,10 @@

    Example
    -plot(input_data, incomp_data=None, recov_data=None, nbr_series=None, nbr_val=None, series_range=None, subplot=False, size=(16, 8), save_path='./imputegap_assets', display=True)[source]
    +plot(input_data, incomp_data=None, recov_data=None, nbr_series=None, nbr_val=None, series_range=None, subplot=False, size=(16, 8), algorithm=None, save_path='./imputegap_assets', display=True)[source]

    Plot the time series data, including raw, contaminated, or imputed data.

    -
    -

    Parameters

    +
    +

    Parameters

    input_datanumpy.ndarray

    The original time series data without contamination.

    @@ -762,21 +882,23 @@

    Parameters

    sizetuple, optional

    Size of the plot in inches. Default is (16, 8).

    +
    algorithmstr, optional

    Name of the algorithm used for imputation.

    +
    save_pathstr, optional

    Path to save the plot locally.

    displaybool, optional

    Whether to display the plot. Default is True.

    -
    -

    Returns

    +
    +

    Returns

    str or None

    The file path of the saved plot, if applicable.

    -
    -

    Example

    +
    +

    Example

    >>> ts.plot(input_data=ts.data, nbr_series=9, nbr_val=100, save_path="./imputegap_assets") # plain data
     >>> ts.plot(ts.data, ts_m, nbr_series=9, subplot=True, save_path="./imputegap_assets") # contamination
     >>> ts.plot(input_data=ts.data, incomp_data=ts_m, recov_data=imputer.recov_data, nbr_series=9, subplot=True, save_path="./imputegap_assets") # imputation
    @@ -789,8 +911,8 @@ 

    Example print(nbr_val=10, nbr_series=7, view_by_series=False)[source]

    Prints a limited number of time series from the dataset.

    -
    -

    Parameters

    +
    +

    Parameters

    nbr_val : int, optional The number of timestamps to print. Default is 15. Use -1 for no restriction. nbr_series : int, optional @@ -798,18 +920,18 @@

    Parameters¶ view_by_series : bool, optional Whether to view by series (True) or by values (False).

    -
    -

    Returns

    +
    +

    Returns

    None

    -print_results(metrics, algorithm='', text='Imputation Results of')[source]
    +print_results(metrics, algorithm='', text='Results of the analysis')[source]

    Prints the results of the imputation process.

    -
    -

    Parameters

    +
    +

    Parameters

    metricsdict

    A dictionary containing the imputation metrics to display.

    @@ -819,12 +941,12 @@

    Parameters

    -
    -

    Returns

    +
    +

    Returns

    None

    -
    -

    Example

    +
    +

    Example

    >>> ts.print_results(imputer.metrics, imputer.algorithm)
     
    @@ -834,6 +956,11 @@

    Example +
    +
    +imputegap.recovery.manager.select_backend()[source]
    +
    +

    @@ -903,6 +1030,9 @@

    ExampleTimeSeries.Contamination.distribution()
  • TimeSeries.Contamination.gaussian()
  • TimeSeries.Contamination.mcar()
  • +
  • TimeSeries.Contamination.missing_completely_at_random()
  • +
  • TimeSeries.Contamination.missing_percentage()
  • +
  • TimeSeries.Contamination.mp()
  • TimeSeries.Contamination.overlap()
  • TimeSeries.Contamination.scattered()
  • @@ -915,6 +1045,7 @@

    ExampleTimeSeries.print_results() +
  • select_backend()
  • @@ -928,7 +1059,7 @@

    Example - + diff --git a/docs/generation/build/html/imputegap.mean_impute.html b/docs/generation/build/html/imputegap.mean_impute.html index 8a463c78..d3046dff 100644 --- a/docs/generation/build/html/imputegap.mean_impute.html +++ b/docs/generation/build/html/imputegap.mean_impute.html @@ -6,7 +6,7 @@ - imputegap.algorithms.mean_impute package - imputegap 1.0.5 documentation + imputegap.algorithms.mean_impute package - imputegap 1.0.7 documentation @@ -168,7 +168,7 @@
    @@ -195,7 +195,7 @@
    - imputegap 1.0.5 documentation + imputegap 1.0.7 documentation @@ -390,7 +390,7 @@

    Example

    - + diff --git a/docs/generation/build/html/imputegap.min_impute.html b/docs/generation/build/html/imputegap.min_impute.html index 4ee78a5f..9261e7a2 100644 --- a/docs/generation/build/html/imputegap.min_impute.html +++ b/docs/generation/build/html/imputegap.min_impute.html @@ -6,7 +6,7 @@ - imputegap.algorithms.min_impute package - imputegap 1.0.5 documentation + imputegap.algorithms.min_impute package - imputegap 1.0.7 documentation @@ -168,7 +168,7 @@
    @@ -195,7 +195,7 @@
    - imputegap 1.0.5 documentation + imputegap 1.0.7 documentation @@ -390,7 +390,7 @@

    Example

    - + diff --git a/docs/generation/build/html/imputegap.mrnn.html b/docs/generation/build/html/imputegap.mrnn.html index dbda5f6d..f64bcd13 100644 --- a/docs/generation/build/html/imputegap.mrnn.html +++ b/docs/generation/build/html/imputegap.mrnn.html @@ -6,7 +6,7 @@ - imputegap.algorithms.mrnn package - imputegap 1.0.5 documentation + imputegap.algorithms.mrnn package - imputegap 1.0.7 documentation @@ -168,7 +168,7 @@
    @@ -195,7 +195,7 @@
    - imputegap 1.0.5 documentation + imputegap 1.0.7 documentation @@ -401,7 +401,7 @@

    References +

    diff --git a/docs/generation/build/html/imputegap.optimization.html b/docs/generation/build/html/imputegap.optimization.html index d92c576e..c4943b54 100644 --- a/docs/generation/build/html/imputegap.optimization.html +++ b/docs/generation/build/html/imputegap.optimization.html @@ -6,7 +6,7 @@ - imputegap.recovery.optimization package - imputegap 1.0.5 documentation + imputegap.recovery.optimization package - imputegap 1.0.7 documentation @@ -168,7 +168,7 @@
    @@ -195,7 +195,7 @@
    - imputegap 1.0.5 documentation + imputegap 1.0.7 documentation @@ -641,7 +641,7 @@

    Returns

    - + diff --git a/docs/generation/build/html/imputegap.stmvl.html b/docs/generation/build/html/imputegap.stmvl.html index e8b2b998..26b66c42 100644 --- a/docs/generation/build/html/imputegap.stmvl.html +++ b/docs/generation/build/html/imputegap.stmvl.html @@ -6,7 +6,7 @@ - imputegap.algorithms.stmvl package - imputegap 1.0.5 documentation + imputegap.algorithms.stmvl package - imputegap 1.0.7 documentation @@ -168,7 +168,7 @@
    @@ -195,7 +195,7 @@
    - imputegap 1.0.5 documentation + imputegap 1.0.7 documentation @@ -418,7 +418,7 @@

    References +

    diff --git a/docs/generation/build/html/imputegap.tools.html b/docs/generation/build/html/imputegap.tools.html index a0a18d83..5f73a072 100644 --- a/docs/generation/build/html/imputegap.tools.html +++ b/docs/generation/build/html/imputegap.tools.html @@ -6,7 +6,7 @@ - imputegap.tools package - imputegap 1.0.5 documentation + imputegap.tools package - imputegap 1.0.7 documentation @@ -168,7 +168,7 @@
    @@ -195,7 +195,7 @@
    - imputegap 1.0.5 documentation + imputegap 1.0.7 documentation @@ -336,7 +336,7 @@

    Submodule Documentation

    - + diff --git a/docs/generation/build/html/imputegap.utils.html b/docs/generation/build/html/imputegap.utils.html index b9d3bdb3..cfed2d10 100644 --- a/docs/generation/build/html/imputegap.utils.html +++ b/docs/generation/build/html/imputegap.utils.html @@ -6,7 +6,7 @@ - imputegap.tools.utils package - imputegap 1.0.5 documentation + imputegap.tools.utils package - imputegap 1.0.7 documentation @@ -168,7 +168,7 @@
    @@ -195,7 +195,7 @@
    - imputegap 1.0.5 documentation + imputegap 1.0.7 documentation @@ -643,7 +643,7 @@

    Notes

    - + diff --git a/docs/generation/build/html/imputegap.wrapper.html b/docs/generation/build/html/imputegap.wrapper.html index b7d7b734..2787830f 100644 --- a/docs/generation/build/html/imputegap.wrapper.html +++ b/docs/generation/build/html/imputegap.wrapper.html @@ -6,7 +6,7 @@ - imputegap.wrapper package - imputegap 1.0.5 documentation + imputegap.wrapper package - imputegap 1.0.7 documentation @@ -168,7 +168,7 @@
    @@ -195,7 +195,7 @@
    - imputegap 1.0.5 documentation + imputegap 1.0.7 documentation @@ -338,7 +338,7 @@

    Submodules +

    diff --git a/docs/generation/build/html/imputegap.zero_impute.html b/docs/generation/build/html/imputegap.zero_impute.html index c8e4cd10..cc7ec139 100644 --- a/docs/generation/build/html/imputegap.zero_impute.html +++ b/docs/generation/build/html/imputegap.zero_impute.html @@ -6,7 +6,7 @@ - imputegap.algorithms.zero_impute package - imputegap 1.0.5 documentation + imputegap.algorithms.zero_impute package - imputegap 1.0.7 documentation @@ -168,7 +168,7 @@
    @@ -195,7 +195,7 @@
    - imputegap 1.0.5 documentation + imputegap 1.0.7 documentation @@ -394,7 +394,7 @@

    Example

    - + diff --git a/docs/generation/build/html/index.html b/docs/generation/build/html/index.html index 4117b866..2d8def95 100644 --- a/docs/generation/build/html/index.html +++ b/docs/generation/build/html/index.html @@ -6,7 +6,7 @@ - imputegap 1.0.5 documentation + imputegap 1.0.7 documentation @@ -168,7 +168,7 @@
    @@ -195,7 +195,7 @@
    - imputegap 1.0.5 documentation + imputegap 1.0.7 documentation @@ -432,7 +432,7 @@

    - + diff --git a/docs/generation/build/html/modules.html b/docs/generation/build/html/modules.html index d1383199..2971ef25 100644 --- a/docs/generation/build/html/modules.html +++ b/docs/generation/build/html/modules.html @@ -6,7 +6,7 @@ - imputegap - imputegap 1.0.5 documentation + imputegap - imputegap 1.0.7 documentation @@ -168,7 +168,7 @@
    @@ -195,7 +195,7 @@
    - imputegap 1.0.5 documentation + imputegap 1.0.7 documentation @@ -386,7 +386,7 @@

    imputegap +

    diff --git a/docs/generation/build/html/modules/imputegap/algorithms/cdrec.html b/docs/generation/build/html/modules/imputegap/algorithms/cdrec.html index 7598ce59..00679a17 100644 --- a/docs/generation/build/html/modules/imputegap/algorithms/cdrec.html +++ b/docs/generation/build/html/modules/imputegap/algorithms/cdrec.html @@ -5,7 +5,7 @@ - imputegap.algorithms.cdrec - imputegap 1.0.5 documentation + imputegap.algorithms.cdrec - imputegap 1.0.7 documentation @@ -167,7 +167,7 @@
    @@ -194,7 +194,7 @@
    - imputegap 1.0.5 documentation + imputegap 1.0.7 documentation @@ -297,7 +297,7 @@

    Source code for imputegap.algorithms.cdrec

         Khayati, M., Cudré-Mauroux, P. & Böhlen, M.H. Scalable recovery of missing blocks in time series with high and low cross-correlations. Knowl Inf Syst 62, 2257–2280 (2020). https://doi.org/10.1007/s10115-019-01421-7
         """
     
    -    shared_lib = utils.load_share_lib("lib_cdrec.so")
    +    shared_lib = utils.load_share_lib("lib_cdrec")
     
         __py_n = len(__py_matrix);
         __py_m = len(__py_matrix[0]);
    @@ -358,7 +358,7 @@ 

    Source code for imputegap.algorithms.cdrec

     
         """
     
    -    print(f"\t\t\t\t(PYTHON) CDRec: ({incomp_data.shape[0]},{incomp_data.shape[1]}) for rank {truncation_rank}, "
    +    print(f"(PYTHON) CDRec: ({incomp_data.shape[0]},{incomp_data.shape[1]}) for rank {truncation_rank}, "
               f"epsilon {epsilon}, and iterations {iterations}...")
     
         start_time = time.time()  # Record start time
    @@ -369,7 +369,7 @@ 

    Source code for imputegap.algorithms.cdrec

         end_time = time.time()
     
         if logs:
    -        print(f"\n\t\t> logs, imputation cdrec - Execution Time: {(end_time - start_time):.4f} seconds\n")
    +        print(f"\n\t> logs, imputation cdrec - Execution Time: {(end_time - start_time):.4f} seconds\n")
     
         return recov_data
    @@ -405,7 +405,7 @@

    Source code for imputegap.algorithms.cdrec

           
         
       
    -
    +
    diff --git a/docs/generation/build/html/modules/imputegap/algorithms/iim.html b/docs/generation/build/html/modules/imputegap/algorithms/iim.html index 16494ef6..a2f4af83 100644 --- a/docs/generation/build/html/modules/imputegap/algorithms/iim.html +++ b/docs/generation/build/html/modules/imputegap/algorithms/iim.html @@ -5,7 +5,7 @@ - imputegap.algorithms.iim - imputegap 1.0.5 documentation + imputegap.algorithms.iim - imputegap 1.0.7 documentation @@ -167,7 +167,7 @@
    @@ -194,7 +194,7 @@
    - imputegap 1.0.5 documentation + imputegap 1.0.7 documentation @@ -313,7 +313,7 @@

    Source code for imputegap.algorithms.iim

     
         end_time = time.time()
         if logs:
    -        print(f"\n\t\t> logs, imputation iim - Execution Time: {(end_time - start_time):.4f} seconds\n")
    +        print(f"\n\t> logs, imputation iim - Execution Time: {(end_time - start_time):.4f} seconds\n")
     
         return recov_data
    @@ -349,7 +349,7 @@

    Source code for imputegap.algorithms.iim

           
         
       
    -
    + diff --git a/docs/generation/build/html/modules/imputegap/algorithms/mean_impute.html b/docs/generation/build/html/modules/imputegap/algorithms/mean_impute.html index 31858fc8..bde45be0 100644 --- a/docs/generation/build/html/modules/imputegap/algorithms/mean_impute.html +++ b/docs/generation/build/html/modules/imputegap/algorithms/mean_impute.html @@ -5,7 +5,7 @@ - imputegap.algorithms.mean_impute - imputegap 1.0.5 documentation + imputegap.algorithms.mean_impute - imputegap 1.0.7 documentation @@ -167,7 +167,7 @@
    @@ -194,7 +194,7 @@
    - imputegap 1.0.5 documentation + imputegap 1.0.7 documentation @@ -340,7 +340,7 @@

    Source code for imputegap.algorithms.mean_impute

    -
    + diff --git a/docs/generation/build/html/modules/imputegap/algorithms/min_impute.html b/docs/generation/build/html/modules/imputegap/algorithms/min_impute.html index 404cf45b..655a0e96 100644 --- a/docs/generation/build/html/modules/imputegap/algorithms/min_impute.html +++ b/docs/generation/build/html/modules/imputegap/algorithms/min_impute.html @@ -5,7 +5,7 @@ - imputegap.algorithms.min_impute - imputegap 1.0.5 documentation + imputegap.algorithms.min_impute - imputegap 1.0.7 documentation @@ -167,7 +167,7 @@
    @@ -194,7 +194,7 @@
    - imputegap 1.0.5 documentation + imputegap 1.0.7 documentation @@ -340,7 +340,7 @@

    Source code for imputegap.algorithms.min_impute

    <
    -
    + diff --git a/docs/generation/build/html/modules/imputegap/algorithms/mrnn.html b/docs/generation/build/html/modules/imputegap/algorithms/mrnn.html index d64b105d..a4ecc248 100644 --- a/docs/generation/build/html/modules/imputegap/algorithms/mrnn.html +++ b/docs/generation/build/html/modules/imputegap/algorithms/mrnn.html @@ -5,7 +5,7 @@ - imputegap.algorithms.mrnn - imputegap 1.0.5 documentation + imputegap.algorithms.mrnn - imputegap 1.0.7 documentation @@ -167,7 +167,7 @@
    @@ -194,7 +194,7 @@
    - imputegap 1.0.5 documentation + imputegap 1.0.7 documentation @@ -316,7 +316,7 @@

    Source code for imputegap.algorithms.mrnn

     
         end_time = time.time()
         if logs:
    -        print(f"\n\t\t> logs, imputation mrnn - Execution Time: {(end_time - start_time):.4f} seconds\n")
    +        print(f"\n\t> logs, imputation mrnn - Execution Time: {(end_time - start_time):.4f} seconds\n")
     
         return recov_data
    @@ -352,7 +352,7 @@

    Source code for imputegap.algorithms.mrnn

           
         
       
    -
    + diff --git a/docs/generation/build/html/modules/imputegap/algorithms/stmvl.html b/docs/generation/build/html/modules/imputegap/algorithms/stmvl.html index 5c3c6cb6..fefbf6d6 100644 --- a/docs/generation/build/html/modules/imputegap/algorithms/stmvl.html +++ b/docs/generation/build/html/modules/imputegap/algorithms/stmvl.html @@ -5,7 +5,7 @@ - imputegap.algorithms.stmvl - imputegap 1.0.5 documentation + imputegap.algorithms.stmvl - imputegap 1.0.7 documentation @@ -167,7 +167,7 @@
    @@ -194,7 +194,7 @@
    - imputegap 1.0.5 documentation + imputegap 1.0.7 documentation @@ -307,7 +307,7 @@

    Source code for imputegap.algorithms.stmvl

         School of Information Science and Technology, Southwest Jiaotong University; Microsoft Research; Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences.
         """
     
    -    shared_lib = utils.load_share_lib("lib_stmvl.so")
    +    shared_lib = utils.load_share_lib("lib_stmvl")
     
         __py_sizen = len(__py_matrix);
         __py_sizem = len(__py_matrix[0]);
    @@ -355,6 +355,9 @@ 

    Source code for imputegap.algorithms.stmvl

         :return: recov_data, metrics : all time series with imputation data and their metrics
     
         """
    +    print(f"(PYTHON) ST-MVL: ({incomp_data.shape[0]},{incomp_data.shape[1]}) for window_size {window_size}, "
    +          f"gamma {gamma}, and alpha {alpha}...")
    +
         start_time = time.time()  # Record start time
     
         # Call the C++ function to perform recovery
    @@ -362,7 +365,7 @@ 

    Source code for imputegap.algorithms.stmvl

     
         end_time = time.time()
         if logs:
    -        print(f"\n\t\t> logs, imputation stvml - Execution Time: {(end_time - start_time):.4f} seconds\n")
    +        print(f"\n\t> logs, imputation stvml - Execution Time: {(end_time - start_time):.4f} seconds\n")
     
         return recov_data
    @@ -398,7 +401,7 @@

    Source code for imputegap.algorithms.stmvl

           
         
       
    -
    +
    diff --git a/docs/generation/build/html/modules/imputegap/algorithms/zero_impute.html b/docs/generation/build/html/modules/imputegap/algorithms/zero_impute.html index 17b77ffc..34a2f05f 100644 --- a/docs/generation/build/html/modules/imputegap/algorithms/zero_impute.html +++ b/docs/generation/build/html/modules/imputegap/algorithms/zero_impute.html @@ -5,7 +5,7 @@ - imputegap.algorithms.zero_impute - imputegap 1.0.5 documentation + imputegap.algorithms.zero_impute - imputegap 1.0.7 documentation @@ -167,7 +167,7 @@
    @@ -194,7 +194,7 @@
    - imputegap 1.0.5 documentation + imputegap 1.0.7 documentation @@ -335,7 +335,7 @@

    Source code for imputegap.algorithms.zero_impute

    -
    + diff --git a/docs/generation/build/html/modules/imputegap/recovery/benchmark.html b/docs/generation/build/html/modules/imputegap/recovery/benchmark.html index 4d8b06df..c60736e2 100644 --- a/docs/generation/build/html/modules/imputegap/recovery/benchmark.html +++ b/docs/generation/build/html/modules/imputegap/recovery/benchmark.html @@ -5,7 +5,7 @@ - imputegap.recovery.benchmark - imputegap 1.0.5 documentation + imputegap.recovery.benchmark - imputegap 1.0.7 documentation @@ -167,7 +167,7 @@
    @@ -194,7 +194,7 @@
    - imputegap 1.0.5 documentation + imputegap 1.0.7 documentation @@ -270,7 +270,6 @@

    Source code for imputegap.recovery.benchmark

    import time
     import numpy as np
     import matplotlib.pyplot as plt
    -
     import xlsxwriter
     
     from imputegap.tools import utils
    @@ -460,9 +459,9 @@ 

    Source code for imputegap.recovery.benchmark

    for j, algo in enumerate(algorithms_list):
                     comprehensive_matrix[i, j] = average_rmse_matrix[dataset].get(algo, np.nan)
     
    -        print("\nVisualization of datasets:", datasets_list)
    -        print("Visualization of algorithms:", algorithms_list)
    -        print("Visualization of matrix:\n", comprehensive_matrix, "\n\n")
    +        print("\nvisualization of datasets:", *datasets_list)
    +        print("visualization of algorithms:", *algorithms_list)
    +        print(f"visualization of aggregate matrix :\n {comprehensive_matrix}\n\n")
     
             return comprehensive_matrix, algorithms_list, datasets_list
    @@ -491,6 +490,7 @@

    Source code for imputegap.recovery.benchmark

            Bool
                 True if the matrix has been generated
             """
    +        save_dir = save_dir + "/_heatmap/"
             if not os.path.exists(save_dir):
                 os.makedirs(save_dir)
     
    @@ -502,6 +502,7 @@ 

    Source code for imputegap.recovery.benchmark

    y_size = cell_size*nbr_datasets
     
             fig, ax = plt.subplots(figsize=(x_size, y_size))
    +        fig.canvas.manager.set_window_title("benchmark heatmap")
             cmap = plt.cm.Greys
             norm = plt.Normalize(vmin=0, vmax=2)  # Normalizing values between 0 and 2 (RMSE)
     
    @@ -586,21 +587,28 @@ 

    Source code for imputegap.recovery.benchmark

    "MI": "Mutual Information - Indicates dependency between variables.",
                     "CORRELATION": "Correlation Coefficient - Indicates linear relationship between variables."
                 }
    +            first_metric = True
     
                 for metric, description in metrics.items():
                     # Write the metric description
                     file.write(f"{metric}: {description}\n\n")
     
    -                column_widths = [15, 15, 15, 15, 12, 25]
    +                column_widths = [15, 15, 15, 18, 12, 25]
     
                     # Create a table header
    -                headers = ["Dataset", "Algorithm", "Optimizer", "Pattern", "X Value", metric]
    +                headers = ["Dataset", "Pattern", "Algorithm", "Optimizer", "Rate", metric]
                     header_row = "|".join(f" {header:^{width}} " for header, width in zip(headers, column_widths))
                     separator_row = "+" + "+".join(f"{'-' * (width + 2)}" for width in column_widths) + "+"
                     file.write(f"{separator_row}\n")
                     file.write(f"|{header_row}|\n")
                     file.write(f"{separator_row}\n")
     
    +                if first_metric and run ==-1 :
    +                    print(f"\n{metric}: {description}\n")
    +                    print(separator_row)
    +                    print(f"|{header_row}|")
    +                    print(separator_row)
    +
                     # Extract and write results for the current metric
                     for dataset, algo_items in runs_plots_scores.items():
                         for algorithm, optimizer_items in algo_items.items():
    @@ -614,12 +622,17 @@ 

    Source code for imputegap.recovery.benchmark

    row = "|".join(
                                                 f" {value:^{width}} " for value, width in zip(row_values, column_widths))
                                             file.write(f"|{row}|\n")
    +                                        if first_metric and run ==-1 :
    +                                            print(f"|{row}|")
                     file.write(f"{separator_row}\n\n")
    +                if first_metric and run ==-1 :
    +                    print(separator_row + "\n")
    +                    first_metric = False
     
                 file.write("Dictionary of Results:\n")
                 file.write(str(runs_plots_scores) + "\n")
     
    -        print(f"\nReport recorded in {save_path}")
    + print(f"\nreports recorded in the following directory : {save_path}")
    @@ -720,14 +733,13 @@

    Source code for imputegap.recovery.benchmark

    row += 1
     
             # Close the workbook
    -        workbook.close()
    +        workbook.close()
    - print(f"\nExcel report recorded in {save_path}")
    [docs] - def generate_plots(self, runs_plots_scores, ticks, subplot=False, y_size=4, save_dir="./reports"): + def generate_plots(self, runs_plots_scores, ticks, subplot=False, y_size=4, save_dir="./reports", display=False): """ Generate and save plots for each metric and pattern based on provided scores. @@ -741,6 +753,8 @@

    Source code for imputegap.recovery.benchmark

                If True, generates a single figure with subplots for all metrics (default is False).
             save_dir : str, optional
                 Directory to save generated plots (default is "./reports").
    +        display : bool, optional
    +            Display or not the plots (default is False).
     
             Returns
             -------
    @@ -760,6 +774,8 @@ 

    Source code for imputegap.recovery.benchmark

    if subplot:
                         fig, axes = plt.subplots(nrows=3, ncols=2, figsize=(x_size*1.90, y_size*2.90))  # Adjusted figsize
    +                    fig.canvas.manager.set_window_title("benchmark analysis")
    +
                         axes = axes.ravel()  # Flatten the 2D array of axes to a 1D array
     
                     # Iterate over each metric, generating separate plots, including new timing metrics
    @@ -807,8 +823,8 @@ 

    Source code for imputegap.recovery.benchmark

    # Save plot only if there is data to display
                         if has_data:
                             ylabel_metric = {
    -                            "imputation_time": "Imputation Time (sec)",
    -                            "log_imputation": "Imputation Time (log)",
    +                            "imputation_time": "Runtime Linear Scale (sec)",
    +                            "log_imputation": "Runtime Log Scale",
                             }.get(metric, metric)
     
                             ax.set_title(metric)
    @@ -819,8 +835,10 @@ 

    Source code for imputegap.recovery.benchmark

    # Set y-axis limits with padding below 0 for visibility
                             if metric == "imputation_time":
                                 ax.set_ylim(-10, 90)
    +                            ax.set_title("Runtime Linear Scale")
                             elif metric == "log_imputation":
                                 ax.set_ylim(-4.5, 2.5)
    +                            ax.set_title("Runtime Log Scale")
                             elif metric == "MAE":
                                 ax.set_ylim(-0.1, 2.4)
                             elif metric == "MI":
    @@ -829,12 +847,13 @@ 

    Source code for imputegap.recovery.benchmark

    ax.set_ylim(-0.1, 2.6)
                             elif metric == "CORRELATION":
                                 ax.set_ylim(-0.75, 1.1)
    +                            ax.set_title("Pearson Correlation")
     
                             # Customize x-axis ticks
                             ax.set_xticks(ticks)
                             ax.set_xticklabels([f"{int(tick * 100)}%" for tick in ticks])
                             ax.grid(True, zorder=0)
    -                        ax.legend(loc='upper left', bbox_to_anchor=(1, 1))
    +                        ax.legend(loc='upper left', fontsize=7, frameon=True, fancybox=True, framealpha=0.8)
     
                         if not subplot:
                             filename = f"{dataset}_{pattern}_{optimizer}_{metric}.jpg"
    @@ -847,15 +866,17 @@ 

    Source code for imputegap.recovery.benchmark

    filename = f"{dataset}_{pattern}_metrics_subplot.jpg"
                         filepath = os.path.join(save_dir, filename)
                         plt.savefig(filepath)
    -                    plt.close()
     
    -        print("\nAll plots recorded in", save_dir)
    + if display: + plt.show() + + print("\nplots recorded in the following directory : ", save_dir)
    [docs] def eval(self, algorithms=["cdrec"], datasets=["eeg-alcohol"], patterns=["mcar"], - x_axis=[0.05, 0.1, 0.2, 0.4, 0.6, 0.8], optimizers=["user_def"], save_dir="./reports", runs=1): + x_axis=[0.05, 0.1, 0.2, 0.4, 0.6, 0.8], optimizers=["default_params"], save_dir="./reports", runs=1): """ Execute a comprehensive evaluation of imputation algorithms over multiple datasets and patterns. @@ -891,6 +912,9 @@

    Source code for imputegap.recovery.benchmark

    not_optimized = ["none"]
             mean_group = ["mean", "MeanImpute", "min", "MinImpute", "zero", "ZeroImpute", "MeanImputeBySeries"]
     
    +        if "mpin" in algorithms or "MPIN" in algorithms:
    +            raise ValueError("The 'mpin' algorithm is not compatible with this setup.")
    +
             for i_run in range(0, abs(runs)):
                 for dataset in datasets:
                     runs_plots_scores = {}
    @@ -1002,34 +1026,35 @@ 

    Source code for imputegap.recovery.benchmark

    "times": dic_timing
                                     }
     
    -                save_dir_runs = save_dir + "/run_" + str(i_run) + "/" + dataset
    -                print("\n\truns saved in : ", save_dir_runs)
    +                save_dir_runs = save_dir + "/_details/run_" + str(i_run) + "/" + dataset
    +                print("\nruns saved in : ", save_dir_runs)
                     self.generate_plots(runs_plots_scores=runs_plots_scores, ticks=x_axis, subplot=True, y_size=y_p_size, save_dir=save_dir_runs)
                     self.generate_plots(runs_plots_scores=runs_plots_scores, ticks=x_axis, subplot=False, y_size=y_p_size, save_dir=save_dir_runs)
                     self.generate_reports_txt(runs_plots_scores, save_dir_runs, dataset, i_run)
                     self.generate_reports_excel(runs_plots_scores, save_dir_runs, dataset, i_run)
                     run_storage.append(runs_plots_scores)
     
    -                print("============================================================================\n\n\n\n\n\n")
    +                print("\n\n\n\n\n\n\n\n\n\n\n\n=end_of_the_evaluation==============================================="
    +                      "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\nresults of the analysis:\n")
     
             scores_list, algos, sets = self.avg_results(*run_storage)
    -        _ = self.generate_heatmap(scores_list, algos, sets, save_dir=save_dir, display=False)
    +        _ = self.generate_heatmap(scores_list, algos, sets, save_dir=save_dir, display=True)
     
             run_averaged = self.average_runs_by_names(run_storage)
     
    -        save_dir_agg = save_dir + "/aggregation"
    -        print("\n\n\taggragation of results saved in : ", save_dir_agg)
    +        print("\n\nthe results of the analysis has been saved in : ", save_dir, "\n\n")
     
             for scores in run_averaged:
                 all_keys = list(scores.keys())
                 dataset_name = str(all_keys[0])
     
    -            save_dir_agg_set = save_dir_agg + "/" + dataset_name
    +            save_dir_agg_set = save_dir + "/" + dataset_name
     
    -            self.generate_plots(runs_plots_scores=scores, ticks=x_axis, subplot=True, y_size=y_p_size, save_dir=save_dir_agg_set)
    -            self.generate_plots(runs_plots_scores=scores, ticks=x_axis, subplot=False, y_size=y_p_size, save_dir=save_dir_agg_set)
                 self.generate_reports_txt(scores, save_dir_agg_set, dataset_name, -1)
    +            self.generate_plots(runs_plots_scores=scores, ticks=x_axis, subplot=True, y_size=y_p_size, save_dir=save_dir_agg_set)
    +            # self.generate_plots(runs_plots_scores=scores, ticks=x_axis, subplot=False, y_size=y_p_size, save_dir=save_dir_agg_set)
                 self.generate_reports_excel(scores, save_dir_agg_set, dataset_name, -1)
    +            print("\n\n")
     
             return run_averaged, scores_list
    @@ -1066,7 +1091,7 @@

    Source code for imputegap.recovery.benchmark

       
    -
    +
    diff --git a/docs/generation/build/html/modules/imputegap/recovery/evaluation.html b/docs/generation/build/html/modules/imputegap/recovery/evaluation.html index cc0a9b27..37a88929 100644 --- a/docs/generation/build/html/modules/imputegap/recovery/evaluation.html +++ b/docs/generation/build/html/modules/imputegap/recovery/evaluation.html @@ -5,7 +5,7 @@ - imputegap.recovery.evaluation - imputegap 1.0.5 documentation + imputegap.recovery.evaluation - imputegap 1.0.7 documentation @@ -167,7 +167,7 @@
    @@ -194,7 +194,7 @@
    - imputegap 1.0.5 documentation + imputegap 1.0.7 documentation @@ -265,9 +265,6 @@

    Source code for imputegap.recovery.evaluation

     import numpy as np
    -from sklearn.metrics import mutual_info_score
    -from scipy.stats import pearsonr
    -
     
     
    [docs] @@ -405,6 +402,8 @@

    Source code for imputegap.recovery.evaluation

    float The mutual information (MI) score for NaN positions in the contamination dataset. """ + from sklearn.metrics import mutual_info_score + nan_locations = np.isnan(self.incomp_data) # Discretize the continuous data into bins @@ -433,6 +432,8 @@

    Source code for imputegap.recovery.evaluation

    float The Pearson correlation coefficient for NaN positions in the contamination dataset. """ + from scipy.stats import pearsonr + nan_locations = np.isnan(self.incomp_data) input_data_values = self.input_data[nan_locations] imputed_values = self.recov_data[nan_locations] @@ -483,7 +484,7 @@

    Source code for imputegap.recovery.evaluation

    -
    +
    diff --git a/docs/generation/build/html/modules/imputegap/recovery/explainer.html b/docs/generation/build/html/modules/imputegap/recovery/explainer.html index 6dd2fe8e..d550c30a 100644 --- a/docs/generation/build/html/modules/imputegap/recovery/explainer.html +++ b/docs/generation/build/html/modules/imputegap/recovery/explainer.html @@ -5,7 +5,7 @@ - imputegap.recovery.explainer - imputegap 1.0.5 documentation + imputegap.recovery.explainer - imputegap 1.0.7 documentation @@ -167,7 +167,7 @@
    @@ -194,7 +194,7 @@
    - imputegap 1.0.5 documentation + imputegap 1.0.7 documentation @@ -279,7 +279,6 @@

    Source code for imputegap.recovery.explainer

    from matplotlib import pyplot as plt
     from sklearn.ensemble import RandomForestRegressor
     
    -from imputegap.recovery.imputation import Imputation
     from imputegap.recovery.manager import TimeSeries
     from imputegap.tools import utils
     
    @@ -651,7 +650,7 @@ 

    Source code for imputegap.recovery.explainer

    result_display = sorted(result_display, key=lambda tup: (tup[1], tup[2]), reverse=True)
     
    -        with open(to_save + "_results.txt", 'w') as file_output:
    +        with open(to_save + "_values.txt", 'w') as file_output:
                 for (x, algo, rate, description, feature, category, mean_features) in result_display:
                     file_output.write(
                         f"Feature : {x:<5} {algo:<10} with a score of {rate:<10} {category:<18} {description:<65} {feature}\n")
    @@ -698,8 +697,12 @@ 

    Source code for imputegap.recovery.explainer

    plots_categories = config[extractor]['categories']
     
             path_file = "./imputegap_assets/shap/"
    -        if not os.path.exists(path_file):
    -            path_file = "./imputegap" + path_file[1:]
    +        path_file_details = "./imputegap_assets/shap/grouped/"
    +        path_file_categories = "./imputegap_assets/shap/per_categories/"
    +
    +        os.makedirs(path_file, exist_ok=True)
    +        os.makedirs(path_file_details, exist_ok=True)
    +        os.makedirs(path_file_categories, exist_ok=True)
     
             x_features, x_categories, x_descriptions = [], [], []
             x_fs, x_cs, x_ds, alphas = [], [], [], []
    @@ -739,8 +742,7 @@ 

    Source code for imputegap.recovery.explainer

    print("\t SHAP_MODEL >> descriptions shape:", x_descriptions.shape, "\n")
                 print("\t SHAP_MODEL >> features OK:", np.all(np.all(x_features == x_features[0, :], axis=1)))
                 print("\t SHAP_MODEL >> categories OK:", np.all(np.all(x_categories == x_categories[0, :], axis=1)))
    -            print("\t SHAP_MODEL >> descriptions OK:", np.all(np.all(x_descriptions == x_descriptions[0, :], axis=1)),
    -                  "\n\n")
    +            print("\t SHAP_MODEL >> descriptions OK:", np.all(np.all(x_descriptions == x_descriptions[0, :], axis=1)), "\n\n")
     
             model = RandomForestRegressor()
             model.fit(x_train, y_train)
    @@ -758,7 +760,7 @@ 

    Source code for imputegap.recovery.explainer

    series_names.append("Series " + str(names + np.array(x_train).shape[0]))
     
             shap.summary_plot(shval, x_test, plot_size=(25, 10), feature_names=optimal_display, show=display)
    -        alpha = os.path.join(path_file + file + "_" + algorithm + "_" + extractor + "_shap_plot.png")
    +        alpha = os.path.join(path_file + file + "_" + algorithm + "_" + extractor + "_shap_all.png")
             plt.title("SHAP Details Results")
             os.makedirs(path_file, exist_ok=True)
             plt.savefig(alpha)
    @@ -766,14 +768,14 @@ 

    Source code for imputegap.recovery.explainer

    alphas.append(alpha)
     
             shap.summary_plot(np.array(shval).T, np.array(x_test).T, feature_names=series_names, show=display)
    -        alpha = os.path.join(path_file + file + "_" + algorithm + "_" + extractor + "_shap_reverse_plot.png")
    +        alpha = os.path.join(path_file_details + file + "_" + algorithm + "_" + extractor + "_shap_reverse.png")
             plt.title("SHAP Features by Series")
             plt.savefig(alpha)
             plt.close()
             alphas.append(alpha)
     
             shap.plots.waterfall(shval_x[0], show=display)
    -        alpha = os.path.join(path_file + file + "_" + algorithm + "_" + extractor + "_DTL_Waterfall.png")
    +        alpha = os.path.join(path_file_details + file + "_" + algorithm + "_" + extractor + "_DTL_Waterfall.png")
             plt.title("SHAP Waterfall Results")
             fig = plt.gcf()  # Get the current figure created by SHAP
             fig.set_size_inches(20, 10)  # Ensure the size is correct
    @@ -782,7 +784,7 @@ 

    Source code for imputegap.recovery.explainer

    alphas.append(alpha)
     
             shap.plots.beeswarm(shval_x, show=display, plot_size=(22, 10))
    -        alpha = os.path.join(path_file + file + "_" + algorithm + "_" + extractor + "_DTL_Beeswarm.png")
    +        alpha = os.path.join(path_file_details + file + "_" + algorithm + "_" + extractor + "_DTL_Beeswarm.png")
             plt.title("SHAP Beeswarm Results")
             plt.savefig(alpha)
             plt.close()
    @@ -838,7 +840,7 @@ 

    Source code for imputegap.recovery.explainer

    mean_features = np.array(mean_features)
     
             shap.summary_plot(np.array(geometry).T, np.array(geometryT).T, plot_size=(20, 10), feature_names=geometryDesc, show=display)
    -        alpha = os.path.join(path_file + file + "_" + algorithm + "_" + extractor + "_shap_" + plots_categories[0].lower() + "_plot.png")
    +        alpha = os.path.join(path_file_categories + file + "_" + algorithm + "_" + extractor + "_shap_" + plots_categories[0].lower() + ".png")
             plt.title("SHAP details of " + plots_categories[0].lower())
             plt.savefig(alpha)
             plt.close()
    @@ -846,7 +848,7 @@ 

    Source code for imputegap.recovery.explainer

    shap.summary_plot(np.array(transformation).T, np.array(transformationT).T, plot_size=(20, 10),
                               feature_names=transformationDesc, show=display)
    -        alpha = os.path.join(path_file + file + "_" + algorithm + "_" + extractor + "_shap_" + plots_categories[2].lower() + "_plot.png")
    +        alpha = os.path.join(path_file_categories + file + "_" + algorithm + "_" + extractor + "_shap_" + plots_categories[2].lower() + ".png")
             plt.title("SHAP details of " + plots_categories[1].lower())
             plt.savefig(alpha)
             plt.close()
    @@ -854,7 +856,7 @@ 

    Source code for imputegap.recovery.explainer

    shap.summary_plot(np.array(correlation).T, np.array(correlationT).T, plot_size=(20, 10),
                               feature_names=correlationDesc, show=display)
    -        alpha = os.path.join(path_file + file + "_" + algorithm + "_" + extractor + "_shap_" + plots_categories[1].lower() + "_plot.png")
    +        alpha = os.path.join(path_file_categories + file + "_" + algorithm + "_" + extractor + "_shap_" + plots_categories[1].lower() + ".png")
             plt.title("SHAP details of " + plots_categories[1].lower())
             plt.savefig(alpha)
             plt.close()
    @@ -862,7 +864,7 @@ 

    Source code for imputegap.recovery.explainer

    shap.summary_plot(np.array(trend).T, np.array(trendT).T, plot_size=(20, 8), feature_names=trendDesc,
                               show=display)
    -        alpha = os.path.join(path_file + file + "_" + algorithm + "_" + extractor + "_shap_" + plots_categories[3].lower() + "_plot.png")
    +        alpha = os.path.join(path_file_categories + file + "_" + algorithm + "_" + extractor + "_shap_" + plots_categories[3].lower() + ".png")
             plt.title("SHAP details of " + plots_categories[3].lower())
             plt.savefig(alpha)
             plt.close()
    @@ -882,7 +884,7 @@ 

    Source code for imputegap.recovery.explainer

    aggregation_test = np.array(aggregation_test).T
     
             shap.summary_plot(aggregation_features, aggregation_test, feature_names=plots_categories, show=display)
    -        alpha = os.path.join(path_file + file + "_" + algorithm + "_" + extractor + "_shap_aggregate_plot.png")
    +        alpha = os.path.join(path_file + file + "_" + algorithm + "_" + extractor + "_shap_cat.png")
             plt.title("SHAP Aggregation Results")
             plt.gca().axes.get_xaxis().set_visible(False)
             plt.savefig(alpha)
    @@ -890,7 +892,7 @@ 

    Source code for imputegap.recovery.explainer

    alphas.append(alpha)
     
             shap.summary_plot(np.array(aggregation_features).T, np.array(aggregation_test).T, feature_names=series_names, show=display)
    -        alpha = os.path.join(path_file + file + "_" + algorithm + "_" + extractor + "_shap_aggregate_reverse_plot.png")
    +        alpha = os.path.join(path_file_details + file + "_" + algorithm + "_" + extractor + "_shap_agg_reverse.png")
             plt.title("SHAP Aggregation Features by Series")
             plt.savefig(alpha)
             plt.close()
    @@ -1096,7 +1098,7 @@ 

    Source code for imputegap.recovery.explainer

       
    -
    +
    diff --git a/docs/generation/build/html/modules/imputegap/recovery/imputation.html b/docs/generation/build/html/modules/imputegap/recovery/imputation.html index 85eedf97..5e31d9ca 100644 --- a/docs/generation/build/html/modules/imputegap/recovery/imputation.html +++ b/docs/generation/build/html/modules/imputegap/recovery/imputation.html @@ -5,7 +5,7 @@ - imputegap.recovery.imputation - imputegap 1.0.5 documentation + imputegap.recovery.imputation - imputegap 1.0.7 documentation @@ -167,7 +167,7 @@
    @@ -194,7 +194,7 @@
    - imputegap 1.0.5 documentation + imputegap 1.0.7 documentation @@ -265,45 +265,13 @@

    Source code for imputegap.recovery.imputation

     import re
    -
    -from imputegap.algorithms.bayotide import bay_otide
    -from imputegap.algorithms.bit_graph import bit_graph
    -from imputegap.algorithms.brits import brits
    -from imputegap.algorithms.deep_mvi import deep_mvi
    -from imputegap.algorithms.dynammo import dynammo
    -from imputegap.algorithms.gain import gain
    -from imputegap.algorithms.grin import grin
    -from imputegap.algorithms.grouse import grouse
    -from imputegap.algorithms.hkmf_t import hkmf_t
    -from imputegap.algorithms.interpolation import interpolation
    -from imputegap.algorithms.iterative_svd import iterative_svd
    -from imputegap.algorithms.knn import knn
    -from imputegap.algorithms.mean_impute import mean_impute
    -from imputegap.algorithms.mean_impute_by_series import mean_impute_by_series
    -from imputegap.algorithms.mice import mice
    -from imputegap.algorithms.miss_forest import miss_forest
    -from imputegap.algorithms.miss_net import miss_net
    -from imputegap.algorithms.mpin import mpin
    -from imputegap.algorithms.pristi import pristi
    -from imputegap.algorithms.rosl import rosl
    -from imputegap.algorithms.soft_impute import soft_impute
    -from imputegap.algorithms.spirit import spirit
    -from imputegap.algorithms.svt import svt
    -from imputegap.algorithms.tkcm import tkcm
    -from imputegap.algorithms.trmf import trmf
    -from imputegap.algorithms.xgboost import xgboost
    +from imputegap.tools import utils
     from imputegap.recovery.downstream import Downstream
     from imputegap.recovery.evaluation import Evaluation
    -from imputegap.algorithms.cdrec import cdrec
    -from imputegap.algorithms.iim import iim
    -from imputegap.algorithms.min_impute import min_impute
    -from imputegap.algorithms.mrnn import mrnn
    -from imputegap.algorithms.stmvl import stmvl
    -from imputegap.algorithms.zero_impute import zero_impute
    -from imputegap.tools import utils
    -
    -not_optimized = ["knn", "interpolation", "iterative_svd", "grouse", "dynammo", "rosl", "soft_impute", "spirit", "svt", "tkcm", "deep_mvi", "brits", "mpin", "pristi"]
     
    +not_optimized = ["knn", "interpolation", "iterative_svd", "grouse", "dynammo", "rosl", "soft_impute", "spirit", "svt",
    +                 "tkcm", "deep_mvi", "brits", "mpin", "pristi", "bay_otide", "bit_graph", "gain", "grin", "hkmf_t",
    +                 "mice", "miss_forest", "miss_net", "trmf", "xgboost"]
     
     
     
    @@ -388,13 +356,13 @@

    Source code for imputegap.recovery.imputation

    Example ------- >>> imputer.score(ts.data, imputer.recov_data) # upstream - >>> imputer.score(ts.data, imputer.recov_data, downstream={"task": "forecast", "model": "hw-add"}) # downstream + >>> imputer.score(ts.data, imputer.recov_data, {"task": "forecast", "model": "hw-add", "comparator": "ZeroImputation"}) # downstream """ if self.recov_data is None: self.recov_data = recov_data if isinstance(downstream, dict) and downstream is not None: - self.downstream_metrics = Downstream(input_data, self.recov_data, self.incomp_data, downstream).downstream_analysis() + self.downstream_metrics = Downstream(input_data, self.recov_data, self.incomp_data, self.algorithm, downstream).downstream_analysis() else: self.metrics = Evaluation(input_data, self.recov_data, self.incomp_data).compute_all_metrics()
    @@ -464,7 +432,7 @@

    Source code for imputegap.recovery.imputation

    raise ValueError( f"\n\tThis algorithm '{self.algorithm}' is not optimized for this optimizer. " f"\n\tPlease use `run_tune` to optimize the hyperparameters for:\n\t\t {', '.join(not_optimized)}" - "\n\tPlease use update your call :\n\t\t.impute(user_def=False, params={'input_data': ts_1.data, 'optimizer': 'ray_tune'})" + "\n\tPlease use update your call :\n\t\t.impute(user_def=False, params={'input_data': ts.data, 'optimizer': 'ray_tune'})" ) input_data = ( @@ -666,8 +634,8 @@

    Source code for imputegap.recovery.imputation

    Imputation method that replaces missing values with the minimum value of the ground truth by series. Interpolation : Imputation method that replaces missing values with the Interpolation - KNN : - Imputation method that replaces missing values with KNN logic + KNNImpute : + Imputation method that replaces missing values with KNNImpute logic """
    @@ -700,6 +668,8 @@

    Source code for imputegap.recovery.imputation

    self : ZeroImpute The object with `recov_data` set. """ + from imputegap.algorithms.zero_impute import zero_impute + self.recov_data = zero_impute(self.incomp_data, params) return self
    @@ -736,6 +706,8 @@

    Source code for imputegap.recovery.imputation

    self : MinImpute The object with `recov_data` set. """ + from imputegap.algorithms.mean_impute import mean_impute + self.recov_data = mean_impute(self.incomp_data, params) return self
    @@ -772,6 +744,8 @@

    Source code for imputegap.recovery.imputation

    self : MinImpute The object with `recov_data` set. """ + from imputegap.algorithms.min_impute import min_impute + self.recov_data = min_impute(self.incomp_data, params) return self
    @@ -802,6 +776,8 @@

    Source code for imputegap.recovery.imputation

    self : MeanImputeBySeries The object with `recov_data` set. """ + from imputegap.algorithms.mean_impute_by_series import mean_impute_by_series + self.recov_data = mean_impute_by_series(self.incomp_data, logs=self.logs) return self
    @@ -844,9 +820,11 @@

    Source code for imputegap.recovery.imputation

    >>> interpolation_imputer = Imputation.Statistics.Interpolation(incomp_data) >>> interpolation_imputer.impute() # default parameters for imputation > or >>> interpolation_imputer.impute(user_def=True, params={"method":"linear", "poly_order":2}) # user-defined > or - >>> interpolation_imputer.impute(user_def=False, params={"input_data": ts_1.data, "optimizer": "ray_tune"}) # automl with ray_tune + >>> interpolation_imputer.impute(user_def=False, params={"input_data": ts.data, "optimizer": "ray_tune"}) # automl with ray_tune >>> recov_data = interpolation_imputer.recov_data """ + from imputegap.algorithms.interpolation import interpolation + if params is not None: method, poly_order = self._check_params(user_def, params) else: @@ -859,21 +837,21 @@

    Source code for imputegap.recovery.imputation

    -[docs] - class KNN(BaseImputer): +
    +[docs] + class KNNImpute(BaseImputer): """ - KNN class to impute missing values with K-Nearest Neighbor algorithm + KNNImpute class to impute missing values with K-Nearest Neighbor algorithm Methods ------- impute(self, params=None): Perform imputation by replacing missing values with K-Nearest Neighbor """ - algorithm = "knn" + algorithm = "knn_impute" -
    -[docs] +
    +[docs] def impute(self, user_def=True, params=None): """ Impute missing values by replacing them with the K-Nearest Neighbor value @@ -883,7 +861,7 @@

    Source code for imputegap.recovery.imputation

    user_def : bool, optional Whether to use user-defined or default parameters (default is True). params : dict, optional - Parameters of the KNN algorithm, if None, default ones are loaded. + Parameters of the KNNImpute algorithm, if None, default ones are loaded. **Algorithm parameters:** k : int, optional @@ -893,17 +871,19 @@

    Source code for imputegap.recovery.imputation

    Returns ------- - self : KNN + self : KNNImpute The object with `recov_data` set. Example ------- - >>> knn_imputer = Imputation.Statistics.KNN(incomp_data) + >>> knn_imputer = Imputation.Statistics.KNNImpute(incomp_data) >>> knn_imputer.impute() # default parameters for imputation > or >>> knn_imputer.impute(user_def=True, params={'k': 5, 'weights': "uniform"}) # user-defined > or - >>> knn_imputer.impute(user_def=False, params={"input_data": ts_1.data, "optimizer": "ray_tune"}) # automl with ray_tune + >>> knn_imputer.impute(user_def=False, params={"input_data": ts.data, "optimizer": "ray_tune"}) # automl with ray_tune >>> recov_data = knn_imputer.recov_data """ + from imputegap.algorithms.knn import knn + if params is not None: k, weights = self._check_params(user_def, params) else: @@ -1052,13 +1032,14 @@

    Source code for imputegap.recovery.imputation

    >>> cdrec_imputer = Imputation.MatrixCompletion.CDRec(incomp_data) >>> cdrec_imputer.impute() # default parameters for imputation > or >>> cdrec_imputer.impute(user_def=True, params={'rank': 5, 'epsilon': 0.01, 'iterations': 100}) # user-defined > or - >>> cdrec_imputer.impute(user_def=False, params={"input_data": ts_1.data, "optimizer": "bayesian", "options": {"n_calls": 2}}) # automl with bayesian + >>> cdrec_imputer.impute(user_def=False, params={"input_data": ts.data, "optimizer": "bayesian", "options": {"n_calls": 2}}) # automl with bayesian >>> recov_data = cdrec_imputer.recov_data References ---------- Khayati, M., Cudré-Mauroux, P. & Böhlen, M.H. Scalable recovery of missing blocks in time series with high and low cross-correlations. Knowl Inf Syst 62, 2257–2280 (2020). https://doi.org/10.1007/s10115-019-01421-7 """ + from imputegap.algorithms.cdrec import cdrec if params is not None: rank, epsilon, iterations = self._check_params(user_def, params) @@ -1116,13 +1097,14 @@

    Source code for imputegap.recovery.imputation

    >>> i_svd_imputer = Imputation.MatrixCompletion.IterativeSVD(incomp_data) >>> i_svd_imputer.impute() # default parameters for imputation > or >>> i_svd_imputer.impute(params={'rank': 5}) # user-defined > or - >>> i_svd_imputer.impute(user_def=False, params={"input_data": ts_1.data, "optimizer": "ray_tune"}) # automl with ray_tune + >>> i_svd_imputer.impute(user_def=False, params={"input_data": ts.data, "optimizer": "ray_tune"}) # automl with ray_tune >>> recov_data = i_svd_imputer.recov_data References ---------- Olga Troyanskaya, Michael Cantor, Gavin Sherlock, Pat Brown, Trevor Hastie, Robert Tibshirani, David Botstein, Russ B. Altman, Missing value estimation methods for DNA microarrays , Bioinformatics, Volume 17, Issue 6, June 2001, Pages 520–525, https://doi.org/10.1093/bioinformatics/17.6.520 """ + from imputegap.algorithms.iterative_svd import iterative_svd if params is not None: rank = self._check_params(user_def, params)[0] @@ -1179,13 +1161,14 @@

    Source code for imputegap.recovery.imputation

    >>> grouse_imputer = Imputation.MatrixCompletion.GROUSE(incomp_data) >>> grouse_imputer.impute() # default parameters for imputation > or >>> grouse_imputer.impute(params={'max_rank': 5}) # user-defined > or - >>> grouse_imputer.impute(user_def=False, params={"input_data": ts_1.data, "optimizer": "ray_tune"}) # automl with ray_tune + >>> grouse_imputer.impute(user_def=False, params={"input_data": ts.data, "optimizer": "ray_tune"}) # automl with ray_tune >>> recov_data = grouse_imputer.recov_data References ---------- D. Zhang and L. Balzano. Global convergence of a grassmannian gradient descent algorithm for subspace estimation. In Proceedings of the 19th International Conference on Artificial Intelligence and Statistics, AISTATS 2016, Cadiz, Spain, May 9-11, 2016, pages 1460–1468, 2016. """ + from imputegap.algorithms.grouse import grouse if params is not None: max_rank = self._check_params(user_def, params)[0] @@ -1245,13 +1228,15 @@

    Source code for imputegap.recovery.imputation

    >>> rosl_imputer = Imputation.MatrixCompletion.ROSL(incomp_data) >>> rosl_imputer.impute() # default parameters for imputation > or >>> rosl_imputer.impute(params={'rank': 5, 'regularization': 10}) # user-defined > or - >>> rosl_imputer.impute(user_def=False, params={"input_data": ts_1.data, "optimizer": "ray_tune"}) # automl with ray_tune + >>> rosl_imputer.impute(user_def=False, params={"input_data": ts.data, "optimizer": "ray_tune"}) # automl with ray_tune >>> recov_data = rosl_imputer.recov_data References ---------- X. Shu, F. Porikli, and N. Ahuja. Robust orthonormal subspace learning: Efficient recovery of corrupted low-rank matrices. In 2014 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2014, Columbus, OH, USA, June 23-28, 2014, pages 3874–3881, 2014. """ + from imputegap.algorithms.rosl import rosl + if params is not None: rank, regularization = self._check_params(user_def, params) else: @@ -1307,13 +1292,15 @@

    Source code for imputegap.recovery.imputation

    >>> soft_impute_imputer = Imputation.MatrixCompletion.SoftImpute(incomp_data) >>> soft_impute_imputer.impute() # default parameters for imputation > or >>> soft_impute_imputer.impute(params={'max_rank': 5}) # user-defined > or - >>> soft_impute_imputer.impute(user_def=False, params={"input_data": ts_1.data, "optimizer": "ray_tune"}) # automl with ray_tune + >>> soft_impute_imputer.impute(user_def=False, params={"input_data": ts.data, "optimizer": "ray_tune"}) # automl with ray_tune >>> recov_data = soft_impute_imputer.recov_data References ---------- R. Mazumder, T. Hastie, and R. Tibshirani. Spectral regularization algorithms for learning large incomplete matrices. Journal of Machine Learning Research, 11:2287–2322, 2010. """ + from imputegap.algorithms.soft_impute import soft_impute + if params is not None: max_rank = self._check_params(user_def, params)[0] else: @@ -1376,13 +1363,15 @@

    Source code for imputegap.recovery.imputation

    >>> spirit_imputer = Imputation.MatrixCompletion.SPIRIT(incomp_data) >>> spirit_imputer.impute() # default parameters for imputation > or >>> spirit_imputer.impute(params={'k': 2, 'w': 5, 'lambda_value': 0.85}) # user-defined > or - >>> spirit_imputer.impute(user_def=False, params={"input_data": ts_1.data, "optimizer": "ray_tune"}) # automl with ray_tune + >>> spirit_imputer.impute(user_def=False, params={"input_data": ts.data, "optimizer": "ray_tune"}) # automl with ray_tune >>> recov_data = spirit_imputer.recov_data References ---------- S. Papadimitriou, J. Sun, and C. Faloutsos. Streaming pattern discovery in multiple time-series. In Proceedings of the 31st International Conference on Very Large Data Bases, Trondheim, Norway, August 30 - September 2, 2005, pages 697–708, 2005. """ + from imputegap.algorithms.spirit import spirit + if params is not None: k, w, lambda_value = self._check_params(user_def, params) else: @@ -1439,13 +1428,15 @@

    Source code for imputegap.recovery.imputation

    >>> svt_imputer = Imputation.MatrixCompletion.SVT(incomp_data) >>> svt_imputer.impute() # default parameters for imputation > or >>> svt_imputer.impute(params={'tau': 1}) # user-defined > or - >>> svt_imputer.impute(user_def=False, params={"input_data": ts_1.data, "optimizer": "ray_tune"}) # automl with ray_tune + >>> svt_imputer.impute(user_def=False, params={"input_data": ts.data, "optimizer": "ray_tune"}) # automl with ray_tune >>> recov_data = svt_imputer.recov_data References ---------- J. Cai, E. J. Candès, and Z. Shen. A singular value thresholding algorithm for matrix completion. SIAM Journal on Optimization, 20(4):1956–1982, 2010. [8] J. Cambronero, J. K. Feser, M. J. Smith, and """ + from imputegap.algorithms.svt import svt + if params is not None: tau = self._check_params(user_def, params)[0] else: @@ -1518,13 +1509,15 @@

    Source code for imputegap.recovery.imputation

    >>> trmf_imputer = Imputation.MatrixCompletion.TRMF(incomp_data) >>> trmf_imputer.impute() >>> trmf_imputer.impute(params={"lags":[], "K":-1, "lambda_f":1.0, "lambda_x":1.0, "lambda_w":1.0, "eta":1.0, "alpha":1000.0, "max_iter":100}) - >>> trmf_imputer.impute(user_def=False, params={"input_data": ts_1.data, "optimizer": "ray_tune"}) + >>> trmf_imputer.impute(user_def=False, params={"input_data": ts.data, "optimizer": "ray_tune"}) >>> recov_data = trmf_imputer.recov_data References ---------- H.-F. Yu, N. Rao, and I. S. Dhillon, "Temporal Regularized Matrix Factorization for High-dimensional Time Series Prediction," in *Advances in Neural Information Processing Systems*, vol. 29, 2016. [Online]. Available: https://proceedings.neurips.cc/paper_files/paper/2016/file/85422afb467e9456013a2a51d4dff702-Paper.pdf """ + from imputegap.algorithms.trmf import trmf + if params is not None: lags, K, lambda_f, lambda_x, lambda_w, eta, alpha, max_iter = self._check_params(user_def, params) else: @@ -1613,7 +1606,7 @@

    Source code for imputegap.recovery.imputation

    >>> mf_imputer = Imputation.MachineLearning.MissForest(incomp_data) >>> mf_imputer.impute() # default parameters for imputation > or >>> mf_imputer.impute(user_def=True, params={"n_estimators":10, "max_iter":3, "max_features":"sqrt", "seed": 42}) # user defined > or - >>> mf_imputer.impute(user_def=False, params={"input_data": ts_1.data, "optimizer": "ray_tune"}) # automl with ray_tune + >>> mf_imputer.impute(user_def=False, params={"input_data": ts.data, "optimizer": "ray_tune"}) # automl with ray_tune >>> recov_data = mf_imputer.recov_data References @@ -1622,6 +1615,8 @@

    Source code for imputegap.recovery.imputation

    https://github.com/yuenshingyan/MissForest https://pypi.org/project/MissForest/ """ + from imputegap.algorithms.miss_forest import miss_forest + if params is not None: n_estimators, max_iter, max_features, seed = self._check_params(user_def, params) else: @@ -1681,7 +1676,7 @@

    Source code for imputegap.recovery.imputation

    >>> mice_imputer = Imputation.MachineLearning.MICE(incomp_data) >>> mice_imputer.impute() # default parameters for imputation > or >>> mice_imputer.impute(user_def=True, params={"max_iter":3, "tol":0.001, "initial_strategy":"mean", "seed": 42}) # user defined > or - >>> mice_imputer.impute(user_def=False, params={"input_data": ts_1.data, "optimizer": "ray_tune"}) # automl with ray_tune + >>> mice_imputer.impute(user_def=False, params={"input_data": ts.data, "optimizer": "ray_tune"}) # automl with ray_tune >>> recov_data = mice_imputer.recov_data References @@ -1691,6 +1686,8 @@

    Source code for imputegap.recovery.imputation

    S. F. Buck, (1960). “A Method of Estimation of Missing Values in Multivariate Data Suitable for use with an Electronic Computer”. Journal of the Royal Statistical Society 22(2): 302-306. https://scikit-learn.org/stable/modules/generated/sklearn.impute.IterativeImputer.html#sklearn.impute.IterativeImputer """ + from imputegap.algorithms.mice import mice + if params is not None: max_iter, tol, initial_strategy, seed = self._check_params(user_def, params) else: @@ -1745,7 +1742,7 @@

    Source code for imputegap.recovery.imputation

    >>> mxgboost_imputer = Imputation.MachineLearning.XGBOOST(incomp_data) >>> mxgboost_imputer.impute() # default parameters for imputation > or >>> mxgboost_imputer.impute(user_def=True, params={"n_estimators":3, "seed": 42}) # user defined > or - >>> mxgboost_imputer.impute(user_def=False, params={"input_data": ts_1.data, "optimizer": "ray_tune"}) # automl with ray_tune + >>> mxgboost_imputer.impute(user_def=False, params={"input_data": ts.data, "optimizer": "ray_tune"}) # automl with ray_tune >>> recov_data = mxgboost_imputer.recov_data References @@ -1754,6 +1751,8 @@

    Source code for imputegap.recovery.imputation

    https://dl.acm.org/doi/10.1145/2939672.2939785 https://medium.com/@tzhaonj/imputing-missing-data-using-xgboost-802757cace6d """ + from imputegap.algorithms.xgboost import xgboost + if params is not None: n_estimators, seed = self._check_params(user_def, params) else: @@ -1806,7 +1805,7 @@

    Source code for imputegap.recovery.imputation

    >>> iim_imputer = Imputation.MachineLearning.IIM(incomp_data) >>> iim_imputer.impute() # default parameters for imputation > or >>> iim_imputer.impute(user_def=True, params={'learning_neighbors': 10}) # user-defined > or - >>> iim_imputer.impute(user_def=False, params={"input_data": ts_1.data, "optimizer": "bayesian", "options": {"n_calls": 2}}) # automl with bayesian + >>> iim_imputer.impute(user_def=False, params={"input_data": ts.data, "optimizer": "bayesian", "options": {"n_calls": 2}}) # automl with bayesian >>> recov_data = iim_imputer.recov_data References @@ -1814,6 +1813,8 @@

    Source code for imputegap.recovery.imputation

    A. Zhang, S. Song, Y. Sun and J. Wang, "Learning Individual Models for Imputation," 2019 IEEE 35th International Conference on Data Engineering (ICDE), Macao, China, 2019, pp. 160-171, doi: 10.1109/ICDE.2019.00023. keywords: {Data models;Adaptation models;Computational modeling;Predictive models;Numerical models;Aggregates;Regression tree analysis;Missing values;Data imputation} """ + from imputegap.algorithms.iim import iim + if params is not None: learning_neighbours, algo_code = self._check_params(user_def, params) else: @@ -1892,7 +1893,7 @@

    Source code for imputegap.recovery.imputation

    >>> stmvl_imputer = Imputation.PatternSearch.STMVL(incomp_data) >>> stmvl_imputer.impute() # default parameters for imputation > or >>> stmvl_imputer.impute(user_def=True, params={'window_size': 7, 'learning_rate':0.01, 'gamma':0.85, 'alpha': 7}) # user-defined > or - >>> stmvl_imputer.impute(user_def=False, params={"input_data": ts_1.data, "optimizer": "bayesian", "options": {"n_calls": 2}}) # automl with bayesian + >>> stmvl_imputer.impute(user_def=False, params={"input_data": ts.data, "optimizer": "bayesian", "options": {"n_calls": 2}}) # automl with bayesian >>> recov_data = stmvl_imputer.recov_data References @@ -1900,6 +1901,8 @@

    Source code for imputegap.recovery.imputation

    Yi, X., Zheng, Y., Zhang, J., & Li, T. ST-MVL: Filling Missing Values in Geo-Sensory Time Series Data. School of Information Science and Technology, Southwest Jiaotong University; Microsoft Research; Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences. """ + from imputegap.algorithms.stmvl import stmvl + if params is not None: window_size, gamma, alpha = self._check_params(user_def, params) else: @@ -1958,13 +1961,15 @@

    Source code for imputegap.recovery.imputation

    >>> dynammo_imputer = Imputation.PatternSearch.DynaMMo(incomp_data) >>> dynammo_imputer.impute() # default parameters for imputation > or >>> dynammo_imputer.impute(params={'h': 5, 'max_iteration': 100, 'approximation': True}) # user-defined > or - >>> dynammo_imputer.impute(user_def=False, params={"input_data": ts_1.data, "optimizer": "ray_tune"}) # automl with ray_tune + >>> dynammo_imputer.impute(user_def=False, params={"input_data": ts.data, "optimizer": "ray_tune"}) # automl with ray_tune >>> recov_data = dynammo_imputer.recov_data References ---------- L. Li, J. McCann, N. S. Pollard, and C. Faloutsos. Dynammo: mining and summarization of coevolving sequences with missing values. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Paris, France, June 28 - July 1, 2009, pages 507–516, 2009. """ + from imputegap.algorithms.dynammo import dynammo + if params is not None: h, max_iteration, approximation = self._check_params(user_def, params) else: @@ -2019,13 +2024,15 @@

    Source code for imputegap.recovery.imputation

    >>> tkcm_imputer = Imputation.PatternSearch.TKCM(incomp_data) >>> tkcm_imputer.impute() # default parameters for imputation > or >>> tkcm_imputer.impute(params={'rank': 5}) # user-defined > or - >>> tkcm_imputer.impute(user_def=False, params={"input_data": ts_1.data, "optimizer": "ray_tune"}) # automl with ray_tune + >>> tkcm_imputer.impute(user_def=False, params={"input_data": ts.data, "optimizer": "ray_tune"}) # automl with ray_tune >>> recov_data = tkcm_imputer.recov_data References ---------- K. Wellenzohn, M. H. Böhlen, A. Dignös, J. Gamper, and H. Mitterer. Continuous imputation of missing values in streams of pattern-determining time series. In Proceedings of the 20th International Conference on Extending Database Technology, EDBT 2017, Venice, Italy, March 21-24, 2017., pages 330–341, 2017. """ + from imputegap.algorithms.tkcm import tkcm + if params is not None: rank = self._check_params(user_def, params)[0] else: @@ -2115,13 +2122,15 @@

    Source code for imputegap.recovery.imputation

    >>> mrnn_imputer = Imputation.DeepLearning.MRNN(incomp_data) >>> mrnn_imputer.impute() # default parameters for imputation > or >>> mrnn_imputer.impute(user_def=True, params={'hidden_dim': 10, 'learning_rate':0.01, 'iterations':50, 'sequence_length': 7}) # user-defined > or - >>> mrnn_imputer.impute(user_def=False, params={"input_data": ts_1.data, "optimizer": "bayesian", "options": {"n_calls": 2}}) # automl with bayesian + >>> mrnn_imputer.impute(user_def=False, params={"input_data": ts.data, "optimizer": "bayesian", "options": {"n_calls": 2}}) # automl with bayesian >>> recov_data = mrnn_imputer.recov_data References ---------- J. Yoon, W. R. Zame and M. van der Schaar, "Estimating Missing Data in Temporal Data Streams Using Multi-Directional Recurrent Neural Networks," in IEEE Transactions on Biomedical Engineering, vol. 66, no. 5, pp. 1477-1490, May 2019, doi: 10.1109/TBME.2018.2874712. keywords: {Time measurement;Interpolation;Estimation;Medical diagnostic imaging;Correlation;Recurrent neural networks;Biomedical measurement;Missing data;temporal data streams;imputation;recurrent neural nets} """ + from imputegap.algorithms.mrnn import mrnn + if params is not None: hidden_dim, learning_rate, iterations, sequence_length = self._check_params(user_def, params) else: @@ -2184,13 +2193,15 @@

    Source code for imputegap.recovery.imputation

    >>> brits_imputer = Imputation.DeepLearning.BRITS(incomp_data) >>> brits_imputer.impute() # default parameters for imputation > or >>> brits_imputer.impute(params={"model": "brits", "epoch": 2, "batch_size": 10, "nbr_features": 1, "hidden_layer": 64}) # user-defined > or - >>> brits_imputer.impute(user_def=False, params={"input_data": ts_1.data, "optimizer": "ray_tune"}) # automl with ray_tune + >>> brits_imputer.impute(user_def=False, params={"input_data": ts.data, "optimizer": "ray_tune"}) # automl with ray_tune >>> recov_data = brits_imputer.recov_data References ---------- Cao, W., Wang, D., Li, J., Zhou, H., Li, L. & Li, Y. BRITS: Bidirectional Recurrent Imputation for Time Series. Advances in Neural Information Processing Systems, 31 (2018). https://proceedings.neurips.cc/paper_files/paper/2018/file/734e6bfcd358e25ac1db0a4241b95651-Paper.pdf """ + from imputegap.algorithms.brits import brits + if params is not None: model, epoch, batch_size, nbr_features, hidden_layer = self._check_params(user_def, params) else: @@ -2248,7 +2259,7 @@

    Source code for imputegap.recovery.imputation

    >>> deep_mvi_imputer = Imputation.DeepLearning.DeepMVI(incomp_data) >>> deep_mvi_imputer.impute() # default parameters for imputation > or >>> deep_mvi_imputer.impute(params={"max_epoch": 10, "patience": 2}) # user-defined > or - >>> deep_mvi_imputer.impute(user_def=False, params={"input_data": ts_1.data, "optimizer": "ray_tune"}) # automl with ray_tune + >>> deep_mvi_imputer.impute(user_def=False, params={"input_data": ts.data, "optimizer": "ray_tune"}) # automl with ray_tune >>> recov_data = deep_mvi_imputer.recov_data References @@ -2256,6 +2267,8 @@

    Source code for imputegap.recovery.imputation

    P. Bansal, P. Deshpande, and S. Sarawagi. Missing value imputation on multidimensional time series. arXiv preprint arXiv:2103.01600, 2023 https://github.com/pbansal5/DeepMVI """ + from imputegap.algorithms.deep_mvi import deep_mvi + if params is not None: max_epoch, patience, lr = self._check_params(user_def, params) else: @@ -2271,6 +2284,7 @@

    Source code for imputegap.recovery.imputation

    class MPIN(BaseImputer): """ MPIN class to impute missing values using Multi-attribute Sensor Data Streams via Message Propagation algorithm. + Need torch-cluster to work. Methods ------- @@ -2284,6 +2298,7 @@

    Source code for imputegap.recovery.imputation

    def impute(self, user_def=True, params=None): """ Perform imputation using the MPIN algorithm. + Need torch-cluster to work. Parameters ---------- @@ -2324,7 +2339,7 @@

    Source code for imputegap.recovery.imputation

    >>> mpin_imputer = Imputation.DeepLearning.MPIN(incomp_data) >>> mpin_imputer.impute() # default parameters for imputation > or >>> mpin_imputer.impute(params={"incre_mode": "data+state", "window": 1, "k": 15, "learning_rate": 0.001, "weight_decay": 0.2, "epochs": 6, "num_of_iteration": 6, "threshold": 0.50, "base": "GCN"}) # user-defined > or - >>> mpin_imputer.impute(user_def=False, params={"input_data": ts_1.data, "optimizer": "ray_tune"}) # automl with ray_tune + >>> mpin_imputer.impute(user_def=False, params={"input_data": ts.data, "optimizer": "ray_tune"}) # automl with ray_tune >>> recov_data = mpin_imputer.recov_data References @@ -2332,6 +2347,8 @@

    Source code for imputegap.recovery.imputation

    Li, X., Li, H., Lu, H., Jensen, C.S., Pandey, V. & Markl, V. Missing Value Imputation for Multi-attribute Sensor Data Streams via Message Propagation (Extended Version). arXiv (2023). https://arxiv.org/abs/2311.07344 https://github.com/XLI-2020/MPIN """ + from imputegap.algorithms.mpin import mpin + if params is not None: incre_mode, window, k, learning_rate, weight_decay, epochs, num_of_iteration, threshold, base = self._check_params(user_def, params) else: @@ -2391,7 +2408,7 @@

    Source code for imputegap.recovery.imputation

    >>> pristi_imputer = Imputation.DeepLearning.PRISTI(incomp_data) >>> pristi_imputer.impute() # default parameters for imputation > or >>> pristi_imputer.impute(params={"target_strategy":"hybrid", "unconditional":True, "seed":42, "device":"cpu"}) # user-defined > or - >>> pristi_imputer.impute(user_def=False, params={"input_data": ts_1.data, "optimizer": "ray_tune"}) # automl with ray_tune + >>> pristi_imputer.impute(user_def=False, params={"input_data": ts.data, "optimizer": "ray_tune"}) # automl with ray_tune >>> recov_data = pristi_imputer.recov_data References @@ -2399,6 +2416,8 @@

    Source code for imputegap.recovery.imputation

    M. Liu, H. Huang, H. Feng, L. Sun, B. Du and Y. Fu, "PriSTI: A Conditional Diffusion Framework for Spatiotemporal Imputation," 2023 IEEE 39th International Conference on Data Engineering (ICDE), Anaheim, CA, USA, 2023, pp. 1927-1939, doi: 10.1109/ICDE55515.2023.00150. https://github.com/LMZZML/PriSTI """ + from imputegap.algorithms.pristi import pristi + if params is not None: target_strategy, unconditional, seed, device = self._check_params(user_def, params) else: @@ -2464,7 +2483,7 @@

    Source code for imputegap.recovery.imputation

    >>> miss_net_imputer = Imputation.DeepLearning.MissNet(incomp_data) >>> miss_net_imputer.impute() # default parameters for imputation > or >>> miss_net_imputer.impute(user_def=True, params={'alpha': 0.5, 'beta':0.1, 'L':10, 'n_cl': 1, 'max_iteration':20, 'tol':5, 'random_init':False}) # user-defined > or - >>> miss_net_imputer.impute(user_def=False, params={"input_data": ts_1.data, "optimizer": "ray_tune"}) # auto-ml with ray_tune + >>> miss_net_imputer.impute(user_def=False, params={"input_data": ts.data, "optimizer": "ray_tune"}) # auto-ml with ray_tune >>> recov_data = miss_net_imputer.recov_data References @@ -2472,6 +2491,8 @@

    Source code for imputegap.recovery.imputation

    Kohei Obata, Koki Kawabata, Yasuko Matsubara, and Yasushi Sakurai. 2024. Mining of Switching Sparse Networks for Missing Value Imputation in Multivariate Time Series. In Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD '24). Association for Computing Machinery, New York, NY, USA, 2296–2306. https://doi.org/10.1145/3637528.3671760 https://github.com/KoheiObata/MissNet/tree/main """ + from imputegap.algorithms.miss_net import miss_net + if params is not None: alpha, beta, L, n_cl, max_iteration, tol, random_init = self._check_params(user_def, params) else: @@ -2537,7 +2558,7 @@

    Source code for imputegap.recovery.imputation

    >>> gain_imputer = Imputation.DeepLearning.GAIN(incomp_data) >>> gain_imputer.impute() # default parameters for imputation > or >>> gain_imputer.impute(user_def=True, params={"batch_size":32, "hint_rate":0.9, "alpha":10, "epoch":100}) # user defined> or - >>> gain_imputer.impute(user_def=False, params={"input_data": ts_1.data, "optimizer": "ray_tune"}) # auto-ml with ray_tune + >>> gain_imputer.impute(user_def=False, params={"input_data": ts.data, "optimizer": "ray_tune"}) # auto-ml with ray_tune >>> recov_data = gain_imputer.recov_data References @@ -2545,6 +2566,8 @@

    Source code for imputegap.recovery.imputation

    J. Yoon, J. Jordon, and M. van der Schaar, "GAIN: Missing Data Imputation using Generative Adversarial Nets," CoRR, vol. abs/1806.02920, 2018. Available: http://arxiv.org/abs/1806.02920. """ + from imputegap.algorithms.gain import gain + if params is not None: batch_size, hint_rate, alpha, epoch = self._check_params(user_def, params) else: @@ -2622,7 +2645,7 @@

    Source code for imputegap.recovery.imputation

    >>> grin_imputer = Imputation.DeepLearning.GRIN(incomp_data) >>> grin_imputer.impute() # default parameters for imputation > or >>> grin_imputer.impute(user_def=True, params={"d_hidden":32, "lr":0.001, "batch_size":32, "window":1, "alpha":10.0, "patience":4, "epochs":20, "workers":2}) # user defined> or - >>> grin_imputer.impute(user_def=False, params={"input_data": ts_1.data, "optimizer": "ray_tune"}) # auto-ml with ray_tune + >>> grin_imputer.impute(user_def=False, params={"input_data": ts.data, "optimizer": "ray_tune"}) # auto-ml with ray_tune >>> recov_data = grin_imputer.recov_data References @@ -2630,6 +2653,7 @@

    Source code for imputegap.recovery.imputation

    A. Cini, I. Marisca, and C. Alippi, "Multivariate Time Series Imputation by Graph Neural Networks," CoRR, vol. abs/2108.00298, 2021 https://github.com/Graph-Machine-Learning-Group/grin """ + from imputegap.algorithms.grin import grin if params is not None: d_hidden, lr, batch_size, window, alpha, patience, epochs, workers = self._check_params(user_def, params) @@ -2713,7 +2737,7 @@

    Source code for imputegap.recovery.imputation

    >>> bay_otide_imputer = Imputation.DeepLearning.BayOTIDE(incomp_data) >>> bay_otide_imputer.impute() # default parameters for imputation > or >>> bay_otide_imputer.impute(user_def=True, params={"K_trend":20, "K_season":2, "n_season":5, "K_bias":1, "time_scale":1, "a0":0.6, "b0":2.5, "v":0.5}) # user defined> or - >>> bay_otide_imputer.impute(user_def=False, params={"input_data": ts_1.data, "optimizer": "ray_tune"}) # auto-ml with ray_tune + >>> bay_otide_imputer.impute(user_def=False, params={"input_data": ts.data, "optimizer": "ray_tune"}) # auto-ml with ray_tune >>> recov_data = bay_otide_imputer.recov_data References @@ -2721,6 +2745,7 @@

    Source code for imputegap.recovery.imputation

    S. Fang, Q. Wen, Y. Luo, S. Zhe, and L. Sun, "BayOTIDE: Bayesian Online Multivariate Time Series Imputation with Functional Decomposition," CoRR, vol. abs/2308.14906, 2024. [Online]. Available: https://arxiv.org/abs/2308.14906. https://github.com/xuangu-fang/BayOTIDE """ + from imputegap.algorithms.bayotide import bay_otide if params is not None: K_trend, K_season, n_season, K_bias, time_scale, a0, b0, v = self._check_params(user_def, params) @@ -2785,7 +2810,7 @@

    Source code for imputegap.recovery.imputation

    >>> hkmf_t_imputer = Imputation.DeepLearning.HKMF_T(incomp_data) >>> hkmf_t_imputer.impute() # default parameters for imputation > or >>> hkmf_t_imputer.impute(user_def=True, params={"tags":None, "data_names":None, "epoch":5}) # user defined> or - >>> hkmf_t_imputer.impute(user_def=False, params={"input_data": ts_1.data, "optimizer": "ray_tune"}) # auto-ml with ray_tune + >>> hkmf_t_imputer.impute(user_def=False, params={"input_data": ts.data, "optimizer": "ray_tune"}) # auto-ml with ray_tune >>> recov_data = hkmf_t_imputer.recov_data References @@ -2793,6 +2818,7 @@

    Source code for imputegap.recovery.imputation

    L. Wang, S. Wu, T. Wu, X. Tao and J. Lu, "HKMF-T: Recover From Blackouts in Tagged Time Series With Hankel Matrix Factorization," in IEEE Transactions on Knowledge and Data Engineering, vol. 33, no. 11, pp. 3582-3593, 1 Nov. 2021, doi: 10.1109/TKDE.2020.2971190. keywords: {Time series analysis;Matrix decomposition;Market research;Meteorology;Sparse matrices;Indexes;Software;Tagged time series;missing value imputation;blackouts;hankel matrix factorization} https://github.com/wangliang-cs/hkmf-t?tab=readme-ov-file """ + from imputegap.algorithms.hkmf_t import hkmf_t if params is not None: tags, data_names, epoch = self._check_params(user_def, params) @@ -2878,7 +2904,7 @@

    Source code for imputegap.recovery.imputation

    >>> bit_graph_imputer = Imputation.DeepLearning.BitGraph(incomp_data) >>> bit_graph_imputer.impute() # default parameters for imputation > or >>> bit_graph_imputer.impute(user_def=True, params={"node_number":-1, "kernel_set":[1], "dropout":0.1, "subgraph_size":5, "node_dim":3, "seq_len":1, "lr":0.001, "epoch":10, "seed":42}) # user defined> or - >>> bit_graph_imputer.impute(user_def=False, params={"input_data": ts_1.data, "optimizer": "ray_tune"}) # auto-ml with ray_tune + >>> bit_graph_imputer.impute(user_def=False, params={"input_data": ts.data, "optimizer": "ray_tune"}) # auto-ml with ray_tune >>> recov_data = bit_graph_imputer.recov_data References @@ -2887,6 +2913,8 @@

    Source code for imputegap.recovery.imputation

    https://github.com/chenxiaodanhit/BiTGraph """ + from imputegap.algorithms.bit_graph import bit_graph + if params is not None: node_number, kernel_set, dropout, subgraph_size, node_dim, seq_len, lr, epoch, seed = self._check_params(user_def, params) else: @@ -2939,7 +2967,7 @@

    Source code for imputegap.recovery.imputation

    -
    +
    diff --git a/docs/generation/build/html/modules/imputegap/recovery/manager.html b/docs/generation/build/html/modules/imputegap/recovery/manager.html index ae281a0e..61ad3360 100644 --- a/docs/generation/build/html/modules/imputegap/recovery/manager.html +++ b/docs/generation/build/html/modules/imputegap/recovery/manager.html @@ -5,7 +5,7 @@ - imputegap.recovery.manager - imputegap 1.0.5 documentation + imputegap.recovery.manager - imputegap 1.0.7 documentation @@ -167,7 +167,7 @@
    @@ -194,7 +194,7 @@
    - imputegap 1.0.5 documentation + imputegap 1.0.7 documentation @@ -266,29 +266,49 @@

    Source code for imputegap.recovery.manager

     import datetime
     import os
    +import platform
     import time
     import numpy as np
     import matplotlib
    -from scipy.stats import zscore
    -from sklearn.preprocessing import MinMaxScaler
     import importlib.resources
    -from scipy.stats import norm
    -
     from imputegap.tools import utils
     
    -# Use Agg backend if in a headless or CI environment
    -if os.getenv('DISPLAY') is None or os.getenv('CI') is not None:
    -    matplotlib.use("Agg")
    -    print("Running in a headless environment or CI. Using Agg backend.")
    -else:
    -    try:
    -        matplotlib.use("TkAgg")
    -        if importlib.util.find_spec("tkinter") is None:
    -            print("tkinter is not available.")
    -    except (ImportError, RuntimeError):
    +from matplotlib import pyplot as plt  # type: ignore
    +
    +
    +
    +[docs] +def select_backend(): + system = platform.system() + headless = os.getenv('DISPLAY') is None or os.getenv('CI') is not None + + if headless: matplotlib.use("Agg") + return + + if system == "Darwin": # macOS + try: + matplotlib.use("MacOSX") + except (ImportError, RuntimeError): + try: + if importlib.util.find_spec("tkinter") is not None: + matplotlib.use("TkAgg") + else: + raise ImportError + except (ImportError, RuntimeError): + matplotlib.use("Agg") + else: # Windows or Linux + try: + if importlib.util.find_spec("tkinter") is not None: + matplotlib.use("TkAgg") + else: + raise ImportError + except (ImportError, RuntimeError): + matplotlib.use("Agg")
    -from matplotlib import pyplot as plt # type: ignore + +# Call the backend selector +select_backend()
    @@ -465,11 +485,11 @@

    Source code for imputegap.recovery.manager

             -------
             None
             """
    -        print("\nTime Series set :")
    -
             to_print = self.data
             nbr_tot_series, nbr_tot_values = to_print.shape
    -        print_col, print_row = "Timestamp", "Series"
    +        print_col, print_row = "timestamp", "Series"
    +
    +        print(f"\nshape of {self.name} : {self.data.shape}\n\tnumber of series = { nbr_tot_series}\n\tnumber of values = {nbr_tot_values}\n")
     
             if nbr_val == -1:
                 nbr_val = to_print.shape[1]
    @@ -479,7 +499,7 @@ 

    Source code for imputegap.recovery.manager

     
             if not view_by_series:
                 to_print = to_print.T
    -            print_col, print_row = "Series", "Timestamp"
    +            print_col, print_row = "Series", "timestamp"
     
             header_format = "{:<15}"  # Fixed size for headers
             value_format = "{:>15.10f}"  # Fixed size for values
    @@ -491,19 +511,16 @@ 

    Source code for imputegap.recovery.manager

     
             # Print each limited series with fixed size
             for i, series in enumerate(to_print):
    -            print(header_format.format(f"{print_row} {i + 1}"), end="")
    +            print(header_format.format(f"{print_row}_{i + 1}"), end="")
                 print("".join([value_format.format(elem) for elem in series]))
     
             if nbr_series < nbr_tot_series:
    -            print("...")
    -
    -        print("\nshape of the time series :", self.data.shape, "\n\tnumber of series =", nbr_tot_series,
    -              "\n\tnumber of values =", nbr_tot_values, "\n\n")
    + print("...")
    [docs] - def print_results(self, metrics, algorithm="", text="Imputation Results of"): + def print_results(self, metrics, algorithm="", text="Results of the analysis"): """ Prints the results of the imputation process. @@ -577,6 +594,8 @@

    Source code for imputegap.recovery.manager

     
                 end_time = time.time()
             elif normalizer == "z_lib":
    +            from scipy.stats import zscore
    +
                 start_time = time.time()  # Record start time
     
                 self.data = zscore(self.data, axis=0)
    @@ -584,6 +603,8 @@ 

    Source code for imputegap.recovery.manager

                 end_time = time.time()
     
             elif normalizer == "m_lib":
    +            from sklearn.preprocessing import MinMaxScaler
    +
                 start_time = time.time()  # Record start time
     
                 scaler = MinMaxScaler()
    @@ -606,13 +627,13 @@ 

    Source code for imputegap.recovery.manager

     
             self.data = self.data.T
     
    -        print(f"\n\t\t> logs, normalization {normalizer} - Execution Time: {(end_time - start_time):.4f} seconds\n")
    + print(f"\n\t> logs, normalization {normalizer} - Execution Time: {(end_time - start_time):.4f} seconds\n")
    [docs] def plot(self, input_data, incomp_data=None, recov_data=None, nbr_series=None, nbr_val=None, series_range=None, - subplot=False, size=(16, 8), save_path="./imputegap_assets", display=True): + subplot=False, size=(16, 8), algorithm=None, save_path="./imputegap_assets", display=True): """ Plot the time series data, including raw, contaminated, or imputed data. @@ -634,6 +655,8 @@

    Source code for imputegap.recovery.manager

                 Print one time series by subplot or all in the same plot.
             size : tuple, optional
                 Size of the plot in inches. Default is (16, 8).
    +        algorithm : str, optional
    +            Name of the algorithm used for imputation.
             save_path : str, optional
                 Path to save the plot locally.
             display : bool, optional
    @@ -651,6 +674,9 @@ 

    Source code for imputegap.recovery.manager

                 >>> ts.plot(input_data=ts.data, incomp_data=ts_m, recov_data=imputer.recov_data, nbr_series=9, subplot=True, save_path="./imputegap_assets") # imputation
             """
             number_of_series = 0
    +        if algorithm is None:
    +            algorithm = "imputegap"
    +        algorithm.lower()
     
             if nbr_series is None or nbr_series == -1:
                 nbr_series = input_data.shape[0]
    @@ -685,6 +711,7 @@ 

    Source code for imputegap.recovery.manager

                     y_size = y_size_screen
     
                 fig, axes = plt.subplots(n_rows, n_cols, figsize=(x_size, y_size), squeeze=False)
    +            fig.canvas.manager.set_window_title(algorithm)
                 axes = axes.flatten()
             else:
                 plt.figure(figsize=size)
    @@ -711,28 +738,28 @@ 

    Source code for imputegap.recovery.manager

     
                     if incomp_data is None and recov_data is None:  # plot only raw matrix
                         ax.plot(timestamps, input_data[i, :nbr_val], linewidth=2.5,
    -                            color=color, linestyle='-', label=f'TS {i + 1}')
    +                            color=color, linestyle='-', label=f'Series {i + 1}')
     
                     if incomp_data is not None and recov_data is None:  # plot infected matrix
                         if np.isnan(incomp_data[i, :]).any():
                             ax.plot(timestamps, input_data[i, :nbr_val], linewidth=1.5,
    -                                color=color, linestyle='--', label=f'TS-INCOMP {i + 1}')
    +                                color=color, linestyle='--', label=f'Missing Data {i + 1}')
     
                         if np.isnan(incomp_data[i, :]).any() or not subplot:
                             ax.plot(np.arange(min(incomp_data.shape[1], nbr_val)), incomp_data[i, :nbr_val],
    -                                color=color, linewidth=2.5, linestyle='-', label=f'TS-INPUT {i + 1}')
    +                                color=color, linewidth=2.5, linestyle='-', label=f'Series {i + 1}')
     
                     if recov_data is not None:  # plot imputed matrix
                         if np.isnan(incomp_data[i, :]).any():
                             ax.plot(np.arange(min(recov_data.shape[1], nbr_val)), recov_data[i, :nbr_val],
    -                                linestyle='-', color="r", label=f'TS-RECOV {i + 1}')
    +                                linestyle='-', color="r", label=f'Imputed Data {i + 1}')
     
                             ax.plot(timestamps, input_data[i, :nbr_val], linewidth=1.5,
    -                                linestyle='--', color=color, label=f'TS-INCOM {i + 1}')
    +                                linestyle='--', color=color, label=f'Missing Data {i + 1}')
     
                         if np.isnan(incomp_data[i, :]).any() or not subplot:
                             ax.plot(np.arange(min(incomp_data.shape[1], nbr_val)), incomp_data[i, :nbr_val],
    -                                color=color, linewidth=2.5, linestyle='-', label=f'TS-INPUT {i + 1}')
    +                                color=color, linewidth=2.5, linestyle='-', label=f'Series {i + 1}')
     
                     # Label and legend for subplot
                     if subplot:
    @@ -770,7 +797,7 @@ 

    Source code for imputegap.recovery.manager

     
                 now = datetime.datetime.now()
                 current_time = now.strftime("%y_%m_%d_%H_%M_%S")
    -            file_path = os.path.join(save_path + "/" + current_time + "_plot.jpg")
    +            file_path = os.path.join(save_path + "/" + current_time + "_" + algorithm + "_plot.jpg")
                 plt.savefig(file_path, bbox_inches='tight')
                 print("plots saved in ", file_path)
     
    @@ -872,16 +899,16 @@ 

    Source code for imputegap.recovery.manager

                 values_nbr = int(NS * rate_series)
     
                 if not explainer:
    -                print(f"\n\n\tMCAR contamination has been called with :"
    -                      f"\n\t\ta number of series impacted {rate_dataset * 100}%"
    -                      f"\n\t\ta missing rate of {rate_series * 100}%"
    -                      f"\n\t\ta starting position at {offset_nbr}"
    -                      f"\n\t\ta block size of {block_size}"
    -                      f"\n\t\tvalues to remove by series {values_nbr}"
    -                      f"\n\t\twith a seed option set to {seed}"
    -                      f"\n\t\twith a seed value set to {seed_value}"
    -                      f"\n\t\tshape of the set {ts_contaminated.shape}"
    -                      f"\n\t\tthis selection of series {series_selected}\n\n")
    +                print(f"\n\nMCAR contamination has been called with :"
    +                      f"\n\ta number of series impacted {rate_dataset * 100}%"
    +                      f"\n\ta missing rate of {rate_series * 100}%"
    +                      f"\n\ta starting position at {offset_nbr}"
    +                      f"\n\ta block size of {block_size}"
    +                      f"\n\tvalues to remove by series {values_nbr}"
    +                      f"\n\twith a seed option set to {seed}"
    +                      f"\n\twith a seed value set to {seed_value}"
    +                      f"\n\tshape of the set {ts_contaminated.shape}"
    +                      f"\n\tthis selection of series {series_selected}\n\n")
     
                 if offset_nbr + values_nbr > NS:
                     raise ValueError(
    @@ -965,13 +992,13 @@ 

    Source code for imputegap.recovery.manager

                 values_nbr = int(NS * rate_series)
     
     
    -            print("\n\n\tALIGNED (missing percentage) contamination has been called with :"
    -                  "\n\t\ta number of series impacted ", rate_dataset * 100, "%",
    -                  "\n\t\ta missing rate of ", rate_series * 100, "%",
    -                  "\n\t\ta starting position at ", offset,
    -                  "\n\t\tshape of the set ", ts_contaminated.shape,
    -                  "\n\t\tthis selection of series : ", 1, "->", nbr_series_impacted,
    -                  "\n\t\tvalues : ", offset_nbr, "->", offset_nbr + values_nbr, "\n\n")
    +            print("\n\nALIGNED (missing percentage) contamination has been called with :"
    +                  "\n\ta number of series impacted ", rate_dataset * 100, "%",
    +                  "\n\ta missing rate of ", rate_series * 100, "%",
    +                  "\n\ta starting position at ", offset,
    +                  "\n\tshape of the set ", ts_contaminated.shape,
    +                  "\n\tthis selection of series : ", 1, "->", nbr_series_impacted,
    +                  "\n\tvalues : ", offset_nbr, "->", offset_nbr + values_nbr, "\n\n")
     
     
                 if offset_nbr + values_nbr > NS:
    @@ -1042,13 +1069,13 @@ 

    Source code for imputegap.recovery.manager

                 values_nbr = int(NS * rate_series)
     
     
    -            print("\n\n\tSCATTER (missing percentage AT RANDOM) contamination has been called with :"
    -                  "\n\t\ta number of series impacted ", rate_dataset * 100, "%",
    -                  "\n\t\ta missing rate of ", rate_series * 100, "%",
    -                  "\n\t\ta starting position at ", offset,
    -                  "\n\t\tshape of the set ", ts_contaminated.shape,
    -                  "\n\t\tthis selection of series : ", 1, "->", nbr_series_impacted,
    -                  "\n\t\tvalues : ", offset_nbr, "->", offset_nbr + values_nbr, "\n\n")
    +            print("\n\nSCATTER (missing percentage AT RANDOM) contamination has been called with :"
    +                  "\n\ta number of series impacted ", rate_dataset * 100, "%",
    +                  "\n\ta missing rate of ", rate_series * 100, "%",
    +                  "\n\ta starting position at ", offset,
    +                  "\n\tshape of the set ", ts_contaminated.shape,
    +                  "\n\tthis selection of series : ", 1, "->", nbr_series_impacted,
    +                  "\n\tvalues : ", offset_nbr, "->", offset_nbr + values_nbr, "\n\n")
     
     
                 if offset_nbr + values_nbr > NS:
    @@ -1138,6 +1165,7 @@ 

    Source code for imputegap.recovery.manager

                 ----------
                     https://imputegap.readthedocs.io/en/latest/patterns.html
                 """
    +            from scipy.stats import norm
     
                 ts_contaminated = input_data.copy()
                 M, NS = ts_contaminated.shape
    @@ -1156,16 +1184,16 @@ 

    Source code for imputegap.recovery.manager

                 offset_nbr = int(offset * NS)
                 values_nbr = int(NS * rate_series)
     
    -            print(f"\n\n\tGAUSSIAN contamination has been called with :"
    -                  f"\n\t\ta number of series impacted {rate_dataset * 100}%"
    -                  f"\n\t\ta missing rate of {rate_series * 100}%"
    -                  f"\n\t\ta starting position at {offset_nbr}"
    -                  f"\n\t\tvalues to remove by series {values_nbr}"
    -                  f"\n\t\twith a seed option set to {seed}"
    -                  f"\n\t\twith a seed value set to {seed_value}"
    -                  f"\n\t\tGaussian std_dev {std_dev}"
    -                  f"\n\t\tshape of the set {ts_contaminated.shape}"
    -                  f"\n\t\tthis selection of series {nbr_series_impacted}\n\n")
    +            print(f"\n\nGAUSSIAN contamination has been called with :"
    +                  f"\n\ta number of series impacted {rate_dataset * 100}%"
    +                  f"\n\ta missing rate of {rate_series * 100}%"
    +                  f"\n\ta starting position at {offset_nbr}"
    +                  f"\n\tvalues to remove by series {values_nbr}"
    +                  f"\n\twith a seed option set to {seed}"
    +                  f"\n\twith a seed value set to {seed_value}"
    +                  f"\n\tGaussian std_dev {std_dev}"
    +                  f"\n\tshape of the set {ts_contaminated.shape}"
    +                  f"\n\tthis selection of series {nbr_series_impacted}\n\n")
     
                 if offset_nbr + values_nbr > NS:
                     raise ValueError(
    @@ -1250,16 +1278,16 @@ 

    Source code for imputegap.recovery.manager

                 offset_nbr = int(offset * NS)
                 values_nbr = int(NS * rate_series)
     
    -            print(f"\n\n\tDISTRIBUTION contamination has been called with :"
    -                  f"\n\t\ta number of series impacted {rate_dataset * 100}%"
    -                  f"\n\t\ta missing rate of {rate_series * 100}%"
    -                  f"\n\t\ta starting position at {offset_nbr}"
    -                  f"\n\t\tvalues to remove by series {values_nbr}"
    -                  f"\n\t\twith a seed option set to {seed}"
    -                  f"\n\t\twith a seed value set to {seed_value}"
    -                  f"\n\t\tshape of the set {ts_contaminated.shape}"
    -                  f"\n\t\tprobabilities list {np.array(probabilities).shape}"
    -                  f"\n\t\tthis selection of series {nbr_series_impacted}\n\n")
    +            print(f"\n\nDISTRIBUTION contamination has been called with :"
    +                  f"\n\ta number of series impacted {rate_dataset * 100}%"
    +                  f"\n\ta missing rate of {rate_series * 100}%"
    +                  f"\n\ta starting position at {offset_nbr}"
    +                  f"\n\tvalues to remove by series {values_nbr}"
    +                  f"\n\twith a seed option set to {seed}"
    +                  f"\n\twith a seed value set to {seed_value}"
    +                  f"\n\tshape of the set {ts_contaminated.shape}"
    +                  f"\n\tprobabilities list {np.array(probabilities).shape}"
    +                  f"\n\tthis selection of series {nbr_series_impacted}\n\n")
     
                 if offset_nbr + values_nbr > NS:
                     raise ValueError(
    @@ -1326,12 +1354,12 @@ 

    Source code for imputegap.recovery.manager

                 values_nbr = int(NS * rate_series)
     
     
    -            print(f"\n\n\tDISJOINT contamination has been called with :"
    -                  f"\n\t\ta missing rate of {rate_series * 100}%"
    -                  f"\n\t\ta starting position at {offset_nbr}"
    -                  f"\n\t\tvalues to remove by series {values_nbr}"
    -                  f"\n\t\tlimit to stop {limit}"
    -                  f"\n\t\tshape of the set {ts_contaminated.shape}")
    +            print(f"\n\nDISJOINT contamination has been called with :"
    +                  f"\n\ta missing rate of {rate_series * 100}%"
    +                  f"\n\ta starting position at {offset_nbr}"
    +                  f"\n\tvalues to remove by series {values_nbr}"
    +                  f"\n\tlimit to stop {limit}"
    +                  f"\n\tshape of the set {ts_contaminated.shape}")
     
     
                 if offset_nbr + values_nbr > NS:
    @@ -1402,15 +1430,15 @@ 

    Source code for imputegap.recovery.manager

                 offset_nbr = int(offset * NS)
                 values_nbr = int(NS * rate_series)
     
    -            print(f"\n\n\tOVERLAP contamination has been called with :"
    -                  f"\n\t\ta missing rate of {rate_series * 100}%"
    -                  f"\n\t\ta offset of {offset*100}%"
    -                  f"\n\t\ta starting position at {offset_nbr}"
    -                  f"\n\t\tvalues to remove by series {values_nbr}"
    -                  f"\n\t\ta shift overlap of {shift * 100} %"
    -                  f"\n\t\ta shift in number {int(shift * NS)}"
    -                  f"\n\t\tlimit to stop {limit}"
    -                  f"\n\t\tshape of the set {ts_contaminated.shape}")
    +            print(f"\n\nOVERLAP contamination has been called with :"
    +                  f"\n\ta missing rate of {rate_series * 100}%"
    +                  f"\n\ta offset of {offset*100}%"
    +                  f"\n\ta starting position at {offset_nbr}"
    +                  f"\n\tvalues to remove by series {values_nbr}"
    +                  f"\n\ta shift overlap of {shift * 100} %"
    +                  f"\n\ta shift in number {int(shift * NS)}"
    +                  f"\n\tlimit to stop {limit}"
    +                  f"\n\tshape of the set {ts_contaminated.shape}")
     
                 if offset_nbr + values_nbr > NS:
                     raise ValueError(
    @@ -1443,8 +1471,13 @@ 

    Source code for imputegap.recovery.manager

                     S = S + 1
     
                 return ts_contaminated
    + + + missing_completely_at_random = mcar + mp = aligned + missing_percentage = aligned
    -
    +
    @@ -1479,7 +1512,7 @@

    Source code for imputegap.recovery.manager

           
         
       
    -
    +
    diff --git a/docs/generation/build/html/modules/imputegap/recovery/optimization.html b/docs/generation/build/html/modules/imputegap/recovery/optimization.html index 5dec4d59..fc01a1ea 100644 --- a/docs/generation/build/html/modules/imputegap/recovery/optimization.html +++ b/docs/generation/build/html/modules/imputegap/recovery/optimization.html @@ -5,7 +5,7 @@ - imputegap.recovery.optimization - imputegap 1.0.5 documentation + imputegap.recovery.optimization - imputegap 1.0.7 documentation @@ -167,7 +167,7 @@
    @@ -194,7 +194,7 @@
    - imputegap 1.0.5 documentation + imputegap 1.0.7 documentation @@ -264,28 +264,14 @@

    Source code for imputegap.recovery.optimization

    -import os
    -import time
    +import time
     from itertools import product
     import numpy as np
    -
     from imputegap.recovery.imputation import Imputation
     from imputegap.tools import utils
     from imputegap.tools.algorithm_parameters import SEARCH_SPACES, ALL_ALGO_PARAMS, PARAM_NAMES, SEARCH_SPACES_PSO, RAYTUNE_PARAMS
     import imputegap.tools.algorithm_parameters as sh_params
     
    -# RAY TUNE IMPORT
    -from ray import tune
    -import ray
    -
    -# PSO IMPORT
    -from functools import partial
    -import pyswarms as ps
    -
    -# BAYESIAN IMPORT
    -import skopt
    -from skopt.space import Integer
    -
     from pyswarms.utils.reporter import Reporter
     reporter = Reporter()
     
    @@ -573,6 +559,10 @@ 

    Source code for imputegap.recovery.optimization

    < tuple A tuple containing the best parameters and their corresponding score. """ + # BAYESIAN IMPORT + import skopt + from skopt.space import Integer + start_time = time.time() # Record start time search_spaces = SEARCH_SPACES @@ -706,6 +696,9 @@

    Source code for imputegap.recovery.optimization

    < tuple A tuple containing the best parameters and their corresponding score. """ + from functools import partial + import pyswarms as ps + start_time = time.time() # Record start time if not isinstance(metrics, list): @@ -922,6 +915,9 @@

    Source code for imputegap.recovery.optimization

    < tuple A tuple containing the best parameters and their corresponding score. """ + from ray import tune + import ray + if not ray.is_initialized(): ray.init() used_metric = metrics[0] @@ -1007,7 +1003,7 @@

    Source code for imputegap.recovery.optimization

    <
    -
    +
    diff --git a/docs/generation/build/html/modules/imputegap/tools/utils.html b/docs/generation/build/html/modules/imputegap/tools/utils.html index a5520678..73971a64 100644 --- a/docs/generation/build/html/modules/imputegap/tools/utils.html +++ b/docs/generation/build/html/modules/imputegap/tools/utils.html @@ -5,7 +5,7 @@ - imputegap.tools.utils - imputegap 1.0.5 documentation + imputegap.tools.utils - imputegap 1.0.7 documentation @@ -167,7 +167,7 @@
    @@ -194,7 +194,7 @@
    - imputegap 1.0.5 documentation + imputegap 1.0.7 documentation @@ -268,9 +268,8 @@

    Source code for imputegap.tools.utils

     import os
     import toml
     import importlib.resources
    -import numpy as __numpy_import;
    -
    -
    +import numpy as __numpy_import
    +import platform
     
     
    [docs] @@ -330,8 +329,8 @@

    Source code for imputegap.tools.utils

             imputer = Imputation.DeepLearning.PRISTI(incomp_data)
     
         # 3rd generation
    -    elif algorithm == "knn" or algorithm == "KNN":
    -        imputer = Imputation.Statistics.KNN(incomp_data)
    +    elif algorithm == "knn" or algorithm == "KNN" or algorithm == "knn_impute" or algorithm == "KNNImpute":
    +        imputer = Imputation.Statistics.KNNImpute(incomp_data)
         elif algorithm == "interpolation" or algorithm == "Interpolation":
             imputer = Imputation.Statistics.Interpolation(incomp_data)
         elif algorithm == "mean_series" or algorithm == "MeanImputeBySeries":
    @@ -647,7 +646,7 @@ 

    Source code for imputegap.tools.utils

         with open(filepath, "r") as _:
             config = toml.load(filepath)
     
    -    print("\n\t\t\t\t(SYS) Inner files loaded : ", filepath, "\n")
    +    print("\n(SYS) Inner files loaded : ", filepath, "\n")
     
         if algorithm == "cdrec":
             truncation_rank = int(config[algorithm]['rank'])
    @@ -733,7 +732,7 @@ 

    Source code for imputegap.tools.utils

             seed = int(config[algorithm]['seed'])
             device = str(config[algorithm]['device'])
             return (target_strategy, unconditional, seed, device)
    -    elif algorithm == "knn":
    +    elif algorithm == "knn" or algorithm == "knn_impute":
             k = int(config[algorithm]['k'])
             weights = str(config[algorithm]['weights'])
             return (k, weights)
    @@ -1044,18 +1043,25 @@ 

    Source code for imputegap.tools.utils

         ctypes.CDLL
             The loaded shared library object.
         """
    +    system = platform.system()
    +    if system == "Windows":
    +        ext = ".so"
    +    elif system == "Darwin":
    +        ext = ".dylib"  # macOS uses .dylib for dynamic libraries
    +    else:
    +        ext = ".so"
     
         if lib:
    -        lib_path = importlib.resources.files('imputegap.algorithms.lib').joinpath("./" + str(name))
    +        lib_path = importlib.resources.files('imputegap.algorithms.lib').joinpath("./" + str(name) + ext)
         else:
    -        local_path_lin = './algorithms/lib/' + name + '.so'
    +        local_path_lin = './algorithms/lib/' + name + ext
     
             if not os.path.exists(local_path_lin):
    -            local_path_lin = './imputegap/algorithms/lib/' + name + '.so'
    +            local_path_lin = './imputegap/algorithms/lib/' + name + ext
     
             lib_path = os.path.join(local_path_lin)
    -        print("\t\t(SYS) lib loaded from:", lib_path)
     
    +    print("\n(SYS) Wrapper files loaded for C++ : ", lib_path, "\n")
     
         return ctypes.CDLL(lib_path)
    @@ -1187,7 +1193,7 @@

    Source code for imputegap.tools.utils

                 "seed": 42,  # Default seed
                 "device": "cpu"  # Default device
             }
    -    elif algorithm == "knn":
    +    elif algorithm == "knn" or algorithm == "knn_impute":
             params_to_save = {
                 "k": int(optimal_params[0]),
                 "weights": str(optimal_params[1])
    @@ -1280,9 +1286,9 @@ 

    Source code for imputegap.tools.utils

         try:
             with open(file_name, 'w') as file:
                 toml.dump(params_to_save, file)
    -        print(f"\n\t\t(SYS) Optimization parameters successfully saved to {file_name}")
    +        print(f"\n(SYS) Optimization parameters successfully saved to {file_name}")
         except Exception as e:
    -        print(f"\n\t\t(SYS) An error occurred while saving the file: {e}")
    + print(f"\n(SYS) An error occurred while saving the file: {e}")
    @@ -1305,7 +1311,7 @@

    Source code for imputegap.tools.utils

             "XGBOOST",
             "MICE",
             "MissForest",
    -        "KNN",
    +        "KNNImpute",
             "Interpolation",
             "MinImpute",
             "MeanImpute",
    @@ -1448,7 +1454,7 @@ 

    Source code for imputegap.tools.utils

           
         
       
    -
    +
    diff --git a/docs/generation/build/html/modules/index.html b/docs/generation/build/html/modules/index.html index 98a85e30..9aed8ce7 100644 --- a/docs/generation/build/html/modules/index.html +++ b/docs/generation/build/html/modules/index.html @@ -5,7 +5,7 @@ - Overview: module code - imputegap 1.0.5 documentation + Overview: module code - imputegap 1.0.7 documentation @@ -167,7 +167,7 @@
    @@ -194,7 +194,7 @@
    - imputegap 1.0.5 documentation + imputegap 1.0.7 documentation @@ -310,7 +310,7 @@

    All modules for which code is available

    -
    +
    diff --git a/docs/generation/build/html/objects.inv b/docs/generation/build/html/objects.inv index e64de181..afb7c640 100644 Binary files a/docs/generation/build/html/objects.inv and b/docs/generation/build/html/objects.inv differ diff --git a/docs/generation/build/html/patterns.html b/docs/generation/build/html/patterns.html index fd011578..f478b51c 100644 --- a/docs/generation/build/html/patterns.html +++ b/docs/generation/build/html/patterns.html @@ -6,7 +6,7 @@ - Patterns - imputegap 1.0.5 documentation + Patterns - imputegap 1.0.7 documentation @@ -168,7 +168,7 @@
    @@ -195,7 +195,7 @@
    - imputegap 1.0.5 documentation + imputegap 1.0.7 documentation @@ -433,7 +433,7 @@

    Patterns

    -
    +
    diff --git a/docs/generation/build/html/preprocessing.html b/docs/generation/build/html/preprocessing.html index d4502a98..53a7ee15 100644 --- a/docs/generation/build/html/preprocessing.html +++ b/docs/generation/build/html/preprocessing.html @@ -6,7 +6,7 @@ - Preprocessing - imputegap 1.0.5 documentation + Preprocessing - imputegap 1.0.7 documentation @@ -168,7 +168,7 @@
    @@ -195,7 +195,7 @@
    - imputegap 1.0.5 documentation + imputegap 1.0.7 documentation @@ -342,7 +342,7 @@

    Preprocessing +

    diff --git a/docs/generation/build/html/py-modindex.html b/docs/generation/build/html/py-modindex.html index da288845..743495f4 100644 --- a/docs/generation/build/html/py-modindex.html +++ b/docs/generation/build/html/py-modindex.html @@ -4,7 +4,7 @@ - Python Module Index - imputegap 1.0.5 documentation + Python Module Index - imputegap 1.0.7 documentation @@ -166,7 +166,7 @@
    @@ -193,7 +193,7 @@
    - imputegap 1.0.5 documentation + imputegap 1.0.7 documentation @@ -422,7 +422,7 @@

    Python Module Index

    -
    +
    diff --git a/docs/generation/build/html/search.html b/docs/generation/build/html/search.html index 10456326..19be4ec6 100644 --- a/docs/generation/build/html/search.html +++ b/docs/generation/build/html/search.html @@ -7,7 +7,7 @@ -Search - imputegap 1.0.5 documentation +Search - imputegap 1.0.7 documentation @@ -168,7 +168,7 @@
    @@ -195,7 +195,7 @@
    - imputegap 1.0.5 documentation + imputegap 1.0.7 documentation @@ -307,7 +307,7 @@
    -
    +
    diff --git a/docs/generation/build/html/searchindex.js b/docs/generation/build/html/searchindex.js index cdc345b6..55e0c22c 100644 --- a/docs/generation/build/html/searchindex.js +++ b/docs/generation/build/html/searchindex.js @@ -1 +1 @@ -Search.setIndex({"alltitles":{"Algorithms":[[19,null]],"Benchmark":[[20,null]],"Citing":[[45,"citing"]],"Contamination":[[49,"contamination"]],"Contributors":[[21,null],[45,"contributors"]],"Core Contributors":[[21,"core-contributors"]],"Data Format":[[45,"data-format"]],"Datasets":[[22,null]],"Distribution":[[50,null]],"Downstream Evaluation":[[23,null]],"Example":[[29,"example"],[29,"id16"],[30,"example"],[33,"example"],[34,"example"],[34,"id8"],[34,"id11"],[34,"id16"],[34,"id20"],[34,"id25"],[34,"id29"],[34,"id34"],[34,"id38"],[34,"id43"],[34,"id47"],[34,"id52"],[34,"id56"],[34,"id61"],[34,"id65"],[34,"id70"],[34,"id74"],[34,"id79"],[34,"id83"],[34,"id88"],[34,"id92"],[34,"id97"],[34,"id101"],[34,"id107"],[34,"id111"],[34,"id116"],[34,"id120"],[34,"id125"],[34,"id129"],[34,"id134"],[34,"id138"],[34,"id144"],[34,"id148"],[34,"id153"],[34,"id157"],[34,"id162"],[34,"id166"],[34,"id171"],[34,"id175"],[34,"id180"],[34,"id184"],[34,"id189"],[34,"id193"],[34,"id198"],[34,"id202"],[34,"id207"],[34,"id211"],[34,"id217"],[34,"id221"],[34,"id226"],[34,"id230"],[34,"id235"],[34,"id239"],[34,"id245"],[34,"id248"],[34,"id253"],[34,"id256"],[34,"id263"],[34,"id269"],[34,"id276"],[34,"id283"],[35,"example"],[35,"id4"],[35,"id8"],[35,"id12"],[35,"id16"],[35,"id20"],[35,"id24"],[35,"id28"],[35,"id34"],[35,"id37"],[35,"id40"],[35,"id45"],[36,"example"],[37,"example"],[38,"example"],[40,"example"],[44,"example"]],"Explainer":[[24,null]],"Get Started":[[45,"get-started"]],"Getting Started":[[25,null]],"Imputation":[[49,"imputation"]],"ImputeGAP Documentation":[[45,null]],"ImputeGAP Package":[[26,null]],"Installation/Update":[[25,"installation-update"]],"Loading and Preprocessing":[[49,"loading-and-preprocessing"]],"MONO-BLOCK":[[47,"mono-block"]],"MULTI-BLOCK":[[47,"multi-block"]],"Methods":[[29,"methods"],[29,"id15"],[31,"methods"],[31,"id5"],[32,"methods"],[34,"methods"],[34,"id3"],[34,"id4"],[34,"id12"],[34,"id21"],[34,"id30"],[34,"id39"],[34,"id48"],[34,"id57"],[34,"id66"],[34,"id75"],[34,"id84"],[34,"id93"],[34,"id103"],[34,"id112"],[34,"id121"],[34,"id130"],[34,"id140"],[34,"id149"],[34,"id158"],[34,"id167"],[34,"id176"],[34,"id185"],[34,"id194"],[34,"id203"],[34,"id213"],[34,"id222"],[34,"id231"],[34,"id241"],[34,"id249"],[34,"id257"],[34,"id264"],[34,"id270"],[34,"id277"],[35,"methods"],[35,"id1"],[39,"methods"],[39,"id7"]],"Module contents":[[26,"module-imputegap"],[32,"module-imputegap.recovery.explainer"],[34,"module-imputegap.recovery.imputation"],[35,"module-imputegap.recovery.manager"],[39,"module-imputegap.recovery.optimization"],[43,"module-imputegap.wrapper"]],"Modules":[[27,"module-imputegap.tools"],[28,"module-imputegap.algorithms"],[29,"module-imputegap.recovery.benchmark"],[30,"module-imputegap.algorithms.cdrec"],[31,"module-imputegap.recovery.evaluation"],[33,"module-imputegap.algorithms.iim"],[36,"module-imputegap.algorithms.mean_impute"],[37,"module-imputegap.algorithms.min_impute"],[38,"module-imputegap.algorithms.mrnn"],[40,"module-imputegap.algorithms.stmvl"],[41,"module-imputegap.tools"],[42,"module-imputegap.tools"],[44,"module-imputegap.algorithms.zero_impute"]],"Notes":[[29,"notes"],[29,"id9"],[29,"id14"],[29,"id26"],[29,"id33"],[29,"id40"],[32,"notes"],[33,"notes"],[36,"notes"],[37,"notes"],[38,"notes"],[40,"notes"],[42,"notes"],[44,"notes"]],"Parameterization":[[49,"parameterization"]],"Parameters":[[29,"parameters"],[29,"id1"],[29,"id3"],[29,"id5"],[29,"id7"],[29,"id10"],[29,"id12"],[29,"id18"],[29,"id21"],[29,"id24"],[29,"id28"],[29,"id31"],[29,"id35"],[29,"id38"],[30,"parameters"],[30,"id1"],[32,"parameters"],[32,"id1"],[32,"id3"],[32,"id5"],[32,"id7"],[32,"id9"],[32,"id11"],[32,"id13"],[33,"parameters"],[34,"parameters"],[34,"id1"],[34,"id2"],[34,"id5"],[34,"id6"],[34,"id9"],[34,"id13"],[34,"id14"],[34,"id18"],[34,"id22"],[34,"id23"],[34,"id27"],[34,"id31"],[34,"id32"],[34,"id36"],[34,"id40"],[34,"id41"],[34,"id45"],[34,"id49"],[34,"id50"],[34,"id54"],[34,"id58"],[34,"id59"],[34,"id63"],[34,"id67"],[34,"id68"],[34,"id72"],[34,"id76"],[34,"id77"],[34,"id81"],[34,"id85"],[34,"id86"],[34,"id90"],[34,"id94"],[34,"id95"],[34,"id99"],[34,"id104"],[34,"id105"],[34,"id109"],[34,"id113"],[34,"id114"],[34,"id118"],[34,"id122"],[34,"id123"],[34,"id127"],[34,"id131"],[34,"id132"],[34,"id136"],[34,"id141"],[34,"id142"],[34,"id146"],[34,"id150"],[34,"id151"],[34,"id155"],[34,"id159"],[34,"id160"],[34,"id164"],[34,"id168"],[34,"id169"],[34,"id173"],[34,"id177"],[34,"id178"],[34,"id182"],[34,"id186"],[34,"id187"],[34,"id191"],[34,"id195"],[34,"id196"],[34,"id200"],[34,"id204"],[34,"id205"],[34,"id209"],[34,"id214"],[34,"id215"],[34,"id219"],[34,"id223"],[34,"id224"],[34,"id228"],[34,"id232"],[34,"id233"],[34,"id237"],[34,"id242"],[34,"id243"],[34,"id246"],[34,"id250"],[34,"id251"],[34,"id254"],[34,"id258"],[34,"id259"],[34,"id261"],[34,"id265"],[34,"id267"],[34,"id271"],[34,"id272"],[34,"id274"],[34,"id278"],[34,"id279"],[34,"id281"],[34,"id284"],[35,"parameters"],[35,"id2"],[35,"id6"],[35,"id10"],[35,"id14"],[35,"id18"],[35,"id22"],[35,"id26"],[35,"id30"],[35,"id32"],[35,"id35"],[35,"id38"],[35,"id41"],[35,"id43"],[36,"parameters"],[37,"parameters"],[38,"parameters"],[39,"parameters"],[39,"id8"],[39,"id10"],[39,"id12"],[39,"id14"],[39,"id16"],[40,"parameters"],[42,"parameters"],[42,"id1"],[42,"id3"],[42,"id5"],[42,"id7"],[42,"id9"],[42,"id11"],[42,"id13"],[42,"id15"],[44,"parameters"]],"Patterns":[[47,null]],"Preprocessing":[[48,null]],"Raises":[[34,"raises"],[42,"raises"]],"References":[[19,"references"],[30,"references"],[33,"references"],[34,"references"],[34,"id17"],[34,"id26"],[34,"id35"],[34,"id44"],[34,"id53"],[34,"id62"],[34,"id71"],[34,"id80"],[34,"id89"],[34,"id98"],[34,"id108"],[34,"id117"],[34,"id126"],[34,"id135"],[34,"id145"],[34,"id154"],[34,"id163"],[34,"id172"],[34,"id181"],[34,"id190"],[34,"id199"],[34,"id208"],[34,"id218"],[34,"id227"],[34,"id236"],[35,"references"],[35,"id5"],[35,"id9"],[35,"id13"],[35,"id17"],[35,"id21"],[35,"id25"],[35,"id29"],[38,"references"],[40,"references"]],"Returns":[[29,"returns"],[29,"id2"],[29,"id4"],[29,"id6"],[29,"id8"],[29,"id11"],[29,"id13"],[29,"id19"],[29,"id22"],[29,"id25"],[29,"id29"],[29,"id32"],[29,"id36"],[29,"id39"],[30,"returns"],[30,"id2"],[31,"returns"],[31,"id1"],[31,"id2"],[31,"id3"],[31,"id4"],[31,"id7"],[31,"id9"],[31,"id11"],[31,"id13"],[31,"id15"],[32,"returns"],[32,"id2"],[32,"id4"],[32,"id6"],[32,"id8"],[32,"id10"],[32,"id12"],[32,"id14"],[33,"returns"],[34,"returns"],[34,"id7"],[34,"id10"],[34,"id15"],[34,"id19"],[34,"id24"],[34,"id28"],[34,"id33"],[34,"id37"],[34,"id42"],[34,"id46"],[34,"id51"],[34,"id55"],[34,"id60"],[34,"id64"],[34,"id69"],[34,"id73"],[34,"id78"],[34,"id82"],[34,"id87"],[34,"id91"],[34,"id96"],[34,"id100"],[34,"id106"],[34,"id110"],[34,"id115"],[34,"id119"],[34,"id124"],[34,"id128"],[34,"id133"],[34,"id137"],[34,"id143"],[34,"id147"],[34,"id152"],[34,"id156"],[34,"id161"],[34,"id165"],[34,"id170"],[34,"id174"],[34,"id179"],[34,"id183"],[34,"id188"],[34,"id192"],[34,"id197"],[34,"id201"],[34,"id206"],[34,"id210"],[34,"id216"],[34,"id220"],[34,"id225"],[34,"id229"],[34,"id234"],[34,"id238"],[34,"id244"],[34,"id247"],[34,"id252"],[34,"id255"],[34,"id260"],[34,"id262"],[34,"id266"],[34,"id268"],[34,"id273"],[34,"id275"],[34,"id280"],[34,"id282"],[34,"id285"],[35,"returns"],[35,"id3"],[35,"id7"],[35,"id11"],[35,"id15"],[35,"id19"],[35,"id23"],[35,"id27"],[35,"id31"],[35,"id33"],[35,"id36"],[35,"id39"],[35,"id42"],[35,"id44"],[36,"returns"],[37,"returns"],[38,"returns"],[39,"returns"],[39,"id9"],[39,"id11"],[39,"id13"],[39,"id15"],[39,"id17"],[40,"returns"],[42,"returns"],[42,"id2"],[42,"id4"],[42,"id6"],[42,"id8"],[42,"id10"],[42,"id12"],[42,"id14"],[42,"id16"],[44,"returns"]],"Setup":[[47,"setup"]],"Subclasses":[[34,"subclasses"],[34,"id102"],[34,"id139"],[34,"id212"],[34,"id240"]],"Submodule Documentation":[[27,"submodule-documentation"],[28,"submodule-documentation"],[29,"submodule-documentation"],[31,"submodule-documentation"],[41,"submodule-documentation"],[42,"submodule-documentation"]],"Submodules":[[26,"submodules"],[27,"submodules"],[28,null],[29,"submodules"],[30,"submodules"],[31,"submodules"],[32,"submodules"],[33,"submodules"],[34,"submodules"],[35,"submodules"],[36,"submodules"],[37,"submodules"],[38,"submodules"],[39,"submodules"],[40,"submodules"],[41,"submodules"],[42,"submodules"],[43,"submodules"],[44,"submodules"]],"Subpackages":[[26,"subpackages"]],"System Requirements":[[25,"system-requirements"]],"Troubleshooting":[[25,"troubleshooting"]],"Tutorials":[[49,null]],"imputegap":[[46,null]],"imputegap.algorithms":[[0,null]],"imputegap.algorithms.cdrec":[[1,null]],"imputegap.algorithms.cdrec package":[[30,null]],"imputegap.algorithms.iim":[[2,null]],"imputegap.algorithms.iim package":[[33,null]],"imputegap.algorithms.mean_impute":[[3,null]],"imputegap.algorithms.mean_impute package":[[36,null]],"imputegap.algorithms.min_impute":[[4,null]],"imputegap.algorithms.min_impute package":[[37,null]],"imputegap.algorithms.mrnn":[[5,null]],"imputegap.algorithms.mrnn package":[[38,null]],"imputegap.algorithms.stmvl":[[6,null]],"imputegap.algorithms.stmvl package":[[40,null]],"imputegap.algorithms.zero_impute":[[7,null]],"imputegap.algorithms.zero_impute package":[[44,null]],"imputegap.recovery.benchmark":[[8,null],[9,null]],"imputegap.recovery.benchmark package":[[29,null]],"imputegap.recovery.evaluation":[[10,null]],"imputegap.recovery.evaluation module":[[29,"module-0"],[31,"module-0"]],"imputegap.recovery.evaluation package":[[31,null]],"imputegap.recovery.explainer":[[11,null]],"imputegap.recovery.explainer package":[[32,null]],"imputegap.recovery.imputation":[[12,null]],"imputegap.recovery.imputation package":[[34,null]],"imputegap.recovery.manager":[[13,null]],"imputegap.recovery.manager package":[[35,null]],"imputegap.recovery.optimization":[[14,null]],"imputegap.recovery.optimization package":[[39,null]],"imputegap.tools":[[15,null]],"imputegap.tools package":[[41,null]],"imputegap.tools.algorithm_parameters":[[16,null]],"imputegap.tools.algorithm_parameters package":[[27,null]],"imputegap.tools.utils":[[17,null]],"imputegap.tools.utils module":[[27,"module-imputegap.tools.algorithm_parameters"],[42,"module-imputegap.tools.utils"]],"imputegap.tools.utils package":[[42,null]],"imputegap.wrapper":[[18,null]],"imputegap.wrapper package":[[43,null]]},"docnames":["_autosummary/imputegap.algorithms","_autosummary/imputegap.algorithms.cdrec","_autosummary/imputegap.algorithms.iim","_autosummary/imputegap.algorithms.mean_impute","_autosummary/imputegap.algorithms.min_impute","_autosummary/imputegap.algorithms.mrnn","_autosummary/imputegap.algorithms.stmvl","_autosummary/imputegap.algorithms.zero_impute","_autosummary/imputegap.recovery.benchmark","_autosummary/imputegap.recovery.benchmarking","_autosummary/imputegap.recovery.evaluation","_autosummary/imputegap.recovery.explainer","_autosummary/imputegap.recovery.imputation","_autosummary/imputegap.recovery.manager","_autosummary/imputegap.recovery.optimization","_autosummary/imputegap.tools","_autosummary/imputegap.tools.algorithm_parameters","_autosummary/imputegap.tools.utils","_autosummary/imputegap.wrapper","algorithms","benchmark","contributors","datasets","downstream","explainer","getting_started","imputegap","imputegap.algorithm_parameters","imputegap.algorithms","imputegap.benchmark","imputegap.cdrec","imputegap.evaluation","imputegap.explainer","imputegap.iim","imputegap.imputation","imputegap.manager","imputegap.mean_impute","imputegap.min_impute","imputegap.mrnn","imputegap.optimization","imputegap.stmvl","imputegap.tools","imputegap.utils","imputegap.wrapper","imputegap.zero_impute","index","modules","patterns","preprocessing","tutorials","tutorials_distribution"],"envversion":{"sphinx":65,"sphinx.domains.c":3,"sphinx.domains.changeset":1,"sphinx.domains.citation":1,"sphinx.domains.cpp":9,"sphinx.domains.index":1,"sphinx.domains.javascript":3,"sphinx.domains.math":2,"sphinx.domains.python":4,"sphinx.domains.rst":2,"sphinx.domains.std":2,"sphinx.ext.viewcode":1},"filenames":["_autosummary/imputegap.algorithms.rst","_autosummary/imputegap.algorithms.cdrec.rst","_autosummary/imputegap.algorithms.iim.rst","_autosummary/imputegap.algorithms.mean_impute.rst","_autosummary/imputegap.algorithms.min_impute.rst","_autosummary/imputegap.algorithms.mrnn.rst","_autosummary/imputegap.algorithms.stmvl.rst","_autosummary/imputegap.algorithms.zero_impute.rst","_autosummary/imputegap.recovery.benchmark.rst","_autosummary/imputegap.recovery.benchmarking.rst","_autosummary/imputegap.recovery.evaluation.rst","_autosummary/imputegap.recovery.explainer.rst","_autosummary/imputegap.recovery.imputation.rst","_autosummary/imputegap.recovery.manager.rst","_autosummary/imputegap.recovery.optimization.rst","_autosummary/imputegap.tools.rst","_autosummary/imputegap.tools.algorithm_parameters.rst","_autosummary/imputegap.tools.utils.rst","_autosummary/imputegap.wrapper.rst","algorithms.rst","benchmark.rst","contributors.rst","datasets.rst","downstream.rst","explainer.rst","getting_started.rst","imputegap.rst","imputegap.algorithm_parameters.rst","imputegap.algorithms.rst","imputegap.benchmark.rst","imputegap.cdrec.rst","imputegap.evaluation.rst","imputegap.explainer.rst","imputegap.iim.rst","imputegap.imputation.rst","imputegap.manager.rst","imputegap.mean_impute.rst","imputegap.min_impute.rst","imputegap.mrnn.rst","imputegap.optimization.rst","imputegap.stmvl.rst","imputegap.tools.rst","imputegap.utils.rst","imputegap.wrapper.rst","imputegap.zero_impute.rst","index.rst","modules.rst","patterns.rst","preprocessing.rst","tutorials.rst","tutorials_distribution.rst"],"indexentries":{"__init__() (imputegap.recovery.imputation.baseimputer method)":[[34,"imputegap.recovery.imputation.BaseImputer.__init__",false]],"__init__() (imputegap.recovery.imputation.imputation.deeplearning.bayotide method)":[[34,"imputegap.recovery.imputation.Imputation.DeepLearning.BayOTIDE.__init__",false]],"__init__() (imputegap.recovery.imputation.imputation.deeplearning.bitgraph method)":[[34,"imputegap.recovery.imputation.Imputation.DeepLearning.BitGraph.__init__",false]],"__init__() (imputegap.recovery.imputation.imputation.deeplearning.brits method)":[[34,"imputegap.recovery.imputation.Imputation.DeepLearning.BRITS.__init__",false]],"__init__() (imputegap.recovery.imputation.imputation.deeplearning.deepmvi method)":[[34,"imputegap.recovery.imputation.Imputation.DeepLearning.DeepMVI.__init__",false]],"__init__() (imputegap.recovery.imputation.imputation.deeplearning.gain method)":[[34,"imputegap.recovery.imputation.Imputation.DeepLearning.GAIN.__init__",false]],"__init__() (imputegap.recovery.imputation.imputation.deeplearning.grin method)":[[34,"imputegap.recovery.imputation.Imputation.DeepLearning.GRIN.__init__",false]],"__init__() (imputegap.recovery.imputation.imputation.deeplearning.hkmf_t method)":[[34,"imputegap.recovery.imputation.Imputation.DeepLearning.HKMF_T.__init__",false]],"__init__() (imputegap.recovery.imputation.imputation.deeplearning.missnet method)":[[34,"imputegap.recovery.imputation.Imputation.DeepLearning.MissNet.__init__",false]],"__init__() (imputegap.recovery.imputation.imputation.deeplearning.mpin method)":[[34,"imputegap.recovery.imputation.Imputation.DeepLearning.MPIN.__init__",false]],"__init__() (imputegap.recovery.imputation.imputation.deeplearning.mrnn method)":[[34,"imputegap.recovery.imputation.Imputation.DeepLearning.MRNN.__init__",false]],"__init__() (imputegap.recovery.imputation.imputation.deeplearning.pristi method)":[[34,"imputegap.recovery.imputation.Imputation.DeepLearning.PRISTI.__init__",false]],"__init__() (imputegap.recovery.imputation.imputation.machinelearning.iim method)":[[34,"imputegap.recovery.imputation.Imputation.MachineLearning.IIM.__init__",false]],"__init__() (imputegap.recovery.imputation.imputation.machinelearning.mice method)":[[34,"imputegap.recovery.imputation.Imputation.MachineLearning.MICE.__init__",false]],"__init__() (imputegap.recovery.imputation.imputation.machinelearning.missforest method)":[[34,"imputegap.recovery.imputation.Imputation.MachineLearning.MissForest.__init__",false]],"__init__() (imputegap.recovery.imputation.imputation.machinelearning.xgboost method)":[[34,"imputegap.recovery.imputation.Imputation.MachineLearning.XGBOOST.__init__",false]],"__init__() (imputegap.recovery.imputation.imputation.matrixcompletion.cdrec method)":[[34,"imputegap.recovery.imputation.Imputation.MatrixCompletion.CDRec.__init__",false]],"__init__() (imputegap.recovery.imputation.imputation.matrixcompletion.grouse method)":[[34,"imputegap.recovery.imputation.Imputation.MatrixCompletion.GROUSE.__init__",false]],"__init__() (imputegap.recovery.imputation.imputation.matrixcompletion.iterativesvd method)":[[34,"imputegap.recovery.imputation.Imputation.MatrixCompletion.IterativeSVD.__init__",false]],"__init__() (imputegap.recovery.imputation.imputation.matrixcompletion.rosl method)":[[34,"imputegap.recovery.imputation.Imputation.MatrixCompletion.ROSL.__init__",false]],"__init__() (imputegap.recovery.imputation.imputation.matrixcompletion.softimpute method)":[[34,"imputegap.recovery.imputation.Imputation.MatrixCompletion.SoftImpute.__init__",false]],"__init__() (imputegap.recovery.imputation.imputation.matrixcompletion.spirit method)":[[34,"imputegap.recovery.imputation.Imputation.MatrixCompletion.SPIRIT.__init__",false]],"__init__() (imputegap.recovery.imputation.imputation.matrixcompletion.svt method)":[[34,"imputegap.recovery.imputation.Imputation.MatrixCompletion.SVT.__init__",false]],"__init__() (imputegap.recovery.imputation.imputation.matrixcompletion.trmf method)":[[34,"imputegap.recovery.imputation.Imputation.MatrixCompletion.TRMF.__init__",false]],"__init__() (imputegap.recovery.imputation.imputation.patternsearch.dynammo method)":[[34,"imputegap.recovery.imputation.Imputation.PatternSearch.DynaMMo.__init__",false]],"__init__() (imputegap.recovery.imputation.imputation.patternsearch.stmvl method)":[[34,"imputegap.recovery.imputation.Imputation.PatternSearch.STMVL.__init__",false]],"__init__() (imputegap.recovery.imputation.imputation.patternsearch.tkcm method)":[[34,"imputegap.recovery.imputation.Imputation.PatternSearch.TKCM.__init__",false]],"__init__() (imputegap.recovery.imputation.imputation.statistics.interpolation method)":[[34,"imputegap.recovery.imputation.Imputation.Statistics.Interpolation.__init__",false]],"__init__() (imputegap.recovery.imputation.imputation.statistics.knn method)":[[34,"imputegap.recovery.imputation.Imputation.Statistics.KNN.__init__",false]],"__init__() (imputegap.recovery.imputation.imputation.statistics.meanimpute method)":[[34,"imputegap.recovery.imputation.Imputation.Statistics.MeanImpute.__init__",false]],"__init__() (imputegap.recovery.imputation.imputation.statistics.meanimputebyseries method)":[[34,"imputegap.recovery.imputation.Imputation.Statistics.MeanImputeBySeries.__init__",false]],"__init__() (imputegap.recovery.imputation.imputation.statistics.minimpute method)":[[34,"imputegap.recovery.imputation.Imputation.Statistics.MinImpute.__init__",false]],"__init__() (imputegap.recovery.imputation.imputation.statistics.zeroimpute method)":[[34,"imputegap.recovery.imputation.Imputation.Statistics.ZeroImpute.__init__",false]],"algorithm (imputegap.recovery.imputation.baseimputer attribute)":[[34,"imputegap.recovery.imputation.BaseImputer.algorithm",false]],"algorithm (imputegap.recovery.imputation.imputation.deeplearning.bayotide attribute)":[[34,"imputegap.recovery.imputation.Imputation.DeepLearning.BayOTIDE.algorithm",false]],"algorithm (imputegap.recovery.imputation.imputation.deeplearning.bitgraph attribute)":[[34,"imputegap.recovery.imputation.Imputation.DeepLearning.BitGraph.algorithm",false]],"algorithm (imputegap.recovery.imputation.imputation.deeplearning.brits attribute)":[[34,"imputegap.recovery.imputation.Imputation.DeepLearning.BRITS.algorithm",false]],"algorithm (imputegap.recovery.imputation.imputation.deeplearning.deepmvi attribute)":[[34,"imputegap.recovery.imputation.Imputation.DeepLearning.DeepMVI.algorithm",false]],"algorithm (imputegap.recovery.imputation.imputation.deeplearning.gain attribute)":[[34,"imputegap.recovery.imputation.Imputation.DeepLearning.GAIN.algorithm",false]],"algorithm (imputegap.recovery.imputation.imputation.deeplearning.grin attribute)":[[34,"imputegap.recovery.imputation.Imputation.DeepLearning.GRIN.algorithm",false]],"algorithm (imputegap.recovery.imputation.imputation.deeplearning.hkmf_t attribute)":[[34,"imputegap.recovery.imputation.Imputation.DeepLearning.HKMF_T.algorithm",false]],"algorithm (imputegap.recovery.imputation.imputation.deeplearning.missnet attribute)":[[34,"imputegap.recovery.imputation.Imputation.DeepLearning.MissNet.algorithm",false]],"algorithm (imputegap.recovery.imputation.imputation.deeplearning.mpin attribute)":[[34,"imputegap.recovery.imputation.Imputation.DeepLearning.MPIN.algorithm",false]],"algorithm (imputegap.recovery.imputation.imputation.deeplearning.mrnn attribute)":[[34,"imputegap.recovery.imputation.Imputation.DeepLearning.MRNN.algorithm",false]],"algorithm (imputegap.recovery.imputation.imputation.deeplearning.pristi attribute)":[[34,"imputegap.recovery.imputation.Imputation.DeepLearning.PRISTI.algorithm",false]],"algorithm (imputegap.recovery.imputation.imputation.machinelearning.iim attribute)":[[34,"imputegap.recovery.imputation.Imputation.MachineLearning.IIM.algorithm",false]],"algorithm (imputegap.recovery.imputation.imputation.machinelearning.mice attribute)":[[34,"imputegap.recovery.imputation.Imputation.MachineLearning.MICE.algorithm",false]],"algorithm (imputegap.recovery.imputation.imputation.machinelearning.missforest attribute)":[[34,"imputegap.recovery.imputation.Imputation.MachineLearning.MissForest.algorithm",false]],"algorithm (imputegap.recovery.imputation.imputation.machinelearning.xgboost attribute)":[[34,"imputegap.recovery.imputation.Imputation.MachineLearning.XGBOOST.algorithm",false]],"algorithm (imputegap.recovery.imputation.imputation.matrixcompletion.cdrec attribute)":[[34,"imputegap.recovery.imputation.Imputation.MatrixCompletion.CDRec.algorithm",false]],"algorithm (imputegap.recovery.imputation.imputation.matrixcompletion.grouse attribute)":[[34,"imputegap.recovery.imputation.Imputation.MatrixCompletion.GROUSE.algorithm",false]],"algorithm (imputegap.recovery.imputation.imputation.matrixcompletion.iterativesvd attribute)":[[34,"imputegap.recovery.imputation.Imputation.MatrixCompletion.IterativeSVD.algorithm",false]],"algorithm (imputegap.recovery.imputation.imputation.matrixcompletion.rosl attribute)":[[34,"imputegap.recovery.imputation.Imputation.MatrixCompletion.ROSL.algorithm",false]],"algorithm (imputegap.recovery.imputation.imputation.matrixcompletion.softimpute attribute)":[[34,"imputegap.recovery.imputation.Imputation.MatrixCompletion.SoftImpute.algorithm",false]],"algorithm (imputegap.recovery.imputation.imputation.matrixcompletion.spirit attribute)":[[34,"imputegap.recovery.imputation.Imputation.MatrixCompletion.SPIRIT.algorithm",false]],"algorithm (imputegap.recovery.imputation.imputation.matrixcompletion.svt attribute)":[[34,"imputegap.recovery.imputation.Imputation.MatrixCompletion.SVT.algorithm",false]],"algorithm (imputegap.recovery.imputation.imputation.matrixcompletion.trmf attribute)":[[34,"imputegap.recovery.imputation.Imputation.MatrixCompletion.TRMF.algorithm",false]],"algorithm (imputegap.recovery.imputation.imputation.patternsearch.dynammo attribute)":[[34,"imputegap.recovery.imputation.Imputation.PatternSearch.DynaMMo.algorithm",false]],"algorithm (imputegap.recovery.imputation.imputation.patternsearch.stmvl attribute)":[[34,"imputegap.recovery.imputation.Imputation.PatternSearch.STMVL.algorithm",false]],"algorithm (imputegap.recovery.imputation.imputation.patternsearch.tkcm attribute)":[[34,"imputegap.recovery.imputation.Imputation.PatternSearch.TKCM.algorithm",false]],"algorithm (imputegap.recovery.imputation.imputation.statistics.interpolation attribute)":[[34,"imputegap.recovery.imputation.Imputation.Statistics.Interpolation.algorithm",false]],"algorithm (imputegap.recovery.imputation.imputation.statistics.knn attribute)":[[34,"imputegap.recovery.imputation.Imputation.Statistics.KNN.algorithm",false]],"algorithm (imputegap.recovery.imputation.imputation.statistics.meanimpute attribute)":[[34,"imputegap.recovery.imputation.Imputation.Statistics.MeanImpute.algorithm",false]],"algorithm (imputegap.recovery.imputation.imputation.statistics.meanimputebyseries attribute)":[[34,"imputegap.recovery.imputation.Imputation.Statistics.MeanImputeBySeries.algorithm",false]],"algorithm (imputegap.recovery.imputation.imputation.statistics.minimpute attribute)":[[34,"imputegap.recovery.imputation.Imputation.Statistics.MinImpute.algorithm",false]],"algorithm (imputegap.recovery.imputation.imputation.statistics.zeroimpute attribute)":[[34,"imputegap.recovery.imputation.Imputation.Statistics.ZeroImpute.algorithm",false]],"aligned() (imputegap.recovery.manager.timeseries.contamination method)":[[35,"imputegap.recovery.manager.TimeSeries.Contamination.aligned",false]],"average_runs_by_names() (imputegap.recovery.benchmark.benchmark method)":[[29,"id17",false],[29,"imputegap.recovery.benchmark.Benchmark.average_runs_by_names",false]],"avg_results() (imputegap.recovery.benchmark.benchmark method)":[[29,"id20",false],[29,"imputegap.recovery.benchmark.Benchmark.avg_results",false]],"baseimputer (class in imputegap.recovery.imputation)":[[34,"imputegap.recovery.imputation.BaseImputer",false]],"baseoptimizer (class in imputegap.recovery.optimization)":[[39,"imputegap.recovery.optimization.BaseOptimizer",false]],"benchmark (class in imputegap.recovery.benchmark)":[[29,"id0",false],[29,"imputegap.recovery.benchmark.Benchmark",false]],"blackout() (imputegap.recovery.manager.timeseries.contamination method)":[[35,"imputegap.recovery.manager.TimeSeries.Contamination.blackout",false]],"cdrec() (in module imputegap.algorithms.cdrec)":[[30,"imputegap.algorithms.cdrec.cdrec",false]],"compute_all_metrics() (imputegap.recovery.evaluation.evaluation method)":[[31,"id6",false],[31,"imputegap.recovery.evaluation.Evaluation.compute_all_metrics",false]],"compute_correlation() (imputegap.recovery.evaluation.evaluation method)":[[31,"id8",false],[31,"imputegap.recovery.evaluation.Evaluation.compute_correlation",false]],"compute_mae() (imputegap.recovery.evaluation.evaluation method)":[[31,"id10",false],[31,"imputegap.recovery.evaluation.Evaluation.compute_mae",false]],"compute_mi() (imputegap.recovery.evaluation.evaluation method)":[[31,"id12",false],[31,"imputegap.recovery.evaluation.Evaluation.compute_mi",false]],"compute_rmse() (imputegap.recovery.evaluation.evaluation method)":[[31,"id14",false],[31,"imputegap.recovery.evaluation.Evaluation.compute_rmse",false]],"config_contamination() (in module imputegap.tools.utils)":[[42,"imputegap.tools.utils.config_contamination",false]],"config_forecaster() (in module imputegap.tools.utils)":[[42,"imputegap.tools.utils.config_forecaster",false]],"config_impute_algorithm() (in module imputegap.tools.utils)":[[42,"imputegap.tools.utils.config_impute_algorithm",false]],"convert_results() (imputegap.recovery.explainer.explainer method)":[[32,"imputegap.recovery.explainer.Explainer.convert_results",false]],"disjoint() (imputegap.recovery.manager.timeseries.contamination method)":[[35,"imputegap.recovery.manager.TimeSeries.Contamination.disjoint",false]],"display_title() (in module imputegap.tools.utils)":[[42,"imputegap.tools.utils.display_title",false]],"distribution() (imputegap.recovery.manager.timeseries.contamination method)":[[35,"imputegap.recovery.manager.TimeSeries.Contamination.distribution",false]],"eval() (imputegap.recovery.benchmark.benchmark method)":[[29,"id23",false],[29,"imputegap.recovery.benchmark.Benchmark.eval",false]],"evaluate_params() (imputegap.recovery.imputation.imputation method)":[[34,"imputegap.recovery.imputation.Imputation.evaluate_params",false]],"evaluation (class in imputegap.recovery.evaluation)":[[31,"id0",false],[31,"imputegap.recovery.evaluation.Evaluation",false]],"execute_shap_model() (imputegap.recovery.explainer.explainer method)":[[32,"imputegap.recovery.explainer.Explainer.execute_shap_model",false]],"explainer (class in imputegap.recovery.explainer)":[[32,"imputegap.recovery.explainer.Explainer",false]],"extractor_pycatch() (imputegap.recovery.explainer.explainer method)":[[32,"imputegap.recovery.explainer.Explainer.extractor_pycatch",false]],"extractor_tsfel() (imputegap.recovery.explainer.explainer method)":[[32,"imputegap.recovery.explainer.Explainer.extractor_tsfel",false]],"extractor_tsfresh() (imputegap.recovery.explainer.explainer method)":[[32,"imputegap.recovery.explainer.Explainer.extractor_tsfresh",false]],"gaussian() (imputegap.recovery.manager.timeseries.contamination method)":[[35,"imputegap.recovery.manager.TimeSeries.Contamination.gaussian",false]],"generate_heatmap() (imputegap.recovery.benchmark.benchmark method)":[[29,"id27",false],[29,"imputegap.recovery.benchmark.Benchmark.generate_heatmap",false]],"generate_plots() (imputegap.recovery.benchmark.benchmark method)":[[29,"id30",false],[29,"imputegap.recovery.benchmark.Benchmark.generate_plots",false]],"generate_reports_excel() (imputegap.recovery.benchmark.benchmark method)":[[29,"id34",false],[29,"imputegap.recovery.benchmark.Benchmark.generate_reports_excel",false]],"generate_reports_txt() (imputegap.recovery.benchmark.benchmark method)":[[29,"id37",false],[29,"imputegap.recovery.benchmark.Benchmark.generate_reports_txt",false]],"iim() (in module imputegap.algorithms.iim)":[[33,"imputegap.algorithms.iim.iim",false]],"import_matrix() (imputegap.recovery.manager.timeseries method)":[[35,"imputegap.recovery.manager.TimeSeries.import_matrix",false]],"imputation (class in imputegap.recovery.imputation)":[[34,"imputegap.recovery.imputation.Imputation",false]],"imputation.deeplearning (class in imputegap.recovery.imputation)":[[34,"imputegap.recovery.imputation.Imputation.DeepLearning",false]],"imputation.deeplearning.bayotide (class in imputegap.recovery.imputation)":[[34,"imputegap.recovery.imputation.Imputation.DeepLearning.BayOTIDE",false]],"imputation.deeplearning.bitgraph (class in imputegap.recovery.imputation)":[[34,"imputegap.recovery.imputation.Imputation.DeepLearning.BitGraph",false]],"imputation.deeplearning.brits (class in imputegap.recovery.imputation)":[[34,"imputegap.recovery.imputation.Imputation.DeepLearning.BRITS",false]],"imputation.deeplearning.deepmvi (class in imputegap.recovery.imputation)":[[34,"imputegap.recovery.imputation.Imputation.DeepLearning.DeepMVI",false]],"imputation.deeplearning.gain (class in imputegap.recovery.imputation)":[[34,"imputegap.recovery.imputation.Imputation.DeepLearning.GAIN",false]],"imputation.deeplearning.grin (class in imputegap.recovery.imputation)":[[34,"imputegap.recovery.imputation.Imputation.DeepLearning.GRIN",false]],"imputation.deeplearning.hkmf_t (class in imputegap.recovery.imputation)":[[34,"imputegap.recovery.imputation.Imputation.DeepLearning.HKMF_T",false]],"imputation.deeplearning.missnet (class in imputegap.recovery.imputation)":[[34,"imputegap.recovery.imputation.Imputation.DeepLearning.MissNet",false]],"imputation.deeplearning.mpin (class in imputegap.recovery.imputation)":[[34,"imputegap.recovery.imputation.Imputation.DeepLearning.MPIN",false]],"imputation.deeplearning.mrnn (class in imputegap.recovery.imputation)":[[34,"imputegap.recovery.imputation.Imputation.DeepLearning.MRNN",false]],"imputation.deeplearning.pristi (class in imputegap.recovery.imputation)":[[34,"imputegap.recovery.imputation.Imputation.DeepLearning.PRISTI",false]],"imputation.machinelearning (class in imputegap.recovery.imputation)":[[34,"imputegap.recovery.imputation.Imputation.MachineLearning",false]],"imputation.machinelearning.iim (class in imputegap.recovery.imputation)":[[34,"imputegap.recovery.imputation.Imputation.MachineLearning.IIM",false]],"imputation.machinelearning.mice (class in imputegap.recovery.imputation)":[[34,"imputegap.recovery.imputation.Imputation.MachineLearning.MICE",false]],"imputation.machinelearning.missforest (class in imputegap.recovery.imputation)":[[34,"imputegap.recovery.imputation.Imputation.MachineLearning.MissForest",false]],"imputation.machinelearning.xgboost (class in imputegap.recovery.imputation)":[[34,"imputegap.recovery.imputation.Imputation.MachineLearning.XGBOOST",false]],"imputation.matrixcompletion (class in imputegap.recovery.imputation)":[[34,"imputegap.recovery.imputation.Imputation.MatrixCompletion",false]],"imputation.matrixcompletion.cdrec (class in imputegap.recovery.imputation)":[[34,"imputegap.recovery.imputation.Imputation.MatrixCompletion.CDRec",false]],"imputation.matrixcompletion.grouse (class in imputegap.recovery.imputation)":[[34,"imputegap.recovery.imputation.Imputation.MatrixCompletion.GROUSE",false]],"imputation.matrixcompletion.iterativesvd (class in imputegap.recovery.imputation)":[[34,"imputegap.recovery.imputation.Imputation.MatrixCompletion.IterativeSVD",false]],"imputation.matrixcompletion.rosl (class in imputegap.recovery.imputation)":[[34,"imputegap.recovery.imputation.Imputation.MatrixCompletion.ROSL",false]],"imputation.matrixcompletion.softimpute (class in imputegap.recovery.imputation)":[[34,"imputegap.recovery.imputation.Imputation.MatrixCompletion.SoftImpute",false]],"imputation.matrixcompletion.spirit (class in imputegap.recovery.imputation)":[[34,"imputegap.recovery.imputation.Imputation.MatrixCompletion.SPIRIT",false]],"imputation.matrixcompletion.svt (class in imputegap.recovery.imputation)":[[34,"imputegap.recovery.imputation.Imputation.MatrixCompletion.SVT",false]],"imputation.matrixcompletion.trmf (class in imputegap.recovery.imputation)":[[34,"imputegap.recovery.imputation.Imputation.MatrixCompletion.TRMF",false]],"imputation.patternsearch (class in imputegap.recovery.imputation)":[[34,"imputegap.recovery.imputation.Imputation.PatternSearch",false]],"imputation.patternsearch.dynammo (class in imputegap.recovery.imputation)":[[34,"imputegap.recovery.imputation.Imputation.PatternSearch.DynaMMo",false]],"imputation.patternsearch.stmvl (class in imputegap.recovery.imputation)":[[34,"imputegap.recovery.imputation.Imputation.PatternSearch.STMVL",false]],"imputation.patternsearch.tkcm (class in imputegap.recovery.imputation)":[[34,"imputegap.recovery.imputation.Imputation.PatternSearch.TKCM",false]],"imputation.statistics (class in imputegap.recovery.imputation)":[[34,"imputegap.recovery.imputation.Imputation.Statistics",false]],"imputation.statistics.interpolation (class in imputegap.recovery.imputation)":[[34,"imputegap.recovery.imputation.Imputation.Statistics.Interpolation",false]],"imputation.statistics.knn (class in imputegap.recovery.imputation)":[[34,"imputegap.recovery.imputation.Imputation.Statistics.KNN",false]],"imputation.statistics.meanimpute (class in imputegap.recovery.imputation)":[[34,"imputegap.recovery.imputation.Imputation.Statistics.MeanImpute",false]],"imputation.statistics.meanimputebyseries (class in imputegap.recovery.imputation)":[[34,"imputegap.recovery.imputation.Imputation.Statistics.MeanImputeBySeries",false]],"imputation.statistics.minimpute (class in imputegap.recovery.imputation)":[[34,"imputegap.recovery.imputation.Imputation.Statistics.MinImpute",false]],"imputation.statistics.zeroimpute (class in imputegap.recovery.imputation)":[[34,"imputegap.recovery.imputation.Imputation.Statistics.ZeroImpute",false]],"impute() (imputegap.recovery.imputation.baseimputer method)":[[34,"imputegap.recovery.imputation.BaseImputer.impute",false]],"impute() (imputegap.recovery.imputation.imputation.deeplearning.bayotide method)":[[34,"imputegap.recovery.imputation.Imputation.DeepLearning.BayOTIDE.impute",false]],"impute() (imputegap.recovery.imputation.imputation.deeplearning.bitgraph method)":[[34,"imputegap.recovery.imputation.Imputation.DeepLearning.BitGraph.impute",false]],"impute() (imputegap.recovery.imputation.imputation.deeplearning.brits method)":[[34,"imputegap.recovery.imputation.Imputation.DeepLearning.BRITS.impute",false]],"impute() (imputegap.recovery.imputation.imputation.deeplearning.deepmvi method)":[[34,"imputegap.recovery.imputation.Imputation.DeepLearning.DeepMVI.impute",false]],"impute() (imputegap.recovery.imputation.imputation.deeplearning.gain method)":[[34,"imputegap.recovery.imputation.Imputation.DeepLearning.GAIN.impute",false]],"impute() (imputegap.recovery.imputation.imputation.deeplearning.grin method)":[[34,"imputegap.recovery.imputation.Imputation.DeepLearning.GRIN.impute",false]],"impute() (imputegap.recovery.imputation.imputation.deeplearning.hkmf_t method)":[[34,"imputegap.recovery.imputation.Imputation.DeepLearning.HKMF_T.impute",false]],"impute() (imputegap.recovery.imputation.imputation.deeplearning.missnet method)":[[34,"imputegap.recovery.imputation.Imputation.DeepLearning.MissNet.impute",false]],"impute() (imputegap.recovery.imputation.imputation.deeplearning.mpin method)":[[34,"imputegap.recovery.imputation.Imputation.DeepLearning.MPIN.impute",false]],"impute() (imputegap.recovery.imputation.imputation.deeplearning.mrnn method)":[[34,"imputegap.recovery.imputation.Imputation.DeepLearning.MRNN.impute",false]],"impute() (imputegap.recovery.imputation.imputation.deeplearning.pristi method)":[[34,"imputegap.recovery.imputation.Imputation.DeepLearning.PRISTI.impute",false]],"impute() (imputegap.recovery.imputation.imputation.machinelearning.iim method)":[[34,"imputegap.recovery.imputation.Imputation.MachineLearning.IIM.impute",false]],"impute() (imputegap.recovery.imputation.imputation.machinelearning.mice method)":[[34,"imputegap.recovery.imputation.Imputation.MachineLearning.MICE.impute",false]],"impute() (imputegap.recovery.imputation.imputation.machinelearning.missforest method)":[[34,"imputegap.recovery.imputation.Imputation.MachineLearning.MissForest.impute",false]],"impute() (imputegap.recovery.imputation.imputation.machinelearning.xgboost method)":[[34,"imputegap.recovery.imputation.Imputation.MachineLearning.XGBOOST.impute",false]],"impute() (imputegap.recovery.imputation.imputation.matrixcompletion.cdrec method)":[[34,"imputegap.recovery.imputation.Imputation.MatrixCompletion.CDRec.impute",false]],"impute() (imputegap.recovery.imputation.imputation.matrixcompletion.grouse method)":[[34,"imputegap.recovery.imputation.Imputation.MatrixCompletion.GROUSE.impute",false]],"impute() (imputegap.recovery.imputation.imputation.matrixcompletion.iterativesvd method)":[[34,"imputegap.recovery.imputation.Imputation.MatrixCompletion.IterativeSVD.impute",false]],"impute() (imputegap.recovery.imputation.imputation.matrixcompletion.rosl method)":[[34,"imputegap.recovery.imputation.Imputation.MatrixCompletion.ROSL.impute",false]],"impute() (imputegap.recovery.imputation.imputation.matrixcompletion.softimpute method)":[[34,"imputegap.recovery.imputation.Imputation.MatrixCompletion.SoftImpute.impute",false]],"impute() (imputegap.recovery.imputation.imputation.matrixcompletion.spirit method)":[[34,"imputegap.recovery.imputation.Imputation.MatrixCompletion.SPIRIT.impute",false]],"impute() (imputegap.recovery.imputation.imputation.matrixcompletion.svt method)":[[34,"imputegap.recovery.imputation.Imputation.MatrixCompletion.SVT.impute",false]],"impute() (imputegap.recovery.imputation.imputation.matrixcompletion.trmf method)":[[34,"imputegap.recovery.imputation.Imputation.MatrixCompletion.TRMF.impute",false]],"impute() (imputegap.recovery.imputation.imputation.patternsearch.dynammo method)":[[34,"imputegap.recovery.imputation.Imputation.PatternSearch.DynaMMo.impute",false]],"impute() (imputegap.recovery.imputation.imputation.patternsearch.stmvl method)":[[34,"imputegap.recovery.imputation.Imputation.PatternSearch.STMVL.impute",false]],"impute() (imputegap.recovery.imputation.imputation.patternsearch.tkcm method)":[[34,"imputegap.recovery.imputation.Imputation.PatternSearch.TKCM.impute",false]],"impute() (imputegap.recovery.imputation.imputation.statistics.interpolation method)":[[34,"imputegap.recovery.imputation.Imputation.Statistics.Interpolation.impute",false]],"impute() (imputegap.recovery.imputation.imputation.statistics.knn method)":[[34,"imputegap.recovery.imputation.Imputation.Statistics.KNN.impute",false]],"impute() (imputegap.recovery.imputation.imputation.statistics.meanimpute method)":[[34,"imputegap.recovery.imputation.Imputation.Statistics.MeanImpute.impute",false]],"impute() (imputegap.recovery.imputation.imputation.statistics.meanimputebyseries method)":[[34,"imputegap.recovery.imputation.Imputation.Statistics.MeanImputeBySeries.impute",false]],"impute() (imputegap.recovery.imputation.imputation.statistics.minimpute method)":[[34,"imputegap.recovery.imputation.Imputation.Statistics.MinImpute.impute",false]],"impute() (imputegap.recovery.imputation.imputation.statistics.zeroimpute method)":[[34,"imputegap.recovery.imputation.Imputation.Statistics.ZeroImpute.impute",false]],"imputegap":[[26,"module-imputegap",false]],"imputegap.algorithms":[[0,"module-imputegap.algorithms",false],[28,"module-imputegap.algorithms",false]],"imputegap.algorithms.cdrec":[[1,"module-imputegap.algorithms.cdrec",false],[30,"module-imputegap.algorithms.cdrec",false]],"imputegap.algorithms.iim":[[2,"module-imputegap.algorithms.iim",false],[33,"module-imputegap.algorithms.iim",false]],"imputegap.algorithms.mean_impute":[[3,"module-imputegap.algorithms.mean_impute",false],[36,"module-imputegap.algorithms.mean_impute",false]],"imputegap.algorithms.min_impute":[[4,"module-imputegap.algorithms.min_impute",false],[37,"module-imputegap.algorithms.min_impute",false]],"imputegap.algorithms.mrnn":[[5,"module-imputegap.algorithms.mrnn",false],[38,"module-imputegap.algorithms.mrnn",false]],"imputegap.algorithms.stmvl":[[6,"module-imputegap.algorithms.stmvl",false],[40,"module-imputegap.algorithms.stmvl",false]],"imputegap.algorithms.zero_impute":[[7,"module-imputegap.algorithms.zero_impute",false],[44,"module-imputegap.algorithms.zero_impute",false]],"imputegap.recovery.benchmark":[[8,"module-imputegap.recovery.benchmark",false],[9,"module-imputegap.recovery.benchmark",false],[29,"module-0",false],[29,"module-imputegap.recovery.benchmark",false]],"imputegap.recovery.evaluation":[[10,"module-imputegap.recovery.evaluation",false],[31,"module-0",false],[31,"module-imputegap.recovery.evaluation",false]],"imputegap.recovery.explainer":[[11,"module-imputegap.recovery.explainer",false],[32,"module-imputegap.recovery.explainer",false]],"imputegap.recovery.imputation":[[12,"module-imputegap.recovery.imputation",false],[34,"module-imputegap.recovery.imputation",false]],"imputegap.recovery.manager":[[13,"module-imputegap.recovery.manager",false],[35,"module-imputegap.recovery.manager",false]],"imputegap.recovery.optimization":[[14,"module-imputegap.recovery.optimization",false],[39,"module-imputegap.recovery.optimization",false]],"imputegap.tools":[[15,"module-imputegap.tools",false],[27,"module-imputegap.tools",false],[41,"module-imputegap.tools",false],[42,"module-imputegap.tools",false]],"imputegap.tools.algorithm_parameters":[[16,"module-imputegap.tools.algorithm_parameters",false],[27,"module-imputegap.tools.algorithm_parameters",false]],"imputegap.tools.utils":[[17,"module-imputegap.tools.utils",false],[42,"module-imputegap.tools.utils",false]],"imputegap.wrapper":[[18,"module-imputegap.wrapper",false],[43,"module-imputegap.wrapper",false]],"list_of_algorithms() (in module imputegap.tools.utils)":[[42,"imputegap.tools.utils.list_of_algorithms",false]],"list_of_datasets() (in module imputegap.tools.utils)":[[42,"imputegap.tools.utils.list_of_datasets",false]],"list_of_downstreams() (in module imputegap.tools.utils)":[[42,"imputegap.tools.utils.list_of_downstreams",false]],"list_of_downstreams_darts() (in module imputegap.tools.utils)":[[42,"imputegap.tools.utils.list_of_downstreams_darts",false]],"list_of_downstreams_sktime() (in module imputegap.tools.utils)":[[42,"imputegap.tools.utils.list_of_downstreams_sktime",false]],"list_of_optimizers() (in module imputegap.tools.utils)":[[42,"imputegap.tools.utils.list_of_optimizers",false]],"list_of_patterns() (in module imputegap.tools.utils)":[[42,"imputegap.tools.utils.list_of_patterns",false]],"load_configuration() (imputegap.recovery.explainer.explainer method)":[[32,"imputegap.recovery.explainer.Explainer.load_configuration",false]],"load_parameters() (in module imputegap.tools.utils)":[[42,"imputegap.tools.utils.load_parameters",false]],"load_series() (imputegap.recovery.manager.timeseries method)":[[35,"imputegap.recovery.manager.TimeSeries.load_series",false]],"load_share_lib() (in module imputegap.tools.utils)":[[42,"imputegap.tools.utils.load_share_lib",false]],"logs (imputegap.recovery.imputation.baseimputer attribute)":[[34,"imputegap.recovery.imputation.BaseImputer.logs",false]],"logs (imputegap.recovery.imputation.imputation.deeplearning.bayotide attribute)":[[34,"imputegap.recovery.imputation.Imputation.DeepLearning.BayOTIDE.logs",false]],"logs (imputegap.recovery.imputation.imputation.deeplearning.bitgraph attribute)":[[34,"imputegap.recovery.imputation.Imputation.DeepLearning.BitGraph.logs",false]],"logs (imputegap.recovery.imputation.imputation.deeplearning.brits attribute)":[[34,"imputegap.recovery.imputation.Imputation.DeepLearning.BRITS.logs",false]],"logs (imputegap.recovery.imputation.imputation.deeplearning.deepmvi attribute)":[[34,"imputegap.recovery.imputation.Imputation.DeepLearning.DeepMVI.logs",false]],"logs (imputegap.recovery.imputation.imputation.deeplearning.gain attribute)":[[34,"imputegap.recovery.imputation.Imputation.DeepLearning.GAIN.logs",false]],"logs (imputegap.recovery.imputation.imputation.deeplearning.grin attribute)":[[34,"imputegap.recovery.imputation.Imputation.DeepLearning.GRIN.logs",false]],"logs (imputegap.recovery.imputation.imputation.deeplearning.hkmf_t attribute)":[[34,"imputegap.recovery.imputation.Imputation.DeepLearning.HKMF_T.logs",false]],"logs (imputegap.recovery.imputation.imputation.deeplearning.missnet attribute)":[[34,"imputegap.recovery.imputation.Imputation.DeepLearning.MissNet.logs",false]],"logs (imputegap.recovery.imputation.imputation.deeplearning.mpin attribute)":[[34,"imputegap.recovery.imputation.Imputation.DeepLearning.MPIN.logs",false]],"logs (imputegap.recovery.imputation.imputation.deeplearning.mrnn attribute)":[[34,"imputegap.recovery.imputation.Imputation.DeepLearning.MRNN.logs",false]],"logs (imputegap.recovery.imputation.imputation.deeplearning.pristi attribute)":[[34,"imputegap.recovery.imputation.Imputation.DeepLearning.PRISTI.logs",false]],"logs (imputegap.recovery.imputation.imputation.machinelearning.iim attribute)":[[34,"imputegap.recovery.imputation.Imputation.MachineLearning.IIM.logs",false]],"logs (imputegap.recovery.imputation.imputation.machinelearning.mice attribute)":[[34,"imputegap.recovery.imputation.Imputation.MachineLearning.MICE.logs",false]],"logs (imputegap.recovery.imputation.imputation.machinelearning.missforest attribute)":[[34,"imputegap.recovery.imputation.Imputation.MachineLearning.MissForest.logs",false]],"logs (imputegap.recovery.imputation.imputation.machinelearning.xgboost attribute)":[[34,"imputegap.recovery.imputation.Imputation.MachineLearning.XGBOOST.logs",false]],"logs (imputegap.recovery.imputation.imputation.matrixcompletion.cdrec attribute)":[[34,"imputegap.recovery.imputation.Imputation.MatrixCompletion.CDRec.logs",false]],"logs (imputegap.recovery.imputation.imputation.matrixcompletion.grouse attribute)":[[34,"imputegap.recovery.imputation.Imputation.MatrixCompletion.GROUSE.logs",false]],"logs (imputegap.recovery.imputation.imputation.matrixcompletion.iterativesvd attribute)":[[34,"imputegap.recovery.imputation.Imputation.MatrixCompletion.IterativeSVD.logs",false]],"logs (imputegap.recovery.imputation.imputation.matrixcompletion.rosl attribute)":[[34,"imputegap.recovery.imputation.Imputation.MatrixCompletion.ROSL.logs",false]],"logs (imputegap.recovery.imputation.imputation.matrixcompletion.softimpute attribute)":[[34,"imputegap.recovery.imputation.Imputation.MatrixCompletion.SoftImpute.logs",false]],"logs (imputegap.recovery.imputation.imputation.matrixcompletion.spirit attribute)":[[34,"imputegap.recovery.imputation.Imputation.MatrixCompletion.SPIRIT.logs",false]],"logs (imputegap.recovery.imputation.imputation.matrixcompletion.svt attribute)":[[34,"imputegap.recovery.imputation.Imputation.MatrixCompletion.SVT.logs",false]],"logs (imputegap.recovery.imputation.imputation.matrixcompletion.trmf attribute)":[[34,"imputegap.recovery.imputation.Imputation.MatrixCompletion.TRMF.logs",false]],"logs (imputegap.recovery.imputation.imputation.patternsearch.dynammo attribute)":[[34,"imputegap.recovery.imputation.Imputation.PatternSearch.DynaMMo.logs",false]],"logs (imputegap.recovery.imputation.imputation.patternsearch.stmvl attribute)":[[34,"imputegap.recovery.imputation.Imputation.PatternSearch.STMVL.logs",false]],"logs (imputegap.recovery.imputation.imputation.patternsearch.tkcm attribute)":[[34,"imputegap.recovery.imputation.Imputation.PatternSearch.TKCM.logs",false]],"logs (imputegap.recovery.imputation.imputation.statistics.interpolation attribute)":[[34,"imputegap.recovery.imputation.Imputation.Statistics.Interpolation.logs",false]],"logs (imputegap.recovery.imputation.imputation.statistics.knn attribute)":[[34,"imputegap.recovery.imputation.Imputation.Statistics.KNN.logs",false]],"logs (imputegap.recovery.imputation.imputation.statistics.meanimpute attribute)":[[34,"imputegap.recovery.imputation.Imputation.Statistics.MeanImpute.logs",false]],"logs (imputegap.recovery.imputation.imputation.statistics.meanimputebyseries attribute)":[[34,"imputegap.recovery.imputation.Imputation.Statistics.MeanImputeBySeries.logs",false]],"logs (imputegap.recovery.imputation.imputation.statistics.minimpute attribute)":[[34,"imputegap.recovery.imputation.Imputation.Statistics.MinImpute.logs",false]],"logs (imputegap.recovery.imputation.imputation.statistics.zeroimpute attribute)":[[34,"imputegap.recovery.imputation.Imputation.Statistics.ZeroImpute.logs",false]],"mcar() (imputegap.recovery.manager.timeseries.contamination method)":[[35,"imputegap.recovery.manager.TimeSeries.Contamination.mcar",false]],"mean_impute() (in module imputegap.algorithms.mean_impute)":[[36,"imputegap.algorithms.mean_impute.mean_impute",false]],"min_impute() (in module imputegap.algorithms.min_impute)":[[37,"imputegap.algorithms.min_impute.min_impute",false]],"module":[[0,"module-imputegap.algorithms",false],[1,"module-imputegap.algorithms.cdrec",false],[2,"module-imputegap.algorithms.iim",false],[3,"module-imputegap.algorithms.mean_impute",false],[4,"module-imputegap.algorithms.min_impute",false],[5,"module-imputegap.algorithms.mrnn",false],[6,"module-imputegap.algorithms.stmvl",false],[7,"module-imputegap.algorithms.zero_impute",false],[8,"module-imputegap.recovery.benchmark",false],[9,"module-imputegap.recovery.benchmark",false],[10,"module-imputegap.recovery.evaluation",false],[11,"module-imputegap.recovery.explainer",false],[12,"module-imputegap.recovery.imputation",false],[13,"module-imputegap.recovery.manager",false],[14,"module-imputegap.recovery.optimization",false],[15,"module-imputegap.tools",false],[16,"module-imputegap.tools.algorithm_parameters",false],[17,"module-imputegap.tools.utils",false],[18,"module-imputegap.wrapper",false],[26,"module-imputegap",false],[27,"module-imputegap.tools",false],[27,"module-imputegap.tools.algorithm_parameters",false],[28,"module-imputegap.algorithms",false],[29,"module-0",false],[29,"module-imputegap.recovery.benchmark",false],[30,"module-imputegap.algorithms.cdrec",false],[31,"module-0",false],[31,"module-imputegap.recovery.evaluation",false],[32,"module-imputegap.recovery.explainer",false],[33,"module-imputegap.algorithms.iim",false],[34,"module-imputegap.recovery.imputation",false],[35,"module-imputegap.recovery.manager",false],[36,"module-imputegap.algorithms.mean_impute",false],[37,"module-imputegap.algorithms.min_impute",false],[38,"module-imputegap.algorithms.mrnn",false],[39,"module-imputegap.recovery.optimization",false],[40,"module-imputegap.algorithms.stmvl",false],[41,"module-imputegap.tools",false],[42,"module-imputegap.tools",false],[42,"module-imputegap.tools.utils",false],[43,"module-imputegap.wrapper",false],[44,"module-imputegap.algorithms.zero_impute",false]],"mrnn() (in module imputegap.algorithms.mrnn)":[[38,"imputegap.algorithms.mrnn.mrnn",false]],"native_cdrec() (in module imputegap.algorithms.cdrec)":[[30,"imputegap.algorithms.cdrec.native_cdrec",false]],"native_stmvl() (in module imputegap.algorithms.stmvl)":[[40,"imputegap.algorithms.stmvl.native_stmvl",false]],"normalize() (imputegap.recovery.manager.timeseries method)":[[35,"imputegap.recovery.manager.TimeSeries.normalize",false]],"optimization (class in imputegap.recovery.optimization)":[[39,"imputegap.recovery.optimization.Optimization",false]],"optimization.bayesian (class in imputegap.recovery.optimization)":[[39,"imputegap.recovery.optimization.Optimization.Bayesian",false]],"optimization.greedy (class in imputegap.recovery.optimization)":[[39,"imputegap.recovery.optimization.Optimization.Greedy",false]],"optimization.particleswarm (class in imputegap.recovery.optimization)":[[39,"imputegap.recovery.optimization.Optimization.ParticleSwarm",false]],"optimization.raytune (class in imputegap.recovery.optimization)":[[39,"imputegap.recovery.optimization.Optimization.RayTune",false]],"optimization.successivehalving (class in imputegap.recovery.optimization)":[[39,"imputegap.recovery.optimization.Optimization.SuccessiveHalving",false]],"optimize() (imputegap.recovery.optimization.baseoptimizer method)":[[39,"imputegap.recovery.optimization.BaseOptimizer.optimize",false]],"optimize() (imputegap.recovery.optimization.optimization.bayesian method)":[[39,"imputegap.recovery.optimization.Optimization.Bayesian.optimize",false]],"optimize() (imputegap.recovery.optimization.optimization.greedy method)":[[39,"imputegap.recovery.optimization.Optimization.Greedy.optimize",false]],"optimize() (imputegap.recovery.optimization.optimization.particleswarm method)":[[39,"imputegap.recovery.optimization.Optimization.ParticleSwarm.optimize",false]],"optimize() (imputegap.recovery.optimization.optimization.raytune method)":[[39,"imputegap.recovery.optimization.Optimization.RayTune.optimize",false]],"optimize() (imputegap.recovery.optimization.optimization.successivehalving method)":[[39,"imputegap.recovery.optimization.Optimization.SuccessiveHalving.optimize",false]],"overlap() (imputegap.recovery.manager.timeseries.contamination method)":[[35,"imputegap.recovery.manager.TimeSeries.Contamination.overlap",false]],"plot() (imputegap.recovery.manager.timeseries method)":[[35,"imputegap.recovery.manager.TimeSeries.plot",false]],"print() (imputegap.recovery.explainer.explainer method)":[[32,"imputegap.recovery.explainer.Explainer.print",false]],"print() (imputegap.recovery.manager.timeseries method)":[[35,"imputegap.recovery.manager.TimeSeries.print",false]],"print_results() (imputegap.recovery.manager.timeseries method)":[[35,"imputegap.recovery.manager.TimeSeries.print_results",false]],"save_optimization() (in module imputegap.tools.utils)":[[42,"imputegap.tools.utils.save_optimization",false]],"scattered() (imputegap.recovery.manager.timeseries.contamination method)":[[35,"imputegap.recovery.manager.TimeSeries.Contamination.scattered",false]],"score() (imputegap.recovery.imputation.baseimputer method)":[[34,"imputegap.recovery.imputation.BaseImputer.score",false]],"score() (imputegap.recovery.imputation.imputation.deeplearning.bayotide method)":[[34,"imputegap.recovery.imputation.Imputation.DeepLearning.BayOTIDE.score",false]],"score() (imputegap.recovery.imputation.imputation.deeplearning.bitgraph method)":[[34,"imputegap.recovery.imputation.Imputation.DeepLearning.BitGraph.score",false]],"score() (imputegap.recovery.imputation.imputation.deeplearning.brits method)":[[34,"imputegap.recovery.imputation.Imputation.DeepLearning.BRITS.score",false]],"score() (imputegap.recovery.imputation.imputation.deeplearning.deepmvi method)":[[34,"imputegap.recovery.imputation.Imputation.DeepLearning.DeepMVI.score",false]],"score() (imputegap.recovery.imputation.imputation.deeplearning.gain method)":[[34,"imputegap.recovery.imputation.Imputation.DeepLearning.GAIN.score",false]],"score() (imputegap.recovery.imputation.imputation.deeplearning.grin method)":[[34,"imputegap.recovery.imputation.Imputation.DeepLearning.GRIN.score",false]],"score() (imputegap.recovery.imputation.imputation.deeplearning.hkmf_t method)":[[34,"imputegap.recovery.imputation.Imputation.DeepLearning.HKMF_T.score",false]],"score() (imputegap.recovery.imputation.imputation.deeplearning.missnet method)":[[34,"imputegap.recovery.imputation.Imputation.DeepLearning.MissNet.score",false]],"score() (imputegap.recovery.imputation.imputation.deeplearning.mpin method)":[[34,"imputegap.recovery.imputation.Imputation.DeepLearning.MPIN.score",false]],"score() (imputegap.recovery.imputation.imputation.deeplearning.mrnn method)":[[34,"imputegap.recovery.imputation.Imputation.DeepLearning.MRNN.score",false]],"score() (imputegap.recovery.imputation.imputation.deeplearning.pristi method)":[[34,"imputegap.recovery.imputation.Imputation.DeepLearning.PRISTI.score",false]],"score() (imputegap.recovery.imputation.imputation.machinelearning.iim method)":[[34,"imputegap.recovery.imputation.Imputation.MachineLearning.IIM.score",false]],"score() (imputegap.recovery.imputation.imputation.machinelearning.mice method)":[[34,"imputegap.recovery.imputation.Imputation.MachineLearning.MICE.score",false]],"score() (imputegap.recovery.imputation.imputation.machinelearning.missforest method)":[[34,"imputegap.recovery.imputation.Imputation.MachineLearning.MissForest.score",false]],"score() (imputegap.recovery.imputation.imputation.machinelearning.xgboost method)":[[34,"imputegap.recovery.imputation.Imputation.MachineLearning.XGBOOST.score",false]],"score() (imputegap.recovery.imputation.imputation.matrixcompletion.cdrec method)":[[34,"imputegap.recovery.imputation.Imputation.MatrixCompletion.CDRec.score",false]],"score() (imputegap.recovery.imputation.imputation.matrixcompletion.grouse method)":[[34,"imputegap.recovery.imputation.Imputation.MatrixCompletion.GROUSE.score",false]],"score() (imputegap.recovery.imputation.imputation.matrixcompletion.iterativesvd method)":[[34,"imputegap.recovery.imputation.Imputation.MatrixCompletion.IterativeSVD.score",false]],"score() (imputegap.recovery.imputation.imputation.matrixcompletion.rosl method)":[[34,"imputegap.recovery.imputation.Imputation.MatrixCompletion.ROSL.score",false]],"score() (imputegap.recovery.imputation.imputation.matrixcompletion.softimpute method)":[[34,"imputegap.recovery.imputation.Imputation.MatrixCompletion.SoftImpute.score",false]],"score() (imputegap.recovery.imputation.imputation.matrixcompletion.spirit method)":[[34,"imputegap.recovery.imputation.Imputation.MatrixCompletion.SPIRIT.score",false]],"score() (imputegap.recovery.imputation.imputation.matrixcompletion.svt method)":[[34,"imputegap.recovery.imputation.Imputation.MatrixCompletion.SVT.score",false]],"score() (imputegap.recovery.imputation.imputation.matrixcompletion.trmf method)":[[34,"imputegap.recovery.imputation.Imputation.MatrixCompletion.TRMF.score",false]],"score() (imputegap.recovery.imputation.imputation.patternsearch.dynammo method)":[[34,"imputegap.recovery.imputation.Imputation.PatternSearch.DynaMMo.score",false]],"score() (imputegap.recovery.imputation.imputation.patternsearch.stmvl method)":[[34,"imputegap.recovery.imputation.Imputation.PatternSearch.STMVL.score",false]],"score() (imputegap.recovery.imputation.imputation.patternsearch.tkcm method)":[[34,"imputegap.recovery.imputation.Imputation.PatternSearch.TKCM.score",false]],"score() (imputegap.recovery.imputation.imputation.statistics.interpolation method)":[[34,"imputegap.recovery.imputation.Imputation.Statistics.Interpolation.score",false]],"score() (imputegap.recovery.imputation.imputation.statistics.knn method)":[[34,"imputegap.recovery.imputation.Imputation.Statistics.KNN.score",false]],"score() (imputegap.recovery.imputation.imputation.statistics.meanimpute method)":[[34,"imputegap.recovery.imputation.Imputation.Statistics.MeanImpute.score",false]],"score() (imputegap.recovery.imputation.imputation.statistics.meanimputebyseries method)":[[34,"imputegap.recovery.imputation.Imputation.Statistics.MeanImputeBySeries.score",false]],"score() (imputegap.recovery.imputation.imputation.statistics.minimpute method)":[[34,"imputegap.recovery.imputation.Imputation.Statistics.MinImpute.score",false]],"score() (imputegap.recovery.imputation.imputation.statistics.zeroimpute method)":[[34,"imputegap.recovery.imputation.Imputation.Statistics.ZeroImpute.score",false]],"search_path() (in module imputegap.tools.utils)":[[42,"imputegap.tools.utils.search_path",false]],"shap_explainer() (imputegap.recovery.explainer.explainer method)":[[32,"imputegap.recovery.explainer.Explainer.shap_explainer",false]],"stmvl() (in module imputegap.algorithms.stmvl)":[[40,"imputegap.algorithms.stmvl.stmvl",false]],"timeseries (class in imputegap.recovery.manager)":[[35,"imputegap.recovery.manager.TimeSeries",false]],"timeseries.contamination (class in imputegap.recovery.manager)":[[35,"imputegap.recovery.manager.TimeSeries.Contamination",false]],"verification_limitation() (in module imputegap.tools.utils)":[[42,"imputegap.tools.utils.verification_limitation",false]],"zero_impute() (in module imputegap.algorithms.zero_impute)":[[44,"imputegap.algorithms.zero_impute.zero_impute",false]]},"objects":{"":[[26,0,0,"-","imputegap"]],"imputegap":[[28,0,0,"-","algorithms"],[42,0,0,"-","tools"],[43,0,0,"-","wrapper"]],"imputegap.algorithms":[[30,0,0,"-","cdrec"],[33,0,0,"-","iim"],[36,0,0,"-","mean_impute"],[37,0,0,"-","min_impute"],[38,0,0,"-","mrnn"],[40,0,0,"-","stmvl"],[44,0,0,"-","zero_impute"]],"imputegap.algorithms.cdrec":[[30,1,1,"","cdrec"],[30,1,1,"","native_cdrec"]],"imputegap.algorithms.iim":[[33,1,1,"","iim"]],"imputegap.algorithms.mean_impute":[[36,1,1,"","mean_impute"]],"imputegap.algorithms.min_impute":[[37,1,1,"","min_impute"]],"imputegap.algorithms.mrnn":[[38,1,1,"","mrnn"]],"imputegap.algorithms.stmvl":[[40,1,1,"","native_stmvl"],[40,1,1,"","stmvl"]],"imputegap.algorithms.zero_impute":[[44,1,1,"","zero_impute"]],"imputegap.recovery":[[29,0,0,"module-0","benchmark"],[31,0,0,"module-0","evaluation"],[32,0,0,"-","explainer"],[34,0,0,"-","imputation"],[35,0,0,"-","manager"],[39,0,0,"-","optimization"]],"imputegap.recovery.benchmark":[[29,2,1,"id0","Benchmark"]],"imputegap.recovery.benchmark.Benchmark":[[29,3,1,"id17","average_runs_by_names"],[29,3,1,"id20","avg_results"],[29,3,1,"id23","eval"],[29,3,1,"id27","generate_heatmap"],[29,3,1,"id30","generate_plots"],[29,3,1,"id34","generate_reports_excel"],[29,3,1,"id37","generate_reports_txt"]],"imputegap.recovery.evaluation":[[31,2,1,"id0","Evaluation"]],"imputegap.recovery.evaluation.Evaluation":[[31,3,1,"id6","compute_all_metrics"],[31,3,1,"id8","compute_correlation"],[31,3,1,"id10","compute_mae"],[31,3,1,"id12","compute_mi"],[31,3,1,"id14","compute_rmse"]],"imputegap.recovery.explainer":[[32,2,1,"","Explainer"]],"imputegap.recovery.explainer.Explainer":[[32,3,1,"","convert_results"],[32,3,1,"","execute_shap_model"],[32,3,1,"","extractor_pycatch"],[32,3,1,"","extractor_tsfel"],[32,3,1,"","extractor_tsfresh"],[32,3,1,"","load_configuration"],[32,3,1,"","print"],[32,3,1,"","shap_explainer"]],"imputegap.recovery.imputation":[[34,2,1,"","BaseImputer"],[34,2,1,"","Imputation"]],"imputegap.recovery.imputation.BaseImputer":[[34,3,1,"","__init__"],[34,4,1,"","algorithm"],[34,3,1,"","impute"],[34,4,1,"","logs"],[34,3,1,"","score"]],"imputegap.recovery.imputation.Imputation":[[34,2,1,"","DeepLearning"],[34,2,1,"","MachineLearning"],[34,2,1,"","MatrixCompletion"],[34,2,1,"","PatternSearch"],[34,2,1,"","Statistics"],[34,3,1,"","evaluate_params"]],"imputegap.recovery.imputation.Imputation.DeepLearning":[[34,2,1,"","BRITS"],[34,2,1,"","BayOTIDE"],[34,2,1,"","BitGraph"],[34,2,1,"","DeepMVI"],[34,2,1,"","GAIN"],[34,2,1,"","GRIN"],[34,2,1,"","HKMF_T"],[34,2,1,"","MPIN"],[34,2,1,"","MRNN"],[34,2,1,"","MissNet"],[34,2,1,"","PRISTI"]],"imputegap.recovery.imputation.Imputation.DeepLearning.BRITS":[[34,3,1,"","__init__"],[34,4,1,"","algorithm"],[34,3,1,"","impute"],[34,4,1,"","logs"],[34,3,1,"","score"]],"imputegap.recovery.imputation.Imputation.DeepLearning.BayOTIDE":[[34,3,1,"","__init__"],[34,4,1,"","algorithm"],[34,3,1,"","impute"],[34,4,1,"","logs"],[34,3,1,"","score"]],"imputegap.recovery.imputation.Imputation.DeepLearning.BitGraph":[[34,3,1,"","__init__"],[34,4,1,"","algorithm"],[34,3,1,"","impute"],[34,4,1,"","logs"],[34,3,1,"","score"]],"imputegap.recovery.imputation.Imputation.DeepLearning.DeepMVI":[[34,3,1,"","__init__"],[34,4,1,"","algorithm"],[34,3,1,"","impute"],[34,4,1,"","logs"],[34,3,1,"","score"]],"imputegap.recovery.imputation.Imputation.DeepLearning.GAIN":[[34,3,1,"","__init__"],[34,4,1,"","algorithm"],[34,3,1,"","impute"],[34,4,1,"","logs"],[34,3,1,"","score"]],"imputegap.recovery.imputation.Imputation.DeepLearning.GRIN":[[34,3,1,"","__init__"],[34,4,1,"","algorithm"],[34,3,1,"","impute"],[34,4,1,"","logs"],[34,3,1,"","score"]],"imputegap.recovery.imputation.Imputation.DeepLearning.HKMF_T":[[34,3,1,"","__init__"],[34,4,1,"","algorithm"],[34,3,1,"","impute"],[34,4,1,"","logs"],[34,3,1,"","score"]],"imputegap.recovery.imputation.Imputation.DeepLearning.MPIN":[[34,3,1,"","__init__"],[34,4,1,"","algorithm"],[34,3,1,"","impute"],[34,4,1,"","logs"],[34,3,1,"","score"]],"imputegap.recovery.imputation.Imputation.DeepLearning.MRNN":[[34,3,1,"","__init__"],[34,4,1,"","algorithm"],[34,3,1,"","impute"],[34,4,1,"","logs"],[34,3,1,"","score"]],"imputegap.recovery.imputation.Imputation.DeepLearning.MissNet":[[34,3,1,"","__init__"],[34,4,1,"","algorithm"],[34,3,1,"","impute"],[34,4,1,"","logs"],[34,3,1,"","score"]],"imputegap.recovery.imputation.Imputation.DeepLearning.PRISTI":[[34,3,1,"","__init__"],[34,4,1,"","algorithm"],[34,3,1,"","impute"],[34,4,1,"","logs"],[34,3,1,"","score"]],"imputegap.recovery.imputation.Imputation.MachineLearning":[[34,2,1,"","IIM"],[34,2,1,"","MICE"],[34,2,1,"","MissForest"],[34,2,1,"","XGBOOST"]],"imputegap.recovery.imputation.Imputation.MachineLearning.IIM":[[34,3,1,"","__init__"],[34,4,1,"","algorithm"],[34,3,1,"","impute"],[34,4,1,"","logs"],[34,3,1,"","score"]],"imputegap.recovery.imputation.Imputation.MachineLearning.MICE":[[34,3,1,"","__init__"],[34,4,1,"","algorithm"],[34,3,1,"","impute"],[34,4,1,"","logs"],[34,3,1,"","score"]],"imputegap.recovery.imputation.Imputation.MachineLearning.MissForest":[[34,3,1,"","__init__"],[34,4,1,"","algorithm"],[34,3,1,"","impute"],[34,4,1,"","logs"],[34,3,1,"","score"]],"imputegap.recovery.imputation.Imputation.MachineLearning.XGBOOST":[[34,3,1,"","__init__"],[34,4,1,"","algorithm"],[34,3,1,"","impute"],[34,4,1,"","logs"],[34,3,1,"","score"]],"imputegap.recovery.imputation.Imputation.MatrixCompletion":[[34,2,1,"","CDRec"],[34,2,1,"","GROUSE"],[34,2,1,"","IterativeSVD"],[34,2,1,"","ROSL"],[34,2,1,"","SPIRIT"],[34,2,1,"","SVT"],[34,2,1,"","SoftImpute"],[34,2,1,"","TRMF"]],"imputegap.recovery.imputation.Imputation.MatrixCompletion.CDRec":[[34,3,1,"","__init__"],[34,4,1,"","algorithm"],[34,3,1,"","impute"],[34,4,1,"","logs"],[34,3,1,"","score"]],"imputegap.recovery.imputation.Imputation.MatrixCompletion.GROUSE":[[34,3,1,"","__init__"],[34,4,1,"","algorithm"],[34,3,1,"","impute"],[34,4,1,"","logs"],[34,3,1,"","score"]],"imputegap.recovery.imputation.Imputation.MatrixCompletion.IterativeSVD":[[34,3,1,"","__init__"],[34,4,1,"","algorithm"],[34,3,1,"","impute"],[34,4,1,"","logs"],[34,3,1,"","score"]],"imputegap.recovery.imputation.Imputation.MatrixCompletion.ROSL":[[34,3,1,"","__init__"],[34,4,1,"","algorithm"],[34,3,1,"","impute"],[34,4,1,"","logs"],[34,3,1,"","score"]],"imputegap.recovery.imputation.Imputation.MatrixCompletion.SPIRIT":[[34,3,1,"","__init__"],[34,4,1,"","algorithm"],[34,3,1,"","impute"],[34,4,1,"","logs"],[34,3,1,"","score"]],"imputegap.recovery.imputation.Imputation.MatrixCompletion.SVT":[[34,3,1,"","__init__"],[34,4,1,"","algorithm"],[34,3,1,"","impute"],[34,4,1,"","logs"],[34,3,1,"","score"]],"imputegap.recovery.imputation.Imputation.MatrixCompletion.SoftImpute":[[34,3,1,"","__init__"],[34,4,1,"","algorithm"],[34,3,1,"","impute"],[34,4,1,"","logs"],[34,3,1,"","score"]],"imputegap.recovery.imputation.Imputation.MatrixCompletion.TRMF":[[34,3,1,"","__init__"],[34,4,1,"","algorithm"],[34,3,1,"","impute"],[34,4,1,"","logs"],[34,3,1,"","score"]],"imputegap.recovery.imputation.Imputation.PatternSearch":[[34,2,1,"","DynaMMo"],[34,2,1,"","STMVL"],[34,2,1,"","TKCM"]],"imputegap.recovery.imputation.Imputation.PatternSearch.DynaMMo":[[34,3,1,"","__init__"],[34,4,1,"","algorithm"],[34,3,1,"","impute"],[34,4,1,"","logs"],[34,3,1,"","score"]],"imputegap.recovery.imputation.Imputation.PatternSearch.STMVL":[[34,3,1,"","__init__"],[34,4,1,"","algorithm"],[34,3,1,"","impute"],[34,4,1,"","logs"],[34,3,1,"","score"]],"imputegap.recovery.imputation.Imputation.PatternSearch.TKCM":[[34,3,1,"","__init__"],[34,4,1,"","algorithm"],[34,3,1,"","impute"],[34,4,1,"","logs"],[34,3,1,"","score"]],"imputegap.recovery.imputation.Imputation.Statistics":[[34,2,1,"","Interpolation"],[34,2,1,"","KNN"],[34,2,1,"","MeanImpute"],[34,2,1,"","MeanImputeBySeries"],[34,2,1,"","MinImpute"],[34,2,1,"","ZeroImpute"]],"imputegap.recovery.imputation.Imputation.Statistics.Interpolation":[[34,3,1,"","__init__"],[34,4,1,"","algorithm"],[34,3,1,"","impute"],[34,4,1,"","logs"],[34,3,1,"","score"]],"imputegap.recovery.imputation.Imputation.Statistics.KNN":[[34,3,1,"","__init__"],[34,4,1,"","algorithm"],[34,3,1,"","impute"],[34,4,1,"","logs"],[34,3,1,"","score"]],"imputegap.recovery.imputation.Imputation.Statistics.MeanImpute":[[34,3,1,"","__init__"],[34,4,1,"","algorithm"],[34,3,1,"","impute"],[34,4,1,"","logs"],[34,3,1,"","score"]],"imputegap.recovery.imputation.Imputation.Statistics.MeanImputeBySeries":[[34,3,1,"","__init__"],[34,4,1,"","algorithm"],[34,3,1,"","impute"],[34,4,1,"","logs"],[34,3,1,"","score"]],"imputegap.recovery.imputation.Imputation.Statistics.MinImpute":[[34,3,1,"","__init__"],[34,4,1,"","algorithm"],[34,3,1,"","impute"],[34,4,1,"","logs"],[34,3,1,"","score"]],"imputegap.recovery.imputation.Imputation.Statistics.ZeroImpute":[[34,3,1,"","__init__"],[34,4,1,"","algorithm"],[34,3,1,"","impute"],[34,4,1,"","logs"],[34,3,1,"","score"]],"imputegap.recovery.manager":[[35,2,1,"","TimeSeries"]],"imputegap.recovery.manager.TimeSeries":[[35,2,1,"","Contamination"],[35,3,1,"","import_matrix"],[35,3,1,"","load_series"],[35,3,1,"","normalize"],[35,3,1,"","plot"],[35,3,1,"","print"],[35,3,1,"","print_results"]],"imputegap.recovery.manager.TimeSeries.Contamination":[[35,3,1,"","aligned"],[35,3,1,"","blackout"],[35,3,1,"","disjoint"],[35,3,1,"","distribution"],[35,3,1,"","gaussian"],[35,3,1,"","mcar"],[35,3,1,"","overlap"],[35,3,1,"","scattered"]],"imputegap.recovery.optimization":[[39,2,1,"","BaseOptimizer"],[39,2,1,"","Optimization"]],"imputegap.recovery.optimization.BaseOptimizer":[[39,3,1,"","optimize"]],"imputegap.recovery.optimization.Optimization":[[39,2,1,"","Bayesian"],[39,2,1,"","Greedy"],[39,2,1,"","ParticleSwarm"],[39,2,1,"","RayTune"],[39,2,1,"","SuccessiveHalving"]],"imputegap.recovery.optimization.Optimization.Bayesian":[[39,3,1,"","optimize"]],"imputegap.recovery.optimization.Optimization.Greedy":[[39,3,1,"","optimize"]],"imputegap.recovery.optimization.Optimization.ParticleSwarm":[[39,3,1,"","optimize"]],"imputegap.recovery.optimization.Optimization.RayTune":[[39,3,1,"","optimize"]],"imputegap.recovery.optimization.Optimization.SuccessiveHalving":[[39,3,1,"","optimize"]],"imputegap.tools":[[27,0,0,"-","algorithm_parameters"],[42,0,0,"-","utils"]],"imputegap.tools.utils":[[42,1,1,"","config_contamination"],[42,1,1,"","config_forecaster"],[42,1,1,"","config_impute_algorithm"],[42,1,1,"","display_title"],[42,1,1,"","list_of_algorithms"],[42,1,1,"","list_of_datasets"],[42,1,1,"","list_of_downstreams"],[42,1,1,"","list_of_downstreams_darts"],[42,1,1,"","list_of_downstreams_sktime"],[42,1,1,"","list_of_optimizers"],[42,1,1,"","list_of_patterns"],[42,1,1,"","load_parameters"],[42,1,1,"","load_share_lib"],[42,1,1,"","save_optimization"],[42,1,1,"","search_path"],[42,1,1,"","verification_limitation"]]},"objnames":{"0":["py","module","Python module"],"1":["py","function","Python function"],"2":["py","class","Python class"],"3":["py","method","Python method"],"4":["py","attribute","Python attribute"]},"objtypes":{"0":"py:module","1":"py:function","2":"py:class","3":"py:method","4":"py:attribute"},"terms":{"":[19,24,33,34,42,47,49],"0":[20,23,29,30,32,34,35,38,40,42,44,47,48,49,50],"000001":30,"00023":[33,34],"00040669209664367576":29,"000461578369140625":29,"00048422813415527344":29,"0005095005035400391":29,"0005536079406738281":29,"0005743503570556641":29,"0005755424499511719":29,"0009615421295166016":29,"001":[34,38],"0010058879852294922":29,"0010309219360351562":29,"001056671142578125":29,"0014975078469404196":29,"00150":34,"0019745826721191406":29,"0020699501037597656":29,"0022056102752685547":29,"002231597900390625":29,"00298":[19,34],"003415822982788086":29,"0035880775657246428":29,"00482487678527832":29,"006171770470542263":29,"007096290588378906":29,"0072672367095947266":29,"007429599761962891":29,"007513931343350665":29,"00801849365234375":29,"01":[34,42],"010712060535523":29,"01121013333181846":29,"0112488396023014":29,"011590260996247858":29,"0125309431502871":29,"013509125598802707":29,"01421":[30,34],"0143105930114702":29,"01600":34,"0160968166750064":29,"01713728904724121":29,"0183962968474991":29,"019":[30,34],"020630168509677818":29,"021165172206064526":29,"02915935932568557":29,"02920":34,"0317754516097355":29,"03436":19,"037161060882302754":29,"0379347892718205":29,"04155403791391449":29,"042899370193481445":29,"043192148208618164":29,"04321551322937012":29,"04391813278198242":29,"0441472017887297":29,"04829454421997":29,"05":[20,29,35,42],"0552448338389784":29,"06361822797740405":29,"064299483512458":29,"06616526470761779":29,"07010293006897":29,"07344":[19,34],"0807965786089415":29,"08459032692102293":29,"09218788146972656":29,"09549617767333984":29,"09925566629402761":29,"1":[19,20,29,30,31,32,34,35,37,39,40,42,44,47,48,49,50],"10":[19,25,30,32,33,34,35,38,39,42,49],"100":[30,32,34,35,39,42,47,48,49],"1000":[34,38],"1007":[30,34],"10781252370591506":29,"10793352127075":29,"10881781578063965":29,"10908095436833125":29,"1093":34,"11":[19,34],"1109":[33,34,38],"112":[19,34],"11218049973594252":29,"1129295825958252":29,"1145":34,"1167751522591498":29,"118":[19,34],"11876685901414151":29,"11924522547609226":29,"12":[19,25],"12567590499764303":29,"13":[19,20,25],"13422239939628303":29,"13619797235197734":29,"1380846624733049":29,"13894771223733138":29,"14":19,"1460":[19,34],"1468":[19,34],"14709529129218185":29,"1477":[19,34,38],"1490":[19,34,38],"14906":34,"15":[19,32,34,35],"1516089897042538":29,"151907444000244":29,"15250":45,"15th":34,"16":[34,35],"160":[33,34],"16953644212278182":29,"17":[19,34],"17044353485107422":29,"171":[33,34],"17184901237487793":29,"1728806495666504":29,"17329692840576172":29,"1806":34,"18152059329152104":29,"186191167936035":29,"1927":[19,34],"1939":[19,34],"1956":[19,34],"1960":34,"1974":29,"1982":[19,34],"19th":34,"2":[19,20,29,33,34,35,36,37,39,40,44,47,49,50],"20":[19,34],"200":34,"2001":[19,34],"2004":19,"2005":[19,34],"2009":[19,34],"2010":[19,34],"2011":[19,34],"2012":[19,34],"2014":[19,34],"2016":[19,34],"2017":[19,34],"2018":[19,34,38],"2019":[19,33,34,38],"2020":[19,20,30,34],"2021":[19,34],"2022":19,"2023":[19,34],"2024":[19,34],"2025":45,"20th":34,"21":34,"2103":34,"2108":[19,34],"22":[19,34],"22056702659999994":29,"2257":[19,30,34],"2280":[19,30,34],"2287":[19,34],"2296":[19,34],"22nd":34,"23":[19,34],"2306":[19,34],"2308":34,"2311":[19,34],"2322":[19,34],"23303624184873978":29,"2366529609250008":29,"2380077838897705":29,"24":[19,34],"24340565131372927":29,"25":[19,34],"250":39,"2503":45,"2533":19,"2545":19,"255":29,"256":49,"26":19,"2696133927362288":29,"27":19,"2704":19,"2710":19,"2730547993858495":29,"2739817718416822":29,"2753022759369617":29,"28":[19,34],"2874712":[34,38],"29":[19,34],"2939506418814281":29,"2939672":34,"2939785":34,"2971190":34,"2d":[29,32,45],"3":[19,25,34,35,36,49],"30":[19,34],"302":34,"306":34,"30th":34,"31":[19,34],"31524085998535":29,"31st":34,"32":[19,34],"32988968428439397":29,"33":[19,20,29,34],"330":[19,34],"341":[19,34],"34494332493982044":29,"346560495723809":29,"35":29,"3582":[19,34],"3593":[19,34],"35th":[33,34],"3637528":34,"3671760":34,"37254427425455994":29,"38695094864012947":29,"3874":[19,34],"3881":[19,34],"39007056542870916":29,"3968159514130716":29,"39th":34,"4":[19,20,29,32,34,35,36,37,42,44,49,50],"40":29,"4155649406397416":29,"42":[34,49],"42237901687622":29,"42568325996399":29,"4355197572001326":29,"439927101135254":29,"4445625930776235":29,"45":[19,34],"479795694351196":29,"49":29,"4924048353228427":29,"5":[19,20,32,34,36,38],"50":[29,32,34,35,39],"507":[19,34],"516":[19,34],"52":29,"520":[19,34],"525":[19,34],"53373336791992":29,"54":29,"543020248413086":29,"5434405584289141":29,"5650541301828254":29,"5675":19,"5684":19,"5862696375344495":29,"5999574661254883":29,"6":[19,20,29,32,34,36,37,44],"6027573766269363":29,"6064670085906982":29,"6077785491943359":29,"6101157665253":29,"6166613101959229":29,"62":[19,30,34],"64":[34,38,49],"66":[19,34,38],"66455388069153":29,"67":34,"6776":19,"6786":19,"6805167198181152":29,"697":[19,34],"7":[19,30,34,35,38,40],"7019459696903068":29,"708":[19,34],"7219362152785619":29,"7312998041323675":29,"7326965517264863":29,"7328867182584357":29,"734e6bfcd358e25ac1db0a4241b95651":34,"7380530834197998":29,"7425412593844177":29,"7426695186604741":29,"7470128536224":29,"7544523683503829":29,"757440007226372":29,"7599852461729673":29,"7610548321723654":29,"761136543268339":29,"7641520748788702":29,"7646823531588104":29,"7672558930795506":29,"768":20,"7774057495176013":29,"782":20,"7826457023620605":29,"783":32,"785":[19,34],"794":[19,34],"7952869439926":29,"8":[19,20,23,29,34,35],"802757cace6d":34,"8134840739732964":29,"814120507570725":29,"8178796825899766":29,"8280959876205578":29,"8390532279447225":29,"840":29,"847":19,"85":[34,40],"8519431955571422":29,"85422afb467e9456013a2a51d4dff702":34,"855":19,"8785057067871094":29,"88247036933899":29,"8944975075266335":29,"9":[19,34,35,48,49],"9004526656857551":29,"9166777087122915":29,"9180937736429735":29,"919934494058292":29,"9234927128429051":29,"9249744935121553":29,"9293322959355041":29,"9378046989440918":29,"9458508648057621":29,"94813060760498":29,"95":34,"9531900627237018":29,"9562773704528809":29,"968435455112644":29,"9699990038879407":29,"9711348247027318":29,"9829398352220718":29,"9901338133811375":29,"9914069853975623":29,"A":[19,29,31,32,33,34,35,39,42,45],"As":49,"BE":19,"BY":34,"By":32,"FOR":34,"If":[25,29,32,34,35,36,37,42,45,47],"In":[34,45,49],"It":[24,35,36,37,45],"One":[34,47],"That":34,"The":[20,22,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,47,49,50],"To":[19,22,23,25,47,49,50],"WITH":34,"With":[19,34],"_":19,"__init__":[26,34,35],"__py_alpha":40,"__py_epsilon":30,"__py_gamma":40,"__py_iter":30,"__py_matrix":[30,40],"__py_rank":30,"__py_window":40,"_check_param":34,"_object":39,"_optim":34,"a0":34,"ab":[19,34,45],"about":34,"absolut":31,"abstract":[34,39],"academi":[34,40],"accept":42,"access":[45,48],"accur":42,"accuraci":34,"acm":34,"acq_func":[34,39],"acquisit":[34,39],"across":[24,29],"action":33,"activ":34,"ad":[34,47],"adapt":[33,34],"add":[23,34],"addit":[23,24,34,39],"adjust":[42,48],"advanc":[34,40],"adversari":[19,34],"affect":47,"after":[30,34,39,40,47],"against":34,"aggreg":[32,33,34],"ahuja":[19,34],"airq":22,"aistat":[19,34],"alberto":20,"alcohol":[20,22,24,29,35,48,49],"algo":[29,32],"algo_cod":[33,34],"algorithm":[20,23,24,26,27,28,29,31,32,34,35,39,41,42,43,45,46,49],"align":[23,35,47],"alippi":[19,34],"all":[19,22,23,29,32,34,35,36,37,40,44,47,50],"allow":[30,35],"alon":34,"alpha":[34,40],"alreadi":35,"also":35,"altern":25,"altman":[19,34],"amount":31,"an":[20,23,25,29,34,42,47,49],"anaheim":34,"analysi":[20,32,33,34,45],"analyt":42,"analyz":45,"andrea":19,"ani":[25,35,50],"anton":19,"aoqian":19,"api":[45,48],"append":50,"appli":[29,32,34,35],"applic":35,"approach":38,"appropri":49,"approxim":34,"ar":[19,32,34,35,38,45,47,49],"arang":50,"arbitrari":47,"archiveprefix":45,"arg":34,"argument":34,"arrai":[29,32,34,35,36,37,44],"art":45,"articl":[34,45],"artifici":34,"arxiv":[34,45],"assess":45,"assign":34,"associ":[34,35],"assumpt":32,"attribut":[19,34],"august":34,"aut":42,"author":[40,42,44,45],"auto":34,"autocorrel":32,"autom":45,"automl":[19,34],"autoregress":34,"avail":[19,22,23,32,34,47,49],"averag":[29,31],"average_runs_by_nam":29,"avg_result":29,"avoid":34,"b":[19,34,42],"b0":34,"back":47,"bafu":[22,35],"balanc":34,"balzano":[19,34],"bansal":[19,34],"base":[29,30,31,32,34,35,38,39,42,48],"baseimput":[26,34,42],"baseoptim":[26,39],"basic":32,"batch":34,"batch_siz":34,"bay_otid":34,"bay_otide_imput":34,"bayesian":[19,26,29,34,39],"bayotid":[19,34],"bed":20,"been":[29,36,37,44],"befor":34,"begin":[32,35,47],"behavior":[24,33,45],"being":[31,35],"belong":32,"below":23,"benchmark":45,"best":39,"beta":34,"better":40,"between":[31,34,42,47],"bia":34,"bias":[19,34],"bidirect":[19,34],"big":34,"bioinform":19,"bioinformat":[19,34],"biom":19,"biomed":[34,38],"bit_graph":34,"bit_graph_imput":34,"bitgraph":[19,34],"blackout":[19,34,35,42],"block":[19,30,32,34,35,42],"block_siz":[32,35,42,49],"block_size_mcar":42,"bo":19,"bool":[29,30,32,33,34,35,38,42],"boost":[19,34],"botstein":[19,34],"bound":42,"bowen":19,"brit":[19,34],"brits_i_univ":34,"brits_imput":34,"brown":[19,34],"btr597":34,"buck":34,"built":45,"buuren":34,"b\u00f6hlen":[19,30,34],"b\u00fchlmann":[19,34],"c":[30,34,40,45],"c1":[34,39],"c2":[34,39],"ca":34,"cadiz":34,"cai":[19,34],"calcul":[29,32],"call":[23,34,39,49],"cambronero":34,"can":[19,20,22,23,25,32,34,35,44,47,48,49],"cand\u00e8":[19,34],"cantor":[19,34],"cao":[19,34],"capac":34,"captur":34,"carlo":[19,34],"catch24":32,"categor":29,"categori":32,"cater":45,"cc":34,"cd":25,"cdll":42,"cdrec":[19,20,23,24,26,29,32,34,39,40,42,44,46,49],"cdrec_imput":34,"centroid":[30,34],"cesar":19,"ch":21,"chain":[19,34],"charact":35,"characterist":45,"check":[34,42,45],"chen":[19,34],"chen1":34,"chenxiaodanhit":34,"china":[33,34],"chines":[34,40],"chlorin":[22,42],"choic":20,"chosen":[20,47,49],"christian":19,"christo":19,"cini":[19,34],"class":[8,9,10,11,12,13,14,29,31,32,34,35,39],"classifi":33,"climat":22,"clone":25,"close":34,"cluster":34,"code":[33,34,48,49,50],"coeffici":[31,34,39],"coevolv":[19,34],"columbu":34,"column":[29,30,34,45],"com":[25,34],"come":49,"command":[19,22,23,25,47],"common":[20,34,39],"commonli":45,"compar":[20,31],"compat":[25,45],"complet":[19,29,34,35,47,49],"complex":[34,44],"compon":[34,40,49],"compos":49,"comprehens":[29,45],"comput":[23,31,32,33,34,35,49,50],"compute_all_metr":[26,31],"compute_correl":[26,31],"compute_ma":[26,31],"compute_mi":[26,31],"compute_rms":[26,31],"condit":[19,34],"confer":[33,34],"config":[32,34],"config_contamin":[26,42],"config_forecast":[26,42],"config_impute_algorithm":[26,42],"configur":[24,29,32,34,39,42,45,49],"consid":34,"constant":34,"contain":[22,29,30,31,32,33,34,35,36,37,38,39,40,42,44,49],"contamin":[23,26,29,30,31,32,33,34,35,36,37,38,39,40,42,45,50],"content":46,"contextu":34,"continu":[19,34,47],"contribut":34,"control":[20,34],"converg":[19,34],"convert":[32,42],"convert_result":[26,32],"convolut":[19,34],"core":45,"corr":[19,34],"correct":42,"correl":[19,29,30,31,34,38],"correspond":[34,39],"corrupt":[19,34],"coupl":34,"cover":50,"cpu":[34,39],"creat":[25,29,47],"criteria":[34,45],"criterion":30,"cross":[19,30,32,34],"ctype":42,"cuda":34,"cudr\u00e9":[19,20,30,34],"current":[23,32,44],"custom":[20,30,32,42,45],"cvpr":[19,34],"d":[34,35,50],"d_hidden":34,"daniel":[19,34],"dart":42,"data":[19,23,24,29,30,31,32,33,34,35,36,37,38,40,42,44,47,48,49,50],"data_nam":34,"databas":34,"dataset":[20,29,31,32,34,35,36,37,39,42,44,45,47,48,49],"dataset_r":42,"david":[19,34],"decai":34,"decim":42,"decomposit":[19,30,34],"dedic":23,"deep":[19,34,49],"deep_mvi":34,"deep_mvi_imput":34,"deeplearn":[26,34],"deepmvi":[19,34],"default":[29,30,32,33,34,35,36,37,38,39,42,44,47,49],"defin":[23,34,49],"dejiao":19,"depend":[29,33,34],"der":[19,34,38],"descent":[19,34],"describ":49,"descript":32,"deshpand":[19,34],"desir":32,"detail":[29,32,34,45],"determin":[19,32,33,34],"develop":[19,47],"deviat":[32,34,35,48],"devic":34,"dhillon":[19,34],"diagnost":[34,38],"dict":[29,31,32,34,35,36,37,39,42,44],"dictionari":[23,29,31,32,34,35,42,49],"differ":[24,30,33,35,39,43,49],"diffus":[19,34],"dign\u00f6":[19,34],"dimens":[32,34,38,49],"dimension":[19,34],"direct":[19,34,38],"directori":[29,32],"discoveri":[19,34],"disjoint":[35,42,47],"displai":[29,32,35,42,49],"display_titl":[26,42],"distanc":34,"distribut":[34,35,47,48],"divers":45,"divid":[42,48],"dl":34,"dna":[19,34],"do_catch24":32,"document":[26,34,46,48],"doi":[30,33,34,38],"domain":32,"dong":19,"downstream":[34,42,45],"downstream_config":23,"downstream_metr":23,"downstream_model":23,"dr":21,"drift":[22,29],"dropout":34,"du":[19,34],"dure":[34,39,49],"dynam":[32,34],"dynammo":[19,34],"dynammo_imput":34,"e":[25,29,32,34,35,39,42],"each":[24,29,32,34,35,39,45,47,49],"earli":34,"earlier":34,"easili":45,"economi":[22,23],"edbt":[19,34],"eeg":[20,22,24,29,35,48,49],"effect":20,"effici":[19,20,34,35,45],"ei":34,"eigencompon":34,"eight":49,"either":49,"electr":22,"electrod":49,"electron":34,"embed":34,"emmanuel":19,"empti":[42,45],"en":35,"enabl":[34,48],"encourag":34,"end":[35,47],"endow":[19,20],"enforc":34,"eng":19,"engin":[33,34,38],"ensur":[45,48],"entir":[32,34],"entropi":32,"environ":25,"epoch":[34,49],"eprint":45,"epsilon":[30,34],"equal":34,"equat":[19,34],"error":[31,34],"estim":[19,33,34,38],"eta":34,"etc":39,"eval":[20,29],"evalu":[20,26,27,28,34,39,41,42,45,46],"evaluate_param":[26,34],"everi":47,"exampl":[23,32,49,50],"exascaleinfolab":25,"excel":29,"except":25,"execut":[29,30,33,34,35,38,40,42],"execute_shap_model":[26,32],"expand":23,"expect":32,"experiment":20,"explain":[26,35,42,45,46],"explan":[24,32,35],"explor":45,"expon":32,"express":35,"extend":[19,34],"extens":[44,45],"extern":34,"extract":32,"extractor":[24,32],"extractor_pycatch":[26,32],"extractor_tsfel":[26,32],"extractor_tsfresh":[26,32],"extrem":34,"f":[19,22,23,34,47],"face":25,"factor":[19,34,39],"faloutso":[19,34],"fals":[29,32,34,35,42,49],"famili":[19,49],"fang":[19,34],"fast":34,"faster":34,"fatih":19,"featur":[24,32,34,45],"feature_nam":32,"features_categori":32,"features_list":32,"feng":[19,34],"feser":34,"fft":32,"figur":29,"file":[29,30,32,34,35,42,48,49],"file_nam":[24,32,42],"file_path":32,"fill":[19,34,36,37,40],"filter":32,"final":34,"find":[36,37,39,42,45],"fine":[20,45,49],"first":47,"five":49,"fix":48,"flag":32,"flaot":32,"float":[29,30,31,32,34,35,38,39,40,42],"fmri":22,"follow":[20,25,44,45,47,48,49,50],"forcast":[23,34,42],"forecast":[19,22,23,34,42],"forest":34,"forget":34,"forgotten":34,"format":[32,34,35,42,49],"formatted_feature_nam":32,"foster":45,"four":32,"fractal":32,"framework":[19,34,43,45],"franc":34,"frequenc":32,"fribourg":42,"friendli":45,"from":[19,20,22,23,24,25,32,34,35,36,37,42,47,48,49,50],"fu":[19,34],"full":20,"function":[1,2,3,4,5,6,7,17,19,27,28,29,31,32,33,34,36,37,38,39,41,42,43],"futur":[23,44],"g":[19,29,32,34,35,39,42],"gain":[19,34],"gain_imput":34,"gamma":[34,40],"gamper":[19,34],"gap":20,"gaussian":[34,35,39,42,50],"gavin":[19,34],"gcn":34,"gener":[19,29,32,34],"generate_heatmap":29,"generate_plot":29,"generate_reports_excel":29,"generate_reports_txt":29,"genet":49,"geo":[19,34,40],"get":32,"git":25,"github":[25,34],"give":31,"given":[34,39,42,47],"global":[19,34,39],"gp_hedg":[34,39],"gpu":[34,39],"gradient":[19,34],"grain":45,"graph":[19,34],"grassmannian":[19,34],"greater":[30,34],"greedi":[26,34,39],"grin":[19,34],"grin_imput":34,"groothui":34,"ground":[31,34,39,49],"group":[32,34],"grous":[19,34],"grouse_imput":34,"guestrin":[19,34],"guid":[25,45],"h":[19,30,34],"ha":[29,35],"halv":[34,39],"han":19,"handl":[27,28,30,31,32,33,36,37,38,40,41,42,44],"hankel":[19,34],"hann":19,"hao":19,"hasti":[19,34],"have":[20,34,36,37,39,44],"hd":29,"header":[29,35],"heatmap":29,"help":[34,35],"here":[25,49],"hidden":[34,38],"hidden_dim":[34,38],"hidden_lay":34,"high":[19,30,34,42],"high_limit":42,"higher":[31,34],"hint":34,"hint_rat":34,"histor":34,"hkmf":[19,34],"hkmf_t":34,"hkmf_t_imput":34,"how":[23,24,31,34,45,49],"hsiang":19,"html":[34,35],"http":[25,30,34,35,45],"hua":19,"huan":19,"huang":[19,34],"human":32,"hurst":32,"hw":[23,34],"hybrid":34,"hyperparamet":[34,39,45,49],"hz":49,"i":[23,25,29,30,32,33,34,35,36,37,38,39,40,42,44,45,47,49],"i_svd_imput":34,"ian":19,"icd":[19,33,34],"icde55515":34,"iclr":19,"icml":19,"identifi":24,"ieee":[19,33,34,38],"ignor":34,"iim":[19,20,26,29,32,34,40,44,46],"iim_imput":34,"ijcai":19,"illustr":[24,49,50],"imag":[34,38],"immedi":47,"impact":[23,24,45],"implement":[19,34,39,40,44,45,49],"import":[19,20,22,23,24,32,35,47,48,49,50],"import_matrix":[26,35],"improv":34,"imput":[19,20,23,24,26,27,28,29,30,31,32,33,35,36,37,38,39,40,41,42,44,45,46,48],"imputegap":[19,20,22,23,24,25,28,47,48,49],"imputegap_asset":[35,49],"inch":35,"includ":[20,23,29,31,32,34,35,45,49],"incomp_data":[30,31,32,33,34,35,36,37,38,39,40,42,44,49],"incomplet":[19,34],"incre_mod":34,"increas":[34,39],"increment":34,"inderjit":19,"index":[34,35,45],"indic":[31,34],"individu":[19,33,34,49],"inertia":[34,39],"inf":[19,30,34],"infect":34,"infer":34,"influenc":24,"inform":[29,31,34,40,42],"inherit":34,"init":25,"initi":[23,24,34,35,39,44,48,49],"initial_strategi":34,"inner":35,"input":[30,32,33,34,35,36,37,38,40,44,49],"input_data":[24,31,32,34,35,39,49],"insid":35,"insight":24,"instal":[32,45],"instanc":42,"institut":[34,40,42],"int":[29,30,32,33,34,35,38,39,40,42,50],"integr":45,"intellig":34,"interact":43,"interfac":43,"intern":[33,34],"interpol":[19,34,38],"interpolation_imput":34,"interpret":34,"invers":34,"invok":[40,49],"io":35,"issu":[25,34],"itali":34,"iter":[30,33,34,38,39],"iterative_svd":34,"iterativeimput":34,"iterativesvd":[19,34],"ivan":19,"j":[19,33,34,40],"jacqu":45,"jame":19,"januari":34,"java":45,"jensen":[19,34],"jian":19,"jianmin":19,"jiaotong":[34,40],"jimeng":19,"jinsung":19,"jmlr":19,"johann":19,"jordon":[19,34],"journal":[19,34],"jss":34,"jstatsoft":34,"juli":34,"junbo":19,"june":34,"k":[33,34],"k_bia":34,"k_season":34,"k_trend":34,"kai":19,"karin":34,"kawabata":[19,34],"kdd":[19,34],"kei":[32,45],"kept":[34,39],"kernel":34,"kernel_set":34,"kevin":19,"keyword":[33,34,38],"khayati":[19,20,21,30,34,45],"knn":[33,34],"knn_imput":34,"knnimput":19,"knowl":[19,30,34],"knowledg":34,"kohei":[19,34],"koheiobata":34,"koki":[19,34],"kwarg":39,"l":34,"label":32,"lag":34,"lambda_f":34,"lambda_valu":34,"lambda_w":34,"lambda_x":34,"languag":45,"larg":[19,31,32,34],"larger":34,"last":35,"latent":34,"later":42,"latest":[25,35],"launch":[20,32],"laura":19,"layer":34,"lcb":34,"learn":[19,30,33,34,38,39,45,49],"learning_neighbor":34,"learning_neighbour":34,"learning_r":[34,38],"lei":19,"leilei":19,"len":50,"length":[34,35,38,47],"lerner":20,"less":[30,34],"let":[24,49],"level":29,"leverag":40,"lg":45,"li":[19,34,40],"liang":19,"lib":42,"lib_cdrec":42,"lib_path":30,"librari":[22,25,29,30,32,42,45,49],"like":[29,34,35,40,44],"limit":[32,34,35,42,47],"linear":[31,34],"link":48,"list":[19,20,22,23,29,32,34,35,39,42,47,49],"list_of_algorithm":[26,42],"list_of_dataset":[26,42],"list_of_downstream":[26,42],"list_of_downstreams_dart":[26,42],"list_of_downstreams_sktim":[26,42],"list_of_optim":[26,42],"list_of_pattern":[26,42],"list_result":20,"liu":[19,34],"lmzzml":34,"load":[23,24,32,34,35,42,48],"load_configur":[26,32],"load_paramet":[26,42],"load_seri":[23,24,26,35,48,49],"load_share_lib":[26,42],"loc":50,"local":[32,35,42],"log":[26,30,32,33,34,35,38,40],"logic":34,"long":34,"loss":34,"low":[19,30,34,42],"low_limit":42,"lower":[34,42],"lr":34,"lu":[19,34],"luo":[19,34],"m":[30,32,34,38,47,49],"macao":[33,34],"mach":19,"machin":[19,34,38,49],"machinelearn":[26,34],"machineri":34,"mae":[29,31],"magnitud":31,"mai":[33,34,38],"main":[34,39,45],"make":[31,34],"manag":[19,22,23,24,26,32,46,47,48,49],"mani":34,"manipul":35,"map":32,"march":34,"marisca":[19,34],"market":34,"markl":[19,34],"master":42,"match":35,"matlab":45,"matric":[19,34],"matrix":[19,29,30,33,34,35,36,37,38,40,44,45,49,50],"matrixcomplet":[23,26,34,49],"matsubara":[19,34],"mauroux":[19,20,30,34],"max":[34,48],"max_concurrent_tri":[20,34,39],"max_epoch":34,"max_featur":34,"max_it":34,"max_iter":34,"max_rank":34,"max_seri":35,"max_valu":35,"maximum":[30,34,35,48],"mazumd":[19,34],"mcar":[20,24,29,32,35,42,47,49],"mccann":[19,34],"mean":[29,31,32,34,36,42,48,50],"mean_featur":32,"mean_imput":[26,34,46],"meanimput":[19,20,34],"meanimputebyseri":[19,34],"measur":[31,34,38,49],"median":34,"medic":[34,38],"medium":34,"memori":[34,39],"messag":[19,34],"metadata":34,"meteo":22,"meteorologi":34,"method":[19,24,33,44,45,49],"metric":[29,31,34,35,39,40,49],"mf_imput":34,"mi":[29,31],"mice":[19,34],"mice_imput":34,"michael":[19,34],"microarrai":[19,34],"microsoft":[34,40],"mihaela":19,"min":48,"min_imput":[26,34,46],"min_max":[23,35],"mind":20,"mine":[19,34],"mingzh":19,"mini":34,"minim":34,"minimput":[19,34],"minimum":[34,36,37,48],"miss":[19,20,29,30,32,33,34,35,36,37,38,40,42,44,45,47,49],"miss_forest":34,"miss_net":34,"miss_net_imput":34,"missforest":[19,34],"missing":[20,24,45,47,49],"missing_percentage_at_random":35,"missing_r":[32,35],"missnet":[19,34],"mitter":[19,34],"mix":[19,34],"ml":34,"mode":34,"model":[19,23,24,32,33,34,38,42],"modul":[19,20,22,23,45,46,47],"modular":45,"more":[31,32,34,39,40,44],"most":[24,35],"most_frequ":34,"motion":22,"mourad":[19,20,21,45],"mp":42,"mpin":[19,34],"mpin_imput":34,"mrnn":[19,20,26,29,32,34,40,44,46],"mrnn_imput":34,"multi":[19,34,38],"multidimension":[19,34],"multipl":[19,29,34,40,44,47],"multivari":[19,34,38],"must":[30,32,34,39],"mutual":31,"mvl":[19,34,40],"mxgboost_imput":34,"n":[19,32,34,47,50],"n_call":[20,34,39],"n_cl":34,"n_estim":34,"n_particl":[34,39],"n_process":[34,39],"n_random_start":[34,39],"n_season":34,"name":[23,24,29,32,34,35,42],"nan":[30,31,33,35,36,37,38,40,44,45],"nanci":19,"narendra":19,"nater":[21,40,42,44,45],"nater2025imputegap":45,"nativ":[30,40],"native_cdrec":[26,30],"native_stmvl":[26,40],"nbr_featur":34,"nbr_run":20,"nbr_seri":[35,48,49],"nbr_val":[35,48,49],"ndarrai":[29,30,32,33,34,35,36,37,38,39,40,44,45],"nearest":[33,34],"need":[35,47,49],"neg":31,"neighbor":[33,34],"net":[19,34,38],"network":[19,34,38],"neural":[19,34,38],"neurip":[19,34],"new":[34,45],"newlin":[35,45],"nikhil":19,"nip":19,"node":34,"node_dim":34,"node_numb":34,"nois":34,"non":[19,34,36,37],"none":[29,30,32,34,35,36,37,42,44],"norm":50,"normal":[23,24,26,35,45,48,49],"norwai":34,"notimplementederror":34,"nov":34,"now":49,"np":[29,32,36,37,44,50],"num_config":[34,39],"num_iter":[34,39],"num_of_iter":34,"number":[29,30,32,33,34,35,38,39,47],"number_neighbor":33,"numer":[33,34],"numpi":[29,30,32,33,34,35,36,37,38,39,40,44,45,50],"ny":34,"o":19,"obata":[19,34],"object":[23,24,29,31,32,34,35,39,42,48,49],"objectview":22,"observ":34,"off":34,"offset":[32,35,42,47],"oh":34,"olga":[19,34],"one":[32,35,47],"ones":34,"onli":[32,35],"onlin":[19,34],"open":25,"oper":[27,28,31,34,41,42],"optim":[19,20,26,29,34,42,46,49],"optimal_param":[42,49],"option":[20,29,30,32,33,34,35,36,37,38,39,42,44,45,49],"org":[30,34,45],"organ":29,"origin":[32,34,35,42],"orthonorm":[19,34],"other":[27,28,31,34,41,42],"oudshoorn":34,"our":49,"outlier":31,"output":[29,32,33,35,45,50],"outsid":42,"ov":34,"over":[20,29,32,34],"overfit":34,"overlap":[35,42,47],"own":45,"p":[30,34,50],"packag":[28,46],"page":34,"pandei":[19,34],"papadimitri":[19,34],"paper":[34,45],"paper_fil":34,"parallel":[34,39],"param":[32,34,36,37,42,44,49],"param_1":49,"param_2":49,"paramat":42,"paramet":[20,27,28,31,41,49,50],"parameteriz":45,"parametr":[19,34],"params_3":49,"pari":34,"parikshit":19,"particl":[34,39],"particleswarm":[26,39],"pasquier":45,"pass":[34,44],"past":34,"pat":34,"path":[30,32,35,42],"patienc":34,"patrick":19,"pattern":[19,20,24,29,31,32,34,35,42,45,49],"patternsearch":[26,34],"pbansal5":34,"pdf":[34,50],"pearson":31,"per":[32,34,35,47],"percentag":[32,35,42],"perfect":31,"perform":[29,30,31,33,34,38,39,40,49],"person":[34,39],"peter":[19,34],"philipp":[19,20],"php":34,"pi":34,"pip":[25,32],"pipelin":29,"place":49,"plai":45,"plain":35,"plan":23,"pleas":[25,34,39,45,47,49],"plot":[26,29,32,35,49],"plug":45,"pmlr":19,"point":[34,36,37,39],"pollard":[19,34],"poly_ord":34,"popular":45,"porikli":[19,34],"posit":[31,32,35,47],"potenti":42,"power":[34,40],"pp":[33,34,38],"prathamesh":19,"predefin":[34,35],"predict":[19,24,33,34],"predisposit":49,"preprint":34,"preprocess":45,"preserv":31,"prevent":34,"previou":47,"primari":23,"primaryclass":45,"princip":34,"print":[19,22,23,24,26,30,32,33,35,36,37,38,40,42,44,47,49],"print_result":[23,26,35,49],"prior":[34,39,48],"pristi":[19,34],"pristi_imput":34,"probabilist":35,"probabl":[34,35,42,50],"problem":25,"proc":[19,20],"proceed":34,"process":[23,27,28,31,32,34,35,38,39,41,42,49],"produc":50,"progress":47,"project":[34,42],"propag":[19,34],"provid":[22,24,27,28,29,31,32,33,34,35,39,41,42,43,45,49,50],"pseudo":34,"pso":[34,39],"publicli":22,"purpos":35,"pvldb":19,"pycatch":[24,32],"pycatch22":32,"pypi":[25,34],"python":[25,45],"q":34,"qingsong":19,"qualiti":29,"quentin":[21,40,42,44,45],"queri":42,"quickli":34,"r":[19,34,38,45,47,50],"rahul":19,"rai":[34,39,49],"rand":32,"random":[32,34,35,39,47],"random_init":34,"randomli":47,"rang":[20,42,45,48],"rank":[19,30,34],"rao":[19,34],"rate":[20,29,30,34,38,42,47],"rate_dataset":[32,35,49,50],"rate_seri":[23,35,49,50],"ratio":32,"raw":[32,35],"ray_tun":[20,34,49],"raytun":[26,39],"re":19,"reach":[34,47],"read":[20,22,45],"readabl":32,"readm":34,"readthedoc":35,"real":45,"recognit":34,"recomput":42,"reconstruct":34,"recov":[19,30,33,34,38,40,49],"recov_data":[23,30,31,33,34,35,36,37,38,40,44,49],"recoveri":[19,20,22,23,24,26,30,46,47,48,49],"recurr":[19,34,38],"reduc":32,"reduct":[34,39],"reduction_factor":[34,39],"refer":[25,47],"refin":32,"regress":[24,32,33,34],"regular":[19,34],"relat":[32,34,39],"relationship":[31,40],"remov":[32,42,47],"repair":45,"replac":[34,35,36,37,44],"replace_nan":35,"report":[19,29],"repres":[30,32,33,36,37,38,44],"represent":34,"reproduc":[32,34,35,45],"requir":[32,34],"research":[34,40,45],"resourc":[34,39],"restrict":35,"result":[23,24,29,32,35,42,45],"retain":34,"reveal":24,"rmse":[29,31,32,34,39],"robert":[19,34],"robust":[19,31,34],"root":31,"rosl":[19,34],"rosl_imput":34,"round":34,"row":[29,32,34,45],"royal":34,"royston":[19,34],"run":[20,25,29,34,39],"runs_plots_scor":29,"russ":[19,34],"s10115":[30,34],"sage":34,"sakurai":[19,34],"same":[35,47,50],"sampl":[32,34,49],"sarawagi":[19,34],"satisfi":45,"save":[29,32,35,42,49],"save_dir":[20,29],"save_optim":[26,42,49],"save_path":[35,49],"scalabl":[19,30,34],"scale":[34,48,50],"scalp":49,"scatter":[35,47],"schaar":[19,34,38],"school":[34,40],"scienc":[34,40],"scikit":34,"scipi":50,"score":[23,26,29,31,34,39,48,49],"scores_list":29,"sdv":34,"search":[19,49],"search_path":[23,24,26,35,42,48,49],"season":34,"second":49,"section":[29,32,35,49],"see":34,"seed":[32,34,35,42,49,50],"select":[32,34,39,42,48,49],"self":[29,34],"sensor":[19,34],"sensori":[19,34,40],"separ":[32,35,45],"septemb":34,"seq_len":34,"sequenc":[19,34,38],"sequence_length":[34,38],"seri":[19,20,23,24,30,31,32,33,34,35,36,37,38,39,40,44,45,47,48,49,50],"series_r":[35,42],"series_rang":35,"serv":20,"set":[25,29,31,32,33,34,35,38],"set_nam":42,"sever":49,"sh":34,"shandian":19,"shaoxu":19,"shap":[24,32],"shap_detail":[24,32],"shap_explain":[24,26,32],"shap_valu":[24,32],"shape":[32,35],"shaplei":24,"share":[30,31,42],"shen":[19,34],"shenzhen":[34,40],"sherlock":[19,34],"shift":[35,42,47],"shikai":19,"short":34,"should":34,"show":49,"shrunk":34,"shu":[19,34],"siam":[19,34],"sigkdd":34,"simeng":19,"simpl":[36,37,44],"simul":[45,49],"singl":[29,47],"singular":[19,34],"size":[32,34,35,40,42,47],"skew":32,"sklearn":34,"sktime":42,"slide":34,"smaller":[30,34],"smith":34,"smooth":[34,40],"snippet":50,"soccer":22,"societi":34,"soft":34,"soft_imput":34,"soft_impute_imput":34,"softimput":[19,34],"softwar":[19,34],"solut":34,"some_str":49,"song":[19,33,34],"sourc":[25,29,30,31,32,33,34,35,36,37,38,39,40,42,44],"southwest":[34,40],"space":[35,45],"spain":34,"spars":[19,34],"sparser":34,"sparsiti":34,"spatial":[34,40],"spatio":34,"spatiotempor":[19,34],"specif":[32,33,34,35,39,47],"specifi":[32,34,49],"spectral":[19,32,34],"speed":34,"spirit":[19,34],"spirit_imput":34,"spiro":19,"split":32,"splitter":32,"sqrt":34,"squar":31,"st":[19,34,40],"stabl":34,"standard":[32,35,48,49],"start":[35,47,49],"stat":50,"stata":[19,34],"state":[34,45],"static":34,"statist":[19,26,32,34,49],"std_dev":[35,42,50],"stef":34,"stekhoven":[19,34],"step":48,"stmvl":[20,26,29,32,34,46],"stmvl_imput":34,"stop":[30,34],"stoptask":22,"str":[29,30,32,33,34,35,39,42],"strategi":[34,39,44],"stream":[19,34,38],"string":42,"structur":[34,38,39],"subclass":39,"subgraph":34,"subgraph_s":34,"subject":49,"submodul":[45,46],"subpackag":46,"subplot":[29,35,49],"subsequ":47,"subset":49,"subspac":[19,34],"subtract":48,"success":[34,39],"successivehalv":[26,39],"suitabl":34,"sum":[34,50],"sum_scor":20,"summar":[19,29,34],"summari":29,"sun":[19,33,34],"sunita":19,"support":[23,30,32,35,40,44,45],"svd":34,"svt":[19,34],"svt_imput":34,"swarm":39,"switch":[19,34],"syst":[19,30,34],"system":[19,34,42,45],"systemat":23,"t":[19,22,23,24,32,34,35,40,42,47,48,49,50],"tab":34,"tag":[19,34],"tao":[19,34],"target":34,"target_strategi":34,"task":[23,34,45],"tau":34,"tbme":[34,38],"technic":19,"techniqu":[20,35,36,37,40,44,48],"technologi":[34,40],"temperatur":22,"templat":34,"tempor":[19,32,34,38,40],"tensor":34,"term":[31,34],"test":[20,29,32,42],"text":[29,35],"than":[30,31,34],"them":[29,32,34],"thesi":42,"thi":[19,22,23,32,33,34,35,36,37,38,39,40,44,47,49,50],"those":49,"thre":34,"threshold":[19,30,34],"through":29,"tianheng":19,"tianqi":[19,34],"tianrui":19,"tibshirani":[19,34],"tick":29,"time":[19,20,23,24,29,30,31,32,33,34,35,36,37,38,39,40,44,45,47,48,49],"time_scal":34,"timeseri":[19,22,23,24,26,35,42,47,48,49],"timestamp":[35,45],"titl":[42,45],"tkcm":[19,34],"tkcm_imput":34,"tkde":[19,34],"tmp":32,"to_sav":32,"tol":34,"toler":34,"toml":[32,42],"tool":[23,24,26,28,29,31,43,45,46,48,49],"top":47,"total":[33,34,38,39,47],"trade":34,"train":[24,32,34,38],"training_ratio":32,"tran":19,"transact":[34,38],"transfer":34,"tree":[19,33,34],"trend":34,"trevor":[19,34],"trial":[34,39],"trigger":34,"trmf":[19,34],"trmf_imput":34,"trondheim":34,"troyanskaya":[19,34],"true":[29,30,32,33,34,35,38,40,42,49,50],"truncat":30,"truncation_rank":30,"truth":[31,34,39,49],"try":[34,39],"ts_1":34,"ts_m":[23,35,49,50],"ts_m2":50,"ts_test":42,"tsfel":32,"tsfresh":32,"tune":[20,34,39,45,49],"tupl":[32,34,35,39,42],"tutori":[45,47],"two":[32,48],"txt":[29,35,42],"tymchenko":20,"type":[19,32,34,42],"typic":48,"tzhaonj":34,"uncondit":34,"uncontamin":[32,35],"undercov":34,"underli":31,"uniform":34,"unifr":21,"uniqu":34,"unit":34,"univers":[34,40,42],"unix":25,"until":47,"up":[25,32,34,47],"updat":34,"upper":42,"upstream":34,"url":45,"us":[19,22,23,24,30,32,33,34,35,36,37,38,39,40,42,44,45,47,49,50],"usa":34,"user":[20,34,35,42,45,47,48,49],"user_def":[29,34,49],"util":[20,23,24,26,28,29,31,33,35,41,46,48,49],"v":34,"v045i04":34,"valid":[32,34],"valu":[19,20,29,30,31,32,33,34,35,36,37,38,39,40,42,44,45,47,48,49,50],"valueerror":42,"van":[19,34,38],"vari":[45,47],"variabl":[32,34],"varianc":[32,34],"variat":34,"variou":[20,24,27,28,29,30,31,33,34,36,37,38,39,40,41,42,44,45],"varun":19,"venic":34,"venu":19,"verbos":32,"veri":34,"verifi":42,"verification_limit":[26,42],"version":[19,25,32,33,34],"via":[19,34],"view":[29,34,35],"view_by_seri":35,"vision":34,"visual":[29,35,45],"vldb":[19,20],"vol":[34,38],"volker":19,"volum":34,"w":[34,38,39,47],"wang":[19,33,34],"wangliang":34,"warn":42,"we":49,"wei":19,"weight":[31,34,39,40],"weight_decai":34,"well":31,"wellenzohn":[19,34],"wen":[19,34],"when":34,"where":[32,35,36,37,38,44],"whether":[30,32,33,34,35,38],"which":[32,34],"while":34,"white":[19,34],"whole":34,"william":19,"window":[34,40,47],"window_s":[34,40],"within":[34,38,42],"without":[34,35,42],"work":33,"worker":34,"world":45,"wu":[19,34],"www":34,"x":[34,40,47],"x_axi":[20,29],"x_dataset":32,"x_inform":32,"xgbi":19,"xgboost":[19,34],"xianbiao":19,"xianp":19,"xiao":19,"xiaodan":19,"xiucheng":19,"xiuwen":19,"xli":34,"xuangu":34,"y":[33,34,40],"y_dataset":32,"y_size":29,"yanji":19,"yasuko":[19,34],"yasushi":[19,34],"year":[19,45],"yi":[19,34,40],"yingtao":19,"yitan":19,"yoon":[19,34,38],"york":34,"you":[19,22,23,25,34,35,39,45,47,48],"your":[34,39,45],"yu":[19,34],"yuenshingyan":34,"z":[34,48],"z_score":[24,35,48,49],"zakhar":20,"zame":[19,34,38],"zero":[32,34,44],"zero_imput":[26,34,46],"zeroimput":[19,34],"zhang":[19,33,34,40],"zhe":[19,34],"zheng":[19,34,40],"zhijun":19,"zhou":[19,34],"zuowei":19},"titles":["imputegap.algorithms","imputegap.algorithms.cdrec","imputegap.algorithms.iim","imputegap.algorithms.mean_impute","imputegap.algorithms.min_impute","imputegap.algorithms.mrnn","imputegap.algorithms.stmvl","imputegap.algorithms.zero_impute","imputegap.recovery.benchmark","imputegap.recovery.benchmark","imputegap.recovery.evaluation","imputegap.recovery.explainer","imputegap.recovery.imputation","imputegap.recovery.manager","imputegap.recovery.optimization","imputegap.tools","imputegap.tools.algorithm_parameters","imputegap.tools.utils","imputegap.wrapper","Algorithms","Benchmark","Contributors","Datasets","Downstream Evaluation","Explainer","Getting Started","ImputeGAP Package","imputegap.tools.algorithm_parameters package","Submodules","imputegap.recovery.benchmark package","imputegap.algorithms.cdrec package","imputegap.recovery.evaluation package","imputegap.recovery.explainer package","imputegap.algorithms.iim package","imputegap.recovery.imputation package","imputegap.recovery.manager package","imputegap.algorithms.mean_impute package","imputegap.algorithms.min_impute package","imputegap.algorithms.mrnn package","imputegap.recovery.optimization package","imputegap.algorithms.stmvl package","imputegap.tools package","imputegap.tools.utils package","imputegap.wrapper package","imputegap.algorithms.zero_impute package","ImputeGAP Documentation","imputegap","Patterns","Preprocessing","Tutorials","Distribution"],"titleterms":{"algorithm":[0,1,2,3,4,5,6,7,19,30,33,36,37,38,40,44],"algorithm_paramet":[16,27],"benchmark":[8,9,20,29],"block":47,"cdrec":[1,30],"cite":45,"contamin":49,"content":[26,32,34,35,39,43],"contributor":[21,45],"core":21,"data":45,"dataset":22,"distribut":50,"document":[27,28,29,31,41,42,45],"downstream":23,"evalu":[10,23,29,31],"exampl":[29,30,33,34,35,36,37,38,40,44],"explain":[11,24,32],"format":45,"get":[25,45],"iim":[2,33],"imput":[12,34,49],"imputegap":[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,26,27,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46],"instal":25,"load":49,"manag":[13,35],"mean_imput":[3,36],"method":[29,31,32,34,35,39],"min_imput":[4,37],"modul":[26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44],"mono":47,"mrnn":[5,38],"multi":47,"note":[29,32,33,36,37,38,40,42,44],"optim":[14,39],"packag":[26,27,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44],"paramet":[29,30,32,33,34,35,36,37,38,39,40,42,44],"parameter":49,"pattern":47,"preprocess":[48,49],"rais":[34,42],"recoveri":[8,9,10,11,12,13,14,29,31,32,34,35,39],"refer":[19,30,33,34,35,38,40],"requir":25,"return":[29,30,31,32,33,34,35,36,37,38,39,40,42,44],"setup":47,"start":[25,45],"stmvl":[6,40],"subclass":34,"submodul":[26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44],"subpackag":26,"system":25,"tool":[15,16,17,27,41,42],"troubleshoot":25,"tutori":49,"updat":25,"util":[17,27,42],"wrapper":[18,43],"zero_imput":[7,44]}}) \ No newline at end of file +Search.setIndex({"alltitles":{"Algorithms":[[19,null]],"Benchmark":[[20,null]],"Citing":[[45,"citing"]],"Contamination":[[49,"contamination"]],"Contributors":[[21,null],[45,"contributors"]],"Core Contributors":[[21,"core-contributors"]],"Data Format":[[45,"data-format"]],"Datasets":[[22,null]],"Distribution":[[50,null]],"Downstream Evaluation":[[23,null]],"Example":[[29,"example"],[29,"id16"],[30,"example"],[33,"example"],[34,"example"],[34,"id8"],[34,"id11"],[34,"id16"],[34,"id20"],[34,"id25"],[34,"id29"],[34,"id34"],[34,"id38"],[34,"id43"],[34,"id47"],[34,"id52"],[34,"id56"],[34,"id61"],[34,"id65"],[34,"id70"],[34,"id74"],[34,"id79"],[34,"id83"],[34,"id88"],[34,"id92"],[34,"id97"],[34,"id101"],[34,"id107"],[34,"id111"],[34,"id116"],[34,"id120"],[34,"id125"],[34,"id129"],[34,"id134"],[34,"id138"],[34,"id144"],[34,"id148"],[34,"id153"],[34,"id157"],[34,"id162"],[34,"id166"],[34,"id171"],[34,"id175"],[34,"id180"],[34,"id184"],[34,"id189"],[34,"id193"],[34,"id198"],[34,"id202"],[34,"id207"],[34,"id211"],[34,"id217"],[34,"id221"],[34,"id226"],[34,"id230"],[34,"id235"],[34,"id239"],[34,"id245"],[34,"id248"],[34,"id253"],[34,"id256"],[34,"id263"],[34,"id269"],[34,"id276"],[34,"id283"],[35,"example"],[35,"id4"],[35,"id8"],[35,"id12"],[35,"id16"],[35,"id20"],[35,"id24"],[35,"id28"],[35,"id32"],[35,"id36"],[35,"id40"],[35,"id46"],[35,"id49"],[35,"id52"],[35,"id57"],[36,"example"],[37,"example"],[38,"example"],[40,"example"],[44,"example"]],"Explainer":[[24,null]],"Get Started":[[45,"get-started"]],"Getting Started":[[25,null]],"Imputation":[[49,"imputation"]],"ImputeGAP Documentation":[[45,null]],"ImputeGAP Package":[[26,null]],"Installation/Update":[[25,"installation-update"]],"Loading and Preprocessing":[[49,"loading-and-preprocessing"]],"MONO-BLOCK":[[47,"mono-block"]],"MULTI-BLOCK":[[47,"multi-block"]],"Methods":[[29,"methods"],[29,"id15"],[31,"methods"],[31,"id5"],[32,"methods"],[34,"methods"],[34,"id3"],[34,"id4"],[34,"id12"],[34,"id21"],[34,"id30"],[34,"id39"],[34,"id48"],[34,"id57"],[34,"id66"],[34,"id75"],[34,"id84"],[34,"id93"],[34,"id103"],[34,"id112"],[34,"id121"],[34,"id130"],[34,"id140"],[34,"id149"],[34,"id158"],[34,"id167"],[34,"id176"],[34,"id185"],[34,"id194"],[34,"id203"],[34,"id213"],[34,"id222"],[34,"id231"],[34,"id241"],[34,"id249"],[34,"id257"],[34,"id264"],[34,"id270"],[34,"id277"],[35,"methods"],[35,"id1"],[39,"methods"],[39,"id7"]],"Module contents":[[26,"module-imputegap"],[32,"module-imputegap.recovery.explainer"],[34,"module-imputegap.recovery.imputation"],[35,"module-imputegap.recovery.manager"],[39,"module-imputegap.recovery.optimization"],[43,"module-imputegap.wrapper"]],"Modules":[[27,"module-imputegap.tools"],[28,"module-imputegap.algorithms"],[29,"module-imputegap.recovery.benchmark"],[30,"module-imputegap.algorithms.cdrec"],[31,"module-imputegap.recovery.evaluation"],[33,"module-imputegap.algorithms.iim"],[36,"module-imputegap.algorithms.mean_impute"],[37,"module-imputegap.algorithms.min_impute"],[38,"module-imputegap.algorithms.mrnn"],[40,"module-imputegap.algorithms.stmvl"],[41,"module-imputegap.tools"],[42,"module-imputegap.tools"],[44,"module-imputegap.algorithms.zero_impute"]],"Notes":[[29,"notes"],[29,"id9"],[29,"id14"],[29,"id26"],[29,"id33"],[29,"id40"],[32,"notes"],[33,"notes"],[36,"notes"],[37,"notes"],[38,"notes"],[40,"notes"],[42,"notes"],[44,"notes"]],"Parameterization":[[49,"parameterization"]],"Parameters":[[29,"parameters"],[29,"id1"],[29,"id3"],[29,"id5"],[29,"id7"],[29,"id10"],[29,"id12"],[29,"id18"],[29,"id21"],[29,"id24"],[29,"id28"],[29,"id31"],[29,"id35"],[29,"id38"],[30,"parameters"],[30,"id1"],[32,"parameters"],[32,"id1"],[32,"id3"],[32,"id5"],[32,"id7"],[32,"id9"],[32,"id11"],[32,"id13"],[33,"parameters"],[34,"parameters"],[34,"id1"],[34,"id2"],[34,"id5"],[34,"id6"],[34,"id9"],[34,"id13"],[34,"id14"],[34,"id18"],[34,"id22"],[34,"id23"],[34,"id27"],[34,"id31"],[34,"id32"],[34,"id36"],[34,"id40"],[34,"id41"],[34,"id45"],[34,"id49"],[34,"id50"],[34,"id54"],[34,"id58"],[34,"id59"],[34,"id63"],[34,"id67"],[34,"id68"],[34,"id72"],[34,"id76"],[34,"id77"],[34,"id81"],[34,"id85"],[34,"id86"],[34,"id90"],[34,"id94"],[34,"id95"],[34,"id99"],[34,"id104"],[34,"id105"],[34,"id109"],[34,"id113"],[34,"id114"],[34,"id118"],[34,"id122"],[34,"id123"],[34,"id127"],[34,"id131"],[34,"id132"],[34,"id136"],[34,"id141"],[34,"id142"],[34,"id146"],[34,"id150"],[34,"id151"],[34,"id155"],[34,"id159"],[34,"id160"],[34,"id164"],[34,"id168"],[34,"id169"],[34,"id173"],[34,"id177"],[34,"id178"],[34,"id182"],[34,"id186"],[34,"id187"],[34,"id191"],[34,"id195"],[34,"id196"],[34,"id200"],[34,"id204"],[34,"id205"],[34,"id209"],[34,"id214"],[34,"id215"],[34,"id219"],[34,"id223"],[34,"id224"],[34,"id228"],[34,"id232"],[34,"id233"],[34,"id237"],[34,"id242"],[34,"id243"],[34,"id246"],[34,"id250"],[34,"id251"],[34,"id254"],[34,"id258"],[34,"id259"],[34,"id261"],[34,"id265"],[34,"id267"],[34,"id271"],[34,"id272"],[34,"id274"],[34,"id278"],[34,"id279"],[34,"id281"],[34,"id284"],[35,"parameters"],[35,"id2"],[35,"id6"],[35,"id10"],[35,"id14"],[35,"id18"],[35,"id22"],[35,"id26"],[35,"id30"],[35,"id34"],[35,"id38"],[35,"id42"],[35,"id44"],[35,"id47"],[35,"id50"],[35,"id53"],[35,"id55"],[36,"parameters"],[37,"parameters"],[38,"parameters"],[39,"parameters"],[39,"id8"],[39,"id10"],[39,"id12"],[39,"id14"],[39,"id16"],[40,"parameters"],[42,"parameters"],[42,"id1"],[42,"id3"],[42,"id5"],[42,"id7"],[42,"id9"],[42,"id11"],[42,"id13"],[42,"id15"],[44,"parameters"]],"Patterns":[[47,null]],"Preprocessing":[[48,null]],"Raises":[[34,"raises"],[42,"raises"]],"References":[[19,"references"],[30,"references"],[33,"references"],[34,"references"],[34,"id17"],[34,"id26"],[34,"id35"],[34,"id44"],[34,"id53"],[34,"id62"],[34,"id71"],[34,"id80"],[34,"id89"],[34,"id98"],[34,"id108"],[34,"id117"],[34,"id126"],[34,"id135"],[34,"id145"],[34,"id154"],[34,"id163"],[34,"id172"],[34,"id181"],[34,"id190"],[34,"id199"],[34,"id208"],[34,"id218"],[34,"id227"],[34,"id236"],[35,"references"],[35,"id5"],[35,"id9"],[35,"id13"],[35,"id17"],[35,"id21"],[35,"id25"],[35,"id29"],[35,"id33"],[35,"id37"],[35,"id41"],[38,"references"],[40,"references"]],"Returns":[[29,"returns"],[29,"id2"],[29,"id4"],[29,"id6"],[29,"id8"],[29,"id11"],[29,"id13"],[29,"id19"],[29,"id22"],[29,"id25"],[29,"id29"],[29,"id32"],[29,"id36"],[29,"id39"],[30,"returns"],[30,"id2"],[31,"returns"],[31,"id1"],[31,"id2"],[31,"id3"],[31,"id4"],[31,"id7"],[31,"id9"],[31,"id11"],[31,"id13"],[31,"id15"],[32,"returns"],[32,"id2"],[32,"id4"],[32,"id6"],[32,"id8"],[32,"id10"],[32,"id12"],[32,"id14"],[33,"returns"],[34,"returns"],[34,"id7"],[34,"id10"],[34,"id15"],[34,"id19"],[34,"id24"],[34,"id28"],[34,"id33"],[34,"id37"],[34,"id42"],[34,"id46"],[34,"id51"],[34,"id55"],[34,"id60"],[34,"id64"],[34,"id69"],[34,"id73"],[34,"id78"],[34,"id82"],[34,"id87"],[34,"id91"],[34,"id96"],[34,"id100"],[34,"id106"],[34,"id110"],[34,"id115"],[34,"id119"],[34,"id124"],[34,"id128"],[34,"id133"],[34,"id137"],[34,"id143"],[34,"id147"],[34,"id152"],[34,"id156"],[34,"id161"],[34,"id165"],[34,"id170"],[34,"id174"],[34,"id179"],[34,"id183"],[34,"id188"],[34,"id192"],[34,"id197"],[34,"id201"],[34,"id206"],[34,"id210"],[34,"id216"],[34,"id220"],[34,"id225"],[34,"id229"],[34,"id234"],[34,"id238"],[34,"id244"],[34,"id247"],[34,"id252"],[34,"id255"],[34,"id260"],[34,"id262"],[34,"id266"],[34,"id268"],[34,"id273"],[34,"id275"],[34,"id280"],[34,"id282"],[34,"id285"],[35,"returns"],[35,"id3"],[35,"id7"],[35,"id11"],[35,"id15"],[35,"id19"],[35,"id23"],[35,"id27"],[35,"id31"],[35,"id35"],[35,"id39"],[35,"id43"],[35,"id45"],[35,"id48"],[35,"id51"],[35,"id54"],[35,"id56"],[36,"returns"],[37,"returns"],[38,"returns"],[39,"returns"],[39,"id9"],[39,"id11"],[39,"id13"],[39,"id15"],[39,"id17"],[40,"returns"],[42,"returns"],[42,"id2"],[42,"id4"],[42,"id6"],[42,"id8"],[42,"id10"],[42,"id12"],[42,"id14"],[42,"id16"],[44,"returns"]],"Setup":[[47,"setup"]],"Subclasses":[[34,"subclasses"],[34,"id102"],[34,"id139"],[34,"id212"],[34,"id240"]],"Submodule Documentation":[[27,"submodule-documentation"],[28,"submodule-documentation"],[29,"submodule-documentation"],[31,"submodule-documentation"],[41,"submodule-documentation"],[42,"submodule-documentation"]],"Submodules":[[26,"submodules"],[27,"submodules"],[28,null],[29,"submodules"],[30,"submodules"],[31,"submodules"],[32,"submodules"],[33,"submodules"],[34,"submodules"],[35,"submodules"],[36,"submodules"],[37,"submodules"],[38,"submodules"],[39,"submodules"],[40,"submodules"],[41,"submodules"],[42,"submodules"],[43,"submodules"],[44,"submodules"]],"Subpackages":[[26,"subpackages"]],"System Requirements":[[25,"system-requirements"]],"Troubleshooting":[[25,"troubleshooting"]],"Tutorials":[[49,null]],"imputegap":[[46,null]],"imputegap.algorithms":[[0,null]],"imputegap.algorithms.cdrec":[[1,null]],"imputegap.algorithms.cdrec package":[[30,null]],"imputegap.algorithms.iim":[[2,null]],"imputegap.algorithms.iim package":[[33,null]],"imputegap.algorithms.mean_impute":[[3,null]],"imputegap.algorithms.mean_impute package":[[36,null]],"imputegap.algorithms.min_impute":[[4,null]],"imputegap.algorithms.min_impute package":[[37,null]],"imputegap.algorithms.mrnn":[[5,null]],"imputegap.algorithms.mrnn package":[[38,null]],"imputegap.algorithms.stmvl":[[6,null]],"imputegap.algorithms.stmvl package":[[40,null]],"imputegap.algorithms.zero_impute":[[7,null]],"imputegap.algorithms.zero_impute package":[[44,null]],"imputegap.recovery.benchmark":[[8,null],[9,null]],"imputegap.recovery.benchmark package":[[29,null]],"imputegap.recovery.evaluation":[[10,null]],"imputegap.recovery.evaluation module":[[29,"module-0"],[31,"module-0"]],"imputegap.recovery.evaluation package":[[31,null]],"imputegap.recovery.explainer":[[11,null]],"imputegap.recovery.explainer package":[[32,null]],"imputegap.recovery.imputation":[[12,null]],"imputegap.recovery.imputation package":[[34,null]],"imputegap.recovery.manager":[[13,null]],"imputegap.recovery.manager package":[[35,null]],"imputegap.recovery.optimization":[[14,null]],"imputegap.recovery.optimization package":[[39,null]],"imputegap.tools":[[15,null]],"imputegap.tools package":[[41,null]],"imputegap.tools.algorithm_parameters":[[16,null]],"imputegap.tools.algorithm_parameters package":[[27,null]],"imputegap.tools.utils":[[17,null]],"imputegap.tools.utils module":[[27,"module-imputegap.tools.algorithm_parameters"],[42,"module-imputegap.tools.utils"]],"imputegap.tools.utils package":[[42,null]],"imputegap.wrapper":[[18,null]],"imputegap.wrapper package":[[43,null]]},"docnames":["_autosummary/imputegap.algorithms","_autosummary/imputegap.algorithms.cdrec","_autosummary/imputegap.algorithms.iim","_autosummary/imputegap.algorithms.mean_impute","_autosummary/imputegap.algorithms.min_impute","_autosummary/imputegap.algorithms.mrnn","_autosummary/imputegap.algorithms.stmvl","_autosummary/imputegap.algorithms.zero_impute","_autosummary/imputegap.recovery.benchmark","_autosummary/imputegap.recovery.benchmarking","_autosummary/imputegap.recovery.evaluation","_autosummary/imputegap.recovery.explainer","_autosummary/imputegap.recovery.imputation","_autosummary/imputegap.recovery.manager","_autosummary/imputegap.recovery.optimization","_autosummary/imputegap.tools","_autosummary/imputegap.tools.algorithm_parameters","_autosummary/imputegap.tools.utils","_autosummary/imputegap.wrapper","algorithms","benchmark","contributors","datasets","downstream","explainer","getting_started","imputegap","imputegap.algorithm_parameters","imputegap.algorithms","imputegap.benchmark","imputegap.cdrec","imputegap.evaluation","imputegap.explainer","imputegap.iim","imputegap.imputation","imputegap.manager","imputegap.mean_impute","imputegap.min_impute","imputegap.mrnn","imputegap.optimization","imputegap.stmvl","imputegap.tools","imputegap.utils","imputegap.wrapper","imputegap.zero_impute","index","modules","patterns","preprocessing","tutorials","tutorials_distribution"],"envversion":{"sphinx":65,"sphinx.domains.c":3,"sphinx.domains.changeset":1,"sphinx.domains.citation":1,"sphinx.domains.cpp":9,"sphinx.domains.index":1,"sphinx.domains.javascript":3,"sphinx.domains.math":2,"sphinx.domains.python":4,"sphinx.domains.rst":2,"sphinx.domains.std":2,"sphinx.ext.viewcode":1},"filenames":["_autosummary/imputegap.algorithms.rst","_autosummary/imputegap.algorithms.cdrec.rst","_autosummary/imputegap.algorithms.iim.rst","_autosummary/imputegap.algorithms.mean_impute.rst","_autosummary/imputegap.algorithms.min_impute.rst","_autosummary/imputegap.algorithms.mrnn.rst","_autosummary/imputegap.algorithms.stmvl.rst","_autosummary/imputegap.algorithms.zero_impute.rst","_autosummary/imputegap.recovery.benchmark.rst","_autosummary/imputegap.recovery.benchmarking.rst","_autosummary/imputegap.recovery.evaluation.rst","_autosummary/imputegap.recovery.explainer.rst","_autosummary/imputegap.recovery.imputation.rst","_autosummary/imputegap.recovery.manager.rst","_autosummary/imputegap.recovery.optimization.rst","_autosummary/imputegap.tools.rst","_autosummary/imputegap.tools.algorithm_parameters.rst","_autosummary/imputegap.tools.utils.rst","_autosummary/imputegap.wrapper.rst","algorithms.rst","benchmark.rst","contributors.rst","datasets.rst","downstream.rst","explainer.rst","getting_started.rst","imputegap.rst","imputegap.algorithm_parameters.rst","imputegap.algorithms.rst","imputegap.benchmark.rst","imputegap.cdrec.rst","imputegap.evaluation.rst","imputegap.explainer.rst","imputegap.iim.rst","imputegap.imputation.rst","imputegap.manager.rst","imputegap.mean_impute.rst","imputegap.min_impute.rst","imputegap.mrnn.rst","imputegap.optimization.rst","imputegap.stmvl.rst","imputegap.tools.rst","imputegap.utils.rst","imputegap.wrapper.rst","imputegap.zero_impute.rst","index.rst","modules.rst","patterns.rst","preprocessing.rst","tutorials.rst","tutorials_distribution.rst"],"indexentries":{"__init__() (imputegap.recovery.imputation.baseimputer method)":[[34,"imputegap.recovery.imputation.BaseImputer.__init__",false]],"__init__() (imputegap.recovery.imputation.imputation.deeplearning.bayotide method)":[[34,"imputegap.recovery.imputation.Imputation.DeepLearning.BayOTIDE.__init__",false]],"__init__() (imputegap.recovery.imputation.imputation.deeplearning.bitgraph method)":[[34,"imputegap.recovery.imputation.Imputation.DeepLearning.BitGraph.__init__",false]],"__init__() (imputegap.recovery.imputation.imputation.deeplearning.brits method)":[[34,"imputegap.recovery.imputation.Imputation.DeepLearning.BRITS.__init__",false]],"__init__() (imputegap.recovery.imputation.imputation.deeplearning.deepmvi method)":[[34,"imputegap.recovery.imputation.Imputation.DeepLearning.DeepMVI.__init__",false]],"__init__() (imputegap.recovery.imputation.imputation.deeplearning.gain method)":[[34,"imputegap.recovery.imputation.Imputation.DeepLearning.GAIN.__init__",false]],"__init__() (imputegap.recovery.imputation.imputation.deeplearning.grin method)":[[34,"imputegap.recovery.imputation.Imputation.DeepLearning.GRIN.__init__",false]],"__init__() (imputegap.recovery.imputation.imputation.deeplearning.hkmf_t method)":[[34,"imputegap.recovery.imputation.Imputation.DeepLearning.HKMF_T.__init__",false]],"__init__() (imputegap.recovery.imputation.imputation.deeplearning.missnet method)":[[34,"imputegap.recovery.imputation.Imputation.DeepLearning.MissNet.__init__",false]],"__init__() (imputegap.recovery.imputation.imputation.deeplearning.mpin method)":[[34,"imputegap.recovery.imputation.Imputation.DeepLearning.MPIN.__init__",false]],"__init__() (imputegap.recovery.imputation.imputation.deeplearning.mrnn method)":[[34,"imputegap.recovery.imputation.Imputation.DeepLearning.MRNN.__init__",false]],"__init__() (imputegap.recovery.imputation.imputation.deeplearning.pristi method)":[[34,"imputegap.recovery.imputation.Imputation.DeepLearning.PRISTI.__init__",false]],"__init__() (imputegap.recovery.imputation.imputation.machinelearning.iim method)":[[34,"imputegap.recovery.imputation.Imputation.MachineLearning.IIM.__init__",false]],"__init__() (imputegap.recovery.imputation.imputation.machinelearning.mice method)":[[34,"imputegap.recovery.imputation.Imputation.MachineLearning.MICE.__init__",false]],"__init__() (imputegap.recovery.imputation.imputation.machinelearning.missforest method)":[[34,"imputegap.recovery.imputation.Imputation.MachineLearning.MissForest.__init__",false]],"__init__() (imputegap.recovery.imputation.imputation.machinelearning.xgboost method)":[[34,"imputegap.recovery.imputation.Imputation.MachineLearning.XGBOOST.__init__",false]],"__init__() (imputegap.recovery.imputation.imputation.matrixcompletion.cdrec method)":[[34,"imputegap.recovery.imputation.Imputation.MatrixCompletion.CDRec.__init__",false]],"__init__() (imputegap.recovery.imputation.imputation.matrixcompletion.grouse method)":[[34,"imputegap.recovery.imputation.Imputation.MatrixCompletion.GROUSE.__init__",false]],"__init__() (imputegap.recovery.imputation.imputation.matrixcompletion.iterativesvd method)":[[34,"imputegap.recovery.imputation.Imputation.MatrixCompletion.IterativeSVD.__init__",false]],"__init__() (imputegap.recovery.imputation.imputation.matrixcompletion.rosl method)":[[34,"imputegap.recovery.imputation.Imputation.MatrixCompletion.ROSL.__init__",false]],"__init__() (imputegap.recovery.imputation.imputation.matrixcompletion.softimpute method)":[[34,"imputegap.recovery.imputation.Imputation.MatrixCompletion.SoftImpute.__init__",false]],"__init__() (imputegap.recovery.imputation.imputation.matrixcompletion.spirit method)":[[34,"imputegap.recovery.imputation.Imputation.MatrixCompletion.SPIRIT.__init__",false]],"__init__() (imputegap.recovery.imputation.imputation.matrixcompletion.svt method)":[[34,"imputegap.recovery.imputation.Imputation.MatrixCompletion.SVT.__init__",false]],"__init__() (imputegap.recovery.imputation.imputation.matrixcompletion.trmf method)":[[34,"imputegap.recovery.imputation.Imputation.MatrixCompletion.TRMF.__init__",false]],"__init__() (imputegap.recovery.imputation.imputation.patternsearch.dynammo method)":[[34,"imputegap.recovery.imputation.Imputation.PatternSearch.DynaMMo.__init__",false]],"__init__() (imputegap.recovery.imputation.imputation.patternsearch.stmvl method)":[[34,"imputegap.recovery.imputation.Imputation.PatternSearch.STMVL.__init__",false]],"__init__() (imputegap.recovery.imputation.imputation.patternsearch.tkcm method)":[[34,"imputegap.recovery.imputation.Imputation.PatternSearch.TKCM.__init__",false]],"__init__() (imputegap.recovery.imputation.imputation.statistics.interpolation method)":[[34,"imputegap.recovery.imputation.Imputation.Statistics.Interpolation.__init__",false]],"__init__() (imputegap.recovery.imputation.imputation.statistics.knnimpute method)":[[34,"imputegap.recovery.imputation.Imputation.Statistics.KNNImpute.__init__",false]],"__init__() (imputegap.recovery.imputation.imputation.statistics.meanimpute method)":[[34,"imputegap.recovery.imputation.Imputation.Statistics.MeanImpute.__init__",false]],"__init__() (imputegap.recovery.imputation.imputation.statistics.meanimputebyseries method)":[[34,"imputegap.recovery.imputation.Imputation.Statistics.MeanImputeBySeries.__init__",false]],"__init__() (imputegap.recovery.imputation.imputation.statistics.minimpute method)":[[34,"imputegap.recovery.imputation.Imputation.Statistics.MinImpute.__init__",false]],"__init__() (imputegap.recovery.imputation.imputation.statistics.zeroimpute method)":[[34,"imputegap.recovery.imputation.Imputation.Statistics.ZeroImpute.__init__",false]],"algorithm (imputegap.recovery.imputation.baseimputer attribute)":[[34,"imputegap.recovery.imputation.BaseImputer.algorithm",false]],"algorithm (imputegap.recovery.imputation.imputation.deeplearning.bayotide attribute)":[[34,"imputegap.recovery.imputation.Imputation.DeepLearning.BayOTIDE.algorithm",false]],"algorithm (imputegap.recovery.imputation.imputation.deeplearning.bitgraph attribute)":[[34,"imputegap.recovery.imputation.Imputation.DeepLearning.BitGraph.algorithm",false]],"algorithm (imputegap.recovery.imputation.imputation.deeplearning.brits attribute)":[[34,"imputegap.recovery.imputation.Imputation.DeepLearning.BRITS.algorithm",false]],"algorithm (imputegap.recovery.imputation.imputation.deeplearning.deepmvi attribute)":[[34,"imputegap.recovery.imputation.Imputation.DeepLearning.DeepMVI.algorithm",false]],"algorithm (imputegap.recovery.imputation.imputation.deeplearning.gain attribute)":[[34,"imputegap.recovery.imputation.Imputation.DeepLearning.GAIN.algorithm",false]],"algorithm (imputegap.recovery.imputation.imputation.deeplearning.grin attribute)":[[34,"imputegap.recovery.imputation.Imputation.DeepLearning.GRIN.algorithm",false]],"algorithm (imputegap.recovery.imputation.imputation.deeplearning.hkmf_t attribute)":[[34,"imputegap.recovery.imputation.Imputation.DeepLearning.HKMF_T.algorithm",false]],"algorithm (imputegap.recovery.imputation.imputation.deeplearning.missnet attribute)":[[34,"imputegap.recovery.imputation.Imputation.DeepLearning.MissNet.algorithm",false]],"algorithm (imputegap.recovery.imputation.imputation.deeplearning.mpin attribute)":[[34,"imputegap.recovery.imputation.Imputation.DeepLearning.MPIN.algorithm",false]],"algorithm (imputegap.recovery.imputation.imputation.deeplearning.mrnn attribute)":[[34,"imputegap.recovery.imputation.Imputation.DeepLearning.MRNN.algorithm",false]],"algorithm (imputegap.recovery.imputation.imputation.deeplearning.pristi attribute)":[[34,"imputegap.recovery.imputation.Imputation.DeepLearning.PRISTI.algorithm",false]],"algorithm (imputegap.recovery.imputation.imputation.machinelearning.iim attribute)":[[34,"imputegap.recovery.imputation.Imputation.MachineLearning.IIM.algorithm",false]],"algorithm (imputegap.recovery.imputation.imputation.machinelearning.mice attribute)":[[34,"imputegap.recovery.imputation.Imputation.MachineLearning.MICE.algorithm",false]],"algorithm (imputegap.recovery.imputation.imputation.machinelearning.missforest attribute)":[[34,"imputegap.recovery.imputation.Imputation.MachineLearning.MissForest.algorithm",false]],"algorithm (imputegap.recovery.imputation.imputation.machinelearning.xgboost attribute)":[[34,"imputegap.recovery.imputation.Imputation.MachineLearning.XGBOOST.algorithm",false]],"algorithm (imputegap.recovery.imputation.imputation.matrixcompletion.cdrec attribute)":[[34,"imputegap.recovery.imputation.Imputation.MatrixCompletion.CDRec.algorithm",false]],"algorithm (imputegap.recovery.imputation.imputation.matrixcompletion.grouse attribute)":[[34,"imputegap.recovery.imputation.Imputation.MatrixCompletion.GROUSE.algorithm",false]],"algorithm (imputegap.recovery.imputation.imputation.matrixcompletion.iterativesvd attribute)":[[34,"imputegap.recovery.imputation.Imputation.MatrixCompletion.IterativeSVD.algorithm",false]],"algorithm (imputegap.recovery.imputation.imputation.matrixcompletion.rosl attribute)":[[34,"imputegap.recovery.imputation.Imputation.MatrixCompletion.ROSL.algorithm",false]],"algorithm (imputegap.recovery.imputation.imputation.matrixcompletion.softimpute attribute)":[[34,"imputegap.recovery.imputation.Imputation.MatrixCompletion.SoftImpute.algorithm",false]],"algorithm (imputegap.recovery.imputation.imputation.matrixcompletion.spirit attribute)":[[34,"imputegap.recovery.imputation.Imputation.MatrixCompletion.SPIRIT.algorithm",false]],"algorithm (imputegap.recovery.imputation.imputation.matrixcompletion.svt attribute)":[[34,"imputegap.recovery.imputation.Imputation.MatrixCompletion.SVT.algorithm",false]],"algorithm (imputegap.recovery.imputation.imputation.matrixcompletion.trmf attribute)":[[34,"imputegap.recovery.imputation.Imputation.MatrixCompletion.TRMF.algorithm",false]],"algorithm (imputegap.recovery.imputation.imputation.patternsearch.dynammo attribute)":[[34,"imputegap.recovery.imputation.Imputation.PatternSearch.DynaMMo.algorithm",false]],"algorithm (imputegap.recovery.imputation.imputation.patternsearch.stmvl attribute)":[[34,"imputegap.recovery.imputation.Imputation.PatternSearch.STMVL.algorithm",false]],"algorithm (imputegap.recovery.imputation.imputation.patternsearch.tkcm attribute)":[[34,"imputegap.recovery.imputation.Imputation.PatternSearch.TKCM.algorithm",false]],"algorithm (imputegap.recovery.imputation.imputation.statistics.interpolation attribute)":[[34,"imputegap.recovery.imputation.Imputation.Statistics.Interpolation.algorithm",false]],"algorithm (imputegap.recovery.imputation.imputation.statistics.knnimpute attribute)":[[34,"imputegap.recovery.imputation.Imputation.Statistics.KNNImpute.algorithm",false]],"algorithm (imputegap.recovery.imputation.imputation.statistics.meanimpute attribute)":[[34,"imputegap.recovery.imputation.Imputation.Statistics.MeanImpute.algorithm",false]],"algorithm (imputegap.recovery.imputation.imputation.statistics.meanimputebyseries attribute)":[[34,"imputegap.recovery.imputation.Imputation.Statistics.MeanImputeBySeries.algorithm",false]],"algorithm (imputegap.recovery.imputation.imputation.statistics.minimpute attribute)":[[34,"imputegap.recovery.imputation.Imputation.Statistics.MinImpute.algorithm",false]],"algorithm (imputegap.recovery.imputation.imputation.statistics.zeroimpute attribute)":[[34,"imputegap.recovery.imputation.Imputation.Statistics.ZeroImpute.algorithm",false]],"aligned() (imputegap.recovery.manager.timeseries.contamination method)":[[35,"imputegap.recovery.manager.TimeSeries.Contamination.aligned",false]],"average_runs_by_names() (imputegap.recovery.benchmark.benchmark method)":[[29,"id17",false],[29,"imputegap.recovery.benchmark.Benchmark.average_runs_by_names",false]],"avg_results() (imputegap.recovery.benchmark.benchmark method)":[[29,"id20",false],[29,"imputegap.recovery.benchmark.Benchmark.avg_results",false]],"baseimputer (class in imputegap.recovery.imputation)":[[34,"imputegap.recovery.imputation.BaseImputer",false]],"baseoptimizer (class in imputegap.recovery.optimization)":[[39,"imputegap.recovery.optimization.BaseOptimizer",false]],"benchmark (class in imputegap.recovery.benchmark)":[[29,"id0",false],[29,"imputegap.recovery.benchmark.Benchmark",false]],"blackout() (imputegap.recovery.manager.timeseries.contamination method)":[[35,"imputegap.recovery.manager.TimeSeries.Contamination.blackout",false]],"cdrec() (in module imputegap.algorithms.cdrec)":[[30,"imputegap.algorithms.cdrec.cdrec",false]],"compute_all_metrics() (imputegap.recovery.evaluation.evaluation method)":[[31,"id6",false],[31,"imputegap.recovery.evaluation.Evaluation.compute_all_metrics",false]],"compute_correlation() (imputegap.recovery.evaluation.evaluation method)":[[31,"id8",false],[31,"imputegap.recovery.evaluation.Evaluation.compute_correlation",false]],"compute_mae() (imputegap.recovery.evaluation.evaluation method)":[[31,"id10",false],[31,"imputegap.recovery.evaluation.Evaluation.compute_mae",false]],"compute_mi() (imputegap.recovery.evaluation.evaluation method)":[[31,"id12",false],[31,"imputegap.recovery.evaluation.Evaluation.compute_mi",false]],"compute_rmse() (imputegap.recovery.evaluation.evaluation method)":[[31,"id14",false],[31,"imputegap.recovery.evaluation.Evaluation.compute_rmse",false]],"config_contamination() (in module imputegap.tools.utils)":[[42,"imputegap.tools.utils.config_contamination",false]],"config_forecaster() (in module imputegap.tools.utils)":[[42,"imputegap.tools.utils.config_forecaster",false]],"config_impute_algorithm() (in module imputegap.tools.utils)":[[42,"imputegap.tools.utils.config_impute_algorithm",false]],"convert_results() (imputegap.recovery.explainer.explainer method)":[[32,"imputegap.recovery.explainer.Explainer.convert_results",false]],"disjoint() (imputegap.recovery.manager.timeseries.contamination method)":[[35,"imputegap.recovery.manager.TimeSeries.Contamination.disjoint",false]],"display_title() (in module imputegap.tools.utils)":[[42,"imputegap.tools.utils.display_title",false]],"distribution() (imputegap.recovery.manager.timeseries.contamination method)":[[35,"imputegap.recovery.manager.TimeSeries.Contamination.distribution",false]],"eval() (imputegap.recovery.benchmark.benchmark method)":[[29,"id23",false],[29,"imputegap.recovery.benchmark.Benchmark.eval",false]],"evaluate_params() (imputegap.recovery.imputation.imputation method)":[[34,"imputegap.recovery.imputation.Imputation.evaluate_params",false]],"evaluation (class in imputegap.recovery.evaluation)":[[31,"id0",false],[31,"imputegap.recovery.evaluation.Evaluation",false]],"execute_shap_model() (imputegap.recovery.explainer.explainer method)":[[32,"imputegap.recovery.explainer.Explainer.execute_shap_model",false]],"explainer (class in imputegap.recovery.explainer)":[[32,"imputegap.recovery.explainer.Explainer",false]],"extractor_pycatch() (imputegap.recovery.explainer.explainer method)":[[32,"imputegap.recovery.explainer.Explainer.extractor_pycatch",false]],"extractor_tsfel() (imputegap.recovery.explainer.explainer method)":[[32,"imputegap.recovery.explainer.Explainer.extractor_tsfel",false]],"extractor_tsfresh() (imputegap.recovery.explainer.explainer method)":[[32,"imputegap.recovery.explainer.Explainer.extractor_tsfresh",false]],"gaussian() (imputegap.recovery.manager.timeseries.contamination method)":[[35,"imputegap.recovery.manager.TimeSeries.Contamination.gaussian",false]],"generate_heatmap() (imputegap.recovery.benchmark.benchmark method)":[[29,"id27",false],[29,"imputegap.recovery.benchmark.Benchmark.generate_heatmap",false]],"generate_plots() (imputegap.recovery.benchmark.benchmark method)":[[29,"id30",false],[29,"imputegap.recovery.benchmark.Benchmark.generate_plots",false]],"generate_reports_excel() (imputegap.recovery.benchmark.benchmark method)":[[29,"id34",false],[29,"imputegap.recovery.benchmark.Benchmark.generate_reports_excel",false]],"generate_reports_txt() (imputegap.recovery.benchmark.benchmark method)":[[29,"id37",false],[29,"imputegap.recovery.benchmark.Benchmark.generate_reports_txt",false]],"iim() (in module imputegap.algorithms.iim)":[[33,"imputegap.algorithms.iim.iim",false]],"import_matrix() (imputegap.recovery.manager.timeseries method)":[[35,"imputegap.recovery.manager.TimeSeries.import_matrix",false]],"imputation (class in imputegap.recovery.imputation)":[[34,"imputegap.recovery.imputation.Imputation",false]],"imputation.deeplearning (class in imputegap.recovery.imputation)":[[34,"imputegap.recovery.imputation.Imputation.DeepLearning",false]],"imputation.deeplearning.bayotide (class in imputegap.recovery.imputation)":[[34,"imputegap.recovery.imputation.Imputation.DeepLearning.BayOTIDE",false]],"imputation.deeplearning.bitgraph (class in imputegap.recovery.imputation)":[[34,"imputegap.recovery.imputation.Imputation.DeepLearning.BitGraph",false]],"imputation.deeplearning.brits (class in imputegap.recovery.imputation)":[[34,"imputegap.recovery.imputation.Imputation.DeepLearning.BRITS",false]],"imputation.deeplearning.deepmvi (class in imputegap.recovery.imputation)":[[34,"imputegap.recovery.imputation.Imputation.DeepLearning.DeepMVI",false]],"imputation.deeplearning.gain (class in imputegap.recovery.imputation)":[[34,"imputegap.recovery.imputation.Imputation.DeepLearning.GAIN",false]],"imputation.deeplearning.grin (class in imputegap.recovery.imputation)":[[34,"imputegap.recovery.imputation.Imputation.DeepLearning.GRIN",false]],"imputation.deeplearning.hkmf_t (class in imputegap.recovery.imputation)":[[34,"imputegap.recovery.imputation.Imputation.DeepLearning.HKMF_T",false]],"imputation.deeplearning.missnet (class in imputegap.recovery.imputation)":[[34,"imputegap.recovery.imputation.Imputation.DeepLearning.MissNet",false]],"imputation.deeplearning.mpin (class in imputegap.recovery.imputation)":[[34,"imputegap.recovery.imputation.Imputation.DeepLearning.MPIN",false]],"imputation.deeplearning.mrnn (class in imputegap.recovery.imputation)":[[34,"imputegap.recovery.imputation.Imputation.DeepLearning.MRNN",false]],"imputation.deeplearning.pristi (class in imputegap.recovery.imputation)":[[34,"imputegap.recovery.imputation.Imputation.DeepLearning.PRISTI",false]],"imputation.machinelearning (class in imputegap.recovery.imputation)":[[34,"imputegap.recovery.imputation.Imputation.MachineLearning",false]],"imputation.machinelearning.iim (class in imputegap.recovery.imputation)":[[34,"imputegap.recovery.imputation.Imputation.MachineLearning.IIM",false]],"imputation.machinelearning.mice (class in imputegap.recovery.imputation)":[[34,"imputegap.recovery.imputation.Imputation.MachineLearning.MICE",false]],"imputation.machinelearning.missforest (class in imputegap.recovery.imputation)":[[34,"imputegap.recovery.imputation.Imputation.MachineLearning.MissForest",false]],"imputation.machinelearning.xgboost (class in imputegap.recovery.imputation)":[[34,"imputegap.recovery.imputation.Imputation.MachineLearning.XGBOOST",false]],"imputation.matrixcompletion (class in imputegap.recovery.imputation)":[[34,"imputegap.recovery.imputation.Imputation.MatrixCompletion",false]],"imputation.matrixcompletion.cdrec (class in imputegap.recovery.imputation)":[[34,"imputegap.recovery.imputation.Imputation.MatrixCompletion.CDRec",false]],"imputation.matrixcompletion.grouse (class in imputegap.recovery.imputation)":[[34,"imputegap.recovery.imputation.Imputation.MatrixCompletion.GROUSE",false]],"imputation.matrixcompletion.iterativesvd (class in imputegap.recovery.imputation)":[[34,"imputegap.recovery.imputation.Imputation.MatrixCompletion.IterativeSVD",false]],"imputation.matrixcompletion.rosl (class in imputegap.recovery.imputation)":[[34,"imputegap.recovery.imputation.Imputation.MatrixCompletion.ROSL",false]],"imputation.matrixcompletion.softimpute (class in imputegap.recovery.imputation)":[[34,"imputegap.recovery.imputation.Imputation.MatrixCompletion.SoftImpute",false]],"imputation.matrixcompletion.spirit (class in imputegap.recovery.imputation)":[[34,"imputegap.recovery.imputation.Imputation.MatrixCompletion.SPIRIT",false]],"imputation.matrixcompletion.svt (class in imputegap.recovery.imputation)":[[34,"imputegap.recovery.imputation.Imputation.MatrixCompletion.SVT",false]],"imputation.matrixcompletion.trmf (class in imputegap.recovery.imputation)":[[34,"imputegap.recovery.imputation.Imputation.MatrixCompletion.TRMF",false]],"imputation.patternsearch (class in imputegap.recovery.imputation)":[[34,"imputegap.recovery.imputation.Imputation.PatternSearch",false]],"imputation.patternsearch.dynammo (class in imputegap.recovery.imputation)":[[34,"imputegap.recovery.imputation.Imputation.PatternSearch.DynaMMo",false]],"imputation.patternsearch.stmvl (class in imputegap.recovery.imputation)":[[34,"imputegap.recovery.imputation.Imputation.PatternSearch.STMVL",false]],"imputation.patternsearch.tkcm (class in imputegap.recovery.imputation)":[[34,"imputegap.recovery.imputation.Imputation.PatternSearch.TKCM",false]],"imputation.statistics (class in imputegap.recovery.imputation)":[[34,"imputegap.recovery.imputation.Imputation.Statistics",false]],"imputation.statistics.interpolation (class in imputegap.recovery.imputation)":[[34,"imputegap.recovery.imputation.Imputation.Statistics.Interpolation",false]],"imputation.statistics.knnimpute (class in imputegap.recovery.imputation)":[[34,"imputegap.recovery.imputation.Imputation.Statistics.KNNImpute",false]],"imputation.statistics.meanimpute (class in imputegap.recovery.imputation)":[[34,"imputegap.recovery.imputation.Imputation.Statistics.MeanImpute",false]],"imputation.statistics.meanimputebyseries (class in imputegap.recovery.imputation)":[[34,"imputegap.recovery.imputation.Imputation.Statistics.MeanImputeBySeries",false]],"imputation.statistics.minimpute (class in imputegap.recovery.imputation)":[[34,"imputegap.recovery.imputation.Imputation.Statistics.MinImpute",false]],"imputation.statistics.zeroimpute (class in imputegap.recovery.imputation)":[[34,"imputegap.recovery.imputation.Imputation.Statistics.ZeroImpute",false]],"impute() (imputegap.recovery.imputation.baseimputer method)":[[34,"imputegap.recovery.imputation.BaseImputer.impute",false]],"impute() (imputegap.recovery.imputation.imputation.deeplearning.bayotide method)":[[34,"imputegap.recovery.imputation.Imputation.DeepLearning.BayOTIDE.impute",false]],"impute() (imputegap.recovery.imputation.imputation.deeplearning.bitgraph method)":[[34,"imputegap.recovery.imputation.Imputation.DeepLearning.BitGraph.impute",false]],"impute() (imputegap.recovery.imputation.imputation.deeplearning.brits method)":[[34,"imputegap.recovery.imputation.Imputation.DeepLearning.BRITS.impute",false]],"impute() (imputegap.recovery.imputation.imputation.deeplearning.deepmvi method)":[[34,"imputegap.recovery.imputation.Imputation.DeepLearning.DeepMVI.impute",false]],"impute() (imputegap.recovery.imputation.imputation.deeplearning.gain method)":[[34,"imputegap.recovery.imputation.Imputation.DeepLearning.GAIN.impute",false]],"impute() (imputegap.recovery.imputation.imputation.deeplearning.grin method)":[[34,"imputegap.recovery.imputation.Imputation.DeepLearning.GRIN.impute",false]],"impute() (imputegap.recovery.imputation.imputation.deeplearning.hkmf_t method)":[[34,"imputegap.recovery.imputation.Imputation.DeepLearning.HKMF_T.impute",false]],"impute() (imputegap.recovery.imputation.imputation.deeplearning.missnet method)":[[34,"imputegap.recovery.imputation.Imputation.DeepLearning.MissNet.impute",false]],"impute() (imputegap.recovery.imputation.imputation.deeplearning.mpin method)":[[34,"imputegap.recovery.imputation.Imputation.DeepLearning.MPIN.impute",false]],"impute() (imputegap.recovery.imputation.imputation.deeplearning.mrnn method)":[[34,"imputegap.recovery.imputation.Imputation.DeepLearning.MRNN.impute",false]],"impute() (imputegap.recovery.imputation.imputation.deeplearning.pristi method)":[[34,"imputegap.recovery.imputation.Imputation.DeepLearning.PRISTI.impute",false]],"impute() (imputegap.recovery.imputation.imputation.machinelearning.iim method)":[[34,"imputegap.recovery.imputation.Imputation.MachineLearning.IIM.impute",false]],"impute() (imputegap.recovery.imputation.imputation.machinelearning.mice method)":[[34,"imputegap.recovery.imputation.Imputation.MachineLearning.MICE.impute",false]],"impute() (imputegap.recovery.imputation.imputation.machinelearning.missforest method)":[[34,"imputegap.recovery.imputation.Imputation.MachineLearning.MissForest.impute",false]],"impute() (imputegap.recovery.imputation.imputation.machinelearning.xgboost method)":[[34,"imputegap.recovery.imputation.Imputation.MachineLearning.XGBOOST.impute",false]],"impute() (imputegap.recovery.imputation.imputation.matrixcompletion.cdrec method)":[[34,"imputegap.recovery.imputation.Imputation.MatrixCompletion.CDRec.impute",false]],"impute() (imputegap.recovery.imputation.imputation.matrixcompletion.grouse method)":[[34,"imputegap.recovery.imputation.Imputation.MatrixCompletion.GROUSE.impute",false]],"impute() (imputegap.recovery.imputation.imputation.matrixcompletion.iterativesvd method)":[[34,"imputegap.recovery.imputation.Imputation.MatrixCompletion.IterativeSVD.impute",false]],"impute() (imputegap.recovery.imputation.imputation.matrixcompletion.rosl method)":[[34,"imputegap.recovery.imputation.Imputation.MatrixCompletion.ROSL.impute",false]],"impute() (imputegap.recovery.imputation.imputation.matrixcompletion.softimpute method)":[[34,"imputegap.recovery.imputation.Imputation.MatrixCompletion.SoftImpute.impute",false]],"impute() (imputegap.recovery.imputation.imputation.matrixcompletion.spirit method)":[[34,"imputegap.recovery.imputation.Imputation.MatrixCompletion.SPIRIT.impute",false]],"impute() (imputegap.recovery.imputation.imputation.matrixcompletion.svt method)":[[34,"imputegap.recovery.imputation.Imputation.MatrixCompletion.SVT.impute",false]],"impute() (imputegap.recovery.imputation.imputation.matrixcompletion.trmf method)":[[34,"imputegap.recovery.imputation.Imputation.MatrixCompletion.TRMF.impute",false]],"impute() (imputegap.recovery.imputation.imputation.patternsearch.dynammo method)":[[34,"imputegap.recovery.imputation.Imputation.PatternSearch.DynaMMo.impute",false]],"impute() (imputegap.recovery.imputation.imputation.patternsearch.stmvl method)":[[34,"imputegap.recovery.imputation.Imputation.PatternSearch.STMVL.impute",false]],"impute() (imputegap.recovery.imputation.imputation.patternsearch.tkcm method)":[[34,"imputegap.recovery.imputation.Imputation.PatternSearch.TKCM.impute",false]],"impute() (imputegap.recovery.imputation.imputation.statistics.interpolation method)":[[34,"imputegap.recovery.imputation.Imputation.Statistics.Interpolation.impute",false]],"impute() (imputegap.recovery.imputation.imputation.statistics.knnimpute method)":[[34,"imputegap.recovery.imputation.Imputation.Statistics.KNNImpute.impute",false]],"impute() (imputegap.recovery.imputation.imputation.statistics.meanimpute method)":[[34,"imputegap.recovery.imputation.Imputation.Statistics.MeanImpute.impute",false]],"impute() (imputegap.recovery.imputation.imputation.statistics.meanimputebyseries method)":[[34,"imputegap.recovery.imputation.Imputation.Statistics.MeanImputeBySeries.impute",false]],"impute() (imputegap.recovery.imputation.imputation.statistics.minimpute method)":[[34,"imputegap.recovery.imputation.Imputation.Statistics.MinImpute.impute",false]],"impute() (imputegap.recovery.imputation.imputation.statistics.zeroimpute method)":[[34,"imputegap.recovery.imputation.Imputation.Statistics.ZeroImpute.impute",false]],"imputegap":[[26,"module-imputegap",false]],"imputegap.algorithms":[[0,"module-imputegap.algorithms",false],[28,"module-imputegap.algorithms",false]],"imputegap.algorithms.cdrec":[[1,"module-imputegap.algorithms.cdrec",false],[30,"module-imputegap.algorithms.cdrec",false]],"imputegap.algorithms.iim":[[2,"module-imputegap.algorithms.iim",false],[33,"module-imputegap.algorithms.iim",false]],"imputegap.algorithms.mean_impute":[[3,"module-imputegap.algorithms.mean_impute",false],[36,"module-imputegap.algorithms.mean_impute",false]],"imputegap.algorithms.min_impute":[[4,"module-imputegap.algorithms.min_impute",false],[37,"module-imputegap.algorithms.min_impute",false]],"imputegap.algorithms.mrnn":[[5,"module-imputegap.algorithms.mrnn",false],[38,"module-imputegap.algorithms.mrnn",false]],"imputegap.algorithms.stmvl":[[6,"module-imputegap.algorithms.stmvl",false],[40,"module-imputegap.algorithms.stmvl",false]],"imputegap.algorithms.zero_impute":[[7,"module-imputegap.algorithms.zero_impute",false],[44,"module-imputegap.algorithms.zero_impute",false]],"imputegap.recovery.benchmark":[[8,"module-imputegap.recovery.benchmark",false],[9,"module-imputegap.recovery.benchmark",false],[29,"module-0",false],[29,"module-imputegap.recovery.benchmark",false]],"imputegap.recovery.evaluation":[[10,"module-imputegap.recovery.evaluation",false],[31,"module-0",false],[31,"module-imputegap.recovery.evaluation",false]],"imputegap.recovery.explainer":[[11,"module-imputegap.recovery.explainer",false],[32,"module-imputegap.recovery.explainer",false]],"imputegap.recovery.imputation":[[12,"module-imputegap.recovery.imputation",false],[34,"module-imputegap.recovery.imputation",false]],"imputegap.recovery.manager":[[13,"module-imputegap.recovery.manager",false],[35,"module-imputegap.recovery.manager",false]],"imputegap.recovery.optimization":[[14,"module-imputegap.recovery.optimization",false],[39,"module-imputegap.recovery.optimization",false]],"imputegap.tools":[[15,"module-imputegap.tools",false],[27,"module-imputegap.tools",false],[41,"module-imputegap.tools",false],[42,"module-imputegap.tools",false]],"imputegap.tools.algorithm_parameters":[[16,"module-imputegap.tools.algorithm_parameters",false],[27,"module-imputegap.tools.algorithm_parameters",false]],"imputegap.tools.utils":[[17,"module-imputegap.tools.utils",false],[42,"module-imputegap.tools.utils",false]],"imputegap.wrapper":[[18,"module-imputegap.wrapper",false],[43,"module-imputegap.wrapper",false]],"list_of_algorithms() (in module imputegap.tools.utils)":[[42,"imputegap.tools.utils.list_of_algorithms",false]],"list_of_datasets() (in module imputegap.tools.utils)":[[42,"imputegap.tools.utils.list_of_datasets",false]],"list_of_downstreams() (in module imputegap.tools.utils)":[[42,"imputegap.tools.utils.list_of_downstreams",false]],"list_of_downstreams_darts() (in module imputegap.tools.utils)":[[42,"imputegap.tools.utils.list_of_downstreams_darts",false]],"list_of_downstreams_sktime() (in module imputegap.tools.utils)":[[42,"imputegap.tools.utils.list_of_downstreams_sktime",false]],"list_of_optimizers() (in module imputegap.tools.utils)":[[42,"imputegap.tools.utils.list_of_optimizers",false]],"list_of_patterns() (in module imputegap.tools.utils)":[[42,"imputegap.tools.utils.list_of_patterns",false]],"load_configuration() (imputegap.recovery.explainer.explainer method)":[[32,"imputegap.recovery.explainer.Explainer.load_configuration",false]],"load_parameters() (in module imputegap.tools.utils)":[[42,"imputegap.tools.utils.load_parameters",false]],"load_series() (imputegap.recovery.manager.timeseries method)":[[35,"imputegap.recovery.manager.TimeSeries.load_series",false]],"load_share_lib() (in module imputegap.tools.utils)":[[42,"imputegap.tools.utils.load_share_lib",false]],"logs (imputegap.recovery.imputation.baseimputer attribute)":[[34,"imputegap.recovery.imputation.BaseImputer.logs",false]],"logs (imputegap.recovery.imputation.imputation.deeplearning.bayotide attribute)":[[34,"imputegap.recovery.imputation.Imputation.DeepLearning.BayOTIDE.logs",false]],"logs (imputegap.recovery.imputation.imputation.deeplearning.bitgraph attribute)":[[34,"imputegap.recovery.imputation.Imputation.DeepLearning.BitGraph.logs",false]],"logs (imputegap.recovery.imputation.imputation.deeplearning.brits attribute)":[[34,"imputegap.recovery.imputation.Imputation.DeepLearning.BRITS.logs",false]],"logs (imputegap.recovery.imputation.imputation.deeplearning.deepmvi attribute)":[[34,"imputegap.recovery.imputation.Imputation.DeepLearning.DeepMVI.logs",false]],"logs (imputegap.recovery.imputation.imputation.deeplearning.gain attribute)":[[34,"imputegap.recovery.imputation.Imputation.DeepLearning.GAIN.logs",false]],"logs (imputegap.recovery.imputation.imputation.deeplearning.grin attribute)":[[34,"imputegap.recovery.imputation.Imputation.DeepLearning.GRIN.logs",false]],"logs (imputegap.recovery.imputation.imputation.deeplearning.hkmf_t attribute)":[[34,"imputegap.recovery.imputation.Imputation.DeepLearning.HKMF_T.logs",false]],"logs (imputegap.recovery.imputation.imputation.deeplearning.missnet attribute)":[[34,"imputegap.recovery.imputation.Imputation.DeepLearning.MissNet.logs",false]],"logs (imputegap.recovery.imputation.imputation.deeplearning.mpin attribute)":[[34,"imputegap.recovery.imputation.Imputation.DeepLearning.MPIN.logs",false]],"logs (imputegap.recovery.imputation.imputation.deeplearning.mrnn attribute)":[[34,"imputegap.recovery.imputation.Imputation.DeepLearning.MRNN.logs",false]],"logs (imputegap.recovery.imputation.imputation.deeplearning.pristi attribute)":[[34,"imputegap.recovery.imputation.Imputation.DeepLearning.PRISTI.logs",false]],"logs (imputegap.recovery.imputation.imputation.machinelearning.iim attribute)":[[34,"imputegap.recovery.imputation.Imputation.MachineLearning.IIM.logs",false]],"logs (imputegap.recovery.imputation.imputation.machinelearning.mice attribute)":[[34,"imputegap.recovery.imputation.Imputation.MachineLearning.MICE.logs",false]],"logs (imputegap.recovery.imputation.imputation.machinelearning.missforest attribute)":[[34,"imputegap.recovery.imputation.Imputation.MachineLearning.MissForest.logs",false]],"logs (imputegap.recovery.imputation.imputation.machinelearning.xgboost attribute)":[[34,"imputegap.recovery.imputation.Imputation.MachineLearning.XGBOOST.logs",false]],"logs (imputegap.recovery.imputation.imputation.matrixcompletion.cdrec attribute)":[[34,"imputegap.recovery.imputation.Imputation.MatrixCompletion.CDRec.logs",false]],"logs (imputegap.recovery.imputation.imputation.matrixcompletion.grouse attribute)":[[34,"imputegap.recovery.imputation.Imputation.MatrixCompletion.GROUSE.logs",false]],"logs (imputegap.recovery.imputation.imputation.matrixcompletion.iterativesvd attribute)":[[34,"imputegap.recovery.imputation.Imputation.MatrixCompletion.IterativeSVD.logs",false]],"logs (imputegap.recovery.imputation.imputation.matrixcompletion.rosl attribute)":[[34,"imputegap.recovery.imputation.Imputation.MatrixCompletion.ROSL.logs",false]],"logs (imputegap.recovery.imputation.imputation.matrixcompletion.softimpute attribute)":[[34,"imputegap.recovery.imputation.Imputation.MatrixCompletion.SoftImpute.logs",false]],"logs (imputegap.recovery.imputation.imputation.matrixcompletion.spirit attribute)":[[34,"imputegap.recovery.imputation.Imputation.MatrixCompletion.SPIRIT.logs",false]],"logs (imputegap.recovery.imputation.imputation.matrixcompletion.svt attribute)":[[34,"imputegap.recovery.imputation.Imputation.MatrixCompletion.SVT.logs",false]],"logs (imputegap.recovery.imputation.imputation.matrixcompletion.trmf attribute)":[[34,"imputegap.recovery.imputation.Imputation.MatrixCompletion.TRMF.logs",false]],"logs (imputegap.recovery.imputation.imputation.patternsearch.dynammo attribute)":[[34,"imputegap.recovery.imputation.Imputation.PatternSearch.DynaMMo.logs",false]],"logs (imputegap.recovery.imputation.imputation.patternsearch.stmvl attribute)":[[34,"imputegap.recovery.imputation.Imputation.PatternSearch.STMVL.logs",false]],"logs (imputegap.recovery.imputation.imputation.patternsearch.tkcm attribute)":[[34,"imputegap.recovery.imputation.Imputation.PatternSearch.TKCM.logs",false]],"logs (imputegap.recovery.imputation.imputation.statistics.interpolation attribute)":[[34,"imputegap.recovery.imputation.Imputation.Statistics.Interpolation.logs",false]],"logs (imputegap.recovery.imputation.imputation.statistics.knnimpute attribute)":[[34,"imputegap.recovery.imputation.Imputation.Statistics.KNNImpute.logs",false]],"logs (imputegap.recovery.imputation.imputation.statistics.meanimpute attribute)":[[34,"imputegap.recovery.imputation.Imputation.Statistics.MeanImpute.logs",false]],"logs (imputegap.recovery.imputation.imputation.statistics.meanimputebyseries attribute)":[[34,"imputegap.recovery.imputation.Imputation.Statistics.MeanImputeBySeries.logs",false]],"logs (imputegap.recovery.imputation.imputation.statistics.minimpute attribute)":[[34,"imputegap.recovery.imputation.Imputation.Statistics.MinImpute.logs",false]],"logs (imputegap.recovery.imputation.imputation.statistics.zeroimpute attribute)":[[34,"imputegap.recovery.imputation.Imputation.Statistics.ZeroImpute.logs",false]],"mcar() (imputegap.recovery.manager.timeseries.contamination method)":[[35,"imputegap.recovery.manager.TimeSeries.Contamination.mcar",false]],"mean_impute() (in module imputegap.algorithms.mean_impute)":[[36,"imputegap.algorithms.mean_impute.mean_impute",false]],"min_impute() (in module imputegap.algorithms.min_impute)":[[37,"imputegap.algorithms.min_impute.min_impute",false]],"missing_completely_at_random() (imputegap.recovery.manager.timeseries.contamination method)":[[35,"imputegap.recovery.manager.TimeSeries.Contamination.missing_completely_at_random",false]],"missing_percentage() (imputegap.recovery.manager.timeseries.contamination method)":[[35,"imputegap.recovery.manager.TimeSeries.Contamination.missing_percentage",false]],"module":[[0,"module-imputegap.algorithms",false],[1,"module-imputegap.algorithms.cdrec",false],[2,"module-imputegap.algorithms.iim",false],[3,"module-imputegap.algorithms.mean_impute",false],[4,"module-imputegap.algorithms.min_impute",false],[5,"module-imputegap.algorithms.mrnn",false],[6,"module-imputegap.algorithms.stmvl",false],[7,"module-imputegap.algorithms.zero_impute",false],[8,"module-imputegap.recovery.benchmark",false],[9,"module-imputegap.recovery.benchmark",false],[10,"module-imputegap.recovery.evaluation",false],[11,"module-imputegap.recovery.explainer",false],[12,"module-imputegap.recovery.imputation",false],[13,"module-imputegap.recovery.manager",false],[14,"module-imputegap.recovery.optimization",false],[15,"module-imputegap.tools",false],[16,"module-imputegap.tools.algorithm_parameters",false],[17,"module-imputegap.tools.utils",false],[18,"module-imputegap.wrapper",false],[26,"module-imputegap",false],[27,"module-imputegap.tools",false],[27,"module-imputegap.tools.algorithm_parameters",false],[28,"module-imputegap.algorithms",false],[29,"module-0",false],[29,"module-imputegap.recovery.benchmark",false],[30,"module-imputegap.algorithms.cdrec",false],[31,"module-0",false],[31,"module-imputegap.recovery.evaluation",false],[32,"module-imputegap.recovery.explainer",false],[33,"module-imputegap.algorithms.iim",false],[34,"module-imputegap.recovery.imputation",false],[35,"module-imputegap.recovery.manager",false],[36,"module-imputegap.algorithms.mean_impute",false],[37,"module-imputegap.algorithms.min_impute",false],[38,"module-imputegap.algorithms.mrnn",false],[39,"module-imputegap.recovery.optimization",false],[40,"module-imputegap.algorithms.stmvl",false],[41,"module-imputegap.tools",false],[42,"module-imputegap.tools",false],[42,"module-imputegap.tools.utils",false],[43,"module-imputegap.wrapper",false],[44,"module-imputegap.algorithms.zero_impute",false]],"mp() (imputegap.recovery.manager.timeseries.contamination method)":[[35,"imputegap.recovery.manager.TimeSeries.Contamination.mp",false]],"mrnn() (in module imputegap.algorithms.mrnn)":[[38,"imputegap.algorithms.mrnn.mrnn",false]],"native_cdrec() (in module imputegap.algorithms.cdrec)":[[30,"imputegap.algorithms.cdrec.native_cdrec",false]],"native_stmvl() (in module imputegap.algorithms.stmvl)":[[40,"imputegap.algorithms.stmvl.native_stmvl",false]],"normalize() (imputegap.recovery.manager.timeseries method)":[[35,"imputegap.recovery.manager.TimeSeries.normalize",false]],"optimization (class in imputegap.recovery.optimization)":[[39,"imputegap.recovery.optimization.Optimization",false]],"optimization.bayesian (class in imputegap.recovery.optimization)":[[39,"imputegap.recovery.optimization.Optimization.Bayesian",false]],"optimization.greedy (class in imputegap.recovery.optimization)":[[39,"imputegap.recovery.optimization.Optimization.Greedy",false]],"optimization.particleswarm (class in imputegap.recovery.optimization)":[[39,"imputegap.recovery.optimization.Optimization.ParticleSwarm",false]],"optimization.raytune (class in imputegap.recovery.optimization)":[[39,"imputegap.recovery.optimization.Optimization.RayTune",false]],"optimization.successivehalving (class in imputegap.recovery.optimization)":[[39,"imputegap.recovery.optimization.Optimization.SuccessiveHalving",false]],"optimize() (imputegap.recovery.optimization.baseoptimizer method)":[[39,"imputegap.recovery.optimization.BaseOptimizer.optimize",false]],"optimize() (imputegap.recovery.optimization.optimization.bayesian method)":[[39,"imputegap.recovery.optimization.Optimization.Bayesian.optimize",false]],"optimize() (imputegap.recovery.optimization.optimization.greedy method)":[[39,"imputegap.recovery.optimization.Optimization.Greedy.optimize",false]],"optimize() (imputegap.recovery.optimization.optimization.particleswarm method)":[[39,"imputegap.recovery.optimization.Optimization.ParticleSwarm.optimize",false]],"optimize() (imputegap.recovery.optimization.optimization.raytune method)":[[39,"imputegap.recovery.optimization.Optimization.RayTune.optimize",false]],"optimize() (imputegap.recovery.optimization.optimization.successivehalving method)":[[39,"imputegap.recovery.optimization.Optimization.SuccessiveHalving.optimize",false]],"overlap() (imputegap.recovery.manager.timeseries.contamination method)":[[35,"imputegap.recovery.manager.TimeSeries.Contamination.overlap",false]],"plot() (imputegap.recovery.manager.timeseries method)":[[35,"imputegap.recovery.manager.TimeSeries.plot",false]],"print() (imputegap.recovery.explainer.explainer method)":[[32,"imputegap.recovery.explainer.Explainer.print",false]],"print() (imputegap.recovery.manager.timeseries method)":[[35,"imputegap.recovery.manager.TimeSeries.print",false]],"print_results() (imputegap.recovery.manager.timeseries method)":[[35,"imputegap.recovery.manager.TimeSeries.print_results",false]],"save_optimization() (in module imputegap.tools.utils)":[[42,"imputegap.tools.utils.save_optimization",false]],"scattered() (imputegap.recovery.manager.timeseries.contamination method)":[[35,"imputegap.recovery.manager.TimeSeries.Contamination.scattered",false]],"score() (imputegap.recovery.imputation.baseimputer method)":[[34,"imputegap.recovery.imputation.BaseImputer.score",false]],"score() (imputegap.recovery.imputation.imputation.deeplearning.bayotide method)":[[34,"imputegap.recovery.imputation.Imputation.DeepLearning.BayOTIDE.score",false]],"score() (imputegap.recovery.imputation.imputation.deeplearning.bitgraph method)":[[34,"imputegap.recovery.imputation.Imputation.DeepLearning.BitGraph.score",false]],"score() (imputegap.recovery.imputation.imputation.deeplearning.brits method)":[[34,"imputegap.recovery.imputation.Imputation.DeepLearning.BRITS.score",false]],"score() (imputegap.recovery.imputation.imputation.deeplearning.deepmvi method)":[[34,"imputegap.recovery.imputation.Imputation.DeepLearning.DeepMVI.score",false]],"score() (imputegap.recovery.imputation.imputation.deeplearning.gain method)":[[34,"imputegap.recovery.imputation.Imputation.DeepLearning.GAIN.score",false]],"score() (imputegap.recovery.imputation.imputation.deeplearning.grin method)":[[34,"imputegap.recovery.imputation.Imputation.DeepLearning.GRIN.score",false]],"score() (imputegap.recovery.imputation.imputation.deeplearning.hkmf_t method)":[[34,"imputegap.recovery.imputation.Imputation.DeepLearning.HKMF_T.score",false]],"score() (imputegap.recovery.imputation.imputation.deeplearning.missnet method)":[[34,"imputegap.recovery.imputation.Imputation.DeepLearning.MissNet.score",false]],"score() (imputegap.recovery.imputation.imputation.deeplearning.mpin method)":[[34,"imputegap.recovery.imputation.Imputation.DeepLearning.MPIN.score",false]],"score() (imputegap.recovery.imputation.imputation.deeplearning.mrnn method)":[[34,"imputegap.recovery.imputation.Imputation.DeepLearning.MRNN.score",false]],"score() (imputegap.recovery.imputation.imputation.deeplearning.pristi method)":[[34,"imputegap.recovery.imputation.Imputation.DeepLearning.PRISTI.score",false]],"score() (imputegap.recovery.imputation.imputation.machinelearning.iim method)":[[34,"imputegap.recovery.imputation.Imputation.MachineLearning.IIM.score",false]],"score() (imputegap.recovery.imputation.imputation.machinelearning.mice method)":[[34,"imputegap.recovery.imputation.Imputation.MachineLearning.MICE.score",false]],"score() (imputegap.recovery.imputation.imputation.machinelearning.missforest method)":[[34,"imputegap.recovery.imputation.Imputation.MachineLearning.MissForest.score",false]],"score() (imputegap.recovery.imputation.imputation.machinelearning.xgboost method)":[[34,"imputegap.recovery.imputation.Imputation.MachineLearning.XGBOOST.score",false]],"score() (imputegap.recovery.imputation.imputation.matrixcompletion.cdrec method)":[[34,"imputegap.recovery.imputation.Imputation.MatrixCompletion.CDRec.score",false]],"score() (imputegap.recovery.imputation.imputation.matrixcompletion.grouse method)":[[34,"imputegap.recovery.imputation.Imputation.MatrixCompletion.GROUSE.score",false]],"score() (imputegap.recovery.imputation.imputation.matrixcompletion.iterativesvd method)":[[34,"imputegap.recovery.imputation.Imputation.MatrixCompletion.IterativeSVD.score",false]],"score() (imputegap.recovery.imputation.imputation.matrixcompletion.rosl method)":[[34,"imputegap.recovery.imputation.Imputation.MatrixCompletion.ROSL.score",false]],"score() (imputegap.recovery.imputation.imputation.matrixcompletion.softimpute method)":[[34,"imputegap.recovery.imputation.Imputation.MatrixCompletion.SoftImpute.score",false]],"score() (imputegap.recovery.imputation.imputation.matrixcompletion.spirit method)":[[34,"imputegap.recovery.imputation.Imputation.MatrixCompletion.SPIRIT.score",false]],"score() (imputegap.recovery.imputation.imputation.matrixcompletion.svt method)":[[34,"imputegap.recovery.imputation.Imputation.MatrixCompletion.SVT.score",false]],"score() (imputegap.recovery.imputation.imputation.matrixcompletion.trmf method)":[[34,"imputegap.recovery.imputation.Imputation.MatrixCompletion.TRMF.score",false]],"score() (imputegap.recovery.imputation.imputation.patternsearch.dynammo method)":[[34,"imputegap.recovery.imputation.Imputation.PatternSearch.DynaMMo.score",false]],"score() (imputegap.recovery.imputation.imputation.patternsearch.stmvl method)":[[34,"imputegap.recovery.imputation.Imputation.PatternSearch.STMVL.score",false]],"score() (imputegap.recovery.imputation.imputation.patternsearch.tkcm method)":[[34,"imputegap.recovery.imputation.Imputation.PatternSearch.TKCM.score",false]],"score() (imputegap.recovery.imputation.imputation.statistics.interpolation method)":[[34,"imputegap.recovery.imputation.Imputation.Statistics.Interpolation.score",false]],"score() (imputegap.recovery.imputation.imputation.statistics.knnimpute method)":[[34,"imputegap.recovery.imputation.Imputation.Statistics.KNNImpute.score",false]],"score() (imputegap.recovery.imputation.imputation.statistics.meanimpute method)":[[34,"imputegap.recovery.imputation.Imputation.Statistics.MeanImpute.score",false]],"score() (imputegap.recovery.imputation.imputation.statistics.meanimputebyseries method)":[[34,"imputegap.recovery.imputation.Imputation.Statistics.MeanImputeBySeries.score",false]],"score() (imputegap.recovery.imputation.imputation.statistics.minimpute method)":[[34,"imputegap.recovery.imputation.Imputation.Statistics.MinImpute.score",false]],"score() (imputegap.recovery.imputation.imputation.statistics.zeroimpute method)":[[34,"imputegap.recovery.imputation.Imputation.Statistics.ZeroImpute.score",false]],"search_path() (in module imputegap.tools.utils)":[[42,"imputegap.tools.utils.search_path",false]],"select_backend() (in module imputegap.recovery.manager)":[[35,"imputegap.recovery.manager.select_backend",false]],"shap_explainer() (imputegap.recovery.explainer.explainer method)":[[32,"imputegap.recovery.explainer.Explainer.shap_explainer",false]],"stmvl() (in module imputegap.algorithms.stmvl)":[[40,"imputegap.algorithms.stmvl.stmvl",false]],"timeseries (class in imputegap.recovery.manager)":[[35,"imputegap.recovery.manager.TimeSeries",false]],"timeseries.contamination (class in imputegap.recovery.manager)":[[35,"imputegap.recovery.manager.TimeSeries.Contamination",false]],"verification_limitation() (in module imputegap.tools.utils)":[[42,"imputegap.tools.utils.verification_limitation",false]],"zero_impute() (in module imputegap.algorithms.zero_impute)":[[44,"imputegap.algorithms.zero_impute.zero_impute",false]]},"objects":{"":[[26,0,0,"-","imputegap"]],"imputegap":[[28,0,0,"-","algorithms"],[42,0,0,"-","tools"],[43,0,0,"-","wrapper"]],"imputegap.algorithms":[[30,0,0,"-","cdrec"],[33,0,0,"-","iim"],[36,0,0,"-","mean_impute"],[37,0,0,"-","min_impute"],[38,0,0,"-","mrnn"],[40,0,0,"-","stmvl"],[44,0,0,"-","zero_impute"]],"imputegap.algorithms.cdrec":[[30,1,1,"","cdrec"],[30,1,1,"","native_cdrec"]],"imputegap.algorithms.iim":[[33,1,1,"","iim"]],"imputegap.algorithms.mean_impute":[[36,1,1,"","mean_impute"]],"imputegap.algorithms.min_impute":[[37,1,1,"","min_impute"]],"imputegap.algorithms.mrnn":[[38,1,1,"","mrnn"]],"imputegap.algorithms.stmvl":[[40,1,1,"","native_stmvl"],[40,1,1,"","stmvl"]],"imputegap.algorithms.zero_impute":[[44,1,1,"","zero_impute"]],"imputegap.recovery":[[29,0,0,"module-0","benchmark"],[31,0,0,"module-0","evaluation"],[32,0,0,"-","explainer"],[34,0,0,"-","imputation"],[35,0,0,"-","manager"],[39,0,0,"-","optimization"]],"imputegap.recovery.benchmark":[[29,2,1,"id0","Benchmark"]],"imputegap.recovery.benchmark.Benchmark":[[29,3,1,"id17","average_runs_by_names"],[29,3,1,"id20","avg_results"],[29,3,1,"id23","eval"],[29,3,1,"id27","generate_heatmap"],[29,3,1,"id30","generate_plots"],[29,3,1,"id34","generate_reports_excel"],[29,3,1,"id37","generate_reports_txt"]],"imputegap.recovery.evaluation":[[31,2,1,"id0","Evaluation"]],"imputegap.recovery.evaluation.Evaluation":[[31,3,1,"id6","compute_all_metrics"],[31,3,1,"id8","compute_correlation"],[31,3,1,"id10","compute_mae"],[31,3,1,"id12","compute_mi"],[31,3,1,"id14","compute_rmse"]],"imputegap.recovery.explainer":[[32,2,1,"","Explainer"]],"imputegap.recovery.explainer.Explainer":[[32,3,1,"","convert_results"],[32,3,1,"","execute_shap_model"],[32,3,1,"","extractor_pycatch"],[32,3,1,"","extractor_tsfel"],[32,3,1,"","extractor_tsfresh"],[32,3,1,"","load_configuration"],[32,3,1,"","print"],[32,3,1,"","shap_explainer"]],"imputegap.recovery.imputation":[[34,2,1,"","BaseImputer"],[34,2,1,"","Imputation"]],"imputegap.recovery.imputation.BaseImputer":[[34,3,1,"","__init__"],[34,4,1,"","algorithm"],[34,3,1,"","impute"],[34,4,1,"","logs"],[34,3,1,"","score"]],"imputegap.recovery.imputation.Imputation":[[34,2,1,"","DeepLearning"],[34,2,1,"","MachineLearning"],[34,2,1,"","MatrixCompletion"],[34,2,1,"","PatternSearch"],[34,2,1,"","Statistics"],[34,3,1,"","evaluate_params"]],"imputegap.recovery.imputation.Imputation.DeepLearning":[[34,2,1,"","BRITS"],[34,2,1,"","BayOTIDE"],[34,2,1,"","BitGraph"],[34,2,1,"","DeepMVI"],[34,2,1,"","GAIN"],[34,2,1,"","GRIN"],[34,2,1,"","HKMF_T"],[34,2,1,"","MPIN"],[34,2,1,"","MRNN"],[34,2,1,"","MissNet"],[34,2,1,"","PRISTI"]],"imputegap.recovery.imputation.Imputation.DeepLearning.BRITS":[[34,3,1,"","__init__"],[34,4,1,"","algorithm"],[34,3,1,"","impute"],[34,4,1,"","logs"],[34,3,1,"","score"]],"imputegap.recovery.imputation.Imputation.DeepLearning.BayOTIDE":[[34,3,1,"","__init__"],[34,4,1,"","algorithm"],[34,3,1,"","impute"],[34,4,1,"","logs"],[34,3,1,"","score"]],"imputegap.recovery.imputation.Imputation.DeepLearning.BitGraph":[[34,3,1,"","__init__"],[34,4,1,"","algorithm"],[34,3,1,"","impute"],[34,4,1,"","logs"],[34,3,1,"","score"]],"imputegap.recovery.imputation.Imputation.DeepLearning.DeepMVI":[[34,3,1,"","__init__"],[34,4,1,"","algorithm"],[34,3,1,"","impute"],[34,4,1,"","logs"],[34,3,1,"","score"]],"imputegap.recovery.imputation.Imputation.DeepLearning.GAIN":[[34,3,1,"","__init__"],[34,4,1,"","algorithm"],[34,3,1,"","impute"],[34,4,1,"","logs"],[34,3,1,"","score"]],"imputegap.recovery.imputation.Imputation.DeepLearning.GRIN":[[34,3,1,"","__init__"],[34,4,1,"","algorithm"],[34,3,1,"","impute"],[34,4,1,"","logs"],[34,3,1,"","score"]],"imputegap.recovery.imputation.Imputation.DeepLearning.HKMF_T":[[34,3,1,"","__init__"],[34,4,1,"","algorithm"],[34,3,1,"","impute"],[34,4,1,"","logs"],[34,3,1,"","score"]],"imputegap.recovery.imputation.Imputation.DeepLearning.MPIN":[[34,3,1,"","__init__"],[34,4,1,"","algorithm"],[34,3,1,"","impute"],[34,4,1,"","logs"],[34,3,1,"","score"]],"imputegap.recovery.imputation.Imputation.DeepLearning.MRNN":[[34,3,1,"","__init__"],[34,4,1,"","algorithm"],[34,3,1,"","impute"],[34,4,1,"","logs"],[34,3,1,"","score"]],"imputegap.recovery.imputation.Imputation.DeepLearning.MissNet":[[34,3,1,"","__init__"],[34,4,1,"","algorithm"],[34,3,1,"","impute"],[34,4,1,"","logs"],[34,3,1,"","score"]],"imputegap.recovery.imputation.Imputation.DeepLearning.PRISTI":[[34,3,1,"","__init__"],[34,4,1,"","algorithm"],[34,3,1,"","impute"],[34,4,1,"","logs"],[34,3,1,"","score"]],"imputegap.recovery.imputation.Imputation.MachineLearning":[[34,2,1,"","IIM"],[34,2,1,"","MICE"],[34,2,1,"","MissForest"],[34,2,1,"","XGBOOST"]],"imputegap.recovery.imputation.Imputation.MachineLearning.IIM":[[34,3,1,"","__init__"],[34,4,1,"","algorithm"],[34,3,1,"","impute"],[34,4,1,"","logs"],[34,3,1,"","score"]],"imputegap.recovery.imputation.Imputation.MachineLearning.MICE":[[34,3,1,"","__init__"],[34,4,1,"","algorithm"],[34,3,1,"","impute"],[34,4,1,"","logs"],[34,3,1,"","score"]],"imputegap.recovery.imputation.Imputation.MachineLearning.MissForest":[[34,3,1,"","__init__"],[34,4,1,"","algorithm"],[34,3,1,"","impute"],[34,4,1,"","logs"],[34,3,1,"","score"]],"imputegap.recovery.imputation.Imputation.MachineLearning.XGBOOST":[[34,3,1,"","__init__"],[34,4,1,"","algorithm"],[34,3,1,"","impute"],[34,4,1,"","logs"],[34,3,1,"","score"]],"imputegap.recovery.imputation.Imputation.MatrixCompletion":[[34,2,1,"","CDRec"],[34,2,1,"","GROUSE"],[34,2,1,"","IterativeSVD"],[34,2,1,"","ROSL"],[34,2,1,"","SPIRIT"],[34,2,1,"","SVT"],[34,2,1,"","SoftImpute"],[34,2,1,"","TRMF"]],"imputegap.recovery.imputation.Imputation.MatrixCompletion.CDRec":[[34,3,1,"","__init__"],[34,4,1,"","algorithm"],[34,3,1,"","impute"],[34,4,1,"","logs"],[34,3,1,"","score"]],"imputegap.recovery.imputation.Imputation.MatrixCompletion.GROUSE":[[34,3,1,"","__init__"],[34,4,1,"","algorithm"],[34,3,1,"","impute"],[34,4,1,"","logs"],[34,3,1,"","score"]],"imputegap.recovery.imputation.Imputation.MatrixCompletion.IterativeSVD":[[34,3,1,"","__init__"],[34,4,1,"","algorithm"],[34,3,1,"","impute"],[34,4,1,"","logs"],[34,3,1,"","score"]],"imputegap.recovery.imputation.Imputation.MatrixCompletion.ROSL":[[34,3,1,"","__init__"],[34,4,1,"","algorithm"],[34,3,1,"","impute"],[34,4,1,"","logs"],[34,3,1,"","score"]],"imputegap.recovery.imputation.Imputation.MatrixCompletion.SPIRIT":[[34,3,1,"","__init__"],[34,4,1,"","algorithm"],[34,3,1,"","impute"],[34,4,1,"","logs"],[34,3,1,"","score"]],"imputegap.recovery.imputation.Imputation.MatrixCompletion.SVT":[[34,3,1,"","__init__"],[34,4,1,"","algorithm"],[34,3,1,"","impute"],[34,4,1,"","logs"],[34,3,1,"","score"]],"imputegap.recovery.imputation.Imputation.MatrixCompletion.SoftImpute":[[34,3,1,"","__init__"],[34,4,1,"","algorithm"],[34,3,1,"","impute"],[34,4,1,"","logs"],[34,3,1,"","score"]],"imputegap.recovery.imputation.Imputation.MatrixCompletion.TRMF":[[34,3,1,"","__init__"],[34,4,1,"","algorithm"],[34,3,1,"","impute"],[34,4,1,"","logs"],[34,3,1,"","score"]],"imputegap.recovery.imputation.Imputation.PatternSearch":[[34,2,1,"","DynaMMo"],[34,2,1,"","STMVL"],[34,2,1,"","TKCM"]],"imputegap.recovery.imputation.Imputation.PatternSearch.DynaMMo":[[34,3,1,"","__init__"],[34,4,1,"","algorithm"],[34,3,1,"","impute"],[34,4,1,"","logs"],[34,3,1,"","score"]],"imputegap.recovery.imputation.Imputation.PatternSearch.STMVL":[[34,3,1,"","__init__"],[34,4,1,"","algorithm"],[34,3,1,"","impute"],[34,4,1,"","logs"],[34,3,1,"","score"]],"imputegap.recovery.imputation.Imputation.PatternSearch.TKCM":[[34,3,1,"","__init__"],[34,4,1,"","algorithm"],[34,3,1,"","impute"],[34,4,1,"","logs"],[34,3,1,"","score"]],"imputegap.recovery.imputation.Imputation.Statistics":[[34,2,1,"","Interpolation"],[34,2,1,"","KNNImpute"],[34,2,1,"","MeanImpute"],[34,2,1,"","MeanImputeBySeries"],[34,2,1,"","MinImpute"],[34,2,1,"","ZeroImpute"]],"imputegap.recovery.imputation.Imputation.Statistics.Interpolation":[[34,3,1,"","__init__"],[34,4,1,"","algorithm"],[34,3,1,"","impute"],[34,4,1,"","logs"],[34,3,1,"","score"]],"imputegap.recovery.imputation.Imputation.Statistics.KNNImpute":[[34,3,1,"","__init__"],[34,4,1,"","algorithm"],[34,3,1,"","impute"],[34,4,1,"","logs"],[34,3,1,"","score"]],"imputegap.recovery.imputation.Imputation.Statistics.MeanImpute":[[34,3,1,"","__init__"],[34,4,1,"","algorithm"],[34,3,1,"","impute"],[34,4,1,"","logs"],[34,3,1,"","score"]],"imputegap.recovery.imputation.Imputation.Statistics.MeanImputeBySeries":[[34,3,1,"","__init__"],[34,4,1,"","algorithm"],[34,3,1,"","impute"],[34,4,1,"","logs"],[34,3,1,"","score"]],"imputegap.recovery.imputation.Imputation.Statistics.MinImpute":[[34,3,1,"","__init__"],[34,4,1,"","algorithm"],[34,3,1,"","impute"],[34,4,1,"","logs"],[34,3,1,"","score"]],"imputegap.recovery.imputation.Imputation.Statistics.ZeroImpute":[[34,3,1,"","__init__"],[34,4,1,"","algorithm"],[34,3,1,"","impute"],[34,4,1,"","logs"],[34,3,1,"","score"]],"imputegap.recovery.manager":[[35,2,1,"","TimeSeries"],[35,1,1,"","select_backend"]],"imputegap.recovery.manager.TimeSeries":[[35,2,1,"","Contamination"],[35,3,1,"","import_matrix"],[35,3,1,"","load_series"],[35,3,1,"","normalize"],[35,3,1,"","plot"],[35,3,1,"","print"],[35,3,1,"","print_results"]],"imputegap.recovery.manager.TimeSeries.Contamination":[[35,3,1,"","aligned"],[35,3,1,"","blackout"],[35,3,1,"","disjoint"],[35,3,1,"","distribution"],[35,3,1,"","gaussian"],[35,3,1,"","mcar"],[35,3,1,"","missing_completely_at_random"],[35,3,1,"","missing_percentage"],[35,3,1,"","mp"],[35,3,1,"","overlap"],[35,3,1,"","scattered"]],"imputegap.recovery.optimization":[[39,2,1,"","BaseOptimizer"],[39,2,1,"","Optimization"]],"imputegap.recovery.optimization.BaseOptimizer":[[39,3,1,"","optimize"]],"imputegap.recovery.optimization.Optimization":[[39,2,1,"","Bayesian"],[39,2,1,"","Greedy"],[39,2,1,"","ParticleSwarm"],[39,2,1,"","RayTune"],[39,2,1,"","SuccessiveHalving"]],"imputegap.recovery.optimization.Optimization.Bayesian":[[39,3,1,"","optimize"]],"imputegap.recovery.optimization.Optimization.Greedy":[[39,3,1,"","optimize"]],"imputegap.recovery.optimization.Optimization.ParticleSwarm":[[39,3,1,"","optimize"]],"imputegap.recovery.optimization.Optimization.RayTune":[[39,3,1,"","optimize"]],"imputegap.recovery.optimization.Optimization.SuccessiveHalving":[[39,3,1,"","optimize"]],"imputegap.tools":[[27,0,0,"-","algorithm_parameters"],[42,0,0,"-","utils"]],"imputegap.tools.utils":[[42,1,1,"","config_contamination"],[42,1,1,"","config_forecaster"],[42,1,1,"","config_impute_algorithm"],[42,1,1,"","display_title"],[42,1,1,"","list_of_algorithms"],[42,1,1,"","list_of_datasets"],[42,1,1,"","list_of_downstreams"],[42,1,1,"","list_of_downstreams_darts"],[42,1,1,"","list_of_downstreams_sktime"],[42,1,1,"","list_of_optimizers"],[42,1,1,"","list_of_patterns"],[42,1,1,"","load_parameters"],[42,1,1,"","load_share_lib"],[42,1,1,"","save_optimization"],[42,1,1,"","search_path"],[42,1,1,"","verification_limitation"]]},"objnames":{"0":["py","module","Python module"],"1":["py","function","Python function"],"2":["py","class","Python class"],"3":["py","method","Python method"],"4":["py","attribute","Python attribute"]},"objtypes":{"0":"py:module","1":"py:function","2":"py:class","3":"py:method","4":"py:attribute"},"terms":{"":[19,24,33,34,42,47,49],"0":[20,23,29,30,32,34,35,38,40,42,44,47,48,49,50],"000001":30,"00023":[33,34],"00040669209664367576":29,"000461578369140625":29,"00048422813415527344":29,"0005095005035400391":29,"0005536079406738281":29,"0005743503570556641":29,"0005755424499511719":29,"0009615421295166016":29,"001":[34,38],"0010058879852294922":29,"0010309219360351562":29,"001056671142578125":29,"0014975078469404196":29,"00150":34,"0019745826721191406":29,"0020699501037597656":29,"0022056102752685547":29,"002231597900390625":29,"00298":[19,34],"003415822982788086":29,"0035880775657246428":29,"00482487678527832":29,"006171770470542263":29,"007096290588378906":29,"0072672367095947266":29,"007429599761962891":29,"007513931343350665":29,"00801849365234375":29,"01":[34,42],"010712060535523":29,"01121013333181846":29,"0112488396023014":29,"011590260996247858":29,"0125309431502871":29,"013509125598802707":29,"01421":[30,34],"0143105930114702":29,"01600":34,"0160968166750064":29,"01713728904724121":29,"0183962968474991":29,"019":[30,34],"020630168509677818":29,"021165172206064526":29,"02915935932568557":29,"02920":34,"0317754516097355":29,"03436":19,"037161060882302754":29,"0379347892718205":29,"04155403791391449":29,"042899370193481445":29,"043192148208618164":29,"04321551322937012":29,"04391813278198242":29,"0441472017887297":29,"04829454421997":29,"05":[20,29,35,42],"0552448338389784":29,"06361822797740405":29,"064299483512458":29,"06616526470761779":29,"07010293006897":29,"07344":[19,34],"0807965786089415":29,"08459032692102293":29,"09218788146972656":29,"09549617767333984":29,"09925566629402761":29,"1":[19,20,29,30,31,32,34,35,37,39,40,42,44,47,48,49,50],"10":[19,25,30,32,33,34,35,38,39,42,49],"100":[30,32,34,35,39,42,47,48,49],"1000":[34,38],"1007":[30,34],"10781252370591506":29,"10793352127075":29,"10881781578063965":29,"10908095436833125":29,"1093":34,"11":[19,34],"1109":[33,34,38],"112":[19,34],"11218049973594252":29,"1129295825958252":29,"1145":34,"1167751522591498":29,"118":[19,34],"11876685901414151":29,"11924522547609226":29,"12":[19,25],"12567590499764303":29,"13":[19,20,25],"13422239939628303":29,"13619797235197734":29,"1380846624733049":29,"13894771223733138":29,"14":19,"1460":[19,34],"1468":[19,34],"14709529129218185":29,"1477":[19,34,38],"1490":[19,34,38],"14906":34,"15":[19,32,34,35],"1516089897042538":29,"151907444000244":29,"15250":45,"15th":34,"16":[34,35],"160":[33,34],"16953644212278182":29,"17":[19,34],"17044353485107422":29,"171":[33,34],"17184901237487793":29,"1728806495666504":29,"17329692840576172":29,"1806":34,"18152059329152104":29,"186191167936035":29,"1927":[19,34],"1939":[19,34],"1956":[19,34],"1960":34,"1974":29,"1982":[19,34],"19th":34,"2":[19,20,29,33,34,35,36,37,39,40,44,47,49,50],"20":[19,34,49],"200":34,"2001":[19,34],"2004":19,"2005":[19,34],"2009":[19,34],"2010":[19,34],"2011":[19,34],"2012":[19,34],"2014":[19,34],"2016":[19,34],"2017":[19,34],"2018":[19,34,38],"2019":[19,33,34,38],"2020":[19,20,30,34],"2021":[19,34],"2022":19,"2023":[19,34],"2024":[19,34],"2025":45,"20th":34,"21":34,"2103":34,"2108":[19,34],"22":[19,34],"22056702659999994":29,"2257":[19,30,34],"2280":[19,30,34],"2287":[19,34],"2296":[19,34],"22nd":34,"23":[19,34],"2306":[19,34],"2308":34,"2311":[19,34],"2322":[19,34],"23303624184873978":29,"2366529609250008":29,"2380077838897705":29,"24":[19,34],"24340565131372927":29,"25":[19,34],"250":39,"2503":45,"2533":19,"2545":19,"255":29,"256":49,"26":19,"2696133927362288":29,"27":19,"2704":19,"2710":19,"2730547993858495":29,"2739817718416822":29,"2753022759369617":29,"28":[19,34],"2874712":[34,38],"29":[19,34],"2939506418814281":29,"2939672":34,"2939785":34,"2971190":34,"2d":[29,32,45],"3":[19,25,34,35,36,49],"30":[19,34],"302":34,"306":34,"30th":34,"31":[19,34],"31524085998535":29,"31st":34,"32":[19,34],"32988968428439397":29,"33":[19,20,29,34],"330":[19,34],"341":[19,34],"34494332493982044":29,"346560495723809":29,"35":29,"3582":[19,34],"3593":[19,34],"35th":[33,34],"3637528":34,"3671760":34,"37254427425455994":29,"38695094864012947":29,"3874":[19,34],"3881":[19,34],"39007056542870916":29,"3968159514130716":29,"39th":34,"4":[19,20,29,32,34,35,36,37,42,44,49,50],"40":29,"4155649406397416":29,"42":[34,49],"42237901687622":29,"42568325996399":29,"4355197572001326":29,"439927101135254":29,"4445625930776235":29,"45":[19,34],"479795694351196":29,"49":29,"4924048353228427":29,"5":[19,20,32,34,36,38],"50":[29,32,34,35,39],"507":[19,34],"516":[19,34],"52":29,"520":[19,34],"525":[19,34],"53373336791992":29,"54":29,"543020248413086":29,"5434405584289141":29,"5650541301828254":29,"5675":19,"5684":19,"5862696375344495":29,"5999574661254883":29,"6":[19,20,29,32,34,36,37,44],"6027573766269363":29,"6064670085906982":29,"6077785491943359":29,"6101157665253":29,"6166613101959229":29,"62":[19,30,34],"64":[34,38,49],"66":[19,34,38],"66455388069153":29,"67":34,"6776":19,"6786":19,"6805167198181152":29,"697":[19,34],"7":[19,30,34,35,38,40],"7019459696903068":29,"708":[19,34],"7219362152785619":29,"7312998041323675":29,"7326965517264863":29,"7328867182584357":29,"734e6bfcd358e25ac1db0a4241b95651":34,"7380530834197998":29,"7425412593844177":29,"7426695186604741":29,"7470128536224":29,"7544523683503829":29,"757440007226372":29,"7599852461729673":29,"7610548321723654":29,"761136543268339":29,"7641520748788702":29,"7646823531588104":29,"7672558930795506":29,"768":20,"7774057495176013":29,"782":20,"7826457023620605":29,"783":32,"785":[19,34],"794":[19,34],"7952869439926":29,"8":[19,20,23,29,34,35],"802757cace6d":34,"8134840739732964":29,"814120507570725":29,"8178796825899766":29,"8280959876205578":29,"8390532279447225":29,"840":29,"847":19,"85":[34,40],"8519431955571422":29,"85422afb467e9456013a2a51d4dff702":34,"855":19,"8785057067871094":29,"88247036933899":29,"8944975075266335":29,"9":[19,34,35,48,49],"9004526656857551":29,"9166777087122915":29,"9180937736429735":29,"919934494058292":29,"9234927128429051":29,"9249744935121553":29,"9293322959355041":29,"9378046989440918":29,"9458508648057621":29,"94813060760498":29,"95":34,"9531900627237018":29,"9562773704528809":29,"968435455112644":29,"9699990038879407":29,"9711348247027318":29,"9829398352220718":29,"9901338133811375":29,"9914069853975623":29,"A":[19,29,31,32,33,34,35,39,42,45],"As":49,"BE":19,"BY":34,"By":32,"FOR":34,"If":[25,29,32,34,35,36,37,42,45,47],"In":[34,45,49],"It":[24,35,36,37,45],"One":[34,47],"That":34,"The":[20,22,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,47,49,50],"To":[19,22,23,25,47,49,50],"WITH":34,"With":[19,34],"_":19,"__init__":[26,34,35],"__py_alpha":40,"__py_epsilon":30,"__py_gamma":40,"__py_iter":30,"__py_matrix":[30,40],"__py_rank":30,"__py_window":40,"_check_param":34,"_object":39,"_optim":34,"a0":34,"ab":[19,34,45],"about":34,"absolut":31,"abstract":[34,39],"academi":[34,40],"accept":42,"access":[45,48],"accur":42,"accuraci":34,"acm":34,"acq_func":[34,39],"acquisit":[34,39],"across":[24,29],"action":33,"activ":34,"ad":[34,47],"adapt":[33,34],"add":[23,34],"addit":[23,24,34,39],"adjust":[42,48],"advanc":[34,40],"adversari":[19,34],"affect":47,"after":[30,34,39,40,47],"against":34,"aggreg":[32,33,34],"ahuja":[19,34],"airq":22,"aistat":[19,34],"alberto":20,"alcohol":[20,22,24,29,35,48,49],"algo":[29,32],"algo_cod":[33,34],"algorithm":[20,23,24,26,27,28,29,31,32,34,35,39,41,42,43,45,46,49],"align":[23,35,47],"alippi":[19,34],"all":[19,22,23,29,32,34,35,36,37,40,44,47,50],"allow":[30,35],"alon":34,"alpha":[34,40],"alreadi":35,"also":35,"altern":25,"altman":[19,34],"amount":31,"an":[20,23,25,29,34,42,47,49],"anaheim":34,"analysi":[32,33,34,35,45],"analyt":42,"analyz":45,"andrea":19,"ani":[25,35,50],"anton":19,"aoqian":19,"api":[45,48],"append":50,"appli":[29,32,34,35],"applic":35,"approach":38,"appropri":49,"approxim":34,"ar":[19,32,34,35,38,45,47,49],"arang":50,"arbitrari":47,"archiveprefix":45,"arg":34,"argument":34,"arrai":[29,32,34,35,36,37,44],"art":45,"articl":[34,45],"artifici":34,"arxiv":[34,45],"assess":45,"assign":34,"associ":[34,35],"assumpt":32,"attribut":[19,34],"august":34,"aut":42,"author":[40,42,44,45],"auto":34,"autocorrel":32,"autom":45,"automl":[19,34],"autoregress":34,"avail":[19,22,23,32,34,47,49],"averag":[29,31],"average_runs_by_nam":29,"avg_result":29,"avoid":34,"b":[19,34,42],"b0":34,"back":47,"bafu":[22,35],"balanc":34,"balzano":[19,34],"bansal":[19,34],"base":[29,30,31,32,34,35,38,39,42,48],"baseimput":[26,34,42],"baseoptim":[26,39],"basic":32,"batch":34,"batch_siz":34,"bay_otid":34,"bay_otide_imput":34,"bayesian":[19,26,29,34,39],"bayotid":[19,34],"bed":20,"been":[29,36,37,44],"befor":34,"begin":[32,35,47],"behavior":[24,33,45],"being":[31,35],"belong":32,"below":23,"benchmark":45,"best":39,"beta":34,"better":40,"between":[31,34,42,47],"bia":34,"bias":[19,34],"bidirect":[19,34],"big":34,"bioinform":19,"bioinformat":[19,34],"biom":19,"biomed":[34,38],"bit_graph":34,"bit_graph_imput":34,"bitgraph":[19,34],"blackout":[19,34,35,42],"block":[19,30,32,34,35,42],"block_siz":[32,35,42,49],"block_size_mcar":42,"bo":19,"bool":[29,30,32,33,34,35,38,42],"boost":[19,34],"botstein":[19,34],"bound":42,"bowen":19,"brit":[19,34],"brits_i_univ":34,"brits_imput":34,"brown":[19,34],"btr597":34,"buck":34,"built":45,"buuren":34,"b\u00f6hlen":[19,30,34],"b\u00fchlmann":[19,34],"c":[30,34,40,45],"c1":[34,39],"c2":[34,39],"ca":34,"cadiz":34,"cai":[19,34],"calcul":[29,32],"call":[23,34,39,49],"cambronero":34,"can":[19,20,22,23,25,32,34,35,44,47,48,49],"cand\u00e8":[19,34],"cantor":[19,34],"cao":[19,34],"capac":34,"captur":34,"carlo":[19,34],"catch24":32,"categor":29,"categori":32,"cater":45,"cc":34,"cd":25,"cdll":42,"cdrec":[19,23,24,26,29,32,34,39,40,42,44,46,49],"cdrec_imput":34,"centroid":[30,34],"cesar":19,"ch":21,"chain":[19,34],"charact":35,"characterist":45,"check":[34,42,45],"chen":[19,34],"chen1":34,"chenxiaodanhit":34,"china":[33,34],"chines":[34,40],"chlorin":[22,42],"choic":20,"chosen":[20,47,49],"christian":19,"christo":19,"cini":[19,34],"class":[8,9,10,11,12,13,14,29,31,32,34,35,39],"classifi":33,"climat":22,"clone":25,"close":34,"cluster":[19,34],"code":[33,34,48,49,50],"coeffici":[31,34,39],"coevolv":[19,34],"columbu":34,"column":[29,30,34,45],"com":[25,34],"come":49,"command":[19,22,23,25,47],"common":[20,34,39],"commonli":45,"compar":[20,23,31,34],"compat":[25,45],"complet":[19,29,34,35,47,49],"complex":[34,44],"compon":[34,40,49],"compos":49,"comprehens":[29,45],"comput":[23,31,32,33,34,35,49,50],"compute_all_metr":[26,31],"compute_correl":[26,31],"compute_ma":[26,31],"compute_mi":[26,31],"compute_rms":[26,31],"condit":[19,34],"confer":[33,34],"config":[32,34],"config_contamin":[26,42],"config_forecast":[26,42],"config_impute_algorithm":[26,42],"configur":[24,29,32,34,39,42,45,49],"consid":34,"constant":34,"contain":[22,29,30,31,32,33,34,35,36,37,38,39,40,42,44,49],"contamin":[23,26,29,30,31,32,33,34,35,36,37,38,39,40,42,45,50],"content":46,"contextu":34,"continu":[19,34,47],"contribut":34,"control":[20,34],"converg":[19,34],"convert":[32,42],"convert_result":[26,32],"convolut":[19,34],"core":45,"corr":[19,34],"correct":42,"correl":[19,29,30,31,34,38],"correspond":[34,39],"corrupt":[19,34],"coupl":34,"cover":50,"cpu":[34,39],"creat":[25,29,47],"criteria":[34,45],"criterion":30,"cross":[19,30,32,34],"ctype":42,"cuda":34,"cudr\u00e9":[19,20,30,34],"current":[23,32,44],"custom":[20,30,32,42,45],"cvpr":[19,34],"d":[34,35,50],"d_hidden":34,"daniel":[19,34],"dart":42,"data":[19,23,24,29,30,31,32,33,34,35,36,37,38,40,42,44,47,48,49,50],"data_nam":34,"databas":34,"dataset":[20,29,31,32,34,35,36,37,39,42,44,45,47,48,49],"dataset_r":42,"david":[19,34],"decai":34,"decim":42,"decomposit":[19,30,34],"dedic":23,"deep":[19,34,49],"deep_mvi":34,"deep_mvi_imput":34,"deeplearn":[26,34],"deepmvi":[19,34],"default":[20,29,30,32,33,34,35,36,37,38,39,42,44,47,49],"default_param":[20,29],"defin":[23,34,49],"dejiao":19,"depend":[29,33,34],"der":[19,34,38],"descent":[19,34],"describ":49,"descript":32,"deshpand":[19,34],"desir":32,"detail":[29,32,34,45],"determin":[19,32,33,34],"develop":[19,47],"deviat":[32,34,35,48],"devic":34,"dhillon":[19,34],"diagnost":[34,38],"dict":[29,31,32,34,35,36,37,39,42,44],"dictionari":[23,29,31,32,34,35,42,49],"differ":[24,30,33,35,39,43,49],"diffus":[19,34],"dign\u00f6":[19,34],"dimens":[32,34,38,49],"dimension":[19,34],"direct":[19,34,38],"directori":[29,32],"discoveri":[19,34],"disjoint":[35,42,47],"displai":[29,32,35,42,49],"display_titl":[26,42],"distanc":34,"distribut":[34,35,47,48],"divers":45,"divid":[42,48],"dl":34,"dna":[19,34],"do_catch24":32,"document":[26,34,46,48],"doi":[30,33,34,38],"domain":32,"dong":19,"downstream":[34,42,45],"downstream_config":23,"downstream_metr":23,"downstream_model":23,"dr":21,"drift":[22,29],"dropout":34,"du":[19,34],"dure":[34,39,49],"dynam":[32,34],"dynammo":[19,34],"dynammo_imput":34,"e":[25,29,32,34,35,39,42],"each":[24,29,32,34,35,39,45,47,49],"earli":34,"earlier":34,"easili":45,"economi":[22,23],"edbt":[19,34],"eeg":[20,22,24,29,35,48,49],"effect":20,"effici":[19,20,34,35,45],"ei":34,"eigencompon":34,"eight":49,"either":49,"electr":22,"electrod":49,"electron":34,"embed":34,"emmanuel":19,"empti":[42,45],"en":35,"enabl":[34,48],"encourag":34,"end":[35,47],"endow":[19,20],"enforc":34,"eng":19,"engin":[33,34,38],"ensur":[45,48],"entir":[32,34],"entropi":32,"environ":25,"epoch":[34,49],"eprint":45,"epsilon":[30,34],"equal":34,"equat":[19,34],"error":[31,34],"estim":[19,33,34,38],"eta":34,"etc":39,"eval":[20,29],"evalu":[20,26,27,28,34,39,41,42,45,46],"evaluate_param":[26,34],"everi":47,"exampl":[23,32,49,50],"exascaleinfolab":25,"excel":29,"except":25,"execut":[29,30,33,34,35,38,40,42],"execute_shap_model":[26,32],"expand":23,"expect":32,"experiment":20,"explain":[26,35,42,45,46],"explan":[24,32,35],"explor":45,"expon":32,"express":35,"extend":[19,34],"extens":[44,45],"extern":34,"extract":32,"extractor":[24,32],"extractor_pycatch":[26,32],"extractor_tsfel":[26,32],"extractor_tsfresh":[26,32],"extrem":34,"f":[19,22,23,34,47],"face":25,"factor":[19,34,39],"faloutso":[19,34],"fals":[29,32,34,35,42,49],"famili":[19,49],"fang":[19,34],"fast":34,"faster":34,"fatih":19,"featur":[24,32,34,45],"feature_nam":32,"features_categori":32,"features_list":32,"feng":[19,34],"feser":34,"fft":32,"figur":29,"file":[29,30,32,34,35,42,48,49],"file_nam":[24,32,42],"file_path":32,"fill":[19,34,36,37,40],"filter":32,"final":34,"find":[36,37,39,42,45],"fine":[20,45,49],"first":47,"five":49,"fix":48,"flag":32,"flaot":32,"float":[29,30,31,32,34,35,38,39,40,42],"fmri":22,"follow":[20,25,44,45,47,48,49,50],"forcast":[23,34,42],"forecast":[19,22,23,34,42],"forest":34,"forget":34,"forgotten":34,"format":[32,34,35,42,49],"formatted_feature_nam":32,"foster":45,"four":32,"fractal":32,"framework":[19,34,43,45],"franc":34,"frequenc":32,"fribourg":42,"friendli":45,"from":[19,20,22,23,24,25,32,34,35,36,37,42,47,48,49,50],"fu":[19,34],"full":20,"function":[1,2,3,4,5,6,7,17,19,27,28,29,31,32,33,34,36,37,38,39,41,42,43],"futur":[23,44],"g":[19,29,32,34,35,39,42],"gain":[19,34],"gain_imput":34,"gamma":[34,40],"gamper":[19,34],"gap":20,"gaussian":[34,35,39,42,50],"gavin":[19,34],"gcn":34,"gener":[19,29,32,34],"generate_heatmap":29,"generate_plot":29,"generate_reports_excel":29,"generate_reports_txt":29,"genet":49,"geo":[19,34,40],"get":32,"git":25,"github":[25,34],"give":31,"given":[34,39,42,47],"global":[19,34,39],"gp_hedg":[34,39],"gpu":[34,39],"gradient":[19,34],"grain":45,"graph":[19,34],"grassmannian":[19,34],"greater":[30,34],"greedi":[26,34,39],"grin":[19,34],"grin_imput":34,"groothui":34,"ground":[31,34,39,49],"group":[32,34],"grous":[19,34],"grouse_imput":34,"guestrin":[19,34],"guid":[25,45],"h":[19,30,34],"ha":[29,35],"halv":[34,39],"han":19,"handl":[27,28,30,31,32,33,36,37,38,40,41,42,44],"hankel":[19,34],"hann":19,"hao":19,"hasti":[19,34],"have":[20,34,36,37,39,44],"hd":29,"header":[29,35],"heatmap":29,"help":[34,35],"here":[25,49],"hidden":[34,38],"hidden_dim":[34,38],"hidden_lay":34,"high":[19,30,34,42],"high_limit":42,"higher":[31,34],"hint":34,"hint_rat":34,"histor":34,"hkmf":[19,34],"hkmf_t":[19,34],"hkmf_t_imput":34,"how":[23,24,31,34,45,49],"hsiang":19,"html":[34,35],"http":[25,30,34,35,45],"hua":19,"huan":19,"huang":[19,34],"human":32,"hurst":32,"hw":[23,34],"hybrid":34,"hyperparamet":[34,39,45,49],"hz":49,"i":[23,25,29,30,32,33,34,35,36,37,38,39,40,42,44,45,47,49],"i_svd_imput":34,"ian":19,"icd":[19,33,34],"icde55515":34,"iclr":19,"icml":19,"identifi":24,"ieee":[19,33,34,38],"ignor":34,"iim":[19,26,29,32,34,40,44,46],"iim_imput":34,"ijcai":19,"illustr":[24,49,50],"imag":[34,38],"immedi":47,"impact":[23,24,45],"implement":[19,34,39,40,44,45,49],"import":[19,20,22,23,24,32,35,47,48,49,50],"import_matrix":[26,35],"improv":34,"imput":[19,20,23,24,26,27,28,29,30,31,32,33,35,36,37,38,39,40,41,42,44,45,46,48],"imputegap":[19,20,22,23,24,25,28,47,48,49],"imputegap_asset":[20,35,49],"imputer_def":49,"inch":35,"includ":[20,23,29,31,32,34,35,45,49],"incomp_data":[30,31,32,33,34,35,36,37,38,39,40,42,44,49],"incomplet":[19,34],"incre_mod":34,"increas":[34,39],"increment":34,"inderjit":19,"index":[34,35,45],"indic":[31,34],"individu":[19,33,34,49],"inertia":[34,39],"inf":[19,30,34],"infect":34,"infer":34,"influenc":24,"inform":[29,31,34,40,42],"inherit":34,"init":25,"initi":[23,24,34,35,39,44,48,49],"initial_strategi":34,"inner":35,"input":[30,32,33,34,35,36,37,38,40,44,49],"input_data":[24,31,32,34,35,39,49],"insid":35,"insight":24,"instal":[32,45],"instanc":42,"institut":[34,40,42],"int":[29,30,32,33,34,35,38,39,40,42,50],"integr":45,"intellig":34,"interact":43,"interfac":43,"intern":[33,34],"interpol":[19,34,38],"interpolation_imput":34,"interpret":34,"invers":34,"invok":[40,49],"io":35,"issu":[25,34],"itali":34,"iter":[30,33,34,38,39],"iterative_svd":34,"iterativeimput":34,"iterativesvd":[19,34],"ivan":19,"j":[19,33,34,40],"jacqu":45,"jame":19,"januari":34,"java":45,"jensen":[19,34],"jian":19,"jianmin":19,"jiaotong":[34,40],"jimeng":19,"jinsung":19,"jmlr":19,"johann":19,"jordon":[19,34],"journal":[19,34],"jss":34,"jstatsoft":34,"juli":34,"junbo":19,"june":34,"k":[33,34],"k_bia":34,"k_season":34,"k_trend":34,"kai":19,"karin":34,"kawabata":[19,34],"kdd":[19,34],"kei":[32,45],"kept":[34,39],"kernel":34,"kernel_set":34,"kevin":19,"keyword":[33,34,38],"khayati":[19,20,21,30,34,45],"knn":33,"knn_imput":34,"knnimput":[19,20,34],"knowl":[19,30,34],"knowledg":34,"kohei":[19,34],"koheiobata":34,"koki":[19,34],"kwarg":39,"l":34,"label":32,"lag":34,"lambda_f":34,"lambda_valu":34,"lambda_w":34,"lambda_x":34,"languag":45,"larg":[19,31,32,34],"larger":34,"last":35,"latent":34,"later":42,"latest":[25,35],"launch":[20,32],"laura":19,"layer":34,"lcb":34,"learn":[19,30,33,34,38,39,45,49],"learning_neighbor":34,"learning_neighbour":34,"learning_r":[34,38],"lei":19,"leilei":19,"len":50,"length":[34,35,38,47],"lerner":20,"less":[30,34],"let":[24,49],"level":29,"leverag":40,"lg":45,"li":[19,34,40],"liang":19,"lib":42,"lib_cdrec":42,"lib_path":30,"librari":[22,25,29,30,32,42,45,49],"like":[29,34,35,40,44],"limit":[32,34,35,42,47],"linear":[31,34],"link":48,"list":[19,20,22,23,29,32,34,35,39,42,47,49],"list_of_algorithm":[26,42],"list_of_dataset":[26,42],"list_of_downstream":[26,42],"list_of_downstreams_dart":[26,42],"list_of_downstreams_sktim":[26,42],"list_of_optim":[26,42],"list_of_pattern":[26,42],"list_result":20,"liu":[19,34],"lmzzml":34,"load":[23,24,32,34,35,42,48],"load_configur":[26,32],"load_paramet":[26,42],"load_seri":[23,24,26,35,48,49],"load_share_lib":[26,42],"loc":50,"local":[32,35,42],"log":[26,30,32,33,34,35,38,40],"logic":34,"long":34,"loss":34,"low":[19,30,34,42],"low_limit":42,"lower":[34,42],"lr":34,"lu":[19,34],"luo":[19,34],"m":[30,32,34,38,47,49],"macao":[33,34],"mach":19,"machin":[19,34,38,49],"machinelearn":[26,34],"machineri":34,"mae":[20,29,31],"magnitud":31,"mai":[33,34,38],"main":[34,39,45],"make":[31,34],"manag":[19,22,23,24,26,32,46,47,48,49],"mani":34,"manipul":35,"map":32,"march":34,"marisca":[19,34],"market":34,"markl":[19,34],"master":42,"match":35,"matlab":45,"matric":[19,34],"matrix":[19,29,30,33,34,35,36,37,38,40,44,45,49,50],"matrixcomplet":[23,26,34,49],"matsubara":[19,34],"mauroux":[19,20,30,34],"max":[34,48],"max_concurrent_tri":[34,39],"max_epoch":34,"max_featur":34,"max_it":34,"max_iter":34,"max_rank":34,"max_seri":35,"max_valu":35,"maximum":[30,34,35,48],"mazumd":[19,34],"mcar":[20,24,29,32,35,42,47,49],"mccann":[19,34],"mean":[29,31,32,34,36,42,48,50],"mean_featur":32,"mean_imput":[26,34,46],"meanimput":[19,34],"meanimputebyseri":[19,34],"measur":[31,34,38,49],"median":34,"medic":[34,38],"medium":34,"memori":[34,39],"messag":[19,34],"metadata":34,"meteo":22,"meteorologi":34,"method":[19,24,33,44,45,49],"metric":[20,29,31,34,35,39,40,49],"mf_imput":34,"mi":[20,29,31],"mice":[19,34],"mice_imput":34,"michael":[19,34],"microarrai":[19,34],"microsoft":[34,40],"mihaela":19,"min":48,"min_imput":[26,34,46],"min_max":[23,35],"mind":20,"mine":[19,34],"mingzh":19,"mini":34,"minim":34,"minimput":[19,34],"minimum":[34,36,37,48],"miss":[19,20,29,30,32,33,34,35,36,37,38,40,42,44,45,47,49],"miss_forest":34,"miss_net":34,"miss_net_imput":34,"missforest":[19,34],"missing":[20,24,45,47,49],"missing_completely_at_random":35,"missing_percentag":35,"missing_percentage_at_random":35,"missing_r":[32,35],"missnet":[19,34],"mitter":[19,34],"mix":[19,34],"ml":34,"mode":34,"model":[19,23,24,32,33,34,38,42],"modul":[19,20,22,23,45,46,47],"modular":45,"more":[31,32,34,39,40,44],"most":[24,35],"most_frequ":34,"motion":22,"mourad":[19,20,21,45],"mp":[35,42],"mpin":[19,34],"mpin_imput":34,"mrnn":[19,26,29,32,34,40,44,46],"mrnn_imput":34,"multi":[19,34,38],"multidimension":[19,34],"multipl":[19,29,34,40,44,47],"multivari":[19,34,38],"must":[30,32,34,39],"mutual":31,"mvl":[19,34,40],"mxgboost_imput":34,"n":[19,32,34,47,50],"n_call":[34,39],"n_cl":34,"n_estim":34,"n_particl":[34,39],"n_process":[34,39],"n_random_start":[34,39],"n_season":34,"name":[23,24,29,32,34,35,42],"nan":[30,31,33,35,36,37,38,40,44,45],"nanci":19,"narendra":19,"nater":[21,40,42,44,45],"nater2025imputegap":45,"nativ":[30,40],"native_cdrec":[26,30],"native_stmvl":[26,40],"nbr_featur":34,"nbr_run":20,"nbr_seri":[35,48,49],"nbr_val":[35,48,49],"ndarrai":[29,30,32,33,34,35,36,37,38,39,40,44,45],"nearest":[33,34],"need":[19,34,35,47,49],"neg":31,"neighbor":[33,34],"net":[19,34,38],"network":[19,34,38],"neural":[19,34,38],"neurip":[19,34],"new":[34,45],"newlin":[35,45],"nikhil":19,"nip":19,"node":34,"node_dim":34,"node_numb":34,"nois":34,"non":[19,34,36,37],"none":[29,30,32,34,35,36,37,42,44],"norm":50,"normal":[23,24,26,35,45,48,49],"norwai":34,"notimplementederror":34,"nov":34,"now":49,"np":[29,32,36,37,44,50],"num_config":[34,39],"num_iter":[34,39],"num_of_iter":34,"number":[29,30,32,33,34,35,38,39,47],"number_neighbor":33,"numer":[33,34],"numpi":[29,30,32,33,34,35,36,37,38,39,40,44,45,50],"ny":34,"o":19,"obata":[19,34],"object":[23,24,29,31,32,34,35,39,42,48,49],"objectview":22,"observ":34,"off":34,"offset":[32,35,42,47],"oh":34,"olga":[19,34],"one":[32,35,47],"ones":34,"onli":[32,35],"onlin":[19,34],"open":25,"oper":[27,28,31,34,41,42],"optim":[19,20,26,29,34,42,46,49],"optimal_param":[42,49],"option":[29,30,32,33,34,35,36,37,38,39,42,44,45,49],"org":[30,34,45],"organ":29,"origin":[32,34,35,42],"orthonorm":[19,34],"other":[27,28,31,34,41,42],"oudshoorn":34,"our":49,"outlier":31,"output":[29,32,33,35,45,50],"outsid":42,"ov":34,"over":[20,29,32,34],"overfit":34,"overlap":[35,42,47],"own":45,"p":[30,34,50],"packag":[28,46],"page":34,"pandei":[19,34],"papadimitri":[19,34],"paper":[34,45],"paper_fil":34,"parallel":[34,39],"param":[32,34,36,37,42,44,49],"param_1":49,"param_2":49,"paramat":42,"paramet":[20,27,28,31,41,49,50],"parameteriz":45,"parametr":[19,34],"params_3":49,"pari":34,"parikshit":19,"particl":[34,39],"particleswarm":[26,39],"pasquier":45,"pass":[34,44],"past":34,"pat":34,"path":[30,32,35,42],"patienc":34,"patrick":19,"pattern":[19,20,24,29,31,32,34,35,42,45,49],"patternsearch":[26,34],"pbansal5":34,"pdf":[34,50],"pearson":[20,31],"per":[32,34,35,47],"percentag":[32,35,42],"perfect":31,"perform":[29,30,31,33,34,38,39,40,49],"person":[34,39],"peter":[19,34],"philipp":[19,20],"php":34,"pi":34,"pip":[25,32],"pipelin":29,"place":49,"plai":45,"plain":35,"plan":23,"pleas":[25,34,39,45,47,49],"plot":[26,29,32,35,49],"plug":45,"pmlr":19,"point":[34,36,37,39],"pollard":[19,34],"poly_ord":34,"popular":45,"porikli":[19,34],"posit":[31,32,35,47],"potenti":42,"power":[34,40],"pp":[33,34,38],"prathamesh":19,"predefin":[34,35],"predict":[19,24,33,34],"predisposit":49,"preprint":34,"preprocess":45,"preserv":31,"prevent":34,"previou":47,"primari":23,"primaryclass":45,"princip":34,"print":[19,22,23,24,26,30,32,33,35,36,37,38,40,42,44,47,49],"print_result":[23,26,35,49],"prior":[34,39,48],"pristi":[19,34],"pristi_imput":34,"probabilist":35,"probabl":[34,35,42,50],"problem":25,"proc":[19,20],"proceed":34,"process":[23,27,28,31,32,34,35,38,39,41,42,49],"produc":50,"progress":47,"project":[34,42],"propag":[19,34],"provid":[22,24,27,28,29,31,32,33,34,35,39,41,42,43,45,49,50],"pseudo":34,"pso":[34,39],"publicli":22,"purpos":35,"pvldb":19,"pycatch":[24,32],"pycatch22":32,"pypi":[25,34],"python":[25,45],"q":34,"qingsong":19,"qualiti":29,"quentin":[21,40,42,44,45],"queri":42,"quickli":34,"r":[19,34,38,45,47,50],"rahul":19,"rai":[34,39,49],"rand":32,"random":[32,34,35,39,47],"random_init":34,"randomli":47,"rang":[20,42,45,48],"rank":[19,30,34],"rao":[19,34],"rate":[20,29,30,34,38,42,47],"rate_dataset":[32,35,49,50],"rate_seri":[23,35,49,50],"ratio":32,"raw":[32,35],"ray_tun":[34,49],"raytun":[26,39],"re":19,"reach":[34,47],"read":[22,45],"readabl":32,"readm":34,"readthedoc":35,"real":45,"recognit":34,"recomput":42,"reconstruct":34,"recov":[19,30,33,34,38,40,49],"recov_data":[23,30,31,33,34,35,36,37,38,40,44,49],"recoveri":[19,20,22,23,24,26,30,46,47,48,49],"recurr":[19,34,38],"reduc":32,"reduct":[34,39],"reduction_factor":[34,39],"refer":[25,47],"refin":32,"regress":[24,32,33,34],"regular":[19,34],"relat":[32,34,39],"relationship":[31,40],"remov":[32,42,47],"repair":45,"replac":[34,35,36,37,44],"replace_nan":35,"report":[19,29],"repres":[30,32,33,36,37,38,44],"represent":34,"reproduc":[32,34,35,45],"requir":[32,34],"research":[34,40,45],"resourc":[34,39],"restrict":35,"result":[23,24,29,32,35,42,45],"retain":34,"reveal":24,"rmse":[20,29,31,32,34,39],"robert":[19,34],"robust":[19,31,34],"root":31,"rosl":[19,34],"rosl_imput":34,"round":34,"row":[29,32,34,45],"royal":34,"royston":[19,34],"run":[20,25,29,34,39],"runs_plots_scor":29,"runtim":20,"russ":[19,34],"s10115":[30,34],"sage":34,"sakurai":[19,34],"same":[35,47,50],"sampl":[32,34,49],"sarawagi":[19,34],"satisfi":45,"save":[29,32,35,42,49],"save_dir":[20,29],"save_optim":[26,42,49],"save_path":[35,49],"scalabl":[19,30,34],"scale":[34,48,50],"scalp":49,"scatter":[35,47],"schaar":[19,34,38],"school":[34,40],"scienc":[34,40],"scikit":34,"scipi":50,"score":[23,26,29,31,34,39,48,49],"scores_list":29,"sdv":34,"search":[19,49],"search_path":[23,24,26,35,42,48,49],"season":34,"second":49,"section":[29,32,35,49],"see":34,"seed":[32,34,35,42,49,50],"select":[32,34,39,42,48,49],"select_backend":[26,35],"self":[29,34],"sensor":[19,34],"sensori":[19,34,40],"separ":[32,35,45],"septemb":34,"seq_len":34,"sequenc":[19,34,38],"sequence_length":[34,38],"seri":[19,20,23,24,30,31,32,33,34,35,36,37,38,39,40,44,45,47,48,49,50],"series_r":[35,42],"series_rang":35,"serv":20,"set":[25,29,31,32,33,34,35,38],"set_nam":42,"sever":49,"sh":34,"shandian":19,"shaoxu":19,"shap":[24,32],"shap_detail":[24,32],"shap_explain":[24,26,32],"shap_valu":[24,32],"shape":[32,35],"shaplei":24,"share":[30,31,42],"shen":[19,34],"shenzhen":[34,40],"sherlock":[19,34],"shift":[35,42,47],"shikai":19,"short":34,"should":34,"show":49,"shrunk":34,"shu":[19,34],"siam":[19,34],"sigkdd":34,"simeng":19,"simpl":[36,37,44],"simul":[45,49],"singl":[29,47],"singular":[19,34],"size":[32,34,35,40,42,47],"skew":32,"sklearn":34,"sktime":42,"slide":34,"smaller":[30,34],"smith":34,"smooth":[34,40],"snippet":50,"soccer":22,"societi":34,"soft":34,"soft_imput":34,"soft_impute_imput":34,"softimput":[19,20,34],"softwar":[19,34],"solut":34,"some_str":49,"song":[19,33,34],"sourc":[25,29,30,31,32,33,34,35,36,37,38,39,40,42,44],"southwest":[34,40],"space":[35,45],"spain":34,"spars":[19,34],"sparser":34,"sparsiti":34,"spatial":[34,40],"spatio":34,"spatiotempor":[19,34],"specif":[32,33,34,35,39,47],"specifi":[32,34,49],"spectral":[19,32,34],"speed":34,"spirit":[19,34],"spirit_imput":34,"spiro":19,"split":32,"splitter":32,"sqrt":34,"squar":31,"st":[19,34,40],"stabl":34,"standard":[32,35,48,49],"start":[35,47,49],"stat":50,"stata":[19,34],"state":[34,45],"static":34,"statist":[19,26,32,34,49],"std_dev":[35,42,50],"stef":34,"stekhoven":[19,34],"step":48,"stmvl":[19,26,29,32,34,46],"stmvl_imput":34,"stop":[30,34],"stoptask":22,"str":[29,30,32,33,34,35,39,42],"strategi":[34,39,44],"stream":[19,34,38],"string":42,"structur":[34,38,39],"subclass":39,"subgraph":34,"subgraph_s":34,"subject":49,"submodul":[45,46],"subpackag":46,"subplot":[29,35,49],"subsequ":47,"subset":49,"subspac":[19,34],"subtract":48,"success":[34,39],"successivehalv":[26,39],"suitabl":34,"sum":[34,50],"sum_scor":20,"summar":[19,29,34],"summari":29,"sun":[19,33,34],"sunita":19,"support":[23,30,32,35,40,44,45],"svd":34,"svt":[19,34],"svt_imput":34,"swarm":39,"switch":[19,34],"syst":[19,30,34],"system":[19,34,42,45],"systemat":23,"t":[19,22,23,24,32,34,35,40,42,47,48,49,50],"tab":34,"tag":[19,34],"tao":[19,34],"target":34,"target_strategi":34,"task":[23,34,45],"tau":34,"tbme":[34,38],"technic":19,"techniqu":[20,35,36,37,40,44,48],"technologi":[34,40],"temperatur":22,"templat":34,"tempor":[19,32,34,38,40],"tensor":34,"term":[31,34],"test":[20,29,32,42],"text":[29,35,49],"than":[30,31,34],"them":[29,32,34],"thesi":42,"thi":[19,22,23,32,33,34,35,36,37,38,39,40,44,47,49,50],"those":49,"thre":34,"threshold":[19,30,34],"through":29,"tianheng":19,"tianqi":[19,34],"tianrui":19,"tibshirani":[19,34],"tick":29,"time":[19,20,23,24,29,30,31,32,33,34,35,36,37,38,39,40,44,45,47,48,49],"time_scal":34,"timeseri":[19,22,23,24,26,35,42,47,48,49],"timestamp":[35,45],"titl":[42,45],"tkcm":[19,34],"tkcm_imput":34,"tkde":[19,34],"tmp":32,"to_sav":32,"tol":34,"toler":34,"toml":[32,42],"tool":[23,24,26,28,29,31,43,45,46,48,49],"top":47,"torch":[19,34],"total":[33,34,38,39,47],"trade":34,"train":[24,32,34,38],"training_ratio":32,"tran":19,"transact":[34,38],"transfer":34,"tree":[19,33,34],"trend":34,"trevor":[19,34],"trial":[34,39],"trigger":34,"trmf":[19,34],"trmf_imput":34,"trondheim":34,"troyanskaya":[19,34],"true":[29,30,32,33,34,35,38,40,42,49,50],"truncat":30,"truncation_rank":30,"truth":[31,34,39,49],"try":[34,39],"ts_m":[23,35,49,50],"ts_m2":50,"ts_test":42,"tsfel":32,"tsfresh":32,"tune":[20,34,39,45,49],"tupl":[32,34,35,39,42],"tutori":[45,47],"two":[32,48],"txt":[29,35,42],"tymchenko":20,"type":[19,32,34,42],"typic":48,"tzhaonj":34,"uncondit":34,"uncontamin":[32,35],"undercov":34,"underli":31,"uniform":34,"unifr":21,"uniqu":34,"unit":34,"univers":[34,40,42],"unix":25,"until":47,"up":[25,32,34,47],"updat":34,"upper":42,"upstream":34,"url":45,"us":[19,22,23,24,30,32,33,34,35,36,37,38,39,40,42,44,45,47,49,50],"usa":34,"user":[20,34,35,42,45,47,48,49],"user_def":[34,49],"util":[20,23,24,26,28,29,31,33,35,41,46,48,49],"v":34,"v045i04":34,"valid":[32,34],"valu":[19,20,29,30,31,32,33,34,35,36,37,38,39,40,42,44,45,47,48,49,50],"valueerror":42,"van":[19,34,38],"vari":[45,47],"variabl":[32,34],"varianc":[32,34],"variat":34,"variou":[20,24,27,28,29,30,31,33,34,36,37,38,39,40,41,42,44,45],"varun":19,"venic":34,"venu":19,"verbos":32,"veri":34,"verifi":42,"verification_limit":[26,42],"version":[19,25,32,33,34],"via":[19,34],"view":[29,34,35],"view_by_seri":35,"vision":34,"visual":[29,35,45],"vldb":[19,20],"vol":[34,38],"volker":19,"volum":34,"w":[34,38,39,47],"wang":[19,33,34],"wangliang":34,"warn":42,"we":49,"wei":19,"weight":[31,34,39,40],"weight_decai":34,"well":31,"wellenzohn":[19,34],"wen":[19,34],"when":34,"where":[32,35,36,37,38,44],"whether":[30,32,33,34,35,38],"which":[32,34],"while":34,"white":[19,34],"whole":34,"william":19,"window":[34,40,47],"window_s":[34,40],"within":[34,38,42],"without":[34,35,42],"work":[19,33,34],"worker":34,"world":45,"wu":[19,34],"www":34,"x":[34,40,47],"x_axi":[20,29],"x_dataset":32,"x_inform":32,"xgboost":[19,34],"xianbiao":19,"xianp":19,"xiao":19,"xiaodan":19,"xiucheng":19,"xiuwen":19,"xli":34,"xuangu":34,"y":[33,34,40],"y_dataset":32,"y_size":29,"yanji":19,"yasuko":[19,34],"yasushi":[19,34],"year":[19,45],"yi":[19,34,40],"yingtao":19,"yitan":19,"yoon":[19,34,38],"york":34,"you":[19,22,23,25,34,35,39,45,47,48],"your":[34,39,45],"yu":[19,34],"yuenshingyan":34,"z":[34,48],"z_score":[24,35,48,49],"zakhar":20,"zame":[19,34,38],"zero":[32,34,44],"zero_imput":[26,34,46],"zeroimput":[19,23,34],"zhang":[19,33,34,40],"zhe":[19,34],"zheng":[19,34,40],"zhijun":19,"zhou":[19,34],"zuowei":19},"titles":["imputegap.algorithms","imputegap.algorithms.cdrec","imputegap.algorithms.iim","imputegap.algorithms.mean_impute","imputegap.algorithms.min_impute","imputegap.algorithms.mrnn","imputegap.algorithms.stmvl","imputegap.algorithms.zero_impute","imputegap.recovery.benchmark","imputegap.recovery.benchmark","imputegap.recovery.evaluation","imputegap.recovery.explainer","imputegap.recovery.imputation","imputegap.recovery.manager","imputegap.recovery.optimization","imputegap.tools","imputegap.tools.algorithm_parameters","imputegap.tools.utils","imputegap.wrapper","Algorithms","Benchmark","Contributors","Datasets","Downstream Evaluation","Explainer","Getting Started","ImputeGAP Package","imputegap.tools.algorithm_parameters package","Submodules","imputegap.recovery.benchmark package","imputegap.algorithms.cdrec package","imputegap.recovery.evaluation package","imputegap.recovery.explainer package","imputegap.algorithms.iim package","imputegap.recovery.imputation package","imputegap.recovery.manager package","imputegap.algorithms.mean_impute package","imputegap.algorithms.min_impute package","imputegap.algorithms.mrnn package","imputegap.recovery.optimization package","imputegap.algorithms.stmvl package","imputegap.tools package","imputegap.tools.utils package","imputegap.wrapper package","imputegap.algorithms.zero_impute package","ImputeGAP Documentation","imputegap","Patterns","Preprocessing","Tutorials","Distribution"],"titleterms":{"algorithm":[0,1,2,3,4,5,6,7,19,30,33,36,37,38,40,44],"algorithm_paramet":[16,27],"benchmark":[8,9,20,29],"block":47,"cdrec":[1,30],"cite":45,"contamin":49,"content":[26,32,34,35,39,43],"contributor":[21,45],"core":21,"data":45,"dataset":22,"distribut":50,"document":[27,28,29,31,41,42,45],"downstream":23,"evalu":[10,23,29,31],"exampl":[29,30,33,34,35,36,37,38,40,44],"explain":[11,24,32],"format":45,"get":[25,45],"iim":[2,33],"imput":[12,34,49],"imputegap":[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,26,27,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46],"instal":25,"load":49,"manag":[13,35],"mean_imput":[3,36],"method":[29,31,32,34,35,39],"min_imput":[4,37],"modul":[26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44],"mono":47,"mrnn":[5,38],"multi":47,"note":[29,32,33,36,37,38,40,42,44],"optim":[14,39],"packag":[26,27,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44],"paramet":[29,30,32,33,34,35,36,37,38,39,40,42,44],"parameter":49,"pattern":47,"preprocess":[48,49],"rais":[34,42],"recoveri":[8,9,10,11,12,13,14,29,31,32,34,35,39],"refer":[19,30,33,34,35,38,40],"requir":25,"return":[29,30,31,32,33,34,35,36,37,38,39,40,42,44],"setup":47,"start":[25,45],"stmvl":[6,40],"subclass":34,"submodul":[26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44],"subpackag":26,"system":25,"tool":[15,16,17,27,41,42],"troubleshoot":25,"tutori":49,"updat":25,"util":[17,27,42],"wrapper":[18,43],"zero_imput":[7,44]}}) \ No newline at end of file diff --git a/docs/generation/build/html/sources/algorithms.rst.txt b/docs/generation/build/html/sources/algorithms.rst.txt index 9f5fe3c4..37d4f16f 100644 --- a/docs/generation/build/html/sources/algorithms.rst.txt +++ b/docs/generation/build/html/sources/algorithms.rst.txt @@ -25,20 +25,20 @@ To list all the available algorithms and their optimizers, you can use this comm * - **Family** - **Algorithm** - **Venue -- Year** - * - Deep Learning - - MPIN [25]_ - - PVLDB -- 2024 * - Deep Learning - MissNet [27]_ - KDD -- 2024 * - Deep Learning - - BITGraph [32]_ + - BitGraph [32]_ - ICLR -- 2024 * - Deep Learning - BayOTIDE [30]_ - PMLR -- 2024 * - Deep Learning - - PriSTI [26]_ + - MPIN* [25]_ + - PVLDB -- 2024 + * - Deep Learning + - PRISTI [26]_ - ICDE -- 2023 * - Deep Learning - GRIN [29]_ @@ -47,7 +47,7 @@ To list all the available algorithms and their optimizers, you can use this comm - DeepMVI [24]_ - PVLDB -- 2021 * - Deep Learning - - HKMF-T [31]_ + - HKMF_T [31]_ - TKDE -- 2021 * - Deep Learning - MRNN [22]_ @@ -86,7 +86,7 @@ To list all the available algorithms and their optimizers, you can use this comm - TKCM [11]_ - EDBT -- 2017 * - Pattern Search - - ST-MVL [9]_ + - STMVL [9]_ - IJCAI -- 2016 * - Pattern Search - DynaMMo [10]_ @@ -95,10 +95,10 @@ To list all the available algorithms and their optimizers, you can use this comm - IIM [12]_ - ICDE -- 2019 * - Machine Learning - - XGBI [13]_ + - XGBOOST [13]_ - KDD -- 2016 * - Machine Learning - - Mice [14]_ + - MICE [14]_ - Statistical Software -- 2011 * - Machine Learning - MissForest [15]_ @@ -180,3 +180,5 @@ References .. [31] Liang Wang, Simeng Wu, Tianheng Wu, Xianping Tao, Jian Lu: HKMF-T: Recover From Blackouts in Tagged Time Series With Hankel Matrix Factorization. IEEE Trans. Knowl. Data Eng. 33(11): 3582-3593 (2021) .. [32] Xiaodan Chen, Xiucheng Li, Bo Liu, Zhijun Li: Biased Temporal Convolution Graph Network for Time Series Forecasting with Missing Values. ICLR 2024 + +* need torch-cluster to work diff --git a/docs/generation/build/html/sources/benchmark.rst.txt b/docs/generation/build/html/sources/benchmark.rst.txt index f9a16b39..e2ab3950 100644 --- a/docs/generation/build/html/sources/benchmark.rst.txt +++ b/docs/generation/build/html/sources/benchmark.rst.txt @@ -2,7 +2,7 @@ Benchmark ========= -ImputeGAP can serve as a common test-bed for comparing the effectiveness and efficiency of time series imputation algorithms [33]_. Users have full control over the benchmark by customizing various parameters, including the list of datasets to evaluate, the algorithms to compare, the choice of optimizer to fine-tune the algorithms on the chosen datasets, the missingness patterns, and the range of missing rates. +ImputeGAP can serve as a common test-bed for comparing the effectiveness and efficiency of time series imputation algorithms [33]_. Users have full control over the benchmark by customizing various parameters, including the list of datasets to evaluate, the algorithms to compare, the choice of optimizer to fine-tune the algorithms on the chosen datasets, the missingness patterns, and the range of missing rates. The default metrics evaluated include "RMSE", "MAE", "MI", "Pearson", and the runtime. The benchmarking module can be utilized as follows: @@ -11,22 +11,21 @@ The benchmarking module can be utilized as follows: from imputegap.recovery.benchmark import Benchmark - save_dir = "./analysis" - nbr_run = 2 + save_dir = "./imputegap_assets/benchmark" + nbr_runs = 1 - datasets = ["eeg-alcohol", "eeg-reading"] + datasets = ["eeg-alcohol"] - optimizer = {"optimizer": "ray_tune", "options": {"n_calls": 1, "max_concurrent_trials": 1}} - optimizers = [optimizer] + optimizers = ["default_params"] - algorithms = ["MeanImpute", "CDRec", "STMVL", "IIM", "MRNN"] + algorithms = ["SoftImpute", "KNNImpute"] patterns = ["mcar"] range = [0.05, 0.1, 0.2, 0.4, 0.6, 0.8] # launch the evaluation - list_results, sum_scores = Benchmark().eval(algorithms=algorithms, datasets=datasets, patterns=patterns, x_axis=range, optimizers=optimizers, save_dir=save_dir, runs=nbr_run) + list_results, sum_scores = Benchmark().eval(algorithms=algorithms, datasets=datasets, patterns=patterns, x_axis=range, optimizers=optimizers, save_dir=save_dir, runs=nbr_runs) diff --git a/docs/generation/build/html/sources/downstream.rst.txt b/docs/generation/build/html/sources/downstream.rst.txt index 5dfc924b..fb1aff01 100644 --- a/docs/generation/build/html/sources/downstream.rst.txt +++ b/docs/generation/build/html/sources/downstream.rst.txt @@ -31,7 +31,7 @@ Below is an example of how to call the downstream process for the model by defin imputer.impute() # compute and print the downstream results - downstream_config = {"task": "forecast", "model": "hw-add"} + downstream_config = {"task": "forecast", "model": "hw-add", "comparator": "ZeroImpute"} imputer.score(ts.data, imputer.recov_data, downstream=downstream_config) ts.print_results(imputer.downstream_metrics, algorithm=imputer.algorithm) diff --git a/docs/generation/build/html/sources/tutorials.rst.txt b/docs/generation/build/html/sources/tutorials.rst.txt index 1c53eeb7..615dcd2a 100644 --- a/docs/generation/build/html/sources/tutorials.rst.txt +++ b/docs/generation/build/html/sources/tutorials.rst.txt @@ -27,7 +27,7 @@ alcoholism. The dataset contains measurements from 64 electrodes placed on subje # plot and print a subset of time series ts.plot(input_data=ts.data, nbr_series=9, nbr_val=100, save_path="./imputegap_assets") - ts.print(nbr_series=9, nbr_val=100) + ts.print(nbr_series=9, nbr_val=20) .. _contamination: @@ -104,7 +104,7 @@ Let's illustrate the imputation using the CDRec Algorithm from the Matrix Comple ts.print_results(imputer.metrics) # plot the recovered time series - ts.plot(input_data=ts.data, incomp_data=ts_m, recov_data=imputer.recov_data, nbr_series=9, subplot=True, save_path="./imputegap_assets") + ts.plot(input_data=ts.data, incomp_data=ts_m, recov_data=imputer.recov_data, nbr_series=9, subplot=True, algorithm=imputer.algorithm, save_path="./imputegap_assets") @@ -136,9 +136,16 @@ The Optimizer component manages algorithm configuration and hyperparameter tunin # use Ray Tune to fine tune the imputation algorithm imputer.impute(user_def=False, params={"input_data": ts.data, "optimizer": "ray_tune"}) - # compute and print the imputation metrics + # compute the imputation metrics with optimized parameter values imputer.score(ts.data, imputer.recov_data) - ts.print_results(imputer.metrics) + + # compute the imputation metrics with default parameter values + imputer_def = Imputation.MatrixCompletion.CDRec(ts_m).impute() + imputer_def.score(ts.data, imputer_def.recov_data) + + # print the imputation metrics with default and optimized parameter values + ts.print_results(imputer_def.metrics, text="Imputation metrics with default parameter values") + ts.print_results(imputer.metrics, text="Imputation metrics with optimized parameter values") # plot the recovered time series ts.plot(input_data=ts.data, incomp_data=ts_m, recov_data=imputer.recov_data, nbr_series=9, subplot=True, save_path="./imputegap_assets", display=True) diff --git a/docs/generation/build/html/static/documentation_options.js b/docs/generation/build/html/static/documentation_options.js index d0fab5f7..3046a46e 100644 --- a/docs/generation/build/html/static/documentation_options.js +++ b/docs/generation/build/html/static/documentation_options.js @@ -1,5 +1,5 @@ const DOCUMENTATION_OPTIONS = { - VERSION: '1.0.5', + VERSION: '1.0.7', LANGUAGE: 'en', COLLAPSE_INDEX: false, BUILDER: 'html', diff --git a/docs/generation/build/html/tutorials.html b/docs/generation/build/html/tutorials.html index 7a728f4f..dae22fff 100644 --- a/docs/generation/build/html/tutorials.html +++ b/docs/generation/build/html/tutorials.html @@ -6,7 +6,7 @@ - Tutorials - imputegap 1.0.5 documentation + Tutorials - imputegap 1.0.7 documentation @@ -168,7 +168,7 @@

    @@ -347,7 +347,7 @@

    Tutorialsts.print_results(imputer.metrics) # plot the recovered time series -ts.plot(input_data=ts.data, incomp_data=ts_m, recov_data=imputer.recov_data, nbr_series=9, subplot=True, save_path="./imputegap_assets") +ts.plot(input_data=ts.data, incomp_data=ts_m, recov_data=imputer.recov_data, nbr_series=9, subplot=True, algorithm=imputer.algorithm, save_path="./imputegap_assets")

    @@ -372,9 +372,16 @@

    Tutorials# use Ray Tune to fine tune the imputation algorithm imputer.impute(user_def=False, params={"input_data": ts.data, "optimizer": "ray_tune"}) -# compute and print the imputation metrics +# compute the imputation metrics with optimized parameter values imputer.score(ts.data, imputer.recov_data) -ts.print_results(imputer.metrics) + +# compute the imputation metrics with default parameter values +imputer_def = Imputation.MatrixCompletion.CDRec(ts_m).impute() +imputer_def.score(ts.data, imputer_def.recov_data) + +# print the imputation metrics with default and optimized parameter values +ts.print_results(imputer_def.metrics, text="Imputation metrics with default parameter values") +ts.print_results(imputer.metrics, text="Imputation metrics with optimized parameter values") # plot the recovered time series ts.plot(input_data=ts.data, incomp_data=ts_m, recov_data=imputer.recov_data, nbr_series=9, subplot=True, save_path="./imputegap_assets", display=True) @@ -457,7 +464,7 @@

    Tutorials + diff --git a/docs/generation/build/html/tutorials_distribution.html b/docs/generation/build/html/tutorials_distribution.html index 03c7eda6..b2aa1bea 100644 --- a/docs/generation/build/html/tutorials_distribution.html +++ b/docs/generation/build/html/tutorials_distribution.html @@ -6,7 +6,7 @@ - Distribution - imputegap 1.0.5 documentation + Distribution - imputegap 1.0.7 documentation @@ -168,7 +168,7 @@
    @@ -195,7 +195,7 @@
    - imputegap 1.0.5 documentation + imputegap 1.0.7 documentation @@ -325,7 +325,7 @@

    Distribution +

    diff --git a/docs/generation/report.log b/docs/generation/report.log index 81d75c92..4b641c4f 100644 --- a/docs/generation/report.log +++ b/docs/generation/report.log @@ -77,3 +77,6 @@ 2025-03-20 14:21:35,116 - numba.cuda.cudadrv.driver - INFO - init 2025-03-20 14:52:39,925 - numba.cuda.cudadrv.driver - INFO - init 2025-03-20 15:01:15,050 - numba.cuda.cudadrv.driver - INFO - init +2025-03-21 09:46:24,117 - numba.cuda.cudadrv.driver - INFO - init +2025-03-21 15:58:44,042 - numba.cuda.cudadrv.driver - INFO - init +2025-03-21 17:48:19,571 - numba.cuda.cudadrv.driver - INFO - init diff --git a/docs/generation/source/algorithms.rst b/docs/generation/source/algorithms.rst index 9f5fe3c4..37d4f16f 100644 --- a/docs/generation/source/algorithms.rst +++ b/docs/generation/source/algorithms.rst @@ -25,20 +25,20 @@ To list all the available algorithms and their optimizers, you can use this comm * - **Family** - **Algorithm** - **Venue -- Year** - * - Deep Learning - - MPIN [25]_ - - PVLDB -- 2024 * - Deep Learning - MissNet [27]_ - KDD -- 2024 * - Deep Learning - - BITGraph [32]_ + - BitGraph [32]_ - ICLR -- 2024 * - Deep Learning - BayOTIDE [30]_ - PMLR -- 2024 * - Deep Learning - - PriSTI [26]_ + - MPIN* [25]_ + - PVLDB -- 2024 + * - Deep Learning + - PRISTI [26]_ - ICDE -- 2023 * - Deep Learning - GRIN [29]_ @@ -47,7 +47,7 @@ To list all the available algorithms and their optimizers, you can use this comm - DeepMVI [24]_ - PVLDB -- 2021 * - Deep Learning - - HKMF-T [31]_ + - HKMF_T [31]_ - TKDE -- 2021 * - Deep Learning - MRNN [22]_ @@ -86,7 +86,7 @@ To list all the available algorithms and their optimizers, you can use this comm - TKCM [11]_ - EDBT -- 2017 * - Pattern Search - - ST-MVL [9]_ + - STMVL [9]_ - IJCAI -- 2016 * - Pattern Search - DynaMMo [10]_ @@ -95,10 +95,10 @@ To list all the available algorithms and their optimizers, you can use this comm - IIM [12]_ - ICDE -- 2019 * - Machine Learning - - XGBI [13]_ + - XGBOOST [13]_ - KDD -- 2016 * - Machine Learning - - Mice [14]_ + - MICE [14]_ - Statistical Software -- 2011 * - Machine Learning - MissForest [15]_ @@ -180,3 +180,5 @@ References .. [31] Liang Wang, Simeng Wu, Tianheng Wu, Xianping Tao, Jian Lu: HKMF-T: Recover From Blackouts in Tagged Time Series With Hankel Matrix Factorization. IEEE Trans. Knowl. Data Eng. 33(11): 3582-3593 (2021) .. [32] Xiaodan Chen, Xiucheng Li, Bo Liu, Zhijun Li: Biased Temporal Convolution Graph Network for Time Series Forecasting with Missing Values. ICLR 2024 + +* need torch-cluster to work diff --git a/docs/generation/source/benchmark.rst b/docs/generation/source/benchmark.rst index f9a16b39..e2ab3950 100644 --- a/docs/generation/source/benchmark.rst +++ b/docs/generation/source/benchmark.rst @@ -2,7 +2,7 @@ Benchmark ========= -ImputeGAP can serve as a common test-bed for comparing the effectiveness and efficiency of time series imputation algorithms [33]_. Users have full control over the benchmark by customizing various parameters, including the list of datasets to evaluate, the algorithms to compare, the choice of optimizer to fine-tune the algorithms on the chosen datasets, the missingness patterns, and the range of missing rates. +ImputeGAP can serve as a common test-bed for comparing the effectiveness and efficiency of time series imputation algorithms [33]_. Users have full control over the benchmark by customizing various parameters, including the list of datasets to evaluate, the algorithms to compare, the choice of optimizer to fine-tune the algorithms on the chosen datasets, the missingness patterns, and the range of missing rates. The default metrics evaluated include "RMSE", "MAE", "MI", "Pearson", and the runtime. The benchmarking module can be utilized as follows: @@ -11,22 +11,21 @@ The benchmarking module can be utilized as follows: from imputegap.recovery.benchmark import Benchmark - save_dir = "./analysis" - nbr_run = 2 + save_dir = "./imputegap_assets/benchmark" + nbr_runs = 1 - datasets = ["eeg-alcohol", "eeg-reading"] + datasets = ["eeg-alcohol"] - optimizer = {"optimizer": "ray_tune", "options": {"n_calls": 1, "max_concurrent_trials": 1}} - optimizers = [optimizer] + optimizers = ["default_params"] - algorithms = ["MeanImpute", "CDRec", "STMVL", "IIM", "MRNN"] + algorithms = ["SoftImpute", "KNNImpute"] patterns = ["mcar"] range = [0.05, 0.1, 0.2, 0.4, 0.6, 0.8] # launch the evaluation - list_results, sum_scores = Benchmark().eval(algorithms=algorithms, datasets=datasets, patterns=patterns, x_axis=range, optimizers=optimizers, save_dir=save_dir, runs=nbr_run) + list_results, sum_scores = Benchmark().eval(algorithms=algorithms, datasets=datasets, patterns=patterns, x_axis=range, optimizers=optimizers, save_dir=save_dir, runs=nbr_runs) diff --git a/docs/generation/source/conf.py b/docs/generation/source/conf.py index 7d915772..a476798d 100644 --- a/docs/generation/source/conf.py +++ b/docs/generation/source/conf.py @@ -46,8 +46,8 @@ html_css_files = ['custom.css'] # Set the version and release info -version = '1.0.6' -release = '1.0.6' +version = '1.0.7' +release = '1.0.7' html_theme_options = { diff --git a/docs/generation/source/downstream.rst b/docs/generation/source/downstream.rst index 5dfc924b..fb1aff01 100644 --- a/docs/generation/source/downstream.rst +++ b/docs/generation/source/downstream.rst @@ -31,7 +31,7 @@ Below is an example of how to call the downstream process for the model by defin imputer.impute() # compute and print the downstream results - downstream_config = {"task": "forecast", "model": "hw-add"} + downstream_config = {"task": "forecast", "model": "hw-add", "comparator": "ZeroImpute"} imputer.score(ts.data, imputer.recov_data, downstream=downstream_config) ts.print_results(imputer.downstream_metrics, algorithm=imputer.algorithm) diff --git a/docs/generation/source/tutorials.rst b/docs/generation/source/tutorials.rst index 1c53eeb7..615dcd2a 100644 --- a/docs/generation/source/tutorials.rst +++ b/docs/generation/source/tutorials.rst @@ -27,7 +27,7 @@ alcoholism. The dataset contains measurements from 64 electrodes placed on subje # plot and print a subset of time series ts.plot(input_data=ts.data, nbr_series=9, nbr_val=100, save_path="./imputegap_assets") - ts.print(nbr_series=9, nbr_val=100) + ts.print(nbr_series=9, nbr_val=20) .. _contamination: @@ -104,7 +104,7 @@ Let's illustrate the imputation using the CDRec Algorithm from the Matrix Comple ts.print_results(imputer.metrics) # plot the recovered time series - ts.plot(input_data=ts.data, incomp_data=ts_m, recov_data=imputer.recov_data, nbr_series=9, subplot=True, save_path="./imputegap_assets") + ts.plot(input_data=ts.data, incomp_data=ts_m, recov_data=imputer.recov_data, nbr_series=9, subplot=True, algorithm=imputer.algorithm, save_path="./imputegap_assets") @@ -136,9 +136,16 @@ The Optimizer component manages algorithm configuration and hyperparameter tunin # use Ray Tune to fine tune the imputation algorithm imputer.impute(user_def=False, params={"input_data": ts.data, "optimizer": "ray_tune"}) - # compute and print the imputation metrics + # compute the imputation metrics with optimized parameter values imputer.score(ts.data, imputer.recov_data) - ts.print_results(imputer.metrics) + + # compute the imputation metrics with default parameter values + imputer_def = Imputation.MatrixCompletion.CDRec(ts_m).impute() + imputer_def.score(ts.data, imputer_def.recov_data) + + # print the imputation metrics with default and optimized parameter values + ts.print_results(imputer_def.metrics, text="Imputation metrics with default parameter values") + ts.print_results(imputer.metrics, text="Imputation metrics with optimized parameter values") # plot the recovered time series ts.plot(input_data=ts.data, incomp_data=ts_m, recov_data=imputer.recov_data, nbr_series=9, subplot=True, save_path="./imputegap_assets", display=True) diff --git a/imputegap.egg-info/PKG-INFO b/imputegap.egg-info/PKG-INFO index ce34969b..ad8baa6d 100644 --- a/imputegap.egg-info/PKG-INFO +++ b/imputegap.egg-info/PKG-INFO @@ -1,12 +1,12 @@ -Metadata-Version: 2.2 +Metadata-Version: 2.4 Name: imputegap -Version: 1.0.5 +Version: 1.0.7 Summary: A Library of Imputation Techniques for Time Series Data Home-page: https://github.com/eXascaleInfolab/ImputeGAP Author: Quentin Nater Author-email: quentin.nater@unifr.ch License: MIT License -Project-URL: Documentation, https://imputegap.readthedocs.io/ +Project-URL: Documentation, https://exascaleinfolab.github.io/ImputeGAP/ Project-URL: Source, https://github.com/eXascaleInfolab/ImputeGAP Classifier: Development Status :: 4 - Beta Classifier: Intended Audience :: Developers @@ -21,7 +21,6 @@ Requires-Dist: matplotlib==3.7.5 Requires-Dist: toml==0.10.2 Requires-Dist: scikit-learn>=1.5.0 Requires-Dist: scipy==1.14.1 -Requires-Dist: setuptools==75.1.0 Requires-Dist: tensorflow==2.17.0 Requires-Dist: shap==0.44.1 Requires-Dist: pycatch22==0.4.4 @@ -56,7 +55,6 @@ Requires-Dist: ray[tune]==2.41.0 Requires-Dist: fire==0.7.0 Requires-Dist: fastdtw==0.3.4 Requires-Dist: torch-geometric==2.6.1 -Requires-Dist: torch-cluster==1.6.3 Requires-Dist: pytorch-lightning==2.5.0 Requires-Dist: torchmetrics==1.6.1 Requires-Dist: lightning==2.5.0 @@ -67,6 +65,7 @@ Dynamic: description Dynamic: description-content-type Dynamic: home-page Dynamic: license +Dynamic: license-file Dynamic: project-url Dynamic: requires-dist Dynamic: requires-python @@ -82,18 +81,19 @@ ImputeGAP is a comprehensive Python library for imputation of missing values in In detail, the package provides: Access to commonly used datasets in time series research (Datasets). - - Configurable contamination module that simulates real-world missingness patterns. - - Automated preprocessing with built-in methods for normalizing time series. - - Parameterized state-of-the-art time series imputation algorithms. - - Modular tools to analyze the behavior of these algorithms and assess their impact on key downstream tasks in time series analysis. - - Experiment benchmarking, fostering research reproducibility in time series. - - Fine-grained analysis of the impact of time series features on imputation results. + - Access to commonly used datasets in time series research ([Datasets](https://imputegap.readthedocs.io/en/latest/datasets.html)). + - Automated preprocessing with built-in methods for normalizing time series ([PreProcessing](https://imputegap.readthedocs.io/en/latest/preprocessing.html)). + - Configurable contamination module that simulates real-world missingness patterns ([Patterns](https://imputegap.readthedocs.io/en/latest/patterns.html)). + - Parameterizable state-of-the-art time series imputation algorithms ([Algorithms](https://imputegap.readthedocs.io/en/latest/algorithms.html)). + - Benchmarking to foster reproducibility in time series imputation ([Benchmark](https://imputegap.readthedocs.io/en/latest/benchmark.html)). + - Modular tools to analyze the behavior of imputation algorithms and assess their impact on key downstream tasks in time series analysis ([Downstream](https://imputegap.readthedocs.io/en/latest/downstream.html)). + - Fine-grained analysis of the impact of time series features on imputation results ([Explainer](https://imputegap.readthedocs.io/en/latest/explainer.html)). - Plug-and-play integration of new datasets and algorithms in various languages such as Python, C++, Matlab, Java, and R.
    ![Python](https://img.shields.io/badge/Python-v3.12-blue) -![Release](https://img.shields.io/badge/Release-v1.0.5-brightgreen) +![Release](https://img.shields.io/badge/Release-v1.0.7-brightgreen) ![License](https://img.shields.io/badge/License-GPLv3-blue?style=flat&logo=gnu) ![Coverage](https://img.shields.io/badge/Coverage-93%25-brightgreen) ![PyPI](https://img.shields.io/pypi/v/imputegap?label=PyPI&color=blue) @@ -108,6 +108,46 @@ Access to commonly used datasets in time series research (Datasets). - **Datasets**: [Repository](https://github.com/eXascaleInfolab/ImputeGAP/tree/main/imputegap/dataset) - --- + + +# List of available imputation algorithms +| **Family** | **Algorithm** | **Venue -- Year** | +|--------------------|---------------------------|------------------------------| +| Deep Learning | BitGraph [[32]](#ref32) | ICLR -- 2024 | +| Deep Learning | BayOTIDE [[30]](#ref30) | PMLR -- 2024 | +| Deep Learning | MissNet [[27]](#ref27) | KDD -- 2024 | +| Deep Learning | MPIN [[25]](#ref25) | PVLDB -- 2024 | +| Deep Learning | PRISTI [[26]](#ref26) | ICDE -- 2023 | +| Deep Learning | GRIN [[29]](#ref29) | ICLR -- 2022 | +| Deep Learning | HKMF_T [[31]](#ref31) | TKDE -- 2021 | +| Deep Learning | DeepMVI [[24]](#ref24) | PVLDB -- 2021 | +| Deep Learning | MRNN [[22]](#ref22) | IEEE Trans on BE -- 2019 | +| Deep Learning | BRITS [[23]](#ref23) | NeurIPS -- 2018 | +| Deep Learning | GAIN [[28]](#ref28) | ICML -- 2018 | +| Matrix Completion | CDRec [[1]](#ref1) | KAIS -- 2020 | +| Matrix Completion | TRMF [[8]](#ref8) | NeurIPS -- 2016 | +| Matrix Completion | GROUSE [[3]](#ref3) | PMLR -- 2016 | +| Matrix Completion | ROSL [[4]](#ref4) | CVPR -- 2014 | +| Matrix Completion | SoftImpute [[6]](#ref6) | JMLR -- 2010 | +| Matrix Completion | SVT [[7]](#ref7) | SIAM J. OPTIM -- 2010 | +| Matrix Completion | SPIRIT [[5]](#ref5) | VLDB -- 2005 | +| Matrix Completion | IterativeSVD [[2]](#ref2) | BIOINFORMATICS -- 2001 | +| Pattern Search | TKCM [[11]](#ref11) | EDBT -- 2017 | +| Pattern Search | STMVL [[9]](#ref9) | IJCAI -- 2016 | +| Pattern Search | DynaMMo [[10]](#ref10) | KDD -- 2009 | +| Machine Learning | IIM [[12]](#ref12) | ICDE -- 2019 | +| Machine Learning | XGBOOST [[13]](#ref13) | KDD -- 2016 | +| Machine Learning | MICE [[14]](#ref14) | Statistical Software -- 2011 | +| Machine Learning | MissForest [[15]](#ref15) | BioInformatics -- 2011 | +| Statistics | KNNImpute | - | +| Statistics | Interpolation | - | +| Statistics | MinImpute | - | +| Statistics | ZeroImpute | - | +| Statistics | MeanImpute | - | +| Statistics | MeanImputeBySeries | - | + +--- + ### **Quick Navigation** - **Deployment** @@ -131,45 +171,6 @@ Access to commonly used datasets in time series research (Datasets). - [Core Contributors](#core-contributors) ---- - -## Families of Algorithms -# Algorithms Table -| **Family** | **Algorithm** | **Venue -- Year** | -|--------------------|---------------------------|------------------------------| -| Matrix Completion | CDRec [[1]](#ref1) | KAIS -- 2020 | -| Matrix Completion | TRMF [[8]](#ref8) | NeurIPS -- 2016 | -| Matrix Completion | GROUSE [[3]](#ref3) | PMLR -- 2016 | -| Matrix Completion | ROSL [[4]](#ref4) | CVPR -- 2014 | -| Matrix Completion | SoftImpute [[6]](#ref6) | JMLR -- 2010 | -| Matrix Completion | SVT [[7]](#ref7) | SIAM J. OPTIM -- 2010 | -| Matrix Completion | SPIRIT [[5]](#ref5) | VLDB -- 2005 | -| Matrix Completion | IterativeSVD [[2]](#ref2) | BIOINFORMATICS -- 2001 | -| Pattern Search | TKCM [[11]](#ref11) | EDBT -- 2017 | -| Pattern Search | ST-MVL [[9]](#ref9) | IJCAI -- 2016 | -| Pattern Search | DynaMMo [[10]](#ref10) | KDD -- 2009 | -| Machine Learning | IIM [[12]](#ref12) | ICDE -- 2019 | -| Machine Learning | XGBI [[13]](#ref13) | KDD -- 2016 | -| Machine Learning | Mice [[14]](#ref14) | Statistical Software -- 2011 | -| Machine Learning | MissForest [[15]](#ref15) | BioInformatics -- 2011 | -| Deep Learning | BITGraph [[32]](#ref32) | ICLR -- 2024 | -| Deep Learning | BayOTIDE [[30]](#ref30) | PMLR -- 2024 | -| Deep Learning | MPIN [[25]](#ref25) | PVLDB -- 2024 | -| Deep Learning | MissNet [[27]](#ref27) | KDD -- 2024 | -| Deep Learning | PriSTI [[26]](#ref26) | ICDE -- 2023 | -| Deep Learning | GRIN [[29]](#ref29) | ICLR -- 2022 | -| Deep Learning | HKMF-T [[31]](#ref31) | TKDE -- 2021 | -| Deep Learning | DeepMVI [[24]](#ref24) | PVLDB -- 2021 | -| Deep Learning | MRNN [[22]](#ref22) | IEEE Trans on BE -- 2019 | -| Deep Learning | BRITS [[23]](#ref23) | NeurIPS -- 2018 | -| Deep Learning | GAIN [[28]](#ref28) | ICML -- 2018 | -| Statistics | KNNImpute | - | -| Statistics | Interpolation | - | -| Statistics | Min Impute | - | -| Statistics | Zero Impute | - | -| Statistics | Mean Impute | - | -| Statistics | Mean Impute By Series | - | - --- @@ -205,7 +206,7 @@ pip install -e . --- ## Loading and Preprocessing -ImputeGAP comes with several time series datasets. You can find them inside the submodule ``ts.datasets``. +ImputeGAP comes with several time series datasets. The list of datasets is described [here](https://imputegap.readthedocs.io/en/latest/datasets.html). As an example, we start by using eeg-alcohol, a standard dataset composed of individuals with a genetic predisposition to alcoholism. The dataset contains measurements from 64 electrodes placed on subject’s scalps, sampled at 256 Hz (3.9-ms epoch) for 1 second. The dimensions of the dataset are 64 series, each containing 256 values. @@ -217,29 +218,26 @@ You can find this example in the file [`runner_loading.py`](https://github.com/e from imputegap.recovery.manager import TimeSeries from imputegap.tools import utils -# initialize the TimeSeries() +# initialize the time series object ts = TimeSeries() print(f"ImputeGAP datasets : {ts.datasets}") -# load the timeseries from file or from the code +# load and normalize the dataset from file or from the code ts.load_series(utils.search_path("eeg-alcohol")) ts.normalize(normalizer="z_score") -# plot a subset of time series +# plot and print a subset of time series ts.plot(input_data=ts.data, nbr_series=9, nbr_val=100, save_path="./imputegap_assets") - -# print a subset of time series -ts.print(nbr_series=6, nbr_val=20) - +ts.print(nbr_series=9, nbr_val=20) ``` --- ## Contamination -We now describe how to simulate missing values in the loaded dataset. ImputeGAP implements eight different missingness patterns. You can find them inside the module ``ts.patterns``. +We now describe how to simulate missing values in the loaded dataset. ImputeGAP implements eight different missingness patterns. -For more details, please refer to the documentation in this
    page. +For more details, please refer to the documentation in this [page](https://imputegap.readthedocs.io/en/latest/patterns.html).

    ### Example Contamination @@ -252,16 +250,16 @@ As example, we show how to contaminate the eeg-alcohol dataset with the MCAR pat from imputegap.recovery.manager import TimeSeries from imputegap.tools import utils -# initialize the TimeSeries() object +# initialize the time series object ts = TimeSeries() print(f"Missingness patterns : {ts.patterns}") -# load and normalize the timeseries +# load and normalize the dataset ts.load_series(utils.search_path("eeg-alcohol")) ts.normalize(normalizer="z_score") # contaminate the time series with MCAR pattern -ts_m = ts.Contamination.missing_completely_at_random(ts.data, rate_dataset=0.2, rate_series=0.4, block_size=10, seed=True) +ts_m = ts.Contamination.mcar(ts.data, rate_dataset=0.2, rate_series=0.4, block_size=10, seed=True) # [OPTIONAL] plot the contaminated time series ts.plot(ts.data, ts_m, nbr_series=9, subplot=True, save_path="./imputegap_assets") @@ -272,7 +270,7 @@ ts.plot(ts.data, ts_m, nbr_series=9, subplot=True, save_path="./imputegap_assets ## Imputation In this section, we will illustrate how to impute the contaminated time series. Our library implements five families of imputation algorithms. Statistical, Machine Learning, Matrix Completion, Deep Learning, and Pattern Search Methods. -You can find the list of algorithms inside the module ``ts.algorithms``. +The list of algorithms and their optimizers is described [here](https://imputegap.readthedocs.io/en/latest/algorithms.html). ### Example Imputation You can find this example in the file [`runner_imputation.py`](https://github.com/eXascaleInfolab/ImputeGAP/blob/main/imputegap/runner_imputation.py). @@ -290,16 +288,16 @@ from imputegap.recovery.imputation import Imputation from imputegap.recovery.manager import TimeSeries from imputegap.tools import utils -# initialize the TimeSeries() object +# initialize the time series object ts = TimeSeries() print(f"Imputation algorithms : {ts.algorithms}") -# load and normalize the timeseries +# load and normalize the dataset ts.load_series(utils.search_path("eeg-alcohol")) ts.normalize(normalizer="z_score") # contaminate the time series -ts_m = ts.Contamination.missing_completely_at_random(ts.data) +ts_m = ts.Contamination.mcar(ts.data) # impute the contaminated series imputer = Imputation.MatrixCompletion.CDRec(ts_m) @@ -310,7 +308,7 @@ imputer.score(ts.data, imputer.recov_data) ts.print_results(imputer.metrics) # plot the recovered time series -ts.plot(input_data=ts.data, incomp_data=ts_m, recov_data=imputer.recov_data, nbr_series=9, subplot=True, save_path="./imputegap_assets") +ts.plot(input_data=ts.data, incomp_data=ts_m, recov_data=imputer.recov_data, nbr_series=9, subplot=True, algorithm=imputer.algorithm, save_path="./imputegap_assets") ``` --- @@ -329,30 +327,39 @@ from imputegap.recovery.imputation import Imputation from imputegap.recovery.manager import TimeSeries from imputegap.tools import utils -# initialize the TimeSeries() object +# initialize the time series object ts = TimeSeries() print(f"AutoML Optimizers : {ts.optimizers}") -# load and normalize the timeseries +# load and normalize the dataset ts.load_series(utils.search_path("eeg-alcohol")) ts.normalize(normalizer="z_score") # contaminate and impute the time series -ts_m = ts.Contamination.missing_completely_at_random(ts.data) +ts_m = ts.Contamination.mcar(ts.data) imputer = Imputation.MatrixCompletion.CDRec(ts_m) # use Ray Tune to fine tune the imputation algorithm imputer.impute(user_def=False, params={"input_data": ts.data, "optimizer": "ray_tune"}) -# compute and print the imputation metrics +# compute the imputation metrics with optimized parameter values imputer.score(ts.data, imputer.recov_data) -ts.print_results(imputer.metrics) + +# compute the imputation metrics with default parameter values +imputer_def = Imputation.MatrixCompletion.CDRec(ts_m).impute() +imputer_def.score(ts.data, imputer_def.recov_data) + +# print the imputation metrics with default and optimized parameter values +ts.print_results(imputer_def.metrics, text="Imputation metrics with default parameter values") +ts.print_results(imputer.metrics, text="Imputation metrics with optimized parameter values") # plot the recovered time series -ts.plot(input_data=ts.data, incomp_data=ts_m, recov_data=imputer.recov_data, nbr_series=9, subplot=True, save_path="./imputegap_assets", display=True) +ts.plot(input_data=ts.data, incomp_data=ts_m, recov_data=imputer.recov_data, nbr_series=9, subplot=True, + save_path="./imputegap_assets", display=True) # save hyperparameters -utils.save_optimization(optimal_params=imputer.parameters, algorithm=imputer.algorithm, dataset="eeg-alcohol", optimizer="ray_tune") +utils.save_optimization(optimal_params=imputer.parameters, algorithm=imputer.algorithm, dataset="eeg-alcohol", + optimizer="ray_tune") ``` --- @@ -361,7 +368,7 @@ utils.save_optimization(optimal_params=imputer.parameters, algorithm=imputer.alg ## Explainer ImputeGAP provides insights into the algorithm’s behavior by identifying the features that impact the most the imputation results. It trains a regression model to predict imputation results across various methods and uses SHapley Additive exPlanations ([SHAP](https://shap.readthedocs.io/en/latest/)) to reveal how different time series features influence the model’s predictions. - +The documentation for the explainer is described [here](https://imputegap.readthedocs.io/en/latest/explainer.html). ### Example Explainer @@ -375,17 +382,17 @@ from imputegap.recovery.manager import TimeSeries from imputegap.recovery.explainer import Explainer from imputegap.tools import utils -# initialize the TimeSeries() object +# initialize the time series object ts = TimeSeries() -# load and normalize the timeseries +# load and normalize the dataset ts.load_series(utils.search_path("eeg-alcohol")) ts.normalize(normalizer="z_score") # configure the explanation shap_values, shap_details = Explainer.shap_explainer(input_data=ts.data, extractor="pycatch", - pattern="missing_completely_at_random", + pattern="mcar", file_name=ts.name, algorithm="CDRec") @@ -398,6 +405,7 @@ Explainer.print(shap_values, shap_details) ## Downstream ImputeGAP includes a dedicated module for systematically evaluating the impact of data imputation on downstream tasks. Currently, forecasting is the primary supported task, with plans to expand to additional applications in the future. The example below demonstrates how to define the forecasting task and specify Prophet as the predictive model +The documentation for the downstream evaluation is described [here](https://imputegap.readthedocs.io/en/latest/downstream.html). Below is an example of how to call the downstream process for the model Prophet by defining a dictionary for the evaluator and selecting the model: @@ -412,23 +420,23 @@ from imputegap.recovery.imputation import Imputation from imputegap.recovery.manager import TimeSeries from imputegap.tools import utils -# initialize the TimeSeries() object +# initialize the time series object ts = TimeSeries() print(f"ImputeGAP downstream models for forcasting : {ts.downstream_models}") -# load and normalize the timeseries +# load and normalize the dataset ts.load_series(utils.search_path("forecast-economy")) ts.normalize(normalizer="min_max") # contaminate the time series -ts_m = ts.Contamination.missing_percentage(ts.data, rate_series=0.8) +ts_m = ts.Contamination.aligned(ts.data, rate_series=0.8) # define and impute the contaminated series imputer = Imputation.MatrixCompletion.CDRec(ts_m) imputer.impute() -# compute print the downstream results -downstream_config = {"task": "forecast", "model": "hw-add"} +# compute and print the downstream results +downstream_config = {"task": "forecast", "model": "hw-add", "comparator": "ZeroImpute"} imputer.score(ts.data, imputer.recov_data, downstream=downstream_config) ts.print_results(imputer.downstream_metrics, algorithm=imputer.algorithm) ``` @@ -440,7 +448,9 @@ ts.print_results(imputer.downstream_metrics, algorithm=imputer.algorithm) ## Benchmark -ImputeGAP can serve as a common test-bed for comparing the effectiveness and efficiency of time series imputation algorithms[[33]](#ref33) . Users have full control over the benchmark by customizing various parameters, including the list of datasets to evaluate, the algorithms to compare, the choice of optimizer to fine-tune the algorithms on the chosen datasets, the missingness patterns, and the range of missing rates. +ImputeGAP can serve as a common test-bed for comparing the effectiveness and efficiency of time series imputation algorithms[[33]](#ref33) . Users have full control over the benchmark by customizing various parameters, including the list of datasets to evaluate, the algorithms to compare, the choice of optimizer to fine-tune the algorithms on the chosen datasets, the missingness patterns, and the range of missing rates. The default metrics evaluated include "RMSE", "MAE", "MI", "Pearson", and the runtime. +The documentation for the benchmark is described [here](https://imputegap.readthedocs.io/en/latest/benchmark.html). + ### Example Benchmark You can find this example in the file [`runner_benchmark.py`](https://github.com/eXascaleInfolab/ImputeGAP/blob/main/imputegap/runner_benchmark.py). @@ -450,24 +460,29 @@ The benchmarking module can be utilized as follows: ```python from imputegap.recovery.benchmark import Benchmark -save_dir = "./analysis" -nbr_run = 2 +save_dir = "./imputegap_assets/benchmark" +nbr_run = 1 -datasets = ["eeg-alcohol", "eeg-reading"] +datasets = ["eeg-alcohol"] -optimizer = {"optimizer": "ray_tune", "options": {"n_calls": 1, "max_concurrent_trials": 1}} -optimizers = [optimizer] +optimizers = ["default_params"] -algorithms = ["MeanImpute", "CDRec", "STMVL", "IIM", "MRNN"] +algorithms = ["SoftImpute", "KNNImpute"] -patterns = ["missing_completely_at_random"] +patterns = ["mcar"] range = [0.05, 0.1, 0.2, 0.4, 0.6, 0.8] -# launch the analysis +# launch the evaluation list_results, sum_scores = Benchmark().eval(algorithms=algorithms, datasets=datasets, patterns=patterns, x_axis=range, optimizers=optimizers, save_dir=save_dir, runs=nbr_run) ``` +You can change the optimizer using the following command: +```python +optimizer = {"optimizer": "ray_tune", "options": {"n_calls": 1, "max_concurrent_trials": 1}} +optimizers = [optimizer] +``` + --- ## Integration @@ -476,56 +491,49 @@ To add your own imputation algorithm in Python or C++, please refer to the detai --- +## Citing -## Articles - - -Mourad Khayati, Alberto Lerner, Zakhar Tymchenko, Philippe Cudre-Mauroux: Mind the Gap: An Experimental Evaluation of Imputation of Missing Values Techniques in Time Series. Proc. VLDB Endow. 13(5): 768-782 (2020) - -Mourad Khayati, Quentin Nater, Jacques Pasquier: ImputeVIS: An Interactive Evaluator to Benchmark Imputation Techniques for Time Series Data. Proc. VLDB Endow. 17(12): 4329-4332 (2024) +If you use ImputeGAP in your research, please cite the paper: +``` +@article{nater2025imputegap, + title = {ImputeGAP: A Comprehensive Library for Time Series Imputation}, + author = {Nater, Quentin and Khayati, Mourad and Pasquier, Jacques}, + year = {2025}, + eprint = {2503.15250}, + archiveprefix = {arXiv}, + primaryclass = {cs.LG}, + url = {https://arxiv.org/abs/2503.15250} +} +``` --- - ## Core Contributors
    - Quentin Nater - ImputeGAP + + Quentin Nater - ImputeGAP + - Mourad Khayati - ImputeGAP + + Mourad Khayati - ImputeGAP +
    Quentin Nater - quentin.nater@unifr.ch - Mourad Khayati - mourad.khayati@unifr.ch + Mourad Khayati
    ---- - - -## Citing - -If you use ImputeGAP in your research, please cite the library -```bash -@software{ImputeGAP_2025, - author = {Nater, Quentin and Khayati, Mourad}, - license = {MIT}, - title = {{ImputeGAP Library}}, - url = {https://github.com/eXascaleInfolab/ImputeGAP}, - year = {2025} -} -``` --- diff --git a/imputegap.egg-info/SOURCES.txt b/imputegap.egg-info/SOURCES.txt index cd5eb3f3..1d344f8e 100644 --- a/imputegap.egg-info/SOURCES.txt +++ b/imputegap.egg-info/SOURCES.txt @@ -57,17 +57,25 @@ imputegap/algorithms/xgboost.py imputegap/algorithms/zero_impute.py imputegap/algorithms/lib/lib_algo.dll imputegap/algorithms/lib/lib_algo.so +imputegap/algorithms/lib/lib_cdrec.dylib imputegap/algorithms/lib/lib_cdrec.so +imputegap/algorithms/lib/lib_dynammo.dylib imputegap/algorithms/lib/lib_dynammo.so +imputegap/algorithms/lib/lib_grouse.dylib imputegap/algorithms/lib/lib_grouse.so -imputegap/algorithms/lib/lib_grouse_old.so +imputegap/algorithms/lib/lib_iterative_svd.dylib imputegap/algorithms/lib/lib_iterative_svd.so +imputegap/algorithms/lib/lib_rosl.dylib imputegap/algorithms/lib/lib_rosl.so -imputegap/algorithms/lib/lib_rosl_old.so +imputegap/algorithms/lib/lib_soft_impute.dylib imputegap/algorithms/lib/lib_soft_impute.so +imputegap/algorithms/lib/lib_spirit.dylib imputegap/algorithms/lib/lib_spirit.so +imputegap/algorithms/lib/lib_stmvl.dylib imputegap/algorithms/lib/lib_stmvl.so +imputegap/algorithms/lib/lib_svt.dylib imputegap/algorithms/lib/lib_svt.so +imputegap/algorithms/lib/lib_tkcm.dylib imputegap/algorithms/lib/lib_tkcm.so imputegap/assets/logo_imputegab.png imputegap/dataset/README.md @@ -184,8 +192,11 @@ imputegap/dataset/docs/temperature/features_temperature.txt imputegap/env/default_explainer.toml imputegap/env/default_values.toml imputegap/imputegap_assets/.gitkeep -imputegap/imputegap_assets/25_03_18_18_16_42_plot.jpg -imputegap/imputegap_assets/shap/.gitkeep +imputegap/imputegap_assets/benchmark/.gitkeep +imputegap/imputegap_assets/benchmark/_heatmap/.gitkeep +imputegap/imputegap_assets/downstream/.gitkeep +imputegap/imputegap_assets/shap/grouped/.gitkeep +imputegap/imputegap_assets/shap/per_categories/.gitkeep imputegap/params/optimal_parameters_b_bafu_iim.toml imputegap/params/optimal_parameters_b_bafu_mrnn.toml imputegap/params/optimal_parameters_b_bafu_stmvl.toml @@ -400,6 +411,10 @@ imputegap/wrapper/AlgoPython/GRIN/logs/grin/2025-03-13_20-08-01_42/epoch=19-step imputegap/wrapper/AlgoPython/GRIN/logs/grin/2025-03-13_20-08-01_42/model/version_0/events.out.tfevents.1741892881.diufpc048844.135606.2 imputegap/wrapper/AlgoPython/GRIN/logs/grin/2025-03-13_20-08-01_42/model/version_0/events.out.tfevents.1741892891.diufpc048844.135606.3 imputegap/wrapper/AlgoPython/GRIN/logs/grin/2025-03-13_20-08-01_42/model/version_0/hparams.yaml +imputegap/wrapper/AlgoPython/GRIN/logs/grin/2025-03-21_10-04-56_42/epoch=19-step=20.ckpt +imputegap/wrapper/AlgoPython/GRIN/logs/grin/2025-03-21_10-04-56_42/model/version_0/events.out.tfevents.1742547910.diufpc048844.345185.0 +imputegap/wrapper/AlgoPython/GRIN/logs/grin/2025-03-21_10-04-56_42/model/version_0/events.out.tfevents.1742547938.diufpc048844.345185.1 +imputegap/wrapper/AlgoPython/GRIN/logs/grin/2025-03-21_10-04-56_42/model/version_0/hparams.yaml imputegap/wrapper/AlgoPython/HKMF_T/callback.py imputegap/wrapper/AlgoPython/HKMF_T/dataloder.py imputegap/wrapper/AlgoPython/HKMF_T/hankel_methods.py @@ -445,6 +460,7 @@ imputegap/wrapper/AlgoPython/MissNet/data/conversion.py imputegap/wrapper/AlgoPython/MissNet/data/generate.py imputegap/wrapper/AlgoPython/MissNet/data/original/dynammo.zip imputegap/wrapper/AlgoPython/MissNet/data/original/motes.zip +imputegap/wrapper/AlgoPython/MissNet/temp/model.pkl imputegap/wrapper/AlgoPython/TIDER/TIDER.pt imputegap/wrapper/AlgoPython/TIDER/TIDER.py imputegap/wrapper/AlgoPython/TIDER/__init__.py diff --git a/imputegap.egg-info/requires.txt b/imputegap.egg-info/requires.txt index 3b9b5c49..4ed6e1ef 100644 --- a/imputegap.egg-info/requires.txt +++ b/imputegap.egg-info/requires.txt @@ -3,7 +3,6 @@ matplotlib==3.7.5 toml==0.10.2 scikit-learn>=1.5.0 scipy==1.14.1 -setuptools==75.1.0 tensorflow==2.17.0 shap==0.44.1 pycatch22==0.4.4 @@ -38,7 +37,6 @@ ray[tune]==2.41.0 fire==0.7.0 fastdtw==0.3.4 torch-geometric==2.6.1 -torch-cluster==1.6.3 pytorch-lightning==2.5.0 torchmetrics==1.6.1 lightning==2.5.0 diff --git a/imputegap/__init__.py b/imputegap/__init__.py index 010279ae..84ce1414 100644 --- a/imputegap/__init__.py +++ b/imputegap/__init__.py @@ -1 +1 @@ -__version__ = "1.0.6" \ No newline at end of file +__version__ = "1.0.7" \ No newline at end of file diff --git a/imputegap/__pycache__/__init__.cpython-312.pyc b/imputegap/__pycache__/__init__.cpython-312.pyc index 0ed9d1b9..e458f40d 100644 Binary files a/imputegap/__pycache__/__init__.cpython-312.pyc and b/imputegap/__pycache__/__init__.cpython-312.pyc differ diff --git a/imputegap/algorithms/__pycache__/cdrec.cpython-312.pyc b/imputegap/algorithms/__pycache__/cdrec.cpython-312.pyc index 4a9e138d..711935b2 100644 Binary files a/imputegap/algorithms/__pycache__/cdrec.cpython-312.pyc and b/imputegap/algorithms/__pycache__/cdrec.cpython-312.pyc differ diff --git a/imputegap/algorithms/__pycache__/dynammo.cpython-312.pyc b/imputegap/algorithms/__pycache__/dynammo.cpython-312.pyc index b5f4b783..6d8a827e 100644 Binary files a/imputegap/algorithms/__pycache__/dynammo.cpython-312.pyc and b/imputegap/algorithms/__pycache__/dynammo.cpython-312.pyc differ diff --git a/imputegap/algorithms/__pycache__/grouse.cpython-312.pyc b/imputegap/algorithms/__pycache__/grouse.cpython-312.pyc index 8bf186b9..23ebbb41 100644 Binary files a/imputegap/algorithms/__pycache__/grouse.cpython-312.pyc and b/imputegap/algorithms/__pycache__/grouse.cpython-312.pyc differ diff --git a/imputegap/algorithms/__pycache__/iim.cpython-312.pyc b/imputegap/algorithms/__pycache__/iim.cpython-312.pyc index 25148d1e..d77713ea 100644 Binary files a/imputegap/algorithms/__pycache__/iim.cpython-312.pyc and b/imputegap/algorithms/__pycache__/iim.cpython-312.pyc differ diff --git a/imputegap/algorithms/__pycache__/iterative_svd.cpython-312.pyc b/imputegap/algorithms/__pycache__/iterative_svd.cpython-312.pyc index ada81600..367e1e99 100644 Binary files a/imputegap/algorithms/__pycache__/iterative_svd.cpython-312.pyc and b/imputegap/algorithms/__pycache__/iterative_svd.cpython-312.pyc differ diff --git a/imputegap/algorithms/__pycache__/knn.cpython-312.pyc b/imputegap/algorithms/__pycache__/knn.cpython-312.pyc index 4278da57..7589bda6 100644 Binary files a/imputegap/algorithms/__pycache__/knn.cpython-312.pyc and b/imputegap/algorithms/__pycache__/knn.cpython-312.pyc differ diff --git a/imputegap/algorithms/__pycache__/mrnn.cpython-312.pyc b/imputegap/algorithms/__pycache__/mrnn.cpython-312.pyc index 85430751..9380703b 100644 Binary files a/imputegap/algorithms/__pycache__/mrnn.cpython-312.pyc and b/imputegap/algorithms/__pycache__/mrnn.cpython-312.pyc differ diff --git a/imputegap/algorithms/__pycache__/rosl.cpython-312.pyc b/imputegap/algorithms/__pycache__/rosl.cpython-312.pyc index d4353115..545cb37a 100644 Binary files a/imputegap/algorithms/__pycache__/rosl.cpython-312.pyc and b/imputegap/algorithms/__pycache__/rosl.cpython-312.pyc differ diff --git a/imputegap/algorithms/__pycache__/soft_impute.cpython-312.pyc b/imputegap/algorithms/__pycache__/soft_impute.cpython-312.pyc index 4638316f..dff0e041 100644 Binary files a/imputegap/algorithms/__pycache__/soft_impute.cpython-312.pyc and b/imputegap/algorithms/__pycache__/soft_impute.cpython-312.pyc differ diff --git a/imputegap/algorithms/__pycache__/spirit.cpython-312.pyc b/imputegap/algorithms/__pycache__/spirit.cpython-312.pyc index a767ee82..056b75cd 100644 Binary files a/imputegap/algorithms/__pycache__/spirit.cpython-312.pyc and b/imputegap/algorithms/__pycache__/spirit.cpython-312.pyc differ diff --git a/imputegap/algorithms/__pycache__/stmvl.cpython-312.pyc b/imputegap/algorithms/__pycache__/stmvl.cpython-312.pyc index 5407c8d0..7bc04e15 100644 Binary files a/imputegap/algorithms/__pycache__/stmvl.cpython-312.pyc and b/imputegap/algorithms/__pycache__/stmvl.cpython-312.pyc differ diff --git a/imputegap/algorithms/__pycache__/svt.cpython-312.pyc b/imputegap/algorithms/__pycache__/svt.cpython-312.pyc index a6144f0e..cc5526a9 100644 Binary files a/imputegap/algorithms/__pycache__/svt.cpython-312.pyc and b/imputegap/algorithms/__pycache__/svt.cpython-312.pyc differ diff --git a/imputegap/algorithms/__pycache__/tkcm.cpython-312.pyc b/imputegap/algorithms/__pycache__/tkcm.cpython-312.pyc index aca5679c..3155a282 100644 Binary files a/imputegap/algorithms/__pycache__/tkcm.cpython-312.pyc and b/imputegap/algorithms/__pycache__/tkcm.cpython-312.pyc differ diff --git a/imputegap/algorithms/bayotide.py b/imputegap/algorithms/bayotide.py index e843a583..63e6e85c 100644 --- a/imputegap/algorithms/bayotide.py +++ b/imputegap/algorithms/bayotide.py @@ -66,6 +66,6 @@ def bay_otide(incomp_data, K_trend=20, K_season=2, n_season=5, K_bias=1, time_sc end_time = time.time() if logs: - print(f"\n\t\t> logs, imputation bay_otide - Execution Time: {(end_time - start_time):.4f} seconds\n") + print(f"\n\t> logs, imputation bay_otide - Execution Time: {(end_time - start_time):.4f} seconds\n") return recov_data diff --git a/imputegap/algorithms/bit_graph.py b/imputegap/algorithms/bit_graph.py index 9f00d15d..b32cc2eb 100644 --- a/imputegap/algorithms/bit_graph.py +++ b/imputegap/algorithms/bit_graph.py @@ -64,6 +64,6 @@ def bit_graph(incomp_data, node_number=-1, kernel_set=[1], dropout=0.1, subgraph end_time = time.time() if logs: - print(f"\n\t\t> logs, imputation bit graph - Execution Time: {(end_time - start_time):.4f} seconds\n") + print(f"\n\t> logs, imputation bit graph - Execution Time: {(end_time - start_time):.4f} seconds\n") return recov_data diff --git a/imputegap/algorithms/brits.py b/imputegap/algorithms/brits.py index 346ab9ba..4bc69301 100644 --- a/imputegap/algorithms/brits.py +++ b/imputegap/algorithms/brits.py @@ -49,6 +49,6 @@ def brits(incomp_data, model="brits", epoch=10, batch_size=7, nbr_features=1, hi end_time = time.time() if logs: - print(f"\n\t\t> logs, imputation brits - Execution Time: {(end_time - start_time):.4f} seconds\n") + print(f"\n\t> logs, imputation brits - Execution Time: {(end_time - start_time):.4f} seconds\n") return recov_data diff --git a/imputegap/algorithms/cdrec.py b/imputegap/algorithms/cdrec.py index bcad9d95..9d6fb16d 100644 --- a/imputegap/algorithms/cdrec.py +++ b/imputegap/algorithms/cdrec.py @@ -29,7 +29,7 @@ def native_cdrec(__py_matrix, __py_rank, __py_epsilon, __py_iterations): Khayati, M., Cudré-Mauroux, P. & Böhlen, M.H. Scalable recovery of missing blocks in time series with high and low cross-correlations. Knowl Inf Syst 62, 2257–2280 (2020). https://doi.org/10.1007/s10115-019-01421-7 """ - shared_lib = utils.load_share_lib("lib_cdrec.so") + shared_lib = utils.load_share_lib("lib_cdrec") __py_n = len(__py_matrix); __py_m = len(__py_matrix[0]); @@ -87,7 +87,7 @@ def cdrec(incomp_data, truncation_rank, iterations, epsilon, logs=True, lib_path """ - print(f"\t\t\t\t(PYTHON) CDRec: ({incomp_data.shape[0]},{incomp_data.shape[1]}) for rank {truncation_rank}, " + print(f"(PYTHON) CDRec: ({incomp_data.shape[0]},{incomp_data.shape[1]}) for rank {truncation_rank}, " f"epsilon {epsilon}, and iterations {iterations}...") start_time = time.time() # Record start time @@ -98,6 +98,6 @@ def cdrec(incomp_data, truncation_rank, iterations, epsilon, logs=True, lib_path end_time = time.time() if logs: - print(f"\n\t\t> logs, imputation cdrec - Execution Time: {(end_time - start_time):.4f} seconds\n") + print(f"\n\t> logs, imputation cdrec - Execution Time: {(end_time - start_time):.4f} seconds\n") return recov_data diff --git a/imputegap/algorithms/cpp_integration.py b/imputegap/algorithms/cpp_integration.py index 30ef7656..7985ad6b 100644 --- a/imputegap/algorithms/cpp_integration.py +++ b/imputegap/algorithms/cpp_integration.py @@ -25,7 +25,7 @@ def native_algo(__py_matrix, __py_param): """ - shared_lib = utils.load_share_lib("to_adapt.so") + shared_lib = utils.load_share_lib("to_adapt") __py_n = len(__py_matrix); __py_m = len(__py_matrix[0]); @@ -79,6 +79,6 @@ def your_algo(contamination, param, logs=True): end_time = time.time() if logs: - print(f"\n\t\t> logs, imputation algo - Execution Time: {(end_time - start_time):.4f} seconds\n") + print(f"\n\t> logs, imputation algo - Execution Time: {(end_time - start_time):.4f} seconds\n") return recov_data diff --git a/imputegap/algorithms/deep_mvi.py b/imputegap/algorithms/deep_mvi.py index 3317aabb..8fab88f7 100644 --- a/imputegap/algorithms/deep_mvi.py +++ b/imputegap/algorithms/deep_mvi.py @@ -41,6 +41,6 @@ def deep_mvi(incomp_data, max_epoch=1000, patience=2, lr=0.001, logs=True): end_time = time.time() if logs: - print(f"\n\t\t> logs, imputation deep mvi - Execution Time: {(end_time - start_time):.4f} seconds\n") + print(f"\n\t> logs, imputation deep mvi - Execution Time: {(end_time - start_time):.4f} seconds\n") return recov_data diff --git a/imputegap/algorithms/dynammo.py b/imputegap/algorithms/dynammo.py index 205f1bf4..acc9f6ff 100644 --- a/imputegap/algorithms/dynammo.py +++ b/imputegap/algorithms/dynammo.py @@ -29,7 +29,7 @@ def native_dynammo(__py_matrix, __py_h, __py_maxIter, __py_fast): L. Li, J. McCann, N. S. Pollard, and C. Faloutsos. Dynammo: mining and summarization of coevolving sequences with missing values. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Paris, France, June 28 - July 1, 2009, pages 507–516, 2009. """ - shared_lib = utils.load_share_lib("lib_dynammo.so") + shared_lib = utils.load_share_lib("lib_dynammo") __py_n = len(__py_matrix); __py_m = len(__py_matrix[0]); @@ -92,6 +92,6 @@ def dynammo(incomp_data, h, max_iteration, approximation, logs=True, lib_path=No end_time = time.time() if logs: - print(f"\n\t\t> logs, imputation DynaMMo - Execution Time: {(end_time - start_time):.4f} seconds\n") + print(f"\n\t> logs, imputation DynaMMo - Execution Time: {(end_time - start_time):.4f} seconds\n") return recov_data diff --git a/imputegap/algorithms/gain.py b/imputegap/algorithms/gain.py index 0d0a1917..912e8ed4 100644 --- a/imputegap/algorithms/gain.py +++ b/imputegap/algorithms/gain.py @@ -44,6 +44,6 @@ def gain(incomp_data, batch_size=32, hint_rate=0.9, alpha=10, epoch=100, logs=Tr end_time = time.time() if logs: - print(f"\n\t\t> logs, imputation gain - Execution Time: {(end_time - start_time):.4f} seconds\n") + print(f"\n\t> logs, imputation gain - Execution Time: {(end_time - start_time):.4f} seconds\n") return recov_data diff --git a/imputegap/algorithms/grin.py b/imputegap/algorithms/grin.py index 6de5ead0..f6626d29 100644 --- a/imputegap/algorithms/grin.py +++ b/imputegap/algorithms/grin.py @@ -60,6 +60,6 @@ def grin(incomp_data, d_hidden=32, lr=0.001, batch_size=32, window=10, alpha=10. end_time = time.time() if logs: - print(f"\n\t\t> logs, imputation grin - Execution Time: {(end_time - start_time):.4f} seconds\n") + print(f"\n\t> logs, imputation grin - Execution Time: {(end_time - start_time):.4f} seconds\n") return recov_data diff --git a/imputegap/algorithms/grouse.py b/imputegap/algorithms/grouse.py index e90f6833..e72d2636 100644 --- a/imputegap/algorithms/grouse.py +++ b/imputegap/algorithms/grouse.py @@ -24,7 +24,7 @@ def native_grouse(__py_matrix, __py_rank): D. Zhang and L. Balzano. Global convergence of a grassmannian gradient descent algorithm for subspace estimation. In Proceedings of the 19th International Conference on Artificial Intelligence and Statistics, AISTATS 2016, Cadiz, Spain, May 9-11, 2016, pages 1460–1468, 2016. """ - shared_lib = utils.load_share_lib("lib_grouse.so") + shared_lib = utils.load_share_lib("lib_grouse") __py_n = len(__py_matrix); __py_m = len(__py_matrix[0]); @@ -80,6 +80,6 @@ def grouse(incomp_data, max_rank, logs=True, lib_path=None): end_time = time.time() if logs: - print(f"\n\t\t> logs, imputation GROUSE - Execution Time: {(end_time - start_time):.4f} seconds\n") + print(f"\n\t> logs, imputation GROUSE - Execution Time: {(end_time - start_time):.4f} seconds\n") return recov_data diff --git a/imputegap/algorithms/hkmf_t.py b/imputegap/algorithms/hkmf_t.py index ab38585f..b6d3f819 100644 --- a/imputegap/algorithms/hkmf_t.py +++ b/imputegap/algorithms/hkmf_t.py @@ -48,6 +48,6 @@ def hkmf_t(incomp_data, tags=None, data_names=None, epoch=10, logs=True): end_time = time.time() if logs: - print(f"\n\t\t> logs, imputation hkmf_t - Execution Time: {(end_time - start_time):.4f} seconds\n") + print(f"\n\t> logs, imputation hkmf_t - Execution Time: {(end_time - start_time):.4f} seconds\n") return recov_data diff --git a/imputegap/algorithms/iim.py b/imputegap/algorithms/iim.py index 38b258f4..afbdb5be 100644 --- a/imputegap/algorithms/iim.py +++ b/imputegap/algorithms/iim.py @@ -45,6 +45,6 @@ def iim(incomp_data, number_neighbor, algo_code, logs=True): end_time = time.time() if logs: - print(f"\n\t\t> logs, imputation iim - Execution Time: {(end_time - start_time):.4f} seconds\n") + print(f"\n\t> logs, imputation iim - Execution Time: {(end_time - start_time):.4f} seconds\n") return recov_data diff --git a/imputegap/algorithms/interpolation.py b/imputegap/algorithms/interpolation.py index a1230012..fe1d93c5 100644 --- a/imputegap/algorithms/interpolation.py +++ b/imputegap/algorithms/interpolation.py @@ -30,7 +30,7 @@ def interpolation(incomp_data, method="linear", poly_order=2, logs=True): """ - print(f"\t\t\t\t(PYTHON) interpolation : ({incomp_data.shape[0]},{incomp_data.shape[1]}) for method {method}" + print(f"(PYTHON) interpolation : ({incomp_data.shape[0]},{incomp_data.shape[1]}) for method {method}" f", and polynomial order {poly_order}...") start_time = time.time() # Record start time @@ -70,6 +70,6 @@ def interpolation(incomp_data, method="linear", poly_order=2, logs=True): end_time = time.time() if logs: - print(f"\n\t\t> logs, imputation with interpolation - Execution Time: {(end_time - start_time):.4f} seconds\n") + print(f"\n\t> logs, imputation with interpolation - Execution Time: {(end_time - start_time):.4f} seconds\n") return recov_data diff --git a/imputegap/algorithms/iterative_svd.py b/imputegap/algorithms/iterative_svd.py index faed1b02..18b43585 100644 --- a/imputegap/algorithms/iterative_svd.py +++ b/imputegap/algorithms/iterative_svd.py @@ -25,7 +25,7 @@ def native_iterative_svd(__py_matrix, __py_rank): Olga Troyanskaya, Michael Cantor, Gavin Sherlock, Pat Brown, Trevor Hastie, Robert Tibshirani, David Botstein, Russ B. Altman, Missing value estimation methods for DNA microarrays , Bioinformatics, Volume 17, Issue 6, June 2001, Pages 520–525, https://doi.org/10.1093/bioinformatics/17.6.520 """ - shared_lib = utils.load_share_lib("lib_iterative_svd.so") + shared_lib = utils.load_share_lib("lib_iterative_svd") __py_n = len(__py_matrix); __py_m = len(__py_matrix[0]); @@ -82,6 +82,6 @@ def iterative_svd(incomp_data, truncation_rank, logs=True, lib_path=None): end_time = time.time() if logs: - print(f"\n\t\t> logs, imputation iterative svd - Execution Time: {(end_time - start_time):.4f} seconds\n") + print(f"\n\t> logs, imputation iterative svd - Execution Time: {(end_time - start_time):.4f} seconds\n") return recov_data diff --git a/imputegap/algorithms/knn.py b/imputegap/algorithms/knn.py index 97f35693..146fc32c 100644 --- a/imputegap/algorithms/knn.py +++ b/imputegap/algorithms/knn.py @@ -29,7 +29,7 @@ def knn(incomp_data, k=5, weights="uniform", logs=True): """ - print(f"\t\t\t\t(PYTHON) KNN: ({incomp_data.shape[0]},{incomp_data.shape[1]}) for k {k}, " + print(f"(PYTHON) KNNImpute: ({incomp_data.shape[0]},{incomp_data.shape[1]}) for k {k}, " f", and weights {weights}...") start_time = time.time() # Record start time @@ -74,6 +74,6 @@ def knn(incomp_data, k=5, weights="uniform", logs=True): end_time = time.time() if logs: - print(f"\n\t\t> logs, imputation knn - Execution Time: {(end_time - start_time):.4f} seconds\n") + print(f"\n\t> logs, imputation knn_impute - Execution Time: {(end_time - start_time):.4f} seconds\n") return recov_data diff --git a/imputegap/algorithms/lib/lib_cdrec.dylib b/imputegap/algorithms/lib/lib_cdrec.dylib new file mode 100644 index 00000000..4996676c Binary files /dev/null and b/imputegap/algorithms/lib/lib_cdrec.dylib differ diff --git a/imputegap/algorithms/lib/lib_dynammo.dylib b/imputegap/algorithms/lib/lib_dynammo.dylib new file mode 100644 index 00000000..d74632c7 Binary files /dev/null and b/imputegap/algorithms/lib/lib_dynammo.dylib differ diff --git a/imputegap/algorithms/lib/lib_grouse.dylib b/imputegap/algorithms/lib/lib_grouse.dylib new file mode 100644 index 00000000..f2a2faed Binary files /dev/null and b/imputegap/algorithms/lib/lib_grouse.dylib differ diff --git a/imputegap/algorithms/lib/lib_grouse_old.so b/imputegap/algorithms/lib/lib_grouse_old.so deleted file mode 100644 index faca87aa..00000000 Binary files a/imputegap/algorithms/lib/lib_grouse_old.so and /dev/null differ diff --git a/imputegap/algorithms/lib/lib_iterative_svd.dylib b/imputegap/algorithms/lib/lib_iterative_svd.dylib new file mode 100644 index 00000000..4476ac45 Binary files /dev/null and b/imputegap/algorithms/lib/lib_iterative_svd.dylib differ diff --git a/imputegap/algorithms/lib/lib_rosl.dylib b/imputegap/algorithms/lib/lib_rosl.dylib new file mode 100644 index 00000000..0fbc1996 Binary files /dev/null and b/imputegap/algorithms/lib/lib_rosl.dylib differ diff --git a/imputegap/algorithms/lib/lib_rosl_old.so b/imputegap/algorithms/lib/lib_rosl_old.so deleted file mode 100644 index 0cc7e086..00000000 Binary files a/imputegap/algorithms/lib/lib_rosl_old.so and /dev/null differ diff --git a/imputegap/algorithms/lib/lib_soft_impute.dylib b/imputegap/algorithms/lib/lib_soft_impute.dylib new file mode 100644 index 00000000..45bb6e3e Binary files /dev/null and b/imputegap/algorithms/lib/lib_soft_impute.dylib differ diff --git a/imputegap/algorithms/lib/lib_spirit.dylib b/imputegap/algorithms/lib/lib_spirit.dylib new file mode 100644 index 00000000..ed900873 Binary files /dev/null and b/imputegap/algorithms/lib/lib_spirit.dylib differ diff --git a/imputegap/algorithms/lib/lib_stmvl.dylib b/imputegap/algorithms/lib/lib_stmvl.dylib new file mode 100644 index 00000000..0b84a73f Binary files /dev/null and b/imputegap/algorithms/lib/lib_stmvl.dylib differ diff --git a/imputegap/algorithms/lib/lib_svt.dylib b/imputegap/algorithms/lib/lib_svt.dylib new file mode 100644 index 00000000..7dbffb24 Binary files /dev/null and b/imputegap/algorithms/lib/lib_svt.dylib differ diff --git a/imputegap/algorithms/lib/lib_tkcm.dylib b/imputegap/algorithms/lib/lib_tkcm.dylib new file mode 100644 index 00000000..4d90ae1c Binary files /dev/null and b/imputegap/algorithms/lib/lib_tkcm.dylib differ diff --git a/imputegap/algorithms/mean_impute_by_series.py b/imputegap/algorithms/mean_impute_by_series.py index bb6f7c4a..0276e974 100644 --- a/imputegap/algorithms/mean_impute_by_series.py +++ b/imputegap/algorithms/mean_impute_by_series.py @@ -38,7 +38,7 @@ def mean_impute_by_series(incomp_data, logs=True): end_time = time.time() if logs: - print(f"\n\t\t> logs, imputation mean impute (by series) - Execution Time: {(end_time - start_time):.4f} seconds\n") + print(f"\n\t> logs, imputation mean impute (by series) - Execution Time: {(end_time - start_time):.4f} seconds\n") return recov_data diff --git a/imputegap/algorithms/mice.py b/imputegap/algorithms/mice.py index ab73e320..d394078a 100644 --- a/imputegap/algorithms/mice.py +++ b/imputegap/algorithms/mice.py @@ -39,7 +39,7 @@ def mice(incomp_data, max_iter=3, tol=0.001, initial_strategy='mean', seed=42, l https://scikit-learn.org/stable/modules/generated/sklearn.impute.IterativeImputer.html#sklearn.impute.IterativeImputer """ - print("\t\t(PYTHON) MICE : Matrix Shape: (", incomp_data.shape[0], ", ", incomp_data.shape[1], ") for max_iter ", + print("(PYTHON) MICE : Matrix Shape: (", incomp_data.shape[0], ", ", incomp_data.shape[1], ") for max_iter ", max_iter, ", tol ", tol, " initial_strategy ", initial_strategy, ", and seed ", seed, "...\n\n\t\t\t" "Careful, this imputation algorithm might take a while to compute.") @@ -50,6 +50,6 @@ def mice(incomp_data, max_iter=3, tol=0.001, initial_strategy='mean', seed=42, l end_time = time.time() if logs: - print(f"\n\t\t> logs, imputation MICE - Execution Time: {(end_time - start_time):.4f} seconds\n") + print(f"\n\t> logs, imputation MICE - Execution Time: {(end_time - start_time):.4f} seconds\n") return recov_data diff --git a/imputegap/algorithms/miss_forest.py b/imputegap/algorithms/miss_forest.py index 3dd56645..0a5145d6 100644 --- a/imputegap/algorithms/miss_forest.py +++ b/imputegap/algorithms/miss_forest.py @@ -45,7 +45,7 @@ def miss_forest(incomp_data, n_estimators=10, max_iter=3, max_features='sqrt', s https://pypi.org/project/MissForest/ """ - print("\t\t(PYTHON) MISS FOREST : Matrix Shape: (", incomp_data.shape[0], ", ", incomp_data.shape[1], ") for n_estimators ", + print("(PYTHON) MISS FOREST : Matrix Shape: (", incomp_data.shape[0], ", ", incomp_data.shape[1], ") for n_estimators ", n_estimators, ", max_iter ", max_iter, " max_features ", max_features, ", and seed ", seed, "...") # Convert numpy array to pandas DataFrame if needed @@ -64,6 +64,6 @@ def miss_forest(incomp_data, n_estimators=10, max_iter=3, max_features='sqrt', s end_time = time.time() if logs: - print(f"\n\t\t> logs, imputation MISS FOREST - Execution Time: {(end_time - start_time):.4f} seconds\n") + print(f"\n\t> logs, imputation MISS FOREST - Execution Time: {(end_time - start_time):.4f} seconds\n") return np.array(recov_data) diff --git a/imputegap/algorithms/miss_net.py b/imputegap/algorithms/miss_net.py index a636065a..e120c7ba 100644 --- a/imputegap/algorithms/miss_net.py +++ b/imputegap/algorithms/miss_net.py @@ -46,7 +46,7 @@ def miss_net(incomp_data, alpha, beta, L, n_cl, max_iteration, tol, random_init, https://github.com/KoheiObata/MissNet/tree/main """ - print("\t\t(PYTHON) MISS NET: Matrix Shape: (", incomp_data.shape[0], ", ", incomp_data.shape[1], ") " + print("(PYTHON) MISS NET: Matrix Shape: (", incomp_data.shape[0], ", ", incomp_data.shape[1], ") " "for alpha ", alpha, ", beta ", beta, ", L ", L, ", n_cl ", n_cl, ", max_iteration ", max_iteration, "tol ", tol, " random_init ", random_init, "...") @@ -62,6 +62,6 @@ def miss_net(incomp_data, alpha, beta, L, n_cl, max_iteration, tol, random_init, recov_data[nan_mask] = incomp_data[nan_mask] if logs: - print(f"\n\t\t> logs, imputation miss_net - Execution Time: {(end_time - start_time):.4f} seconds\n") + print(f"\n\t> logs, imputation miss_net - Execution Time: {(end_time - start_time):.4f} seconds\n") return recov_data diff --git a/imputegap/algorithms/mpin.py b/imputegap/algorithms/mpin.py index 41f7e385..8e544153 100644 --- a/imputegap/algorithms/mpin.py +++ b/imputegap/algorithms/mpin.py @@ -52,6 +52,6 @@ def mpin(incomp_data=None, incre_mode="alone", window=2, k=10, lr=0.01, weight_d end_time = time.time() if logs: - print(f"\n\t\t> logs, imputation mpin - Execution Time: {(end_time - start_time):.4f} seconds\n") + print(f"\n\t> logs, imputation mpin - Execution Time: {(end_time - start_time):.4f} seconds\n") return recov_data diff --git a/imputegap/algorithms/mrnn.py b/imputegap/algorithms/mrnn.py index 53b8640d..e8ed7716 100644 --- a/imputegap/algorithms/mrnn.py +++ b/imputegap/algorithms/mrnn.py @@ -48,6 +48,6 @@ def mrnn(incomp_data, hidden_dim, learning_rate, iterations, sequence_length, lo end_time = time.time() if logs: - print(f"\n\t\t> logs, imputation mrnn - Execution Time: {(end_time - start_time):.4f} seconds\n") + print(f"\n\t> logs, imputation mrnn - Execution Time: {(end_time - start_time):.4f} seconds\n") return recov_data diff --git a/imputegap/algorithms/pristi.py b/imputegap/algorithms/pristi.py index ce00d3e0..a86967f1 100644 --- a/imputegap/algorithms/pristi.py +++ b/imputegap/algorithms/pristi.py @@ -44,6 +44,6 @@ def pristi(incomp_data, target_strategy="hybrid", unconditional=True, seed=42, d end_time = time.time() if logs: - print(f"\n\t\t> logs, imputation priSTI - Execution Time: {(end_time - start_time):.4f} seconds\n") + print(f"\n\t> logs, imputation priSTI - Execution Time: {(end_time - start_time):.4f} seconds\n") return recov_data diff --git a/imputegap/algorithms/rosl.py b/imputegap/algorithms/rosl.py index 41dd2c92..9ef33122 100644 --- a/imputegap/algorithms/rosl.py +++ b/imputegap/algorithms/rosl.py @@ -31,7 +31,7 @@ def native_rosl(__py_matrix, __py_rank, __py_regularization): ---------- X. Shu, F. Porikli, and N. Ahuja. Robust orthonormal subspace learning: Efficient recovery of corrupted low-rank matrices. In 2014 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2014, Columbus, OH, USA, June 23-28, 2014, pages 3874–3881, 2014. """ - shared_lib = utils.load_share_lib("lib_rosl.so") + shared_lib = utils.load_share_lib("lib_rosl") __py_n = len(__py_matrix); __py_m = len(__py_matrix[0]); @@ -96,6 +96,6 @@ def rosl(incomp_data, rank, regularization, logs=True, lib_path=None): end_time = time.time() if logs: - print(f"\n\t\t> logs, imputation ROSL - Execution Time: {(end_time - start_time):.4f} seconds\n") + print(f"\n\t> logs, imputation ROSL - Execution Time: {(end_time - start_time):.4f} seconds\n") return recov_data diff --git a/imputegap/algorithms/soft_impute.py b/imputegap/algorithms/soft_impute.py index df64c67c..980a1b3b 100644 --- a/imputegap/algorithms/soft_impute.py +++ b/imputegap/algorithms/soft_impute.py @@ -24,7 +24,7 @@ def native_soft_impute(__py_matrix, __py_max_rank): R. Mazumder, T. Hastie, and R. Tibshirani. Spectral regularization algorithms for learning large incomplete matrices. Journal of Machine Learning Research, 11:2287–2322, 2010. """ - shared_lib = utils.load_share_lib("lib_soft_impute.so") + shared_lib = utils.load_share_lib("lib_soft_impute") __py_n = len(__py_matrix); __py_m = len(__py_matrix[0]); @@ -81,6 +81,6 @@ def soft_impute(incomp_data, max_rank, logs=True, lib_path=None): end_time = time.time() if logs: - print(f"\n\t\t> logs, imputation Soft Impute - Execution Time: {(end_time - start_time):.4f} seconds\n") + print(f"\n\t> logs, imputation Soft Impute - Execution Time: {(end_time - start_time):.4f} seconds\n") return recov_data diff --git a/imputegap/algorithms/spirit.py b/imputegap/algorithms/spirit.py index 3d168954..65aaadc3 100644 --- a/imputegap/algorithms/spirit.py +++ b/imputegap/algorithms/spirit.py @@ -31,7 +31,7 @@ def native_spirit(__py_matrix, __py_k, __py_w, __py_lambda): S. Papadimitriou, J. Sun, and C. Faloutsos. Streaming pattern discovery in multiple time-series. In Proceedings of the 31st International Conference on Very Large Data Bases, Trondheim, Norway, August 30 - September 2, 2005, pages 697–708, 2005. """ - shared_lib = utils.load_share_lib("lib_spirit.so") + shared_lib = utils.load_share_lib("lib_spirit") __py_n = len(__py_matrix); __py_m = len(__py_matrix[0]); @@ -98,6 +98,6 @@ def spirit(incomp_data, k, w, lambda_value, logs=True, lib_path=None): end_time = time.time() if logs: - print(f"\n\t\t> logs, imputation SPIRIT - Execution Time: {(end_time - start_time):.4f} seconds\n") + print(f"\n\t> logs, imputation SPIRIT - Execution Time: {(end_time - start_time):.4f} seconds\n") return recov_data diff --git a/imputegap/algorithms/stmvl.py b/imputegap/algorithms/stmvl.py index bd75f55d..9eef0f14 100644 --- a/imputegap/algorithms/stmvl.py +++ b/imputegap/algorithms/stmvl.py @@ -39,7 +39,7 @@ def native_stmvl(__py_matrix, __py_window, __py_gamma, __py_alpha): School of Information Science and Technology, Southwest Jiaotong University; Microsoft Research; Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences. """ - shared_lib = utils.load_share_lib("lib_stmvl.so") + shared_lib = utils.load_share_lib("lib_stmvl") __py_sizen = len(__py_matrix); __py_sizem = len(__py_matrix[0]); @@ -84,6 +84,9 @@ def stmvl(incomp_data, window_size, gamma, alpha, logs=True): :return: recov_data, metrics : all time series with imputation data and their metrics """ + print(f"(PYTHON) ST-MVL: ({incomp_data.shape[0]},{incomp_data.shape[1]}) for window_size {window_size}, " + f"gamma {gamma}, and alpha {alpha}...") + start_time = time.time() # Record start time # Call the C++ function to perform recovery @@ -91,6 +94,6 @@ def stmvl(incomp_data, window_size, gamma, alpha, logs=True): end_time = time.time() if logs: - print(f"\n\t\t> logs, imputation stvml - Execution Time: {(end_time - start_time):.4f} seconds\n") + print(f"\n\t> logs, imputation stvml - Execution Time: {(end_time - start_time):.4f} seconds\n") return recov_data diff --git a/imputegap/algorithms/svt.py b/imputegap/algorithms/svt.py index 12d5256d..ea8522bc 100644 --- a/imputegap/algorithms/svt.py +++ b/imputegap/algorithms/svt.py @@ -25,7 +25,7 @@ def native_svt(__py_matrix, __py_tau): J. Cai, E. J. Candès, and Z. Shen. A singular value thresholding algorithm for matrix completion. SIAM Journal on Optimization, 20(4):1956–1982, 2010. [8] J. Cambronero, J. K. Feser, M. J. Smith, and """ - shared_lib = utils.load_share_lib("lib_svt.so") + shared_lib = utils.load_share_lib("lib_svt") __py_n = len(__py_matrix); __py_m = len(__py_matrix[0]); @@ -80,6 +80,6 @@ def svt(incomp_data, tau, logs=True, lib_path=None): end_time = time.time() if logs: - print(f"\n\t\t> logs, imputation SVT - Execution Time: {(end_time - start_time):.4f} seconds\n") + print(f"\n\t> logs, imputation SVT - Execution Time: {(end_time - start_time):.4f} seconds\n") return recov_data diff --git a/imputegap/algorithms/tkcm.py b/imputegap/algorithms/tkcm.py index 713fe644..59b35b5a 100644 --- a/imputegap/algorithms/tkcm.py +++ b/imputegap/algorithms/tkcm.py @@ -24,7 +24,7 @@ def native_tkcm(__py_matrix, __py_rank): K. Wellenzohn, M. H. Böhlen, A. Dignös, J. Gamper, and H. Mitterer. Continuous imputation of missing values in streams of pattern-determining time series. In Proceedings of the 20th International Conference on Extending Database Technology, EDBT 2017, Venice, Italy, March 21-24, 2017., pages 330–341, 2017. """ - shared_lib = utils.load_share_lib("lib_tkcm.so") + shared_lib = utils.load_share_lib("lib_tkcm") __py_n = len(__py_matrix); __py_m = len(__py_matrix[0]); @@ -81,6 +81,6 @@ def tkcm(incomp_data, rank, logs=True, lib_path=None): end_time = time.time() if logs: - print(f"\n\t\t> logs, imputation TKCM - Execution Time: {(end_time - start_time):.4f} seconds\n") + print(f"\n\t> logs, imputation TKCM - Execution Time: {(end_time - start_time):.4f} seconds\n") return recov_data diff --git a/imputegap/algorithms/trmf.py b/imputegap/algorithms/trmf.py index a80d46a7..db3cfe9d 100644 --- a/imputegap/algorithms/trmf.py +++ b/imputegap/algorithms/trmf.py @@ -57,6 +57,6 @@ def trmf(incomp_data, lags, K, lambda_f, lambda_x, lambda_w, eta, alpha, max_ite end_time = time.time() if logs: - print(f"\n\t\t> logs, imputation trmf - Execution Time: {(end_time - start_time):.4f} seconds\n") + print(f"\n\t> logs, imputation trmf - Execution Time: {(end_time - start_time):.4f} seconds\n") return recov_data diff --git a/imputegap/algorithms/xgboost.py b/imputegap/algorithms/xgboost.py index 29834896..bb6bc0e2 100644 --- a/imputegap/algorithms/xgboost.py +++ b/imputegap/algorithms/xgboost.py @@ -37,7 +37,7 @@ def xgboost(incomp_data, n_estimators=10, seed=42, logs=True): https://medium.com/@tzhaonj/imputing-missing-data-using-xgboost-802757cace6d """ - print("\t\t(PYTHON) XGBOOST : Matrix Shape: (", incomp_data.shape[0], ", ", incomp_data.shape[1], ")" + print("(PYTHON) XGBOOST : Matrix Shape: (", incomp_data.shape[0], ", ", incomp_data.shape[1], ")" " for n_estimators ", n_estimators, ", and seed ", seed, "...") if isinstance(incomp_data, np.ndarray): @@ -68,6 +68,6 @@ def xgboost(incomp_data, n_estimators=10, seed=42, logs=True): end_time = time.time() if logs: - print(f"\n\t\t> logs, imputation XGBOOST - Execution Time: {(end_time - start_time):.4f} seconds\n") + print(f"\n\t> logs, imputation XGBOOST - Execution Time: {(end_time - start_time):.4f} seconds\n") return np.array(recov_data) diff --git a/imputegap/env/default_values.toml b/imputegap/env/default_values.toml index e422936d..299eb3d4 100644 --- a/imputegap/env/default_values.toml +++ b/imputegap/env/default_values.toml @@ -87,7 +87,7 @@ approximation = true rank = 4 # ALGORITHM DEFAULT VALUES : STATISTICS -[knn] +[knn_impute] k = 5 weights = "uniform" diff --git a/imputegap/imputegap_assets/25_03_18_18_16_42_plot.jpg b/imputegap/imputegap_assets/25_03_18_18_16_42_plot.jpg deleted file mode 100644 index e0560938..00000000 Binary files a/imputegap/imputegap_assets/25_03_18_18_16_42_plot.jpg and /dev/null differ diff --git a/imputegap/imputegap_assets/benchmark/.gitkeep b/imputegap/imputegap_assets/benchmark/.gitkeep new file mode 100644 index 00000000..e69de29b diff --git a/imputegap/imputegap_assets/benchmark/_heatmap/.gitkeep b/imputegap/imputegap_assets/benchmark/_heatmap/.gitkeep new file mode 100644 index 00000000..e69de29b diff --git a/imputegap/imputegap_assets/downstream/.gitkeep b/imputegap/imputegap_assets/downstream/.gitkeep new file mode 100644 index 00000000..e69de29b diff --git a/imputegap/imputegap_assets/shap/grouped/.gitkeep b/imputegap/imputegap_assets/shap/grouped/.gitkeep new file mode 100644 index 00000000..e69de29b diff --git a/imputegap/imputegap_assets/shap/per_categories/.gitkeep b/imputegap/imputegap_assets/shap/per_categories/.gitkeep new file mode 100644 index 00000000..e69de29b diff --git a/imputegap/recovery/__pycache__/benchmark.cpython-312.pyc b/imputegap/recovery/__pycache__/benchmark.cpython-312.pyc index 6eb0c663..f51f0384 100644 Binary files a/imputegap/recovery/__pycache__/benchmark.cpython-312.pyc and b/imputegap/recovery/__pycache__/benchmark.cpython-312.pyc differ diff --git a/imputegap/recovery/__pycache__/downstream.cpython-312.pyc b/imputegap/recovery/__pycache__/downstream.cpython-312.pyc index 86f4b575..d2ca269b 100644 Binary files a/imputegap/recovery/__pycache__/downstream.cpython-312.pyc and b/imputegap/recovery/__pycache__/downstream.cpython-312.pyc differ diff --git a/imputegap/recovery/__pycache__/evaluation.cpython-312.pyc b/imputegap/recovery/__pycache__/evaluation.cpython-312.pyc index 8d1fe371..98092fc6 100644 Binary files a/imputegap/recovery/__pycache__/evaluation.cpython-312.pyc and b/imputegap/recovery/__pycache__/evaluation.cpython-312.pyc differ diff --git a/imputegap/recovery/__pycache__/explainer.cpython-312.pyc b/imputegap/recovery/__pycache__/explainer.cpython-312.pyc index 1d5bfae7..00d577a6 100644 Binary files a/imputegap/recovery/__pycache__/explainer.cpython-312.pyc and b/imputegap/recovery/__pycache__/explainer.cpython-312.pyc differ diff --git a/imputegap/recovery/__pycache__/imputation.cpython-312.pyc b/imputegap/recovery/__pycache__/imputation.cpython-312.pyc index 7dccd467..36e5e416 100644 Binary files a/imputegap/recovery/__pycache__/imputation.cpython-312.pyc and b/imputegap/recovery/__pycache__/imputation.cpython-312.pyc differ diff --git a/imputegap/recovery/__pycache__/manager.cpython-312.pyc b/imputegap/recovery/__pycache__/manager.cpython-312.pyc index 5c5ec9bb..86c3fc1d 100644 Binary files a/imputegap/recovery/__pycache__/manager.cpython-312.pyc and b/imputegap/recovery/__pycache__/manager.cpython-312.pyc differ diff --git a/imputegap/recovery/__pycache__/optimization.cpython-312.pyc b/imputegap/recovery/__pycache__/optimization.cpython-312.pyc index e90f32ed..deaef965 100644 Binary files a/imputegap/recovery/__pycache__/optimization.cpython-312.pyc and b/imputegap/recovery/__pycache__/optimization.cpython-312.pyc differ diff --git a/imputegap/recovery/benchmark.py b/imputegap/recovery/benchmark.py index e25cc722..cef2dbc9 100644 --- a/imputegap/recovery/benchmark.py +++ b/imputegap/recovery/benchmark.py @@ -4,7 +4,6 @@ import time import numpy as np import matplotlib.pyplot as plt - import xlsxwriter from imputegap.tools import utils @@ -187,9 +186,9 @@ def avg_results(self, *datasets): for j, algo in enumerate(algorithms_list): comprehensive_matrix[i, j] = average_rmse_matrix[dataset].get(algo, np.nan) - print("\nVisualization of datasets:", datasets_list) - print("Visualization of algorithms:", algorithms_list) - print("Visualization of matrix:\n", comprehensive_matrix, "\n\n") + print("\nvisualization of datasets:", *datasets_list) + print("visualization of algorithms:", *algorithms_list) + print(f"visualization of aggregate matrix :\n {comprehensive_matrix}\n\n") return comprehensive_matrix, algorithms_list, datasets_list @@ -215,6 +214,7 @@ def generate_heatmap(self, scores_list, algos, sets, save_dir="./reports", displ Bool True if the matrix has been generated """ + save_dir = save_dir + "/_heatmap/" if not os.path.exists(save_dir): os.makedirs(save_dir) @@ -226,6 +226,7 @@ def generate_heatmap(self, scores_list, algos, sets, save_dir="./reports", displ y_size = cell_size*nbr_datasets fig, ax = plt.subplots(figsize=(x_size, y_size)) + fig.canvas.manager.set_window_title("benchmark heatmap") cmap = plt.cm.Greys norm = plt.Normalize(vmin=0, vmax=2) # Normalizing values between 0 and 2 (RMSE) @@ -307,21 +308,28 @@ def generate_reports_txt(self, runs_plots_scores, save_dir="./reports", dataset= "MI": "Mutual Information - Indicates dependency between variables.", "CORRELATION": "Correlation Coefficient - Indicates linear relationship between variables." } + first_metric = True for metric, description in metrics.items(): # Write the metric description file.write(f"{metric}: {description}\n\n") - column_widths = [15, 15, 15, 15, 12, 25] + column_widths = [15, 15, 15, 18, 12, 25] # Create a table header - headers = ["Dataset", "Algorithm", "Optimizer", "Pattern", "X Value", metric] + headers = ["Dataset", "Pattern", "Algorithm", "Optimizer", "Rate", metric] header_row = "|".join(f" {header:^{width}} " for header, width in zip(headers, column_widths)) separator_row = "+" + "+".join(f"{'-' * (width + 2)}" for width in column_widths) + "+" file.write(f"{separator_row}\n") file.write(f"|{header_row}|\n") file.write(f"{separator_row}\n") + if first_metric and run ==-1 : + print(f"\n{metric}: {description}\n") + print(separator_row) + print(f"|{header_row}|") + print(separator_row) + # Extract and write results for the current metric for dataset, algo_items in runs_plots_scores.items(): for algorithm, optimizer_items in algo_items.items(): @@ -335,12 +343,17 @@ def generate_reports_txt(self, runs_plots_scores, save_dir="./reports", dataset= row = "|".join( f" {value:^{width}} " for value, width in zip(row_values, column_widths)) file.write(f"|{row}|\n") + if first_metric and run ==-1 : + print(f"|{row}|") file.write(f"{separator_row}\n\n") + if first_metric and run ==-1 : + print(separator_row + "\n") + first_metric = False file.write("Dictionary of Results:\n") file.write(str(runs_plots_scores) + "\n") - print(f"\nReport recorded in {save_path}") + print(f"\nreports recorded in the following directory : {save_path}") def generate_reports_excel(self, runs_plots_scores, save_dir="./reports", dataset="", run=-1): """ @@ -440,9 +453,8 @@ def generate_reports_excel(self, runs_plots_scores, save_dir="./reports", datase # Close the workbook workbook.close() - print(f"\nExcel report recorded in {save_path}") - def generate_plots(self, runs_plots_scores, ticks, subplot=False, y_size=4, save_dir="./reports"): + def generate_plots(self, runs_plots_scores, ticks, subplot=False, y_size=4, save_dir="./reports", display=False): """ Generate and save plots for each metric and pattern based on provided scores. @@ -456,6 +468,8 @@ def generate_plots(self, runs_plots_scores, ticks, subplot=False, y_size=4, save If True, generates a single figure with subplots for all metrics (default is False). save_dir : str, optional Directory to save generated plots (default is "./reports"). + display : bool, optional + Display or not the plots (default is False). Returns ------- @@ -475,6 +489,8 @@ def generate_plots(self, runs_plots_scores, ticks, subplot=False, y_size=4, save if subplot: fig, axes = plt.subplots(nrows=3, ncols=2, figsize=(x_size*1.90, y_size*2.90)) # Adjusted figsize + fig.canvas.manager.set_window_title("benchmark analysis") + axes = axes.ravel() # Flatten the 2D array of axes to a 1D array # Iterate over each metric, generating separate plots, including new timing metrics @@ -522,8 +538,8 @@ def generate_plots(self, runs_plots_scores, ticks, subplot=False, y_size=4, save # Save plot only if there is data to display if has_data: ylabel_metric = { - "imputation_time": "Imputation Time (sec)", - "log_imputation": "Imputation Time (log)", + "imputation_time": "Runtime Linear Scale (sec)", + "log_imputation": "Runtime Log Scale", }.get(metric, metric) ax.set_title(metric) @@ -534,8 +550,10 @@ def generate_plots(self, runs_plots_scores, ticks, subplot=False, y_size=4, save # Set y-axis limits with padding below 0 for visibility if metric == "imputation_time": ax.set_ylim(-10, 90) + ax.set_title("Runtime Linear Scale") elif metric == "log_imputation": ax.set_ylim(-4.5, 2.5) + ax.set_title("Runtime Log Scale") elif metric == "MAE": ax.set_ylim(-0.1, 2.4) elif metric == "MI": @@ -544,12 +562,13 @@ def generate_plots(self, runs_plots_scores, ticks, subplot=False, y_size=4, save ax.set_ylim(-0.1, 2.6) elif metric == "CORRELATION": ax.set_ylim(-0.75, 1.1) + ax.set_title("Pearson Correlation") # Customize x-axis ticks ax.set_xticks(ticks) ax.set_xticklabels([f"{int(tick * 100)}%" for tick in ticks]) ax.grid(True, zorder=0) - ax.legend(loc='upper left', bbox_to_anchor=(1, 1)) + ax.legend(loc='upper left', fontsize=7, frameon=True, fancybox=True, framealpha=0.8) if not subplot: filename = f"{dataset}_{pattern}_{optimizer}_{metric}.jpg" @@ -562,12 +581,14 @@ def generate_plots(self, runs_plots_scores, ticks, subplot=False, y_size=4, save filename = f"{dataset}_{pattern}_metrics_subplot.jpg" filepath = os.path.join(save_dir, filename) plt.savefig(filepath) - plt.close() - print("\nAll plots recorded in", save_dir) + if display: + plt.show() + + print("\nplots recorded in the following directory : ", save_dir) def eval(self, algorithms=["cdrec"], datasets=["eeg-alcohol"], patterns=["mcar"], - x_axis=[0.05, 0.1, 0.2, 0.4, 0.6, 0.8], optimizers=["user_def"], save_dir="./reports", runs=1): + x_axis=[0.05, 0.1, 0.2, 0.4, 0.6, 0.8], optimizers=["default_params"], save_dir="./reports", runs=1): """ Execute a comprehensive evaluation of imputation algorithms over multiple datasets and patterns. @@ -603,6 +624,9 @@ def eval(self, algorithms=["cdrec"], datasets=["eeg-alcohol"], patterns=["mcar"] not_optimized = ["none"] mean_group = ["mean", "MeanImpute", "min", "MinImpute", "zero", "ZeroImpute", "MeanImputeBySeries"] + if "mpin" in algorithms or "MPIN" in algorithms: + raise ValueError("The 'mpin' algorithm is not compatible with this setup.") + for i_run in range(0, abs(runs)): for dataset in datasets: runs_plots_scores = {} @@ -714,33 +738,34 @@ def eval(self, algorithms=["cdrec"], datasets=["eeg-alcohol"], patterns=["mcar"] "times": dic_timing } - save_dir_runs = save_dir + "/run_" + str(i_run) + "/" + dataset - print("\n\truns saved in : ", save_dir_runs) + save_dir_runs = save_dir + "/_details/run_" + str(i_run) + "/" + dataset + print("\nruns saved in : ", save_dir_runs) self.generate_plots(runs_plots_scores=runs_plots_scores, ticks=x_axis, subplot=True, y_size=y_p_size, save_dir=save_dir_runs) self.generate_plots(runs_plots_scores=runs_plots_scores, ticks=x_axis, subplot=False, y_size=y_p_size, save_dir=save_dir_runs) self.generate_reports_txt(runs_plots_scores, save_dir_runs, dataset, i_run) self.generate_reports_excel(runs_plots_scores, save_dir_runs, dataset, i_run) run_storage.append(runs_plots_scores) - print("============================================================================\n\n\n\n\n\n") + print("\n\n\n\n\n\n\n\n\n\n\n\n=end_of_the_evaluation===============================================" + "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\nresults of the analysis:\n") scores_list, algos, sets = self.avg_results(*run_storage) - _ = self.generate_heatmap(scores_list, algos, sets, save_dir=save_dir, display=False) + _ = self.generate_heatmap(scores_list, algos, sets, save_dir=save_dir, display=True) run_averaged = self.average_runs_by_names(run_storage) - save_dir_agg = save_dir + "/aggregation" - print("\n\n\taggragation of results saved in : ", save_dir_agg) + print("\n\nthe results of the analysis has been saved in : ", save_dir, "\n\n") for scores in run_averaged: all_keys = list(scores.keys()) dataset_name = str(all_keys[0]) - save_dir_agg_set = save_dir_agg + "/" + dataset_name + save_dir_agg_set = save_dir + "/" + dataset_name - self.generate_plots(runs_plots_scores=scores, ticks=x_axis, subplot=True, y_size=y_p_size, save_dir=save_dir_agg_set) - self.generate_plots(runs_plots_scores=scores, ticks=x_axis, subplot=False, y_size=y_p_size, save_dir=save_dir_agg_set) self.generate_reports_txt(scores, save_dir_agg_set, dataset_name, -1) + self.generate_plots(runs_plots_scores=scores, ticks=x_axis, subplot=True, y_size=y_p_size, save_dir=save_dir_agg_set) + # self.generate_plots(runs_plots_scores=scores, ticks=x_axis, subplot=False, y_size=y_p_size, save_dir=save_dir_agg_set) self.generate_reports_excel(scores, save_dir_agg_set, dataset_name, -1) + print("\n\n") return run_averaged, scores_list diff --git a/imputegap/recovery/downstream.py b/imputegap/recovery/downstream.py index eafbddca..0d7e6cf4 100644 --- a/imputegap/recovery/downstream.py +++ b/imputegap/recovery/downstream.py @@ -6,14 +6,6 @@ from imputegap.tools import utils -from darts import TimeSeries -from darts.metrics import mae as darts_mae, mse as darts_mse -from sklearn.metrics import mean_absolute_error, mean_squared_error -from sktime.forecasting.base import ForecastingHorizon - - - - class Downstream: @@ -53,7 +45,7 @@ class Downstream: - def __init__(self, input_data, recov_data, incomp_data, downstream): + def __init__(self, input_data, recov_data, incomp_data, algorithm, downstream): """ Initialize the Downstream class @@ -65,6 +57,8 @@ def __init__(self, input_data, recov_data, incomp_data, downstream): The imputed time series. incomp_data : numpy.ndarray The time series with contamination (NaN values). + algorithm : str + Name of the algorithm to analyse. downstream : dict Information about the model to launch with its parameters """ @@ -72,6 +66,7 @@ def __init__(self, input_data, recov_data, incomp_data, downstream): self.recov_data = recov_data self.incomp_data = incomp_data self.downstream = downstream + self.algorithm = algorithm self.split = 0.8 self.sktime_models = utils.list_of_downstreams_sktime() @@ -92,31 +87,39 @@ def downstream_analysis(self): model = self.downstream.get("model", "naive") params = self.downstream.get("params", None) plots = self.downstream.get("plots", True) - + comparator = self.downstream.get("comparator", None) + model = model.lower() evaluator = evaluator.lower() if not params: - print("\n\t\t\t\tThe params for model of downstream analysis are empty or missing. Default ones loaded...") + print("\n\t(DOWNSTREAM) The params for model of downstream analysis are empty or missing. Default ones loaded...") loader = "forecaster-" + str(model) params = utils.load_parameters(query="default", algorithm=loader) - print("\n\t\t\t\tDownstream analysis launched for <", evaluator, "> on the model <", model, + print("\n(DOWNSTREAM) Analysis launched for <", evaluator, "> on the model <", model, "> with parameters :\n\t\t\t\t\t", params, " \n\n") if evaluator in ["forecast", "forecaster", "forecasting"]: y_train_all, y_test_all, y_pred_all = [], [], [] - mae, mse = [], [] + mae, mse, smape = [], [], [] for x in range(3): # Iterate over recov_data, input_data, and mean_impute if x == 0: - data = self.recov_data - elif x == 1: data = self.input_data + elif x == 1: + data = self.recov_data elif x == 2: from imputegap.recovery.imputation import Imputation - zero_impute = Imputation.Statistics.ZeroImpute(self.incomp_data).impute() - data = zero_impute.recov_data + + if comparator is not None: + impt = utils.config_impute_algorithm(self.incomp_data, algorithm=comparator) + impt.impute() + data = impt.recov_data + else: + comparator = "zero-impute" + zero_impute = Imputation.Statistics.ZeroImpute(self.incomp_data).impute() + data = zero_impute.recov_data data_len = data.shape[1] train_len = int(data_len * self.split) @@ -128,6 +131,10 @@ def downstream_analysis(self): if model in self.sktime_models: # --- SKTIME APPROACH --- + from sklearn.metrics import mean_absolute_error, mean_squared_error + from sktime.forecasting.base import ForecastingHorizon + from sktime.performance_metrics.forecasting import MeanAbsolutePercentageError + y_pred = np.zeros_like(y_test) for series_idx in range(data.shape[0]): @@ -146,10 +153,17 @@ def downstream_analysis(self): # Compute metrics using sktime mae.append(mean_absolute_error(y_test, y_pred)) mse.append(mean_squared_error(y_test, y_pred)) + scoring_m = MeanAbsolutePercentageError(symmetric=True) + smape.append(scoring_m.evaluate(y_test, y_pred)*100) # Compute SMAPE + else: # --- DARTS APPROACH --- # Convert entire matrix to a Darts multivariate TimeSeries object + from darts import TimeSeries + from darts.metrics import mae as darts_mae, mse as darts_mse + from darts.metrics import smape as darts_smape + y_train_ts = TimeSeries.from_values(y_train.T) # Shape: (time_steps, n_series) y_test_ts = TimeSeries.from_values(y_test.T) # Shape: (time_steps, n_series) @@ -175,11 +189,12 @@ def downstream_analysis(self): # Compute metrics safely mae_score = darts_mae(y_test_ts, y_pred_ts) mse_score = darts_mse(y_test_ts, y_pred_ts) - + smape_score = darts_smape(y_test_ts, y_pred_ts) # Compute metrics using Darts mae.append(mae_score) mse.append(mse_score) + smape.append(smape_score) # Store for plotting y_train_all.append(y_train) @@ -188,23 +203,24 @@ def downstream_analysis(self): if plots: # Global plot with all rows and columns - self._plot_downstream(y_train_all, y_test_all, y_pred_all, self.incomp_data, model, evaluator) + self._plot_downstream(y_train_all, y_test_all, y_pred_all, self.incomp_data, self.algorithm, comparator, model, evaluator) # Save metrics in a dictionary - metrics = {"DOWNSTREAM-RECOV-MAE": mae[0], "DOWNSTREAM-INPUT-MAE": mae[1], - "DOWNSTREAM-MEANI-MAE": mae[2], "DOWNSTREAM-RECOV-MSE": mse[0], - "DOWNSTREAM-INPUT-MSE": mse[1], "DOWNSTREAM-MEANI-MSE": mse[2]} - - print("\n\t\t\t\tDownstream analysis complete. " + "*" * 58 + "\n") + al_name = "DOWNSTREAM-" + self.algorithm.upper() + "-MSE" + al_name_s = "DOWNSTREAM-" + self.algorithm.upper() + "-SMAPE" + al_name_c = "DOWNSTREAM-" + comparator.upper() + "-MSE" + al_name_cs = "DOWNSTREAM-" + comparator.upper() + "-SMAPE" + metrics = {"DOWNSTREAM-ORIGIN-MSE": mse[0], al_name: mse[1], al_name_c: mse[2], + "DOWNSTREAM-ORIGIN-SMAPE": smape[0], al_name_s: smape[1], al_name_cs: smape[2] } return metrics else: - print("\t\t\t\tNo evaluator found... list possible : 'forecaster'" + "*" * 30 + "\n") + print("\tNo evaluator found... list possible : 'forecaster'" + "*" * 30 + "\n") return None @staticmethod - def _plot_downstream(y_train, y_test, y_pred, incomp_data, model=None, type=None, title="Ground Truth vs Predictions", max_series=1, save_path="./imputegap_assets"): + def _plot_downstream(y_train, y_test, y_pred, incomp_data, algorithm, comparison, model=None, type=None, title="", max_series=1, save_path="./imputegap_assets/downstream"): """ Plot ground truth vs. predictions for contaminated series (series with NaN values). @@ -220,6 +236,10 @@ def _plot_downstream(y_train, y_test, y_pred, incomp_data, model=None, type=None Incomplete data array of shape (n_series, total_len), used to identify contaminated series. model : str Name of the current model used + algorithm : str + Name of the current algorithm used + comparison : str + Name of the current algorithm used as comparison type : str Name of the current type used title : str @@ -235,6 +255,7 @@ def _plot_downstream(y_train, y_test, y_pred, incomp_data, model=None, type=None x_size = 24 fig, axs = plt.subplots(3, max_series, figsize=(x_size, 15)) + fig.canvas.manager.set_window_title("downstream evaluation") fig.suptitle(title, fontsize=16) # Iterate over the three data types (recov_data, input_data, mean_impute) @@ -258,40 +279,41 @@ def _plot_downstream(y_train, y_test, y_pred, incomp_data, model=None, type=None full_series = np.concatenate([s_y_train[series_idx], s_y_test[series_idx]]) # Plot training data - ax.plot(range(len(s_y_train[series_idx])), s_y_train[series_idx], label="Training Data", color="green") + ax.plot(range(len(s_y_train[series_idx])), s_y_train[series_idx], color="green") # Plot ground truth (testing data) ax.plot( range(len(s_y_train[series_idx]), len(full_series)), s_y_test[series_idx], - label="Ground Truth", + label="ground truth", color="green" ) + label = type + " " + model # Plot forecasted data ax.plot( range(len(s_y_train[series_idx]), len(full_series)), s_y_pred[series_idx], - label="Forecast", + label=label, linestyle="--", marker=None, color="red" ) # Add a vertical line at the split point - ax.axvline(x=len(s_y_train[series_idx]), color="orange", linestyle="--", label="Split Point") + ax.axvline(x=len(s_y_train[series_idx]), color="orange", linestyle="--") # Add labels, title, and grid if row_idx == 0: - ax.set_title(f"IMPUTATED DATA (RECOVERY), series {series_idx}") + ax.set_title(f"original data, series_{series_idx}") elif row_idx == 1: - ax.set_title(f"ORIGINAL DATA (GROUND TRUTH), series {series_idx}") + ax.set_title(f"{algorithm.lower()} imputation, series_{series_idx}") else: - ax.set_title(f"BAD IMPUTER (ZERO IMP), series {series_idx}") + ax.set_title(f"{comparison.lower()} imputation, series_{series_idx}") ax.set_xlabel("Timestamp") ax.set_ylabel("Value") - ax.legend() + ax.legend(loc='upper left', fontsize=7, frameon=True, fancybox=True, framealpha=0.8) ax.grid() # Adjust layout diff --git a/imputegap/recovery/evaluation.py b/imputegap/recovery/evaluation.py index ea2e449a..47fe912d 100644 --- a/imputegap/recovery/evaluation.py +++ b/imputegap/recovery/evaluation.py @@ -1,7 +1,4 @@ import numpy as np -from sklearn.metrics import mutual_info_score -from scipy.stats import pearsonr - class Evaluation: """ @@ -126,6 +123,8 @@ def compute_mi(self): float The mutual information (MI) score for NaN positions in the contamination dataset. """ + from sklearn.metrics import mutual_info_score + nan_locations = np.isnan(self.incomp_data) # Discretize the continuous data into bins @@ -151,6 +150,8 @@ def compute_correlation(self): float The Pearson correlation coefficient for NaN positions in the contamination dataset. """ + from scipy.stats import pearsonr + nan_locations = np.isnan(self.incomp_data) input_data_values = self.input_data[nan_locations] imputed_values = self.recov_data[nan_locations] diff --git a/imputegap/recovery/explainer.py b/imputegap/recovery/explainer.py index efb4c1c2..1fda9a7f 100644 --- a/imputegap/recovery/explainer.py +++ b/imputegap/recovery/explainer.py @@ -13,7 +13,6 @@ from matplotlib import pyplot as plt from sklearn.ensemble import RandomForestRegressor -from imputegap.recovery.imputation import Imputation from imputegap.recovery.manager import TimeSeries from imputegap.tools import utils @@ -366,7 +365,7 @@ def convert_results(tmp, file, algo, descriptions, features, categories, mean_fe result_display = sorted(result_display, key=lambda tup: (tup[1], tup[2]), reverse=True) - with open(to_save + "_results.txt", 'w') as file_output: + with open(to_save + "_values.txt", 'w') as file_output: for (x, algo, rate, description, feature, category, mean_features) in result_display: file_output.write( f"Feature : {x:<5} {algo:<10} with a score of {rate:<10} {category:<18} {description:<65} {feature}\n") @@ -410,8 +409,12 @@ def execute_shap_model(x_dataset, x_information, y_dataset, file, algorithm, spl plots_categories = config[extractor]['categories'] path_file = "./imputegap_assets/shap/" - if not os.path.exists(path_file): - path_file = "./imputegap" + path_file[1:] + path_file_details = "./imputegap_assets/shap/grouped/" + path_file_categories = "./imputegap_assets/shap/per_categories/" + + os.makedirs(path_file, exist_ok=True) + os.makedirs(path_file_details, exist_ok=True) + os.makedirs(path_file_categories, exist_ok=True) x_features, x_categories, x_descriptions = [], [], [] x_fs, x_cs, x_ds, alphas = [], [], [], [] @@ -451,8 +454,7 @@ def execute_shap_model(x_dataset, x_information, y_dataset, file, algorithm, spl print("\t SHAP_MODEL >> descriptions shape:", x_descriptions.shape, "\n") print("\t SHAP_MODEL >> features OK:", np.all(np.all(x_features == x_features[0, :], axis=1))) print("\t SHAP_MODEL >> categories OK:", np.all(np.all(x_categories == x_categories[0, :], axis=1))) - print("\t SHAP_MODEL >> descriptions OK:", np.all(np.all(x_descriptions == x_descriptions[0, :], axis=1)), - "\n\n") + print("\t SHAP_MODEL >> descriptions OK:", np.all(np.all(x_descriptions == x_descriptions[0, :], axis=1)), "\n\n") model = RandomForestRegressor() model.fit(x_train, y_train) @@ -470,7 +472,7 @@ def execute_shap_model(x_dataset, x_information, y_dataset, file, algorithm, spl series_names.append("Series " + str(names + np.array(x_train).shape[0])) shap.summary_plot(shval, x_test, plot_size=(25, 10), feature_names=optimal_display, show=display) - alpha = os.path.join(path_file + file + "_" + algorithm + "_" + extractor + "_shap_plot.png") + alpha = os.path.join(path_file + file + "_" + algorithm + "_" + extractor + "_shap_all.png") plt.title("SHAP Details Results") os.makedirs(path_file, exist_ok=True) plt.savefig(alpha) @@ -478,14 +480,14 @@ def execute_shap_model(x_dataset, x_information, y_dataset, file, algorithm, spl alphas.append(alpha) shap.summary_plot(np.array(shval).T, np.array(x_test).T, feature_names=series_names, show=display) - alpha = os.path.join(path_file + file + "_" + algorithm + "_" + extractor + "_shap_reverse_plot.png") + alpha = os.path.join(path_file_details + file + "_" + algorithm + "_" + extractor + "_shap_reverse.png") plt.title("SHAP Features by Series") plt.savefig(alpha) plt.close() alphas.append(alpha) shap.plots.waterfall(shval_x[0], show=display) - alpha = os.path.join(path_file + file + "_" + algorithm + "_" + extractor + "_DTL_Waterfall.png") + alpha = os.path.join(path_file_details + file + "_" + algorithm + "_" + extractor + "_DTL_Waterfall.png") plt.title("SHAP Waterfall Results") fig = plt.gcf() # Get the current figure created by SHAP fig.set_size_inches(20, 10) # Ensure the size is correct @@ -494,7 +496,7 @@ def execute_shap_model(x_dataset, x_information, y_dataset, file, algorithm, spl alphas.append(alpha) shap.plots.beeswarm(shval_x, show=display, plot_size=(22, 10)) - alpha = os.path.join(path_file + file + "_" + algorithm + "_" + extractor + "_DTL_Beeswarm.png") + alpha = os.path.join(path_file_details + file + "_" + algorithm + "_" + extractor + "_DTL_Beeswarm.png") plt.title("SHAP Beeswarm Results") plt.savefig(alpha) plt.close() @@ -550,7 +552,7 @@ def execute_shap_model(x_dataset, x_information, y_dataset, file, algorithm, spl mean_features = np.array(mean_features) shap.summary_plot(np.array(geometry).T, np.array(geometryT).T, plot_size=(20, 10), feature_names=geometryDesc, show=display) - alpha = os.path.join(path_file + file + "_" + algorithm + "_" + extractor + "_shap_" + plots_categories[0].lower() + "_plot.png") + alpha = os.path.join(path_file_categories + file + "_" + algorithm + "_" + extractor + "_shap_" + plots_categories[0].lower() + ".png") plt.title("SHAP details of " + plots_categories[0].lower()) plt.savefig(alpha) plt.close() @@ -558,7 +560,7 @@ def execute_shap_model(x_dataset, x_information, y_dataset, file, algorithm, spl shap.summary_plot(np.array(transformation).T, np.array(transformationT).T, plot_size=(20, 10), feature_names=transformationDesc, show=display) - alpha = os.path.join(path_file + file + "_" + algorithm + "_" + extractor + "_shap_" + plots_categories[2].lower() + "_plot.png") + alpha = os.path.join(path_file_categories + file + "_" + algorithm + "_" + extractor + "_shap_" + plots_categories[2].lower() + ".png") plt.title("SHAP details of " + plots_categories[1].lower()) plt.savefig(alpha) plt.close() @@ -566,7 +568,7 @@ def execute_shap_model(x_dataset, x_information, y_dataset, file, algorithm, spl shap.summary_plot(np.array(correlation).T, np.array(correlationT).T, plot_size=(20, 10), feature_names=correlationDesc, show=display) - alpha = os.path.join(path_file + file + "_" + algorithm + "_" + extractor + "_shap_" + plots_categories[1].lower() + "_plot.png") + alpha = os.path.join(path_file_categories + file + "_" + algorithm + "_" + extractor + "_shap_" + plots_categories[1].lower() + ".png") plt.title("SHAP details of " + plots_categories[1].lower()) plt.savefig(alpha) plt.close() @@ -574,7 +576,7 @@ def execute_shap_model(x_dataset, x_information, y_dataset, file, algorithm, spl shap.summary_plot(np.array(trend).T, np.array(trendT).T, plot_size=(20, 8), feature_names=trendDesc, show=display) - alpha = os.path.join(path_file + file + "_" + algorithm + "_" + extractor + "_shap_" + plots_categories[3].lower() + "_plot.png") + alpha = os.path.join(path_file_categories + file + "_" + algorithm + "_" + extractor + "_shap_" + plots_categories[3].lower() + ".png") plt.title("SHAP details of " + plots_categories[3].lower()) plt.savefig(alpha) plt.close() @@ -594,7 +596,7 @@ def execute_shap_model(x_dataset, x_information, y_dataset, file, algorithm, spl aggregation_test = np.array(aggregation_test).T shap.summary_plot(aggregation_features, aggregation_test, feature_names=plots_categories, show=display) - alpha = os.path.join(path_file + file + "_" + algorithm + "_" + extractor + "_shap_aggregate_plot.png") + alpha = os.path.join(path_file + file + "_" + algorithm + "_" + extractor + "_shap_cat.png") plt.title("SHAP Aggregation Results") plt.gca().axes.get_xaxis().set_visible(False) plt.savefig(alpha) @@ -602,7 +604,7 @@ def execute_shap_model(x_dataset, x_information, y_dataset, file, algorithm, spl alphas.append(alpha) shap.summary_plot(np.array(aggregation_features).T, np.array(aggregation_test).T, feature_names=series_names, show=display) - alpha = os.path.join(path_file + file + "_" + algorithm + "_" + extractor + "_shap_aggregate_reverse_plot.png") + alpha = os.path.join(path_file_details + file + "_" + algorithm + "_" + extractor + "_shap_agg_reverse.png") plt.title("SHAP Aggregation Features by Series") plt.savefig(alpha) plt.close() diff --git a/imputegap/recovery/imputation.py b/imputegap/recovery/imputation.py index 3c283bfd..70842d99 100644 --- a/imputegap/recovery/imputation.py +++ b/imputegap/recovery/imputation.py @@ -1,43 +1,11 @@ import re - -from imputegap.algorithms.bayotide import bay_otide -from imputegap.algorithms.bit_graph import bit_graph -from imputegap.algorithms.brits import brits -from imputegap.algorithms.deep_mvi import deep_mvi -from imputegap.algorithms.dynammo import dynammo -from imputegap.algorithms.gain import gain -from imputegap.algorithms.grin import grin -from imputegap.algorithms.grouse import grouse -from imputegap.algorithms.hkmf_t import hkmf_t -from imputegap.algorithms.interpolation import interpolation -from imputegap.algorithms.iterative_svd import iterative_svd -from imputegap.algorithms.knn import knn -from imputegap.algorithms.mean_impute import mean_impute -from imputegap.algorithms.mean_impute_by_series import mean_impute_by_series -from imputegap.algorithms.mice import mice -from imputegap.algorithms.miss_forest import miss_forest -from imputegap.algorithms.miss_net import miss_net -from imputegap.algorithms.mpin import mpin -from imputegap.algorithms.pristi import pristi -from imputegap.algorithms.rosl import rosl -from imputegap.algorithms.soft_impute import soft_impute -from imputegap.algorithms.spirit import spirit -from imputegap.algorithms.svt import svt -from imputegap.algorithms.tkcm import tkcm -from imputegap.algorithms.trmf import trmf -from imputegap.algorithms.xgboost import xgboost +from imputegap.tools import utils from imputegap.recovery.downstream import Downstream from imputegap.recovery.evaluation import Evaluation -from imputegap.algorithms.cdrec import cdrec -from imputegap.algorithms.iim import iim -from imputegap.algorithms.min_impute import min_impute -from imputegap.algorithms.mrnn import mrnn -from imputegap.algorithms.stmvl import stmvl -from imputegap.algorithms.zero_impute import zero_impute -from imputegap.tools import utils - -not_optimized = ["knn", "interpolation", "iterative_svd", "grouse", "dynammo", "rosl", "soft_impute", "spirit", "svt", "tkcm", "deep_mvi", "brits", "mpin", "pristi"] +not_optimized = ["knn", "interpolation", "iterative_svd", "grouse", "dynammo", "rosl", "soft_impute", "spirit", "svt", + "tkcm", "deep_mvi", "brits", "mpin", "pristi", "bay_otide", "bit_graph", "gain", "grin", "hkmf_t", + "mice", "miss_forest", "miss_net", "trmf", "xgboost"] class BaseImputer: @@ -112,13 +80,13 @@ def score(self, input_data, recov_data=None, downstream=None): Example ------- >>> imputer.score(ts.data, imputer.recov_data) # upstream - >>> imputer.score(ts.data, imputer.recov_data, downstream={"task": "forecast", "model": "hw-add"}) # downstream + >>> imputer.score(ts.data, imputer.recov_data, {"task": "forecast", "model": "hw-add", "comparator": "ZeroImputation"}) # downstream """ if self.recov_data is None: self.recov_data = recov_data if isinstance(downstream, dict) and downstream is not None: - self.downstream_metrics = Downstream(input_data, self.recov_data, self.incomp_data, downstream).downstream_analysis() + self.downstream_metrics = Downstream(input_data, self.recov_data, self.incomp_data, self.algorithm, downstream).downstream_analysis() else: self.metrics = Evaluation(input_data, self.recov_data, self.incomp_data).compute_all_metrics() @@ -187,7 +155,7 @@ def _optimize(self, parameters={}): raise ValueError( f"\n\tThis algorithm '{self.algorithm}' is not optimized for this optimizer. " f"\n\tPlease use `run_tune` to optimize the hyperparameters for:\n\t\t {', '.join(not_optimized)}" - "\n\tPlease use update your call :\n\t\t.impute(user_def=False, params={'input_data': ts_1.data, 'optimizer': 'ray_tune'})" + "\n\tPlease use update your call :\n\t\t.impute(user_def=False, params={'input_data': ts.data, 'optimizer': 'ray_tune'})" ) input_data = ( @@ -381,8 +349,8 @@ class Statistics: Imputation method that replaces missing values with the minimum value of the ground truth by series. Interpolation : Imputation method that replaces missing values with the Interpolation - KNN : - Imputation method that replaces missing values with KNN logic + KNNImpute : + Imputation method that replaces missing values with KNNImpute logic """ class ZeroImpute(BaseImputer): @@ -411,6 +379,8 @@ def impute(self, params=None): self : ZeroImpute The object with `recov_data` set. """ + from imputegap.algorithms.zero_impute import zero_impute + self.recov_data = zero_impute(self.incomp_data, params) return self @@ -441,6 +411,8 @@ def impute(self, params=None): self : MinImpute The object with `recov_data` set. """ + from imputegap.algorithms.mean_impute import mean_impute + self.recov_data = mean_impute(self.incomp_data, params) return self @@ -471,6 +443,8 @@ def impute(self, params=None): self : MinImpute The object with `recov_data` set. """ + from imputegap.algorithms.min_impute import min_impute + self.recov_data = min_impute(self.incomp_data, params) return self @@ -495,6 +469,8 @@ def impute(self): self : MeanImputeBySeries The object with `recov_data` set. """ + from imputegap.algorithms.mean_impute_by_series import mean_impute_by_series + self.recov_data = mean_impute_by_series(self.incomp_data, logs=self.logs) return self @@ -531,9 +507,11 @@ def impute(self, user_def=True, params=None): >>> interpolation_imputer = Imputation.Statistics.Interpolation(incomp_data) >>> interpolation_imputer.impute() # default parameters for imputation > or >>> interpolation_imputer.impute(user_def=True, params={"method":"linear", "poly_order":2}) # user-defined > or - >>> interpolation_imputer.impute(user_def=False, params={"input_data": ts_1.data, "optimizer": "ray_tune"}) # automl with ray_tune + >>> interpolation_imputer.impute(user_def=False, params={"input_data": ts.data, "optimizer": "ray_tune"}) # automl with ray_tune >>> recov_data = interpolation_imputer.recov_data """ + from imputegap.algorithms.interpolation import interpolation + if params is not None: method, poly_order = self._check_params(user_def, params) else: @@ -544,16 +522,16 @@ def impute(self, user_def=True, params=None): return self - class KNN(BaseImputer): + class KNNImpute(BaseImputer): """ - KNN class to impute missing values with K-Nearest Neighbor algorithm + KNNImpute class to impute missing values with K-Nearest Neighbor algorithm Methods ------- impute(self, params=None): Perform imputation by replacing missing values with K-Nearest Neighbor """ - algorithm = "knn" + algorithm = "knn_impute" def impute(self, user_def=True, params=None): """ @@ -564,7 +542,7 @@ def impute(self, user_def=True, params=None): user_def : bool, optional Whether to use user-defined or default parameters (default is True). params : dict, optional - Parameters of the KNN algorithm, if None, default ones are loaded. + Parameters of the KNNImpute algorithm, if None, default ones are loaded. **Algorithm parameters:** k : int, optional @@ -574,17 +552,19 @@ def impute(self, user_def=True, params=None): Returns ------- - self : KNN + self : KNNImpute The object with `recov_data` set. Example ------- - >>> knn_imputer = Imputation.Statistics.KNN(incomp_data) + >>> knn_imputer = Imputation.Statistics.KNNImpute(incomp_data) >>> knn_imputer.impute() # default parameters for imputation > or >>> knn_imputer.impute(user_def=True, params={'k': 5, 'weights': "uniform"}) # user-defined > or - >>> knn_imputer.impute(user_def=False, params={"input_data": ts_1.data, "optimizer": "ray_tune"}) # automl with ray_tune + >>> knn_imputer.impute(user_def=False, params={"input_data": ts.data, "optimizer": "ray_tune"}) # automl with ray_tune >>> recov_data = knn_imputer.recov_data """ + from imputegap.algorithms.knn import knn + if params is not None: k, weights = self._check_params(user_def, params) else: @@ -724,13 +704,14 @@ def impute(self, user_def=True, params=None): >>> cdrec_imputer = Imputation.MatrixCompletion.CDRec(incomp_data) >>> cdrec_imputer.impute() # default parameters for imputation > or >>> cdrec_imputer.impute(user_def=True, params={'rank': 5, 'epsilon': 0.01, 'iterations': 100}) # user-defined > or - >>> cdrec_imputer.impute(user_def=False, params={"input_data": ts_1.data, "optimizer": "bayesian", "options": {"n_calls": 2}}) # automl with bayesian + >>> cdrec_imputer.impute(user_def=False, params={"input_data": ts.data, "optimizer": "bayesian", "options": {"n_calls": 2}}) # automl with bayesian >>> recov_data = cdrec_imputer.recov_data References ---------- Khayati, M., Cudré-Mauroux, P. & Böhlen, M.H. Scalable recovery of missing blocks in time series with high and low cross-correlations. Knowl Inf Syst 62, 2257–2280 (2020). https://doi.org/10.1007/s10115-019-01421-7 """ + from imputegap.algorithms.cdrec import cdrec if params is not None: rank, epsilon, iterations = self._check_params(user_def, params) @@ -782,13 +763,14 @@ def impute(self, user_def=True, params=None): >>> i_svd_imputer = Imputation.MatrixCompletion.IterativeSVD(incomp_data) >>> i_svd_imputer.impute() # default parameters for imputation > or >>> i_svd_imputer.impute(params={'rank': 5}) # user-defined > or - >>> i_svd_imputer.impute(user_def=False, params={"input_data": ts_1.data, "optimizer": "ray_tune"}) # automl with ray_tune + >>> i_svd_imputer.impute(user_def=False, params={"input_data": ts.data, "optimizer": "ray_tune"}) # automl with ray_tune >>> recov_data = i_svd_imputer.recov_data References ---------- Olga Troyanskaya, Michael Cantor, Gavin Sherlock, Pat Brown, Trevor Hastie, Robert Tibshirani, David Botstein, Russ B. Altman, Missing value estimation methods for DNA microarrays , Bioinformatics, Volume 17, Issue 6, June 2001, Pages 520–525, https://doi.org/10.1093/bioinformatics/17.6.520 """ + from imputegap.algorithms.iterative_svd import iterative_svd if params is not None: rank = self._check_params(user_def, params)[0] @@ -839,13 +821,14 @@ def impute(self, user_def=True, params=None): >>> grouse_imputer = Imputation.MatrixCompletion.GROUSE(incomp_data) >>> grouse_imputer.impute() # default parameters for imputation > or >>> grouse_imputer.impute(params={'max_rank': 5}) # user-defined > or - >>> grouse_imputer.impute(user_def=False, params={"input_data": ts_1.data, "optimizer": "ray_tune"}) # automl with ray_tune + >>> grouse_imputer.impute(user_def=False, params={"input_data": ts.data, "optimizer": "ray_tune"}) # automl with ray_tune >>> recov_data = grouse_imputer.recov_data References ---------- D. Zhang and L. Balzano. Global convergence of a grassmannian gradient descent algorithm for subspace estimation. In Proceedings of the 19th International Conference on Artificial Intelligence and Statistics, AISTATS 2016, Cadiz, Spain, May 9-11, 2016, pages 1460–1468, 2016. """ + from imputegap.algorithms.grouse import grouse if params is not None: max_rank = self._check_params(user_def, params)[0] @@ -899,13 +882,15 @@ def impute(self, user_def=True, params=None): >>> rosl_imputer = Imputation.MatrixCompletion.ROSL(incomp_data) >>> rosl_imputer.impute() # default parameters for imputation > or >>> rosl_imputer.impute(params={'rank': 5, 'regularization': 10}) # user-defined > or - >>> rosl_imputer.impute(user_def=False, params={"input_data": ts_1.data, "optimizer": "ray_tune"}) # automl with ray_tune + >>> rosl_imputer.impute(user_def=False, params={"input_data": ts.data, "optimizer": "ray_tune"}) # automl with ray_tune >>> recov_data = rosl_imputer.recov_data References ---------- X. Shu, F. Porikli, and N. Ahuja. Robust orthonormal subspace learning: Efficient recovery of corrupted low-rank matrices. In 2014 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2014, Columbus, OH, USA, June 23-28, 2014, pages 3874–3881, 2014. """ + from imputegap.algorithms.rosl import rosl + if params is not None: rank, regularization = self._check_params(user_def, params) else: @@ -955,13 +940,15 @@ def impute(self, user_def=True, params=None): >>> soft_impute_imputer = Imputation.MatrixCompletion.SoftImpute(incomp_data) >>> soft_impute_imputer.impute() # default parameters for imputation > or >>> soft_impute_imputer.impute(params={'max_rank': 5}) # user-defined > or - >>> soft_impute_imputer.impute(user_def=False, params={"input_data": ts_1.data, "optimizer": "ray_tune"}) # automl with ray_tune + >>> soft_impute_imputer.impute(user_def=False, params={"input_data": ts.data, "optimizer": "ray_tune"}) # automl with ray_tune >>> recov_data = soft_impute_imputer.recov_data References ---------- R. Mazumder, T. Hastie, and R. Tibshirani. Spectral regularization algorithms for learning large incomplete matrices. Journal of Machine Learning Research, 11:2287–2322, 2010. """ + from imputegap.algorithms.soft_impute import soft_impute + if params is not None: max_rank = self._check_params(user_def, params)[0] else: @@ -1018,13 +1005,15 @@ def impute(self, user_def=True, params=None): >>> spirit_imputer = Imputation.MatrixCompletion.SPIRIT(incomp_data) >>> spirit_imputer.impute() # default parameters for imputation > or >>> spirit_imputer.impute(params={'k': 2, 'w': 5, 'lambda_value': 0.85}) # user-defined > or - >>> spirit_imputer.impute(user_def=False, params={"input_data": ts_1.data, "optimizer": "ray_tune"}) # automl with ray_tune + >>> spirit_imputer.impute(user_def=False, params={"input_data": ts.data, "optimizer": "ray_tune"}) # automl with ray_tune >>> recov_data = spirit_imputer.recov_data References ---------- S. Papadimitriou, J. Sun, and C. Faloutsos. Streaming pattern discovery in multiple time-series. In Proceedings of the 31st International Conference on Very Large Data Bases, Trondheim, Norway, August 30 - September 2, 2005, pages 697–708, 2005. """ + from imputegap.algorithms.spirit import spirit + if params is not None: k, w, lambda_value = self._check_params(user_def, params) else: @@ -1075,13 +1064,15 @@ def impute(self, user_def=True, params=None): >>> svt_imputer = Imputation.MatrixCompletion.SVT(incomp_data) >>> svt_imputer.impute() # default parameters for imputation > or >>> svt_imputer.impute(params={'tau': 1}) # user-defined > or - >>> svt_imputer.impute(user_def=False, params={"input_data": ts_1.data, "optimizer": "ray_tune"}) # automl with ray_tune + >>> svt_imputer.impute(user_def=False, params={"input_data": ts.data, "optimizer": "ray_tune"}) # automl with ray_tune >>> recov_data = svt_imputer.recov_data References ---------- J. Cai, E. J. Candès, and Z. Shen. A singular value thresholding algorithm for matrix completion. SIAM Journal on Optimization, 20(4):1956–1982, 2010. [8] J. Cambronero, J. K. Feser, M. J. Smith, and """ + from imputegap.algorithms.svt import svt + if params is not None: tau = self._check_params(user_def, params)[0] else: @@ -1148,13 +1139,15 @@ def impute(self, user_def=True, params=None): >>> trmf_imputer = Imputation.MatrixCompletion.TRMF(incomp_data) >>> trmf_imputer.impute() >>> trmf_imputer.impute(params={"lags":[], "K":-1, "lambda_f":1.0, "lambda_x":1.0, "lambda_w":1.0, "eta":1.0, "alpha":1000.0, "max_iter":100}) - >>> trmf_imputer.impute(user_def=False, params={"input_data": ts_1.data, "optimizer": "ray_tune"}) + >>> trmf_imputer.impute(user_def=False, params={"input_data": ts.data, "optimizer": "ray_tune"}) >>> recov_data = trmf_imputer.recov_data References ---------- H.-F. Yu, N. Rao, and I. S. Dhillon, "Temporal Regularized Matrix Factorization for High-dimensional Time Series Prediction," in *Advances in Neural Information Processing Systems*, vol. 29, 2016. [Online]. Available: https://proceedings.neurips.cc/paper_files/paper/2016/file/85422afb467e9456013a2a51d4dff702-Paper.pdf """ + from imputegap.algorithms.trmf import trmf + if params is not None: lags, K, lambda_f, lambda_x, lambda_w, eta, alpha, max_iter = self._check_params(user_def, params) else: @@ -1234,7 +1227,7 @@ def impute(self, user_def=True, params=None): >>> mf_imputer = Imputation.MachineLearning.MissForest(incomp_data) >>> mf_imputer.impute() # default parameters for imputation > or >>> mf_imputer.impute(user_def=True, params={"n_estimators":10, "max_iter":3, "max_features":"sqrt", "seed": 42}) # user defined > or - >>> mf_imputer.impute(user_def=False, params={"input_data": ts_1.data, "optimizer": "ray_tune"}) # automl with ray_tune + >>> mf_imputer.impute(user_def=False, params={"input_data": ts.data, "optimizer": "ray_tune"}) # automl with ray_tune >>> recov_data = mf_imputer.recov_data References @@ -1243,6 +1236,8 @@ def impute(self, user_def=True, params=None): https://github.com/yuenshingyan/MissForest https://pypi.org/project/MissForest/ """ + from imputegap.algorithms.miss_forest import miss_forest + if params is not None: n_estimators, max_iter, max_features, seed = self._check_params(user_def, params) else: @@ -1296,7 +1291,7 @@ def impute(self, user_def=True, params=None): >>> mice_imputer = Imputation.MachineLearning.MICE(incomp_data) >>> mice_imputer.impute() # default parameters for imputation > or >>> mice_imputer.impute(user_def=True, params={"max_iter":3, "tol":0.001, "initial_strategy":"mean", "seed": 42}) # user defined > or - >>> mice_imputer.impute(user_def=False, params={"input_data": ts_1.data, "optimizer": "ray_tune"}) # automl with ray_tune + >>> mice_imputer.impute(user_def=False, params={"input_data": ts.data, "optimizer": "ray_tune"}) # automl with ray_tune >>> recov_data = mice_imputer.recov_data References @@ -1306,6 +1301,8 @@ def impute(self, user_def=True, params=None): S. F. Buck, (1960). “A Method of Estimation of Missing Values in Multivariate Data Suitable for use with an Electronic Computer”. Journal of the Royal Statistical Society 22(2): 302-306. https://scikit-learn.org/stable/modules/generated/sklearn.impute.IterativeImputer.html#sklearn.impute.IterativeImputer """ + from imputegap.algorithms.mice import mice + if params is not None: max_iter, tol, initial_strategy, seed = self._check_params(user_def, params) else: @@ -1354,7 +1351,7 @@ def impute(self, user_def=True, params=None): >>> mxgboost_imputer = Imputation.MachineLearning.XGBOOST(incomp_data) >>> mxgboost_imputer.impute() # default parameters for imputation > or >>> mxgboost_imputer.impute(user_def=True, params={"n_estimators":3, "seed": 42}) # user defined > or - >>> mxgboost_imputer.impute(user_def=False, params={"input_data": ts_1.data, "optimizer": "ray_tune"}) # automl with ray_tune + >>> mxgboost_imputer.impute(user_def=False, params={"input_data": ts.data, "optimizer": "ray_tune"}) # automl with ray_tune >>> recov_data = mxgboost_imputer.recov_data References @@ -1363,6 +1360,8 @@ def impute(self, user_def=True, params=None): https://dl.acm.org/doi/10.1145/2939672.2939785 https://medium.com/@tzhaonj/imputing-missing-data-using-xgboost-802757cace6d """ + from imputegap.algorithms.xgboost import xgboost + if params is not None: n_estimators, seed = self._check_params(user_def, params) else: @@ -1409,7 +1408,7 @@ def impute(self, user_def=True, params=None): >>> iim_imputer = Imputation.MachineLearning.IIM(incomp_data) >>> iim_imputer.impute() # default parameters for imputation > or >>> iim_imputer.impute(user_def=True, params={'learning_neighbors': 10}) # user-defined > or - >>> iim_imputer.impute(user_def=False, params={"input_data": ts_1.data, "optimizer": "bayesian", "options": {"n_calls": 2}}) # automl with bayesian + >>> iim_imputer.impute(user_def=False, params={"input_data": ts.data, "optimizer": "bayesian", "options": {"n_calls": 2}}) # automl with bayesian >>> recov_data = iim_imputer.recov_data References @@ -1417,6 +1416,8 @@ def impute(self, user_def=True, params=None): A. Zhang, S. Song, Y. Sun and J. Wang, "Learning Individual Models for Imputation," 2019 IEEE 35th International Conference on Data Engineering (ICDE), Macao, China, 2019, pp. 160-171, doi: 10.1109/ICDE.2019.00023. keywords: {Data models;Adaptation models;Computational modeling;Predictive models;Numerical models;Aggregates;Regression tree analysis;Missing values;Data imputation} """ + from imputegap.algorithms.iim import iim + if params is not None: learning_neighbours, algo_code = self._check_params(user_def, params) else: @@ -1486,7 +1487,7 @@ def impute(self, user_def=True, params=None): >>> stmvl_imputer = Imputation.PatternSearch.STMVL(incomp_data) >>> stmvl_imputer.impute() # default parameters for imputation > or >>> stmvl_imputer.impute(user_def=True, params={'window_size': 7, 'learning_rate':0.01, 'gamma':0.85, 'alpha': 7}) # user-defined > or - >>> stmvl_imputer.impute(user_def=False, params={"input_data": ts_1.data, "optimizer": "bayesian", "options": {"n_calls": 2}}) # automl with bayesian + >>> stmvl_imputer.impute(user_def=False, params={"input_data": ts.data, "optimizer": "bayesian", "options": {"n_calls": 2}}) # automl with bayesian >>> recov_data = stmvl_imputer.recov_data References @@ -1494,6 +1495,8 @@ def impute(self, user_def=True, params=None): Yi, X., Zheng, Y., Zhang, J., & Li, T. ST-MVL: Filling Missing Values in Geo-Sensory Time Series Data. School of Information Science and Technology, Southwest Jiaotong University; Microsoft Research; Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences. """ + from imputegap.algorithms.stmvl import stmvl + if params is not None: window_size, gamma, alpha = self._check_params(user_def, params) else: @@ -1546,13 +1549,15 @@ def impute(self, user_def=True, params=None): >>> dynammo_imputer = Imputation.PatternSearch.DynaMMo(incomp_data) >>> dynammo_imputer.impute() # default parameters for imputation > or >>> dynammo_imputer.impute(params={'h': 5, 'max_iteration': 100, 'approximation': True}) # user-defined > or - >>> dynammo_imputer.impute(user_def=False, params={"input_data": ts_1.data, "optimizer": "ray_tune"}) # automl with ray_tune + >>> dynammo_imputer.impute(user_def=False, params={"input_data": ts.data, "optimizer": "ray_tune"}) # automl with ray_tune >>> recov_data = dynammo_imputer.recov_data References ---------- L. Li, J. McCann, N. S. Pollard, and C. Faloutsos. Dynammo: mining and summarization of coevolving sequences with missing values. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Paris, France, June 28 - July 1, 2009, pages 507–516, 2009. """ + from imputegap.algorithms.dynammo import dynammo + if params is not None: h, max_iteration, approximation = self._check_params(user_def, params) else: @@ -1601,13 +1606,15 @@ def impute(self, user_def=True, params=None): >>> tkcm_imputer = Imputation.PatternSearch.TKCM(incomp_data) >>> tkcm_imputer.impute() # default parameters for imputation > or >>> tkcm_imputer.impute(params={'rank': 5}) # user-defined > or - >>> tkcm_imputer.impute(user_def=False, params={"input_data": ts_1.data, "optimizer": "ray_tune"}) # automl with ray_tune + >>> tkcm_imputer.impute(user_def=False, params={"input_data": ts.data, "optimizer": "ray_tune"}) # automl with ray_tune >>> recov_data = tkcm_imputer.recov_data References ---------- K. Wellenzohn, M. H. Böhlen, A. Dignös, J. Gamper, and H. Mitterer. Continuous imputation of missing values in streams of pattern-determining time series. In Proceedings of the 20th International Conference on Extending Database Technology, EDBT 2017, Venice, Italy, March 21-24, 2017., pages 330–341, 2017. """ + from imputegap.algorithms.tkcm import tkcm + if params is not None: rank = self._check_params(user_def, params)[0] else: @@ -1688,13 +1695,15 @@ def impute(self, user_def=True, params=None): >>> mrnn_imputer = Imputation.DeepLearning.MRNN(incomp_data) >>> mrnn_imputer.impute() # default parameters for imputation > or >>> mrnn_imputer.impute(user_def=True, params={'hidden_dim': 10, 'learning_rate':0.01, 'iterations':50, 'sequence_length': 7}) # user-defined > or - >>> mrnn_imputer.impute(user_def=False, params={"input_data": ts_1.data, "optimizer": "bayesian", "options": {"n_calls": 2}}) # automl with bayesian + >>> mrnn_imputer.impute(user_def=False, params={"input_data": ts.data, "optimizer": "bayesian", "options": {"n_calls": 2}}) # automl with bayesian >>> recov_data = mrnn_imputer.recov_data References ---------- J. Yoon, W. R. Zame and M. van der Schaar, "Estimating Missing Data in Temporal Data Streams Using Multi-Directional Recurrent Neural Networks," in IEEE Transactions on Biomedical Engineering, vol. 66, no. 5, pp. 1477-1490, May 2019, doi: 10.1109/TBME.2018.2874712. keywords: {Time measurement;Interpolation;Estimation;Medical diagnostic imaging;Correlation;Recurrent neural networks;Biomedical measurement;Missing data;temporal data streams;imputation;recurrent neural nets} """ + from imputegap.algorithms.mrnn import mrnn + if params is not None: hidden_dim, learning_rate, iterations, sequence_length = self._check_params(user_def, params) else: @@ -1751,13 +1760,15 @@ def impute(self, user_def=True, params=None): >>> brits_imputer = Imputation.DeepLearning.BRITS(incomp_data) >>> brits_imputer.impute() # default parameters for imputation > or >>> brits_imputer.impute(params={"model": "brits", "epoch": 2, "batch_size": 10, "nbr_features": 1, "hidden_layer": 64}) # user-defined > or - >>> brits_imputer.impute(user_def=False, params={"input_data": ts_1.data, "optimizer": "ray_tune"}) # automl with ray_tune + >>> brits_imputer.impute(user_def=False, params={"input_data": ts.data, "optimizer": "ray_tune"}) # automl with ray_tune >>> recov_data = brits_imputer.recov_data References ---------- Cao, W., Wang, D., Li, J., Zhou, H., Li, L. & Li, Y. BRITS: Bidirectional Recurrent Imputation for Time Series. Advances in Neural Information Processing Systems, 31 (2018). https://proceedings.neurips.cc/paper_files/paper/2018/file/734e6bfcd358e25ac1db0a4241b95651-Paper.pdf """ + from imputegap.algorithms.brits import brits + if params is not None: model, epoch, batch_size, nbr_features, hidden_layer = self._check_params(user_def, params) else: @@ -1809,7 +1820,7 @@ def impute(self, user_def=True, params=None): >>> deep_mvi_imputer = Imputation.DeepLearning.DeepMVI(incomp_data) >>> deep_mvi_imputer.impute() # default parameters for imputation > or >>> deep_mvi_imputer.impute(params={"max_epoch": 10, "patience": 2}) # user-defined > or - >>> deep_mvi_imputer.impute(user_def=False, params={"input_data": ts_1.data, "optimizer": "ray_tune"}) # automl with ray_tune + >>> deep_mvi_imputer.impute(user_def=False, params={"input_data": ts.data, "optimizer": "ray_tune"}) # automl with ray_tune >>> recov_data = deep_mvi_imputer.recov_data References @@ -1817,6 +1828,8 @@ def impute(self, user_def=True, params=None): P. Bansal, P. Deshpande, and S. Sarawagi. Missing value imputation on multidimensional time series. arXiv preprint arXiv:2103.01600, 2023 https://github.com/pbansal5/DeepMVI """ + from imputegap.algorithms.deep_mvi import deep_mvi + if params is not None: max_epoch, patience, lr = self._check_params(user_def, params) else: @@ -1828,6 +1841,7 @@ def impute(self, user_def=True, params=None): class MPIN(BaseImputer): """ MPIN class to impute missing values using Multi-attribute Sensor Data Streams via Message Propagation algorithm. + Need torch-cluster to work. Methods ------- @@ -1839,6 +1853,7 @@ class MPIN(BaseImputer): def impute(self, user_def=True, params=None): """ Perform imputation using the MPIN algorithm. + Need torch-cluster to work. Parameters ---------- @@ -1879,7 +1894,7 @@ def impute(self, user_def=True, params=None): >>> mpin_imputer = Imputation.DeepLearning.MPIN(incomp_data) >>> mpin_imputer.impute() # default parameters for imputation > or >>> mpin_imputer.impute(params={"incre_mode": "data+state", "window": 1, "k": 15, "learning_rate": 0.001, "weight_decay": 0.2, "epochs": 6, "num_of_iteration": 6, "threshold": 0.50, "base": "GCN"}) # user-defined > or - >>> mpin_imputer.impute(user_def=False, params={"input_data": ts_1.data, "optimizer": "ray_tune"}) # automl with ray_tune + >>> mpin_imputer.impute(user_def=False, params={"input_data": ts.data, "optimizer": "ray_tune"}) # automl with ray_tune >>> recov_data = mpin_imputer.recov_data References @@ -1887,6 +1902,8 @@ def impute(self, user_def=True, params=None): Li, X., Li, H., Lu, H., Jensen, C.S., Pandey, V. & Markl, V. Missing Value Imputation for Multi-attribute Sensor Data Streams via Message Propagation (Extended Version). arXiv (2023). https://arxiv.org/abs/2311.07344 https://github.com/XLI-2020/MPIN """ + from imputegap.algorithms.mpin import mpin + if params is not None: incre_mode, window, k, learning_rate, weight_decay, epochs, num_of_iteration, threshold, base = self._check_params(user_def, params) else: @@ -1940,7 +1957,7 @@ def impute(self, user_def=True, params=None): >>> pristi_imputer = Imputation.DeepLearning.PRISTI(incomp_data) >>> pristi_imputer.impute() # default parameters for imputation > or >>> pristi_imputer.impute(params={"target_strategy":"hybrid", "unconditional":True, "seed":42, "device":"cpu"}) # user-defined > or - >>> pristi_imputer.impute(user_def=False, params={"input_data": ts_1.data, "optimizer": "ray_tune"}) # automl with ray_tune + >>> pristi_imputer.impute(user_def=False, params={"input_data": ts.data, "optimizer": "ray_tune"}) # automl with ray_tune >>> recov_data = pristi_imputer.recov_data References @@ -1948,6 +1965,8 @@ def impute(self, user_def=True, params=None): M. Liu, H. Huang, H. Feng, L. Sun, B. Du and Y. Fu, "PriSTI: A Conditional Diffusion Framework for Spatiotemporal Imputation," 2023 IEEE 39th International Conference on Data Engineering (ICDE), Anaheim, CA, USA, 2023, pp. 1927-1939, doi: 10.1109/ICDE55515.2023.00150. https://github.com/LMZZML/PriSTI """ + from imputegap.algorithms.pristi import pristi + if params is not None: target_strategy, unconditional, seed, device = self._check_params(user_def, params) else: @@ -2007,7 +2026,7 @@ def impute(self, user_def=True, params=None): >>> miss_net_imputer = Imputation.DeepLearning.MissNet(incomp_data) >>> miss_net_imputer.impute() # default parameters for imputation > or >>> miss_net_imputer.impute(user_def=True, params={'alpha': 0.5, 'beta':0.1, 'L':10, 'n_cl': 1, 'max_iteration':20, 'tol':5, 'random_init':False}) # user-defined > or - >>> miss_net_imputer.impute(user_def=False, params={"input_data": ts_1.data, "optimizer": "ray_tune"}) # auto-ml with ray_tune + >>> miss_net_imputer.impute(user_def=False, params={"input_data": ts.data, "optimizer": "ray_tune"}) # auto-ml with ray_tune >>> recov_data = miss_net_imputer.recov_data References @@ -2015,6 +2034,8 @@ def impute(self, user_def=True, params=None): Kohei Obata, Koki Kawabata, Yasuko Matsubara, and Yasushi Sakurai. 2024. Mining of Switching Sparse Networks for Missing Value Imputation in Multivariate Time Series. In Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD '24). Association for Computing Machinery, New York, NY, USA, 2296–2306. https://doi.org/10.1145/3637528.3671760 https://github.com/KoheiObata/MissNet/tree/main """ + from imputegap.algorithms.miss_net import miss_net + if params is not None: alpha, beta, L, n_cl, max_iteration, tol, random_init = self._check_params(user_def, params) else: @@ -2074,7 +2095,7 @@ def impute(self, user_def=True, params=None): >>> gain_imputer = Imputation.DeepLearning.GAIN(incomp_data) >>> gain_imputer.impute() # default parameters for imputation > or >>> gain_imputer.impute(user_def=True, params={"batch_size":32, "hint_rate":0.9, "alpha":10, "epoch":100}) # user defined> or - >>> gain_imputer.impute(user_def=False, params={"input_data": ts_1.data, "optimizer": "ray_tune"}) # auto-ml with ray_tune + >>> gain_imputer.impute(user_def=False, params={"input_data": ts.data, "optimizer": "ray_tune"}) # auto-ml with ray_tune >>> recov_data = gain_imputer.recov_data References @@ -2082,6 +2103,8 @@ def impute(self, user_def=True, params=None): J. Yoon, J. Jordon, and M. van der Schaar, "GAIN: Missing Data Imputation using Generative Adversarial Nets," CoRR, vol. abs/1806.02920, 2018. Available: http://arxiv.org/abs/1806.02920. """ + from imputegap.algorithms.gain import gain + if params is not None: batch_size, hint_rate, alpha, epoch = self._check_params(user_def, params) else: @@ -2153,7 +2176,7 @@ def impute(self, user_def=True, params=None): >>> grin_imputer = Imputation.DeepLearning.GRIN(incomp_data) >>> grin_imputer.impute() # default parameters for imputation > or >>> grin_imputer.impute(user_def=True, params={"d_hidden":32, "lr":0.001, "batch_size":32, "window":1, "alpha":10.0, "patience":4, "epochs":20, "workers":2}) # user defined> or - >>> grin_imputer.impute(user_def=False, params={"input_data": ts_1.data, "optimizer": "ray_tune"}) # auto-ml with ray_tune + >>> grin_imputer.impute(user_def=False, params={"input_data": ts.data, "optimizer": "ray_tune"}) # auto-ml with ray_tune >>> recov_data = grin_imputer.recov_data References @@ -2161,6 +2184,7 @@ def impute(self, user_def=True, params=None): A. Cini, I. Marisca, and C. Alippi, "Multivariate Time Series Imputation by Graph Neural Networks," CoRR, vol. abs/2108.00298, 2021 https://github.com/Graph-Machine-Learning-Group/grin """ + from imputegap.algorithms.grin import grin if params is not None: d_hidden, lr, batch_size, window, alpha, patience, epochs, workers = self._check_params(user_def, params) @@ -2238,7 +2262,7 @@ def impute(self, user_def=True, params=None): >>> bay_otide_imputer = Imputation.DeepLearning.BayOTIDE(incomp_data) >>> bay_otide_imputer.impute() # default parameters for imputation > or >>> bay_otide_imputer.impute(user_def=True, params={"K_trend":20, "K_season":2, "n_season":5, "K_bias":1, "time_scale":1, "a0":0.6, "b0":2.5, "v":0.5}) # user defined> or - >>> bay_otide_imputer.impute(user_def=False, params={"input_data": ts_1.data, "optimizer": "ray_tune"}) # auto-ml with ray_tune + >>> bay_otide_imputer.impute(user_def=False, params={"input_data": ts.data, "optimizer": "ray_tune"}) # auto-ml with ray_tune >>> recov_data = bay_otide_imputer.recov_data References @@ -2246,6 +2270,7 @@ def impute(self, user_def=True, params=None): S. Fang, Q. Wen, Y. Luo, S. Zhe, and L. Sun, "BayOTIDE: Bayesian Online Multivariate Time Series Imputation with Functional Decomposition," CoRR, vol. abs/2308.14906, 2024. [Online]. Available: https://arxiv.org/abs/2308.14906. https://github.com/xuangu-fang/BayOTIDE """ + from imputegap.algorithms.bayotide import bay_otide if params is not None: K_trend, K_season, n_season, K_bias, time_scale, a0, b0, v = self._check_params(user_def, params) @@ -2304,7 +2329,7 @@ def impute(self, user_def=True, params=None): >>> hkmf_t_imputer = Imputation.DeepLearning.HKMF_T(incomp_data) >>> hkmf_t_imputer.impute() # default parameters for imputation > or >>> hkmf_t_imputer.impute(user_def=True, params={"tags":None, "data_names":None, "epoch":5}) # user defined> or - >>> hkmf_t_imputer.impute(user_def=False, params={"input_data": ts_1.data, "optimizer": "ray_tune"}) # auto-ml with ray_tune + >>> hkmf_t_imputer.impute(user_def=False, params={"input_data": ts.data, "optimizer": "ray_tune"}) # auto-ml with ray_tune >>> recov_data = hkmf_t_imputer.recov_data References @@ -2312,6 +2337,7 @@ def impute(self, user_def=True, params=None): L. Wang, S. Wu, T. Wu, X. Tao and J. Lu, "HKMF-T: Recover From Blackouts in Tagged Time Series With Hankel Matrix Factorization," in IEEE Transactions on Knowledge and Data Engineering, vol. 33, no. 11, pp. 3582-3593, 1 Nov. 2021, doi: 10.1109/TKDE.2020.2971190. keywords: {Time series analysis;Matrix decomposition;Market research;Meteorology;Sparse matrices;Indexes;Software;Tagged time series;missing value imputation;blackouts;hankel matrix factorization} https://github.com/wangliang-cs/hkmf-t?tab=readme-ov-file """ + from imputegap.algorithms.hkmf_t import hkmf_t if params is not None: tags, data_names, epoch = self._check_params(user_def, params) @@ -2391,7 +2417,7 @@ def impute(self, user_def=True, params=None): >>> bit_graph_imputer = Imputation.DeepLearning.BitGraph(incomp_data) >>> bit_graph_imputer.impute() # default parameters for imputation > or >>> bit_graph_imputer.impute(user_def=True, params={"node_number":-1, "kernel_set":[1], "dropout":0.1, "subgraph_size":5, "node_dim":3, "seq_len":1, "lr":0.001, "epoch":10, "seed":42}) # user defined> or - >>> bit_graph_imputer.impute(user_def=False, params={"input_data": ts_1.data, "optimizer": "ray_tune"}) # auto-ml with ray_tune + >>> bit_graph_imputer.impute(user_def=False, params={"input_data": ts.data, "optimizer": "ray_tune"}) # auto-ml with ray_tune >>> recov_data = bit_graph_imputer.recov_data References @@ -2400,6 +2426,8 @@ def impute(self, user_def=True, params=None): https://github.com/chenxiaodanhit/BiTGraph """ + from imputegap.algorithms.bit_graph import bit_graph + if params is not None: node_number, kernel_set, dropout, subgraph_size, node_dim, seq_len, lr, epoch, seed = self._check_params(user_def, params) else: diff --git a/imputegap/recovery/manager.py b/imputegap/recovery/manager.py index 2193ede0..cb62be1a 100644 --- a/imputegap/recovery/manager.py +++ b/imputegap/recovery/manager.py @@ -1,28 +1,45 @@ import datetime import os +import platform import time import numpy as np import matplotlib -from scipy.stats import zscore -from sklearn.preprocessing import MinMaxScaler import importlib.resources -from scipy.stats import norm - from imputegap.tools import utils -# Use Agg backend if in a headless or CI environment -if os.getenv('DISPLAY') is None or os.getenv('CI') is not None: - matplotlib.use("Agg") - print("Running in a headless environment or CI. Using Agg backend.") -else: - try: - matplotlib.use("TkAgg") - if importlib.util.find_spec("tkinter") is None: - print("tkinter is not available.") - except (ImportError, RuntimeError): +from matplotlib import pyplot as plt # type: ignore + + +def select_backend(): + system = platform.system() + headless = os.getenv('DISPLAY') is None or os.getenv('CI') is not None + + if headless: matplotlib.use("Agg") + return + + if system == "Darwin": # macOS + try: + matplotlib.use("MacOSX") + except (ImportError, RuntimeError): + try: + if importlib.util.find_spec("tkinter") is not None: + matplotlib.use("TkAgg") + else: + raise ImportError + except (ImportError, RuntimeError): + matplotlib.use("Agg") + else: # Windows or Linux + try: + if importlib.util.find_spec("tkinter") is not None: + matplotlib.use("TkAgg") + else: + raise ImportError + except (ImportError, RuntimeError): + matplotlib.use("Agg") -from matplotlib import pyplot as plt # type: ignore +# Call the backend selector +select_backend() class TimeSeries: @@ -189,11 +206,11 @@ def print(self, nbr_val=10, nbr_series=7, view_by_series=False): ------- None """ - print("\nTime Series set :") - to_print = self.data nbr_tot_series, nbr_tot_values = to_print.shape - print_col, print_row = "Timestamp", "Series" + print_col, print_row = "timestamp", "Series" + + print(f"\nshape of {self.name} : {self.data.shape}\n\tnumber of series = { nbr_tot_series}\n\tnumber of values = {nbr_tot_values}\n") if nbr_val == -1: nbr_val = to_print.shape[1] @@ -203,7 +220,7 @@ def print(self, nbr_val=10, nbr_series=7, view_by_series=False): if not view_by_series: to_print = to_print.T - print_col, print_row = "Series", "Timestamp" + print_col, print_row = "Series", "timestamp" header_format = "{:<15}" # Fixed size for headers value_format = "{:>15.10f}" # Fixed size for values @@ -215,16 +232,13 @@ def print(self, nbr_val=10, nbr_series=7, view_by_series=False): # Print each limited series with fixed size for i, series in enumerate(to_print): - print(header_format.format(f"{print_row} {i + 1}"), end="") + print(header_format.format(f"{print_row}_{i + 1}"), end="") print("".join([value_format.format(elem) for elem in series])) if nbr_series < nbr_tot_series: print("...") - print("\nshape of the time series :", self.data.shape, "\n\tnumber of series =", nbr_tot_series, - "\n\tnumber of values =", nbr_tot_values, "\n\n") - - def print_results(self, metrics, algorithm="", text="Imputation Results of"): + def print_results(self, metrics, algorithm="", text="Results of the analysis"): """ Prints the results of the imputation process. @@ -295,6 +309,8 @@ def normalize(self, normalizer="z_score"): end_time = time.time() elif normalizer == "z_lib": + from scipy.stats import zscore + start_time = time.time() # Record start time self.data = zscore(self.data, axis=0) @@ -302,6 +318,8 @@ def normalize(self, normalizer="z_score"): end_time = time.time() elif normalizer == "m_lib": + from sklearn.preprocessing import MinMaxScaler + start_time = time.time() # Record start time scaler = MinMaxScaler() @@ -324,10 +342,10 @@ def normalize(self, normalizer="z_score"): self.data = self.data.T - print(f"\n\t\t> logs, normalization {normalizer} - Execution Time: {(end_time - start_time):.4f} seconds\n") + print(f"\n\t> logs, normalization {normalizer} - Execution Time: {(end_time - start_time):.4f} seconds\n") def plot(self, input_data, incomp_data=None, recov_data=None, nbr_series=None, nbr_val=None, series_range=None, - subplot=False, size=(16, 8), save_path="./imputegap_assets", display=True): + subplot=False, size=(16, 8), algorithm=None, save_path="./imputegap_assets", display=True): """ Plot the time series data, including raw, contaminated, or imputed data. @@ -349,6 +367,8 @@ def plot(self, input_data, incomp_data=None, recov_data=None, nbr_series=None, n Print one time series by subplot or all in the same plot. size : tuple, optional Size of the plot in inches. Default is (16, 8). + algorithm : str, optional + Name of the algorithm used for imputation. save_path : str, optional Path to save the plot locally. display : bool, optional @@ -366,6 +386,9 @@ def plot(self, input_data, incomp_data=None, recov_data=None, nbr_series=None, n >>> ts.plot(input_data=ts.data, incomp_data=ts_m, recov_data=imputer.recov_data, nbr_series=9, subplot=True, save_path="./imputegap_assets") # imputation """ number_of_series = 0 + if algorithm is None: + algorithm = "imputegap" + algorithm.lower() if nbr_series is None or nbr_series == -1: nbr_series = input_data.shape[0] @@ -400,6 +423,7 @@ def plot(self, input_data, incomp_data=None, recov_data=None, nbr_series=None, n y_size = y_size_screen fig, axes = plt.subplots(n_rows, n_cols, figsize=(x_size, y_size), squeeze=False) + fig.canvas.manager.set_window_title(algorithm) axes = axes.flatten() else: plt.figure(figsize=size) @@ -426,28 +450,28 @@ def plot(self, input_data, incomp_data=None, recov_data=None, nbr_series=None, n if incomp_data is None and recov_data is None: # plot only raw matrix ax.plot(timestamps, input_data[i, :nbr_val], linewidth=2.5, - color=color, linestyle='-', label=f'TS {i + 1}') + color=color, linestyle='-', label=f'Series {i + 1}') if incomp_data is not None and recov_data is None: # plot infected matrix if np.isnan(incomp_data[i, :]).any(): ax.plot(timestamps, input_data[i, :nbr_val], linewidth=1.5, - color=color, linestyle='--', label=f'TS-INCOMP {i + 1}') + color=color, linestyle='--', label=f'Missing Data {i + 1}') if np.isnan(incomp_data[i, :]).any() or not subplot: ax.plot(np.arange(min(incomp_data.shape[1], nbr_val)), incomp_data[i, :nbr_val], - color=color, linewidth=2.5, linestyle='-', label=f'TS-INPUT {i + 1}') + color=color, linewidth=2.5, linestyle='-', label=f'Series {i + 1}') if recov_data is not None: # plot imputed matrix if np.isnan(incomp_data[i, :]).any(): ax.plot(np.arange(min(recov_data.shape[1], nbr_val)), recov_data[i, :nbr_val], - linestyle='-', color="r", label=f'TS-RECOV {i + 1}') + linestyle='-', color="r", label=f'Imputed Data {i + 1}') ax.plot(timestamps, input_data[i, :nbr_val], linewidth=1.5, - linestyle='--', color=color, label=f'TS-INCOM {i + 1}') + linestyle='--', color=color, label=f'Missing Data {i + 1}') if np.isnan(incomp_data[i, :]).any() or not subplot: ax.plot(np.arange(min(incomp_data.shape[1], nbr_val)), incomp_data[i, :nbr_val], - color=color, linewidth=2.5, linestyle='-', label=f'TS-INPUT {i + 1}') + color=color, linewidth=2.5, linestyle='-', label=f'Series {i + 1}') # Label and legend for subplot if subplot: @@ -485,7 +509,7 @@ def plot(self, input_data, incomp_data=None, recov_data=None, nbr_series=None, n now = datetime.datetime.now() current_time = now.strftime("%y_%m_%d_%H_%M_%S") - file_path = os.path.join(save_path + "/" + current_time + "_plot.jpg") + file_path = os.path.join(save_path + "/" + current_time + "_" + algorithm + "_plot.jpg") plt.savefig(file_path, bbox_inches='tight') print("plots saved in ", file_path) @@ -582,16 +606,16 @@ def mcar(input_data, rate_dataset=0.2, rate_series=0.2, block_size=10, offset=0. values_nbr = int(NS * rate_series) if not explainer: - print(f"\n\n\tMCAR contamination has been called with :" - f"\n\t\ta number of series impacted {rate_dataset * 100}%" - f"\n\t\ta missing rate of {rate_series * 100}%" - f"\n\t\ta starting position at {offset_nbr}" - f"\n\t\ta block size of {block_size}" - f"\n\t\tvalues to remove by series {values_nbr}" - f"\n\t\twith a seed option set to {seed}" - f"\n\t\twith a seed value set to {seed_value}" - f"\n\t\tshape of the set {ts_contaminated.shape}" - f"\n\t\tthis selection of series {series_selected}\n\n") + print(f"\n\nMCAR contamination has been called with :" + f"\n\ta number of series impacted {rate_dataset * 100}%" + f"\n\ta missing rate of {rate_series * 100}%" + f"\n\ta starting position at {offset_nbr}" + f"\n\ta block size of {block_size}" + f"\n\tvalues to remove by series {values_nbr}" + f"\n\twith a seed option set to {seed}" + f"\n\twith a seed value set to {seed_value}" + f"\n\tshape of the set {ts_contaminated.shape}" + f"\n\tthis selection of series {series_selected}\n\n") if offset_nbr + values_nbr > NS: raise ValueError( @@ -672,13 +696,13 @@ def aligned(input_data, rate_dataset=0.2, rate_series=0.2, offset=0.1): values_nbr = int(NS * rate_series) - print("\n\n\tALIGNED (missing percentage) contamination has been called with :" - "\n\t\ta number of series impacted ", rate_dataset * 100, "%", - "\n\t\ta missing rate of ", rate_series * 100, "%", - "\n\t\ta starting position at ", offset, - "\n\t\tshape of the set ", ts_contaminated.shape, - "\n\t\tthis selection of series : ", 1, "->", nbr_series_impacted, - "\n\t\tvalues : ", offset_nbr, "->", offset_nbr + values_nbr, "\n\n") + print("\n\nALIGNED (missing percentage) contamination has been called with :" + "\n\ta number of series impacted ", rate_dataset * 100, "%", + "\n\ta missing rate of ", rate_series * 100, "%", + "\n\ta starting position at ", offset, + "\n\tshape of the set ", ts_contaminated.shape, + "\n\tthis selection of series : ", 1, "->", nbr_series_impacted, + "\n\tvalues : ", offset_nbr, "->", offset_nbr + values_nbr, "\n\n") if offset_nbr + values_nbr > NS: @@ -746,13 +770,13 @@ def scattered(input_data, rate_dataset=0.2, rate_series=0.2, offset=0.1, seed=Tr values_nbr = int(NS * rate_series) - print("\n\n\tSCATTER (missing percentage AT RANDOM) contamination has been called with :" - "\n\t\ta number of series impacted ", rate_dataset * 100, "%", - "\n\t\ta missing rate of ", rate_series * 100, "%", - "\n\t\ta starting position at ", offset, - "\n\t\tshape of the set ", ts_contaminated.shape, - "\n\t\tthis selection of series : ", 1, "->", nbr_series_impacted, - "\n\t\tvalues : ", offset_nbr, "->", offset_nbr + values_nbr, "\n\n") + print("\n\nSCATTER (missing percentage AT RANDOM) contamination has been called with :" + "\n\ta number of series impacted ", rate_dataset * 100, "%", + "\n\ta missing rate of ", rate_series * 100, "%", + "\n\ta starting position at ", offset, + "\n\tshape of the set ", ts_contaminated.shape, + "\n\tthis selection of series : ", 1, "->", nbr_series_impacted, + "\n\tvalues : ", offset_nbr, "->", offset_nbr + values_nbr, "\n\n") if offset_nbr + values_nbr > NS: @@ -836,6 +860,7 @@ def gaussian(input_data, rate_dataset=0.2, rate_series=0.2, std_dev=0.2, offset= ---------- https://imputegap.readthedocs.io/en/latest/patterns.html """ + from scipy.stats import norm ts_contaminated = input_data.copy() M, NS = ts_contaminated.shape @@ -854,16 +879,16 @@ def gaussian(input_data, rate_dataset=0.2, rate_series=0.2, std_dev=0.2, offset= offset_nbr = int(offset * NS) values_nbr = int(NS * rate_series) - print(f"\n\n\tGAUSSIAN contamination has been called with :" - f"\n\t\ta number of series impacted {rate_dataset * 100}%" - f"\n\t\ta missing rate of {rate_series * 100}%" - f"\n\t\ta starting position at {offset_nbr}" - f"\n\t\tvalues to remove by series {values_nbr}" - f"\n\t\twith a seed option set to {seed}" - f"\n\t\twith a seed value set to {seed_value}" - f"\n\t\tGaussian std_dev {std_dev}" - f"\n\t\tshape of the set {ts_contaminated.shape}" - f"\n\t\tthis selection of series {nbr_series_impacted}\n\n") + print(f"\n\nGAUSSIAN contamination has been called with :" + f"\n\ta number of series impacted {rate_dataset * 100}%" + f"\n\ta missing rate of {rate_series * 100}%" + f"\n\ta starting position at {offset_nbr}" + f"\n\tvalues to remove by series {values_nbr}" + f"\n\twith a seed option set to {seed}" + f"\n\twith a seed value set to {seed_value}" + f"\n\tGaussian std_dev {std_dev}" + f"\n\tshape of the set {ts_contaminated.shape}" + f"\n\tthis selection of series {nbr_series_impacted}\n\n") if offset_nbr + values_nbr > NS: raise ValueError( @@ -945,16 +970,16 @@ def distribution(input_data, rate_dataset=0.2, rate_series=0.2, probabilities=No offset_nbr = int(offset * NS) values_nbr = int(NS * rate_series) - print(f"\n\n\tDISTRIBUTION contamination has been called with :" - f"\n\t\ta number of series impacted {rate_dataset * 100}%" - f"\n\t\ta missing rate of {rate_series * 100}%" - f"\n\t\ta starting position at {offset_nbr}" - f"\n\t\tvalues to remove by series {values_nbr}" - f"\n\t\twith a seed option set to {seed}" - f"\n\t\twith a seed value set to {seed_value}" - f"\n\t\tshape of the set {ts_contaminated.shape}" - f"\n\t\tprobabilities list {np.array(probabilities).shape}" - f"\n\t\tthis selection of series {nbr_series_impacted}\n\n") + print(f"\n\nDISTRIBUTION contamination has been called with :" + f"\n\ta number of series impacted {rate_dataset * 100}%" + f"\n\ta missing rate of {rate_series * 100}%" + f"\n\ta starting position at {offset_nbr}" + f"\n\tvalues to remove by series {values_nbr}" + f"\n\twith a seed option set to {seed}" + f"\n\twith a seed value set to {seed_value}" + f"\n\tshape of the set {ts_contaminated.shape}" + f"\n\tprobabilities list {np.array(probabilities).shape}" + f"\n\tthis selection of series {nbr_series_impacted}\n\n") if offset_nbr + values_nbr > NS: raise ValueError( @@ -1018,12 +1043,12 @@ def disjoint(input_data, rate_series=0.1, limit=1, offset=0.1): values_nbr = int(NS * rate_series) - print(f"\n\n\tDISJOINT contamination has been called with :" - f"\n\t\ta missing rate of {rate_series * 100}%" - f"\n\t\ta starting position at {offset_nbr}" - f"\n\t\tvalues to remove by series {values_nbr}" - f"\n\t\tlimit to stop {limit}" - f"\n\t\tshape of the set {ts_contaminated.shape}") + print(f"\n\nDISJOINT contamination has been called with :" + f"\n\ta missing rate of {rate_series * 100}%" + f"\n\ta starting position at {offset_nbr}" + f"\n\tvalues to remove by series {values_nbr}" + f"\n\tlimit to stop {limit}" + f"\n\tshape of the set {ts_contaminated.shape}") if offset_nbr + values_nbr > NS: @@ -1091,15 +1116,15 @@ def overlap(input_data, rate_series=0.2, limit=1, shift=0.05, offset=0.1): offset_nbr = int(offset * NS) values_nbr = int(NS * rate_series) - print(f"\n\n\tOVERLAP contamination has been called with :" - f"\n\t\ta missing rate of {rate_series * 100}%" - f"\n\t\ta offset of {offset*100}%" - f"\n\t\ta starting position at {offset_nbr}" - f"\n\t\tvalues to remove by series {values_nbr}" - f"\n\t\ta shift overlap of {shift * 100} %" - f"\n\t\ta shift in number {int(shift * NS)}" - f"\n\t\tlimit to stop {limit}" - f"\n\t\tshape of the set {ts_contaminated.shape}") + print(f"\n\nOVERLAP contamination has been called with :" + f"\n\ta missing rate of {rate_series * 100}%" + f"\n\ta offset of {offset*100}%" + f"\n\ta starting position at {offset_nbr}" + f"\n\tvalues to remove by series {values_nbr}" + f"\n\ta shift overlap of {shift * 100} %" + f"\n\ta shift in number {int(shift * NS)}" + f"\n\tlimit to stop {limit}" + f"\n\tshape of the set {ts_contaminated.shape}") if offset_nbr + values_nbr > NS: raise ValueError( @@ -1133,3 +1158,8 @@ def overlap(input_data, rate_series=0.2, limit=1, shift=0.05, offset=0.1): return ts_contaminated + missing_completely_at_random = mcar + mp = aligned + missing_percentage = aligned + + diff --git a/imputegap/recovery/optimization.py b/imputegap/recovery/optimization.py index 77496a31..8e11bcb9 100644 --- a/imputegap/recovery/optimization.py +++ b/imputegap/recovery/optimization.py @@ -1,25 +1,11 @@ -import os import time from itertools import product import numpy as np - from imputegap.recovery.imputation import Imputation from imputegap.tools import utils from imputegap.tools.algorithm_parameters import SEARCH_SPACES, ALL_ALGO_PARAMS, PARAM_NAMES, SEARCH_SPACES_PSO, RAYTUNE_PARAMS import imputegap.tools.algorithm_parameters as sh_params -# RAY TUNE IMPORT -from ray import tune -import ray - -# PSO IMPORT -from functools import partial -import pyswarms as ps - -# BAYESIAN IMPORT -import skopt -from skopt.space import Integer - from pyswarms.utils.reporter import Reporter reporter = Reporter() @@ -289,6 +275,10 @@ def optimize(self, input_data, incomp_data, metrics=["RMSE"], algorithm="cdrec", tuple A tuple containing the best parameters and their corresponding score. """ + # BAYESIAN IMPORT + import skopt + from skopt.space import Integer + start_time = time.time() # Record start time search_spaces = SEARCH_SPACES @@ -416,6 +406,9 @@ def optimize(self, input_data, incomp_data, metrics, algorithm, n_particles, c1, tuple A tuple containing the best parameters and their corresponding score. """ + from functools import partial + import pyswarms as ps + start_time = time.time() # Record start time if not isinstance(metrics, list): @@ -620,6 +613,9 @@ def optimize(self, input_data, incomp_data, metrics=["RMSE"], algorithm="cdrec", tuple A tuple containing the best parameters and their corresponding score. """ + from ray import tune + import ray + if not ray.is_initialized(): ray.init() used_metric = metrics[0] diff --git a/imputegap/runner_benchmark.py b/imputegap/runner_benchmark.py index 99ab2745..9171c2e6 100644 --- a/imputegap/runner_benchmark.py +++ b/imputegap/runner_benchmark.py @@ -1,45 +1,17 @@ -import numpy as np - from imputegap.recovery.benchmark import Benchmark -# define analysis global variables -reconstruction = False -save_dir = "./analysis" -nbr_run = 1 +save_dir = "./imputegap_assets/benchmark" +nbr_runs = 1 -# define the datasets to evaluate -datasets_full = ["eeg-alcohol", "eeg-reading", "fmri-objectviewing", "fmri-stoptask", "chlorine", "drift"] -datasets = ["chlorine", "eeg-reading"] +datasets = ["eeg-alcohol"] -# define the optimizer to fine-tine the algorithms -optimiser_bayesian = {"optimizer": "bayesian", "options": {"n_calls": 2, "n_random_starts": 50, "acq_func": "gp_hedge", "metrics": "RMSE"}} -optimiser_greedy = {"optimizer": "greedy", "options": {"n_calls": 250, "metrics": "RMSE"}} -optimiser_pso = {"optimizer": "pso", "options": {"n_particles": 50, "iterations": 10, "metrics": "RMSE"}} -optimiser_sh = {"optimizer": "sh", "options": {"num_configs": 10, "num_iterations": 5, "metrics": "RMSE"}} -optimiser_ray = {"optimizer": "ray_tune", "options": {"n_calls": 1, "max_concurrent_trials": 1}} -optimizers = [optimiser_ray] +optimizers = ["default_params"] -# define the algorithms for the imputation -algorithms = ["MeanImpute", "CDRec", "STMVL", "IIM", "MRNN"] +algorithms = ["SoftImpute", "KNNImpute"] -# define the missing pattern to contaminate the time series -patterns_full = ["mcar", "mp", "blackout", "disjoint", "overlap", "gaussian"] patterns = ["mcar"] -# define missing values percentages to see the evolution of the imputation range = [0.05, 0.1, 0.2, 0.4, 0.6, 0.8] - -if not reconstruction: - # launch the evaluation - list_results, sum_scores = Benchmark().eval(algorithms=algorithms, datasets=datasets, patterns=patterns, x_axis=range, optimizers=optimizers, save_dir=save_dir, runs=nbr_run) -else: - test_plots = {'eegreading': {'mp': {'mean': {'ray_tune': {'0.05': {'scores': {'RMSE': 0.9585345039764159, 'MAE': 0.71318962961796, 'MI': 0.0, 'CORRELATION': 0.0}, 'times': {'contamination': 0.0001308917999267578, 'optimization': 0.0, 'imputation': 0.0005505084991455078, 'log_imputation': -3.25923597169041}}, '0.1': {'scores': {'RMSE': 1.158802114694506, 'MAE': 0.9654264194724749, 'MI': 0.0, 'CORRELATION': 0.0}, 'times': {'contamination': 0.00028133392333984375, 'optimization': 0.0, 'imputation': 0.0002911090850830078, 'log_imputation': -3.5359442406627037}}, '0.2': {'scores': {'RMSE': 0.9366041090001302, 'MAE': 0.713304743455646, 'MI': 0.0, 'CORRELATION': 0.0}, 'times': {'contamination': 0.00025653839111328125, 'optimization': 0.0, 'imputation': 0.0002605915069580078, 'log_imputation': -3.5840397426578834}}, '0.4': {'scores': {'RMSE': 1.0599636170074507, 'MAE': 0.8381968262587581, 'MI': 0.0, 'CORRELATION': 0.0}, 'times': {'contamination': 0.0006632804870605469, 'optimization': 0.0, 'imputation': 0.00026726722717285156, 'log_imputation': -3.573054292012613}}, '0.6': {'scores': {'RMSE': 1.0562417941470534, 'MAE': 0.8508551190781458, 'MI': 0.0, 'CORRELATION': 0.0}, 'times': {'contamination': 0.0013227462768554688, 'optimization': 0.0, 'imputation': 0.0002796649932861328, 'log_imputation': -3.553361892492057}}, '0.7': {'scores': {'RMSE': 1.040204405772873, 'MAE': 0.8335213108852025, 'MI': 0.0, 'CORRELATION': 0.0}, 'times': {'contamination': 0.0017957687377929688, 'optimization': 0.0, 'imputation': 0.00025272369384765625, 'log_imputation': -3.597354039342816}}}}, 'cdrec': {'ray_tune': {'0.05': {'scores': {'RMSE': 1.1697500835978993, 'MAE': 0.9591122423282666, 'MI': 0.874795673555792, 'CORRELATION': -0.6435768999074719}, 'times': {'contamination': 0.00013375282287597656, 'optimization': 7.705925226211548, 'imputation': 0.03410458564758301, 'log_imputation': -1.4671872225457172}}, '0.1': {'scores': {'RMSE': 1.160748195036071, 'MAE': 0.9801100319738002, 'MI': 0.24843228556023436, 'CORRELATION': -0.1457168801420723}, 'times': {'contamination': 0.0010766983032226562, 'optimization': 7.705925226211548, 'imputation': 0.0187838077545166, 'log_imputation': -1.7262163652567906}}, '0.2': {'scores': {'RMSE': 0.9258702230012604, 'MAE': 0.7412912028091162, 'MI': 0.09990051537425793, 'CORRELATION': 0.018312853013798043}, 'times': {'contamination': 0.0012714862823486328, 'optimization': 7.705925226211548, 'imputation': 0.06531453132629395, 'log_imputation': -1.184990185145398}}, '0.4': {'scores': {'RMSE': 1.0158290954098952, 'MAE': 0.7699069240021237, 'MI': 0.043509996942918995, 'CORRELATION': 0.026854101443570477}, 'times': {'contamination': 0.002095460891723633, 'optimization': 7.705925226211548, 'imputation': 0.06960487365722656, 'log_imputation': -1.1573603504995333}}, '0.6': {'scores': {'RMSE': 1.074841191421588, 'MAE': 0.8305870491121395, 'MI': 0.04052775735888883, 'CORRELATION': 0.02240964134518767}, 'times': {'contamination': 0.003614664077758789, 'optimization': 7.705925226211548, 'imputation': 0.11719846725463867, 'log_imputation': -0.9310780680722405}}, '0.7': {'scores': {'RMSE': 1.028461165376999, 'MAE': 0.8037932945848046, 'MI': 0.04862782947355959, 'CORRELATION': 0.28310309461657}, 'times': {'contamination': 0.004042148590087891, 'optimization': 7.705925226211548, 'imputation': 0.14756202697753906, 'log_imputation': -0.8310253877423743}}}}, 'stmvl': {'ray_tune': {'0.05': {'scores': {'RMSE': 0.7277001471585042, 'MAE': 0.6187129093081218, 'MI': 0.849293361425945, 'CORRELATION': 0.6050898026864381}, 'times': {'contamination': 0.0003566741943359375, 'optimization': 401.3516755104065, 'imputation': 13.703130722045898, 'log_imputation': 1.1368198007314763}}, '0.1': {'scores': {'RMSE': 0.9169700690065775, 'MAE': 0.7874056676843385, 'MI': 0.3666479681879978, 'CORRELATION': 0.5010483466574436}, 'times': {'contamination': 0.00020051002502441406, 'optimization': 401.3516755104065, 'imputation': 13.661174535751343, 'log_imputation': 1.1354880399360694}}, '0.2': {'scores': {'RMSE': 0.7183875117312635, 'MAE': 0.5896797263562054, 'MI': 0.24774404354441104, 'CORRELATION': 0.46263398990236104}, 'times': {'contamination': 0.0002193450927734375, 'optimization': 401.3516755104065, 'imputation': 13.761161088943481, 'log_imputation': 1.1386550787575944}}, '0.4': {'scores': {'RMSE': 0.8742119003541577, 'MAE': 0.6297161236774441, 'MI': 0.12171661757737935, 'CORRELATION': 0.2830622046394087}, 'times': {'contamination': 0.0006110668182373047, 'optimization': 401.3516755104065, 'imputation': 14.14597225189209, 'log_imputation': 1.1506328018545884}}, '0.6': {'scores': {'RMSE': 20.12875114987835, 'MAE': 3.972851513364007, 'MI': 0.005760162876990282, 'CORRELATION': -0.0020763310368411936}, 'times': {'contamination': 0.001154184341430664, 'optimization': 401.3516755104065, 'imputation': 8.714907884597778, 'log_imputation': 0.9402628010361087}}, '0.7': {'scores': {'RMSE': 0.9089996638242581, 'MAE': 0.7155219794334919, 'MI': 0.0, 'CORRELATION': 0.0}, 'times': {'contamination': 0.001634359359741211, 'optimization': 401.3516755104065, 'imputation': 8.389863967895508, 'log_imputation': 0.9237549192945785}}}}, 'iim': {'ray_tune': {'0.05': {'scores': {'RMSE': 0.9917499844047692, 'MAE': 0.6835294570359077, 'MI': 1.0383833294554503, 'CORRELATION': 0.39342144548050073}, 'times': {'contamination': 0.00010991096496582031, 'optimization': 87.12388730049133, 'imputation': 0.1563720703125, 'log_imputation': -0.8058408138870692}}, '0.1': {'scores': {'RMSE': 0.5640999644452854, 'MAE': 0.436875650594336, 'MI': 0.9382015646212765, 'CORRELATION': 0.8446597946056835}, 'times': {'contamination': 0.000209808349609375, 'optimization': 87.12388730049133, 'imputation': 1.0088622570037842, 'log_imputation': 0.003831874753497683}}, '0.2': {'scores': {'RMSE': 0.5524062619653164, 'MAE': 0.4527739222276905, 'MI': 0.4682825796414235, 'CORRELATION': 0.734130718955202}, 'times': {'contamination': 0.00021195411682128906, 'optimization': 87.12388730049133, 'imputation': 6.273438930511475, 'log_imputation': 0.7975056746615543}}, '0.4': {'scores': {'RMSE': 0.6703666990440234, 'MAE': 0.5167364139824571, 'MI': 0.25478017143468495, 'CORRELATION': 0.6160285049199379}, 'times': {'contamination': 0.0006020069122314453, 'optimization': 87.12388730049133, 'imputation': 48.24830389022827, 'log_imputation': 1.683482050859879}}, '0.6': {'scores': {'RMSE': 0.846371619650148, 'MAE': 0.6521374554849746, 'MI': 0.10898611984678795, 'CORRELATION': 0.37877848480193976}, 'times': {'contamination': 0.0012598037719726562, 'optimization': 87.12388730049133, 'imputation': 148.6065971851349, 'log_imputation': 2.1720380897576836}}, '0.7': {'scores': {'RMSE': 0.939708165479016, 'MAE': 0.7342180002582285, 'MI': 0.0747388622783703, 'CORRELATION': 0.3115372974410071}, 'times': {'contamination': 0.0016543865203857422, 'optimization': 87.12388730049133, 'imputation': 240.74761581420898, 'log_imputation': 2.3815619948874964}}}}, 'mrnn': {'ray_tune': {'0.05': {'scores': {'RMSE': 0.5647614331747706, 'MAE': 0.4956801381604213, 'MI': 0.602588078427742, 'CORRELATION': 0.7892828777307545}, 'times': {'contamination': 0.00017881393432617188, 'optimization': 23.75439763069153, 'imputation': 9.659311532974243, 'log_imputation': 0.9849461731975306}}, '0.1': {'scores': {'RMSE': 1.4942930218243802, 'MAE': 1.2039603558089516, 'MI': 0.47511351289726134, 'CORRELATION': -0.24282448220213368}, 'times': {'contamination': 0.00033783912658691406, 'optimization': 23.75439763069153, 'imputation': 9.660546064376831, 'log_imputation': 0.985001675695301}}, '0.2': {'scores': {'RMSE': 1.493030946284299, 'MAE': 1.2759205639542883, 'MI': 0.14247255829853323, 'CORRELATION': 0.17585501858419272}, 'times': {'contamination': 0.0004456043243408203, 'optimization': 23.75439763069153, 'imputation': 9.614870071411133, 'log_imputation': 0.982943419864104}}, '0.4': {'scores': {'RMSE': 1.6610979347034713, 'MAE': 1.32902912214158, 'MI': 0.07259583818478979, 'CORRELATION': -0.04241780698399349}, 'times': {'contamination': 0.0007512569427490234, 'optimization': 23.75439763069153, 'imputation': 9.778327465057373, 'log_imputation': 0.9902645771992502}}, '0.6': {'scores': {'RMSE': 1.6248154262874046, 'MAE': 1.3587893211292972, 'MI': 0.04243232622955761, 'CORRELATION': -0.05349772421574814}, 'times': {'contamination': 0.0013408660888671875, 'optimization': 23.75439763069153, 'imputation': 9.961318492889404, 'log_imputation': 0.9983168260028805}}, '0.7': {'scores': {'RMSE': 1.3781088381679387, 'MAE': 1.102321907630172, 'MI': 0.013439658692967605, 'CORRELATION': -0.01874660352385742}, 'times': {'contamination': 0.0019338130950927734, 'optimization': 23.75439763069153, 'imputation': 9.934946298599243, 'log_imputation': 0.9971655239586622}}}}, 'knn': {'ray_tune': {'0.05': {'scores': {'RMSE': 1.0891820888848962, 'MAE': 0.8741423177191895, 'MI': 1.0726621001615337, 'CORRELATION': 0.23766946742758965}, 'times': {'contamination': 0.0002646446228027344, 'optimization': 5.975560188293457, 'imputation': 0.004753589630126953, 'log_imputation': -2.3229783129452315}}, '0.1': {'scores': {'RMSE': 0.6835893631062424, 'MAE': 0.5234507579018903, 'MI': 0.7407074666713884, 'CORRELATION': 0.7645134370284421}, 'times': {'contamination': 0.00014519691467285156, 'optimization': 5.975560188293457, 'imputation': 0.006691694259643555, 'log_imputation': -2.174463909966519}}, '0.2': {'scores': {'RMSE': 0.5992380715293445, 'MAE': 0.4859085244932665, 'MI': 0.4086948138880703, 'CORRELATION': 0.6965923314128772}, 'times': {'contamination': 0.0002143383026123047, 'optimization': 5.975560188293457, 'imputation': 0.013432025909423828, 'log_imputation': -1.8718584791459945}}, '0.4': {'scores': {'RMSE': 0.6868836297408376, 'MAE': 0.5093608359137556, 'MI': 0.2868485602164113, 'CORRELATION': 0.6240763887663399}, 'times': {'contamination': 0.0005633831024169922, 'optimization': 5.975560188293457, 'imputation': 0.039768218994140625, 'log_imputation': -1.4004638583058664}}, '0.6': {'scores': {'RMSE': 0.7785967363211405, 'MAE': 0.6158636946887723, 'MI': 0.19729389232186453, 'CORRELATION': 0.5576154866890136}, 'times': {'contamination': 0.001161813735961914, 'optimization': 5.975560188293457, 'imputation': 0.0798337459564209, 'log_imputation': -1.0978134922993485}}, '0.7': {'scores': {'RMSE': 0.867427846592856, 'MAE': 0.6717590115075687, 'MI': 0.1554022092659651, 'CORRELATION': 0.5020021909165999}, 'times': {'contamination': 0.0016968250274658203, 'optimization': 5.975560188293457, 'imputation': 0.1084587574005127, 'log_imputation': -0.9647353755339024}}}}, 'interpolation': {'ray_tune': {'0.05': {'scores': {'RMSE': 0.652962872644497, 'MAE': 0.5073890992493721, 'MI': 0.8457271995908064, 'CORRELATION': 0.8055318132299937}, 'times': {'contamination': 8.559226989746094e-05, 'optimization': 5.141337633132935, 'imputation': 0.0051326751708984375, 'log_imputation': -2.289656219851888}}, '0.1': {'scores': {'RMSE': 1.0026771443357805, 'MAE': 0.8585128588487265, 'MI': 0.7175551546841298, 'CORRELATION': 0.2953791171260645}, 'times': {'contamination': 0.00017213821411132812, 'optimization': 5.141337633132935, 'imputation': 0.005180835723876953, 'log_imputation': -2.2856001782870616}}, '0.2': {'scores': {'RMSE': 0.8233555140431951, 'MAE': 0.6703672843514312, 'MI': 0.13551988197466275, 'CORRELATION': 0.015002239969896275}, 'times': {'contamination': 0.00030040740966796875, 'optimization': 5.141337633132935, 'imputation': 0.005160808563232422, 'log_imputation': -2.287282250496757}}, '0.4': {'scores': {'RMSE': 0.9363419996773169, 'MAE': 0.7074318048367104, 'MI': 0.08116508553549509, 'CORRELATION': -0.08485974486524711}, 'times': {'contamination': 0.0009136199951171875, 'optimization': 5.141337633132935, 'imputation': 0.004884481430053711, 'log_imputation': -2.3111815371695186}}, '0.6': {'scores': {'RMSE': 0.8950363345080617, 'MAE': 0.6884297374643212, 'MI': 0.08082734535733935, 'CORRELATION': 0.057185769477410595}, 'times': {'contamination': 0.0019223690032958984, 'optimization': 5.141337633132935, 'imputation': 0.0045621395111083984, 'log_imputation': -2.340831438047068}}, '0.7': {'scores': {'RMSE': 0.9120956983333071, 'MAE': 0.7040561838341391, 'MI': 0.09963198754695206, 'CORRELATION': 0.2045739832314467}, 'times': {'contamination': 0.002409696578979492, 'optimization': 5.141337633132935, 'imputation': 0.003817319869995117, 'log_imputation': -2.4182414470843363}}}}, 'iter_svd': {'ray_tune': {'0.05': {'scores': {'RMSE': 0.9678965095170196, 'MAE': 0.7832040083975756, 'MI': 0.6701866174566358, 'CORRELATION': 0.2906340418705714}, 'times': {'contamination': 0.00011491775512695312, 'optimization': 6.1171875, 'imputation': 0.16927814483642578, 'log_imputation': -0.7713991091659277}}, '0.1': {'scores': {'RMSE': 1.206641825424519, 'MAE': 0.9957142418212448, 'MI': 0.25957158894434323, 'CORRELATION': 0.3379497812910825}, 'times': {'contamination': 0.0002319812774658203, 'optimization': 6.1171875, 'imputation': 0.025690555572509766, 'log_imputation': -1.5902265037731111}}, '0.2': {'scores': {'RMSE': 2.744919655781878, 'MAE': 1.0715001061469325, 'MI': 0.09892723156881575, 'CORRELATION': 0.19989476403758802}, 'times': {'contamination': 0.00040030479431152344, 'optimization': 6.1171875, 'imputation': 0.20974421501159668, 'log_imputation': -0.6783100086789446}}, '0.4': {'scores': {'RMSE': 2.325212272472014, 'MAE': 1.0008159007710338, 'MI': 0.039044612581955955, 'CORRELATION': 0.18525435207618218}, 'times': {'contamination': 0.001310586929321289, 'optimization': 6.1171875, 'imputation': 0.12171530723571777, 'log_imputation': -0.9146548003240639}}, '0.6': {'scores': {'RMSE': 1.5405789466020037, 'MAE': 0.8730700982169517, 'MI': 0.02272278491667953, 'CORRELATION': 0.13522799408559083}, 'times': {'contamination': 0.0025451183319091797, 'optimization': 6.1171875, 'imputation': 0.11439800262451172, 'log_imputation': -0.9415815582066798}}, '0.7': {'scores': {'RMSE': 1.841900634203058, 'MAE': 1.0796597078220702, 'MI': 0.02557622581974515, 'CORRELATION': 0.16934790654103044}, 'times': {'contamination': 0.0034818649291992188, 'optimization': 6.1171875, 'imputation': 0.13515305519104004, 'log_imputation': -0.8691741324468487}}}}, 'grouse': {'ray_tune': {'0.05': {'scores': {'RMSE': 0.7612079759584908, 'MAE': 0.6174023101930106, 'MI': 0.9720614292082763, 'CORRELATION': 0.5230250494004521}, 'times': {'contamination': 0.0002720355987548828, 'optimization': 5.722500801086426, 'imputation': 0.04196357727050781, 'log_imputation': -1.3771274965838058}}, '0.1': {'scores': {'RMSE': 0.7161433320631904, 'MAE': 0.6159111612486882, 'MI': 0.6397891170137576, 'CORRELATION': 0.7446871990437298}, 'times': {'contamination': 0.00019860267639160156, 'optimization': 5.722500801086426, 'imputation': 0.03328585624694824, 'log_imputation': -1.4777402667567205}}, '0.2': {'scores': {'RMSE': 0.6898292077596729, 'MAE': 0.5578803290483622, 'MI': 0.2578762805889524, 'CORRELATION': 0.5664833343935345}, 'times': {'contamination': 0.00022554397583007812, 'optimization': 5.722500801086426, 'imputation': 0.0313875675201416, 'log_imputation': -1.5032423400347081}}, '0.4': {'scores': {'RMSE': 2.1034364753786474, 'MAE': 1.3168644171392099, 'MI': 0.08186758416407369, 'CORRELATION': -0.11621144175246101}, 'times': {'contamination': 0.0006256103515625, 'optimization': 5.722500801086426, 'imputation': 0.030426025390625, 'log_imputation': -1.5167547766480622}}, '0.6': {'scores': {'RMSE': 2.3833534619751133, 'MAE': 1.5821816756647928, 'MI': 0.054626775241568545, 'CORRELATION': 0.015738449816948538}, 'times': {'contamination': 0.0012514591217041016, 'optimization': 5.722500801086426, 'imputation': 0.028280258178710938, 'log_imputation': -1.5485166300562665}}, '0.7': {'scores': {'RMSE': 7.180320793620952, 'MAE': 4.468603088484079, 'MI': 0.04077789644280901, 'CORRELATION': 0.06730823975418755}, 'times': {'contamination': 0.0017271041870117188, 'optimization': 5.722500801086426, 'imputation': 0.02826690673828125, 'log_imputation': -1.5487217139723333}}}}, 'dynammo': {'ray_tune': {'0.05': {'scores': {'RMSE': 0.7151415190942114, 'MAE': 0.4970782244594254, 'MI': 1.000759224589441, 'CORRELATION': 0.6184557637516255}, 'times': {'contamination': 9.775161743164062e-05, 'optimization': 7.155381441116333, 'imputation': 0.37074732780456543, 'log_imputation': -0.4309219705056871}}, '0.1': {'scores': {'RMSE': 0.596699604024305, 'MAE': 0.47938493632400186, 'MI': 0.775707195092484, 'CORRELATION': 0.8215645013506228}, 'times': {'contamination': 0.00023412704467773438, 'optimization': 7.155381441116333, 'imputation': 0.28595781326293945, 'log_imputation': -0.5436980326699488}}, '0.2': {'scores': {'RMSE': 0.5449085417487771, 'MAE': 0.43145124521055284, 'MI': 0.4427805840998743, 'CORRELATION': 0.7430502246596334}, 'times': {'contamination': 0.0002410411834716797, 'optimization': 7.155381441116333, 'imputation': 0.26209354400634766, 'log_imputation': -0.5815436766381012}}, '0.4': {'scores': {'RMSE': 0.6779705022363695, 'MAE': 0.5174517186640625, 'MI': 0.2637670732890106, 'CORRELATION': 0.5964668677202103}, 'times': {'contamination': 0.0006296634674072266, 'optimization': 7.155381441116333, 'imputation': 0.25553178787231445, 'log_imputation': -0.5925550664145126}}, '0.6': {'scores': {'RMSE': 0.7411789471267709, 'MAE': 0.5759604675111509, 'MI': 0.1463028452878696, 'CORRELATION': 0.4736194559909744}, 'times': {'contamination': 0.0011439323425292969, 'optimization': 7.155381441116333, 'imputation': 0.24941730499267578, 'log_imputation': -0.6030734177295504}}, '0.7': {'scores': {'RMSE': 0.793531390474089, 'MAE': 0.6252896196336124, 'MI': 0.12414974056261635, 'CORRELATION': 0.42841122847547475}, 'times': {'contamination': 0.001678466796875, 'optimization': 7.155381441116333, 'imputation': 0.2493579387664795, 'log_imputation': -0.6031768006656235}}}}, 'rosl': {'ray_tune': {'0.05': {'scores': {'RMSE': 1.0499537991118213, 'MAE': 0.8595954149037424, 'MI': 1.0993381984756705, 'CORRELATION': 0.6146787951828591}, 'times': {'contamination': 8.320808410644531e-05, 'optimization': 8.010011911392212, 'imputation': 0.6821448802947998, 'log_imputation': -0.16612337603230268}}, '0.1': {'scores': {'RMSE': 0.8867665835064245, 'MAE': 0.7010242781890926, 'MI': 0.5907204950909528, 'CORRELATION': 0.5334857453342065}, 'times': {'contamination': 0.0007736682891845703, 'optimization': 8.010011911392212, 'imputation': 0.8041999340057373, 'log_imputation': -0.09463596687218417}}, '0.2': {'scores': {'RMSE': 0.6880103343296596, 'MAE': 0.5541578539667452, 'MI': 0.24039836995684236, 'CORRELATION': 0.5427450775696447}, 'times': {'contamination': 0.00044655799865722656, 'optimization': 8.010011911392212, 'imputation': 0.9774386882781982, 'log_imputation': -0.00991047503446148}}, '0.4': {'scores': {'RMSE': 0.8651150824896394, 'MAE': 0.6877854522472314, 'MI': 0.1690613590574013, 'CORRELATION': 0.5410193369282997}, 'times': {'contamination': 0.001178741455078125, 'optimization': 8.010011911392212, 'imputation': 1.1973018646240234, 'log_imputation': 0.07820365885488725}}, '0.6': {'scores': {'RMSE': 0.9166362987192727, 'MAE': 0.721692537549043, 'MI': 0.02863175412827265, 'CORRELATION': 0.17277873288296303}, 'times': {'contamination': 0.002458333969116211, 'optimization': 8.010011911392212, 'imputation': 0.9381327629089355, 'log_imputation': -0.027735696675609416}}, '0.7': {'scores': {'RMSE': 0.906714486614649, 'MAE': 0.7137640362967337, 'MI': 0.018810170348030363, 'CORRELATION': 0.13788600397722242}, 'times': {'contamination': 0.003499269485473633, 'optimization': 8.010011911392212, 'imputation': 0.9922640323638916, 'log_imputation': -0.0033727506872492066}}}}, 'soft_imp': {'ray_tune': {'0.05': {'scores': {'RMSE': 2.0339216249617187, 'MAE': 1.2856996084517671, 'MI': 0.5586713713860293, 'CORRELATION': 0.19929770644664235}, 'times': {'contamination': 0.0002562999725341797, 'optimization': 6.165367603302002, 'imputation': 0.22596025466918945, 'log_imputation': -0.6459679444625233}}, '0.1': {'scores': {'RMSE': 2.996560504376057, 'MAE': 1.4890970543941768, 'MI': 0.10872128825197942, 'CORRELATION': -0.016649529237395322}, 'times': {'contamination': 0.0008714199066162109, 'optimization': 6.165367603302002, 'imputation': 0.24814844131469727, 'log_imputation': -0.6052884483753903}}, '0.2': {'scores': {'RMSE': 1.674129766854418, 'MAE': 0.8151640130294245, 'MI': 0.07665032967200101, 'CORRELATION': 0.12879732925631815}, 'times': {'contamination': 0.0010998249053955078, 'optimization': 6.165367603302002, 'imputation': 0.31171655654907227, 'log_imputation': -0.5062401299434305}}, '0.4': {'scores': {'RMSE': 1.4601220841860667, 'MAE': 0.8047931166368179, 'MI': 0.03296470473019845, 'CORRELATION': 0.13220172740281755}, 'times': {'contamination': 0.001886606216430664, 'optimization': 6.165367603302002, 'imputation': 0.44722557067871094, 'log_imputation': -0.34947337308411147}}, '0.6': {'scores': {'RMSE': 1.1510735383091752, 'MAE': 0.8067332887552809, 'MI': 0.025369317779971253, 'CORRELATION': 0.11787398625935817}, 'times': {'contamination': 0.0030333995819091797, 'optimization': 6.165367603302002, 'imputation': 0.44750356674194336, 'log_imputation': -0.3492034988728261}}, '0.7': {'scores': {'RMSE': 1.119056736039775, 'MAE': 0.8055779569701397, 'MI': 0.011612902407302311, 'CORRELATION': 0.11214948799086549}, 'times': {'contamination': 0.003826141357421875, 'optimization': 6.165367603302002, 'imputation': 0.44806480407714844, 'log_imputation': -0.34865916899792637}}}}, 'spirit': {'ray_tune': {'0.05': {'scores': {'RMSE': 100.0, 'MAE': 100.0, 'MI': 0.0, 'CORRELATION': 0.0}, 'times': {'contamination': 0.0008153915405273438, 'optimization': 14.221216917037964, 'imputation': 0.02103590965270996, 'log_imputation': -1.6770387031092828}}, '0.1': {'scores': {'RMSE': 100.0, 'MAE': 100.0, 'MI': 0.0, 'CORRELATION': 0.0}, 'times': {'contamination': 0.00013113021850585938, 'optimization': 14.221216917037964, 'imputation': 0.020754098892211914, 'log_imputation': -1.6828961182062343}}, '0.2': {'scores': {'RMSE': 100.0, 'MAE': 100.0, 'MI': 0.0, 'CORRELATION': 0.0}, 'times': {'contamination': 0.00020623207092285156, 'optimization': 14.221216917037964, 'imputation': 0.020871877670288086, 'log_imputation': -1.6804384792927793}}, '0.4': {'scores': {'RMSE': 100.0, 'MAE': 100.0, 'MI': 0.0, 'CORRELATION': 0.0}, 'times': {'contamination': 0.000583648681640625, 'optimization': 14.221216917037964, 'imputation': 0.020839691162109375, 'log_imputation': -1.681108721437079}}, '0.6': {'scores': {'RMSE': 100.0, 'MAE': 100.0, 'MI': 0.0, 'CORRELATION': 0.0}, 'times': {'contamination': 0.0011415481567382812, 'optimization': 14.221216917037964, 'imputation': 0.022094011306762695, 'log_imputation': -1.655725428074281}}, '0.7': {'scores': {'RMSE': 100.0, 'MAE': 100.0, 'MI': 0.0, 'CORRELATION': 0.0}, 'times': {'contamination': 0.0016748905181884766, 'optimization': 14.221216917037964, 'imputation': 0.020914793014526367, 'log_imputation': -1.6795464291036162}}}}, 'svt': {'ray_tune': {'0.05': {'scores': {'RMSE': 0.7117792258361312, 'MAE': 0.5168498358882081, 'MI': 0.9483793484273644, 'CORRELATION': 0.6542386230995083}, 'times': {'contamination': 9.989738464355469e-05, 'optimization': 45.67361259460449, 'imputation': 72.4662275314331, 'log_imputation': 1.8601356532745885}}, '0.1': {'scores': {'RMSE': 0.6394665297027734, 'MAE': 0.5211957976023045, 'MI': 0.8056798218248341, 'CORRELATION': 0.8508068326214364}, 'times': {'contamination': 0.0003097057342529297, 'optimization': 45.67361259460449, 'imputation': 75.2989776134491, 'log_imputation': 1.8767890795227222}}, '0.2': {'scores': {'RMSE': 0.5458488691493897, 'MAE': 0.4403496209659646, 'MI': 0.47611060408121514, 'CORRELATION': 0.7634239025059351}, 'times': {'contamination': 0.00045990943908691406, 'optimization': 45.67361259460449, 'imputation': 30.695201635360718, 'log_imputation': 1.4870704905860637}}, '0.4': {'scores': {'RMSE': 0.663135828087241, 'MAE': 0.4976907262970949, 'MI': 0.3313924262852707, 'CORRELATION': 0.6726174187230454}, 'times': {'contamination': 0.0017871856689453125, 'optimization': 45.67361259460449, 'imputation': 16.311678886413574, 'log_imputation': 1.2124986632831212}}, '0.6': {'scores': {'RMSE': 0.7020778058013225, 'MAE': 0.539085026607538, 'MI': 0.20478746906130402, 'CORRELATION': 0.5760668454355408}, 'times': {'contamination': 0.002444744110107422, 'optimization': 45.67361259460449, 'imputation': 93.80211400985718, 'log_imputation': 1.972212626145269}}, '0.7': {'scores': {'RMSE': 0.7658534267181207, 'MAE': 0.6009953789367053, 'MI': 0.17185882455524978, 'CORRELATION': 0.5331757977769946}, 'times': {'contamination': 0.0033347606658935547, 'optimization': 45.67361259460449, 'imputation': 72.77504920959473, 'log_imputation': 1.861982507775544}}}}, 'tkcm': {'ray_tune': {'0.05': {'scores': {'RMSE': 100.0, 'MAE': 100.0, 'MI': 0.0, 'CORRELATION': 0.0}, 'times': {'contamination': 0.0007822513580322266, 'optimization': 5.649405241012573, 'imputation': 0.0011343955993652344, 'log_imputation': -2.9452354669063388}}, '0.1': {'scores': {'RMSE': 100.0, 'MAE': 100.0, 'MI': 0.0, 'CORRELATION': 0.0}, 'times': {'contamination': 0.0006322860717773438, 'optimization': 5.649405241012573, 'imputation': 0.0011126995086669922, 'log_imputation': -2.9536221037224304}}, '0.2': {'scores': {'RMSE': 100.0, 'MAE': 100.0, 'MI': 0.0, 'CORRELATION': 0.0}, 'times': {'contamination': 0.0009708404541015625, 'optimization': 5.649405241012573, 'imputation': 0.0010807514190673828, 'log_imputation': -2.9662741855488983}}, '0.4': {'scores': {'RMSE': 100.0, 'MAE': 100.0, 'MI': 0.0, 'CORRELATION': 0.0}, 'times': {'contamination': 0.0028562545776367188, 'optimization': 5.649405241012573, 'imputation': 0.0011017322540283203, 'log_imputation': -2.957923936088881}}, '0.6': {'scores': {'RMSE': 100.0, 'MAE': 100.0, 'MI': 0.0, 'CORRELATION': 0.0}, 'times': {'contamination': 0.0057315826416015625, 'optimization': 5.649405241012573, 'imputation': 0.0011334419250488281, 'log_imputation': -2.945600727215425}}, '0.7': {'scores': {'RMSE': 100.0, 'MAE': 100.0, 'MI': 0.0, 'CORRELATION': 0.0}, 'times': {'contamination': 0.006317853927612305, 'optimization': 5.649405241012573, 'imputation': 0.0009458065032958984, 'log_imputation': -3.0241977041334356}}}}, 'brits': {'ray_tune': {'0.05': {'scores': {'RMSE': 1.3419411368774041, 'MAE': 1.1638434066271077, 'MI': 0.8951096093875868, 'CORRELATION': -0.5585099483296528}, 'times': {'contamination': 0.0003306865692138672, 'optimization': 228.5102288722992, 'imputation': 95.61461043357849, 'log_imputation': 1.980524259910658}}, '0.1': {'scores': {'RMSE': 1.2073040959274337, 'MAE': 0.9690312583388463, 'MI': 0.32167770615560765, 'CORRELATION': 0.10410551896912013}, 'times': {'contamination': 0.0002052783966064453, 'optimization': 228.5102288722992, 'imputation': 98.19476699829102, 'log_imputation': 1.992088343954746}}, '0.2': {'scores': {'RMSE': 1.0096095214334058, 'MAE': 0.8017626333243341, 'MI': 0.1545999150691882, 'CORRELATION': 0.04321071858521189}, 'times': {'contamination': 0.00027251243591308594, 'optimization': 228.5102288722992, 'imputation': 91.76230263710022, 'log_imputation': 1.9626643029973887}}, '0.4': {'scores': {'RMSE': 1.1021171834537435, 'MAE': 0.8109044008529219, 'MI': 0.06990935579232271, 'CORRELATION': 0.027418538197488553}, 'times': {'contamination': 0.0007600784301757812, 'optimization': 228.5102288722992, 'imputation': 92.40596151351929, 'log_imputation': 1.9656999903641312}}, '0.6': {'scores': {'RMSE': 0.9644643680536452, 'MAE': 0.7465535671618042, 'MI': 0.034792659544221505, 'CORRELATION': 0.17675436980090672}, 'times': {'contamination': 0.0012924671173095703, 'optimization': 228.5102288722992, 'imputation': 92.13396763801575, 'log_imputation': 1.9644197739326628}}, '0.7': {'scores': {'RMSE': 0.9815275917177589, 'MAE': 0.751919619563092, 'MI': 0.017952595001480262, 'CORRELATION': -0.05597093175861781}, 'times': {'contamination': 0.0018129348754882812, 'optimization': 228.5102288722992, 'imputation': 96.6255190372467, 'log_imputation': 1.9850918398051054}}}}, 'deep_mvi': {'ray_tune': {'0.05': {'scores': {'RMSE': 1.034412355455737, 'MAE': 0.8490322354281984, 'MI': 0.7750911481750873, 'CORRELATION': -0.0026999728861952163}, 'times': {'contamination': 0.00013065338134765625, 'optimization': 2490.3838233947754, 'imputation': 172.29269313812256, 'log_imputation': 2.2362668595891644}}, '0.1': {'scores': {'RMSE': 1.0247023047728139, 'MAE': 0.8590129463082453, 'MI': 0.26134381836602716, 'CORRELATION': 0.3645815707005265}, 'times': {'contamination': 0.00035500526428222656, 'optimization': 2490.3838233947754, 'imputation': 172.1408417224884, 'log_imputation': 2.2358839222182225}}, '0.2': {'scores': {'RMSE': 0.9110420539797002, 'MAE': 0.745272313719031, 'MI': 0.10485836951846873, 'CORRELATION': 0.0054087048337242045}, 'times': {'contamination': 0.00034427642822265625, 'optimization': 2490.3838233947754, 'imputation': 171.6305854320526, 'log_imputation': 2.2345946838666526}}, '0.4': {'scores': {'RMSE': 0.8460413026141097, 'MAE': 0.653976961624171, 'MI': 0.07200416729866779, 'CORRELATION': 0.24419152512191655}, 'times': {'contamination': 0.0006928443908691406, 'optimization': 2490.3838233947754, 'imputation': 52.72139310836792, 'log_imputation': 1.7219868775207656}}, '0.6': {'scores': {'RMSE': 0.9333885896416907, 'MAE': 0.7180889165842521, 'MI': 0.05628639258400244, 'CORRELATION': 0.14594274067119267}, 'times': {'contamination': 0.001840353012084961, 'optimization': 2490.3838233947754, 'imputation': 52.330716133117676, 'log_imputation': 1.7187566779946477}}, '0.7': {'scores': {'RMSE': 0.9662179231561216, 'MAE': 0.744413195682356, 'MI': 0.0587647716462166, 'CORRELATION': 0.14330531126837864}, 'times': {'contamination': 0.0018398761749267578, 'optimization': 2490.3838233947754, 'imputation': 50.53941249847412, 'log_imputation': 1.7036301891043986}}}}, 'mpin': {'ray_tune': {'0.05': {'scores': {'RMSE': 0.9925272461717889, 'MAE': 0.7461083558118482, 'MI': 0.5348692435514593, 'CORRELATION': -0.007667736330282676}, 'times': {'contamination': 0.00036644935607910156, 'optimization': 7.812181711196899, 'imputation': 0.5112149715423584, 'log_imputation': -0.29139643582966285}}, '0.1': {'scores': {'RMSE': 1.1680441592588726, 'MAE': 0.9781717371399381, 'MI': 0.11371116243625422, 'CORRELATION': -0.016646509270680725}, 'times': {'contamination': 0.0002243518829345703, 'optimization': 7.812181711196899, 'imputation': 0.4404561519622803, 'log_imputation': -0.35609731973472436}}, '0.2': {'scores': {'RMSE': 0.9408439748172953, 'MAE': 0.7285930425690125, 'MI': 0.04098822429350485, 'CORRELATION': 0.04181051886506206}, 'times': {'contamination': 0.00023174285888671875, 'optimization': 7.812181711196899, 'imputation': 0.4183802604675293, 'log_imputation': -0.37842881403623974}}, '0.4': {'scores': {'RMSE': 1.0052976858981615, 'MAE': 0.786965308522399, 'MI': 0.01344178556294245, 'CORRELATION': 0.024681873992244058}, 'times': {'contamination': 0.0006501674652099609, 'optimization': 7.812181711196899, 'imputation': 0.40064024925231934, 'log_imputation': -0.3972454226158039}}, '0.6': {'scores': {'RMSE': 0.9548251319263584, 'MAE': 0.7511442207051872, 'MI': 0.00930135623468233, 'CORRELATION': -0.01575182086616044}, 'times': {'contamination': 0.0012600421905517578, 'optimization': 7.812181711196899, 'imputation': 0.4070866107940674, 'log_imputation': -0.39031318146702354}}, '0.7': {'scores': {'RMSE': 0.9446318662376141, 'MAE': 0.744122264330064, 'MI': 0.007539213289227095, 'CORRELATION': -0.018240287271113223}, 'times': {'contamination': 0.0017695426940917969, 'optimization': 7.812181711196899, 'imputation': 0.39906764030456543, 'log_imputation': -0.3989534869665162}}}}, 'pristi': {'ray_tune': {'0.05': {'scores': {'RMSE': 55.960116992995445, 'MAE': 46.4096472319626, 'MI': 0.42064699601068534, 'CORRELATION': 0.04507016986244122}, 'times': {'contamination': 0.00011730194091796875, 'optimization': 76.60794115066528, 'imputation': 29.775820016860962, 'log_imputation': 1.47386373065503}}, '0.1': {'scores': {'RMSE': 57.538277532977055, 'MAE': 46.82173605706819, 'MI': 0.08824583086697571, 'CORRELATION': 0.0434011572132245}, 'times': {'contamination': 0.00023126602172851562, 'optimization': 76.60794115066528, 'imputation': 30.05645751953125, 'log_imputation': 1.4779377929381963}}, '0.2': {'scores': {'RMSE': 60.808746540345666, 'MAE': 48.85156592826631, 'MI': 0.03497257877394178, 'CORRELATION': -0.028840216845075817}, 'times': {'contamination': 0.00027680397033691406, 'optimization': 76.60794115066528, 'imputation': 30.277715921401978, 'log_imputation': 1.4811231099249287}}, '0.4': {'scores': {'RMSE': 61.76763817066328, 'MAE': 49.5988990990065, 'MI': 0.007898084001455433, 'CORRELATION': 0.0030498998829152878}, 'times': {'contamination': 0.0006997585296630859, 'optimization': 76.60794115066528, 'imputation': 28.5592999458313, 'log_imputation': 1.4557475576773615}}, '0.6': {'scores': {'RMSE': 61.98612564576895, 'MAE': 49.755647879167334, 'MI': 0.004322458488836388, 'CORRELATION': 0.01233963956767782}, 'times': {'contamination': 0.0013575553894042969, 'optimization': 76.60794115066528, 'imputation': 32.24260687828064, 'log_imputation': 1.5084301481170062}}, '0.7': {'scores': {'RMSE': 62.379540899173236, 'MAE': 50.156074239740796, 'MI': 0.0031404425022982423, 'CORRELATION': 0.009111022593762223}, 'times': {'contamination': 0.0018019676208496094, 'optimization': 76.60794115066528, 'imputation': 35.09843707084656, 'log_imputation': 1.545287777815695}}}}}}} - Benchmark().generate_plots(runs_plots_scores=test_plots, ticks=range, subplot=False, y_size=max(4, int(len(algorithms)*0.28)), save_dir=save_dir) - Benchmark().generate_plots(runs_plots_scores=test_plots, ticks=range, subplot=True, y_size=max(4, int(len(algorithms)*0.28)),save_dir=save_dir) - Benchmark().generate_reports_txt(runs_plots_scores=test_plots, save_dir=save_dir, dataset="chlorine", run=0) - Benchmark().generate_reports_excel(runs_plots_scores=test_plots, save_dir=save_dir, dataset="chlorine", run=0) - - Benchmark().generate_heatmap(np.array([[1.12395851, 0.6470281, 0.67607129, 0.52176976, 0.52304288, 0.36444636, 0.89733918, 0.35040938, 0.35273418, 0.96177331, 0.53492822, 1.20178291, 54.63150047, 0.89519623, 0.36984999, 100., 0.91834629, 0.4267107, 100.], [1.10116065, 1.06258333, 0.95263409, 0.67823842, 2.30571521, 0.76078378, 0.87041159, 1.77119164, 0.78415296, 1.03505842, 1.00102834, 1.36935127, 60.07340763, 0.88553276, 1.73914404, 100., 4.04583674, 0.67136028, 100.]]), - np.array(['brits', 'cdrec', 'deep_mvi', 'dynammo', 'grouse', 'iim', 'interpolation', 'iter_svd', 'knn', 'mean', 'mpin', 'mrnn', 'pristi', 'rosl', 'soft_imp', 'spirit', 'stmvl', 'svt', 'tkcm']), - np.array(['eegalcohol', 'eegreading']), save_dir=save_dir, display=False) +# launch the evaluation +list_results, sum_scores = Benchmark().eval(algorithms=algorithms, datasets=datasets, patterns=patterns, x_axis=range, optimizers=optimizers, save_dir=save_dir, runs=nbr_runs) \ No newline at end of file diff --git a/imputegap/runner_downstream.py b/imputegap/runner_downstream.py index 1d90cf86..e7cdecfb 100644 --- a/imputegap/runner_downstream.py +++ b/imputegap/runner_downstream.py @@ -18,6 +18,6 @@ imputer.impute() # compute and print the downstream results -downstream_config = {"task": "forecast", "model": "hw-add"} +downstream_config = {"task": "forecast", "model": "hw-add", "comparator": "ZeroImpute"} imputer.score(ts.data, imputer.recov_data, downstream=downstream_config) -ts.print_results(imputer.downstream_metrics, algorithm=imputer.algorithm) \ No newline at end of file +ts.print_results(imputer.downstream_metrics, algorithm="hw-add") \ No newline at end of file diff --git a/imputegap/runner_imputation.py b/imputegap/runner_imputation.py index 0ceb8bf5..db2ad428 100644 --- a/imputegap/runner_imputation.py +++ b/imputegap/runner_imputation.py @@ -15,11 +15,11 @@ # impute the contaminated series imputer = Imputation.MatrixCompletion.CDRec(ts_m) -imputer.impute() # could also use a dictionary for params: params={"rank": 5, "epsilon": 0.01, "iterations": 100} +imputer.impute() # compute and print the imputation metrics imputer.score(ts.data, imputer.recov_data) -ts.print_results(imputer.metrics, imputer.algorithm) +ts.print_results(imputer.metrics) # plot the recovered time series -ts.plot(input_data=ts.data, incomp_data=ts_m, recov_data=imputer.recov_data, nbr_series=9, subplot=True, save_path="./imputegap_assets") \ No newline at end of file +ts.plot(input_data=ts.data, incomp_data=ts_m, recov_data=imputer.recov_data, nbr_series=9, subplot=True, algorithm=imputer.algorithm, save_path="./imputegap_assets") \ No newline at end of file diff --git a/imputegap/runner_loading.py b/imputegap/runner_loading.py index 673d6494..894aad36 100644 --- a/imputegap/runner_loading.py +++ b/imputegap/runner_loading.py @@ -11,4 +11,4 @@ # plot and print a subset of time series ts.plot(input_data=ts.data, nbr_series=9, nbr_val=100, save_path="./imputegap_assets") -ts.print(nbr_series=9, nbr_val=100) \ No newline at end of file +ts.print(nbr_series=9, nbr_val=20) \ No newline at end of file diff --git a/imputegap/runner_optimization.py b/imputegap/runner_optimization.py index ca405f6b..47c16066 100644 --- a/imputegap/runner_optimization.py +++ b/imputegap/runner_optimization.py @@ -4,7 +4,6 @@ # initialize the time series object ts = TimeSeries() -print(f"AutoML Optimizers : {ts.optimizers}") # load and normalize the dataset ts.load_series(utils.search_path("eeg-alcohol")) @@ -17,12 +16,19 @@ # use Ray Tune to fine tune the imputation algorithm imputer.impute(user_def=False, params={"input_data": ts.data, "optimizer": "ray_tune"}) -# compute and print the imputation metrics +# compute the imputation metrics with optimized parameter values imputer.score(ts.data, imputer.recov_data) -ts.print_results(imputer.metrics) + +# compute the imputation metrics with default parameter values +imputer_def = Imputation.MatrixCompletion.CDRec(ts_m).impute() +imputer_def.score(ts.data, imputer_def.recov_data) + +# print the imputation metrics with default and optimized parameter values +ts.print_results(imputer_def.metrics, text="Imputation metrics with default parameter values") +ts.print_results(imputer.metrics, text="Imputation metrics with optimized parameter values") # plot the recovered time series ts.plot(input_data=ts.data, incomp_data=ts_m, recov_data=imputer.recov_data, nbr_series=9, subplot=True, save_path="./imputegap_assets", display=True) # save hyperparameters -utils.save_optimization(optimal_params=imputer.parameters, algorithm=imputer.algorithm, dataset="eeg-alcohol", optimizer="ray_tune") \ No newline at end of file +utils.save_optimization(optimal_params=imputer.parameters, algorithm=imputer.algorithm, dataset="eeg-alcohol", optimizer="ray_tune") diff --git a/imputegap/tools/__pycache__/algorithm_parameters.cpython-312.pyc b/imputegap/tools/__pycache__/algorithm_parameters.cpython-312.pyc index b924e14f..182a2a66 100644 Binary files a/imputegap/tools/__pycache__/algorithm_parameters.cpython-312.pyc and b/imputegap/tools/__pycache__/algorithm_parameters.cpython-312.pyc differ diff --git a/imputegap/tools/__pycache__/utils.cpython-312.pyc b/imputegap/tools/__pycache__/utils.cpython-312.pyc index 13cc6480..3516ee29 100644 Binary files a/imputegap/tools/__pycache__/utils.cpython-312.pyc and b/imputegap/tools/__pycache__/utils.cpython-312.pyc differ diff --git a/imputegap/tools/algorithm_parameters.py b/imputegap/tools/algorithm_parameters.py index 5d8f3b1a..296d451a 100644 --- a/imputegap/tools/algorithm_parameters.py +++ b/imputegap/tools/algorithm_parameters.py @@ -61,7 +61,7 @@ 'cdrec': { "rank": tune.grid_search([i for i in range(2, 16, 1)]), "eps": tune.loguniform(1e-6, 1), - "iters": tune.grid_search([i * 100 for i in range(1, 3)]) + "iters": tune.grid_search([i * 50 for i in range(1, 4)]) }, "iim": { "learning_neighbors": tune.grid_search([i for i in range(1, 20)]) # Up to 100 learning neighbors @@ -157,6 +157,12 @@ "device": tune.choice(["cpu"]) # Allow switching between CPU and GPU }, + "knn_impute": { + "k": tune.grid_search([1, 12, 1]), + "weights": tune.choice(["uniform", "distance"]) + }, + + "knn": { "k": tune.grid_search([1, 12, 1]), "weights": tune.choice(["uniform", "distance"]) diff --git a/imputegap/tools/utils.py b/imputegap/tools/utils.py index 9ec1b96b..13bfab9b 100644 --- a/imputegap/tools/utils.py +++ b/imputegap/tools/utils.py @@ -2,9 +2,8 @@ import os import toml import importlib.resources -import numpy as __numpy_import; - - +import numpy as __numpy_import +import platform def config_impute_algorithm(incomp_data, algorithm): """ @@ -62,8 +61,8 @@ def config_impute_algorithm(incomp_data, algorithm): imputer = Imputation.DeepLearning.PRISTI(incomp_data) # 3rd generation - elif algorithm == "knn" or algorithm == "KNN": - imputer = Imputation.Statistics.KNN(incomp_data) + elif algorithm == "knn" or algorithm == "KNN" or algorithm == "knn_impute" or algorithm == "KNNImpute": + imputer = Imputation.Statistics.KNNImpute(incomp_data) elif algorithm == "interpolation" or algorithm == "Interpolation": imputer = Imputation.Statistics.Interpolation(incomp_data) elif algorithm == "mean_series" or algorithm == "MeanImputeBySeries": @@ -364,7 +363,7 @@ def load_parameters(query: str = "default", algorithm: str = "cdrec", dataset: s with open(filepath, "r") as _: config = toml.load(filepath) - print("\n\t\t\t\t(SYS) Inner files loaded : ", filepath, "\n") + print("\n(SYS) Inner files loaded : ", filepath, "\n") if algorithm == "cdrec": truncation_rank = int(config[algorithm]['rank']) @@ -450,7 +449,7 @@ def load_parameters(query: str = "default", algorithm: str = "cdrec", dataset: s seed = int(config[algorithm]['seed']) device = str(config[algorithm]['device']) return (target_strategy, unconditional, seed, device) - elif algorithm == "knn": + elif algorithm == "knn" or algorithm == "knn_impute": k = int(config[algorithm]['k']) weights = str(config[algorithm]['weights']) return (k, weights) @@ -755,18 +754,25 @@ def load_share_lib(name="lib_cdrec", lib=True): ctypes.CDLL The loaded shared library object. """ + system = platform.system() + if system == "Windows": + ext = ".so" + elif system == "Darwin": + ext = ".dylib" # macOS uses .dylib for dynamic libraries + else: + ext = ".so" if lib: - lib_path = importlib.resources.files('imputegap.algorithms.lib').joinpath("./" + str(name)) + lib_path = importlib.resources.files('imputegap.algorithms.lib').joinpath("./" + str(name) + ext) else: - local_path_lin = './algorithms/lib/' + name + '.so' + local_path_lin = './algorithms/lib/' + name + ext if not os.path.exists(local_path_lin): - local_path_lin = './imputegap/algorithms/lib/' + name + '.so' + local_path_lin = './imputegap/algorithms/lib/' + name + ext lib_path = os.path.join(local_path_lin) - print("\t\t(SYS) lib loaded from:", lib_path) + print("\n(SYS) Wrapper files loaded for C++ : ", lib_path, "\n") return ctypes.CDLL(lib_path) @@ -895,7 +901,7 @@ def save_optimization(optimal_params, algorithm="cdrec", dataset="", optimizer=" "seed": 42, # Default seed "device": "cpu" # Default device } - elif algorithm == "knn": + elif algorithm == "knn" or algorithm == "knn_impute": params_to_save = { "k": int(optimal_params[0]), "weights": str(optimal_params[1]) @@ -988,9 +994,9 @@ def save_optimization(optimal_params, algorithm="cdrec", dataset="", optimizer=" try: with open(file_name, 'w') as file: toml.dump(params_to_save, file) - print(f"\n\t\t(SYS) Optimization parameters successfully saved to {file_name}") + print(f"\n(SYS) Optimization parameters successfully saved to {file_name}") except Exception as e: - print(f"\n\t\t(SYS) An error occurred while saving the file: {e}") + print(f"\n(SYS) An error occurred while saving the file: {e}") def list_of_algorithms(): @@ -1010,7 +1016,7 @@ def list_of_algorithms(): "XGBOOST", "MICE", "MissForest", - "KNN", + "KNNImpute", "Interpolation", "MinImpute", "MeanImpute", diff --git a/imputegap/wrapper/AlgoCollection/Makefile b/imputegap/wrapper/AlgoCollection/Makefile index 10938eea..3dfccf58 100644 --- a/imputegap/wrapper/AlgoCollection/Makefile +++ b/imputegap/wrapper/AlgoCollection/Makefile @@ -13,6 +13,7 @@ all: libAlgoCollection.so AlgoCollection.dll +# ================================================================================================================================== libAlgoCollection.so: g++ -O3 -D ARMA_DONT_USE_WRAPPER -fPIC -rdynamic -shared -o libAlgoCollection.so -Wall -Werror -Wextra -pedantic \ @@ -23,6 +24,7 @@ libAlgoCollection.so: Algebra/CentroidDecomposition.cpp Algebra/RSVD.cpp Stats/Correlation.cpp shared/SharedLibFunctions.cpp \ -lopenblas -larpack -lmlpack +# ================================================================================================================================== libSTMVL.so: g++ -O3 -D ARMA_DONT_USE_WRAPPER -fPIC -rdynamic -shared -o lib_stmvl.so -Wall -Werror -Wextra -pedantic \ @@ -30,18 +32,44 @@ libSTMVL.so: Algorithms/ST_MVL.cpp shared/SharedSTMVL.cpp \ -lopenblas -larpack -lmlpack +libSTMVL.dylib: + clang++ -dynamiclib -O3 -fPIC -std=c++17 -o lib_stmvl.dylib \ + -I/opt/homebrew/include \ + -L/opt/homebrew/lib -L/opt/homebrew/opt/openblas/lib \ + Algorithms/ST_MVL.cpp shared/SharedSTMVL.cpp \ + -larmadillo -lopenblas -larpack +# ================================================================================================================================== + libIterativeSVD.so: g++ -O3 -D ARMA_DONT_USE_WRAPPER -fPIC -rdynamic -shared -o lib_iterative_svd.so -Wall -Werror -Wextra -pedantic \ -Wconversion -Wsign-conversion -msse2 -msse3 -msse4 -msse4.1 -msse4.2 -fopenmp -std=gnu++14 \ Algebra/RSVD.cpp Algorithms/IterativeSVD.cpp shared/SharedLibIterativeSVD.cpp \ -lopenblas -larpack +libIterativeSVD.dylib: + clang++ -dynamiclib -O3 -fPIC -std=c++17 -o lib_iterative_svd.dylib \ + -I/opt/homebrew/include \ + -L/opt/homebrew/lib -L/opt/homebrew/opt/openblas/lib \ + Algebra/RSVD.cpp Algorithms/IterativeSVD.cpp shared/SharedLibIterativeSVD.cpp \ + -larmadillo -lopenblas -larpack + +# ================================================================================================================================== + libGROUSE.so: g++ -O3 -D ARMA_DONT_USE_WRAPPER -fPIC -rdynamic -shared -o lib_grouse.so -Wall -Werror -Wextra -pedantic \ -Wconversion -Wsign-conversion -msse2 -msse3 -msse4 -msse4.1 -msse4.2 -fopenmp -std=gnu++14 \ Algorithms/GROUSE.cpp shared/SharedLibGROUSE.cpp \ -lopenblas -larpack +libGROUSE.dylib: + clang++ -dynamiclib -O3 -fPIC -std=c++17 -o lib_grouse.dylib \ + -I/opt/homebrew/include \ + -L/opt/homebrew/lib -L/opt/homebrew/opt/openblas/lib \ + Algorithms/GROUSE.cpp shared/SharedLibGROUSE.cpp \ + -larmadillo -lopenblas -larpack + +# ================================================================================================================================== + libDynaMMo.so: g++ -O3 -D ARMA_DONT_USE_WRAPPER -fPIC -rdynamic -shared -o lib_dynammo.so -Wall -Werror -Wextra -pedantic \ @@ -49,48 +77,122 @@ libDynaMMo.so: Algebra/Auxiliary.cpp Algorithms/DynaMMo.cpp shared/SharedLibDynaMMo.cpp \ -lopenblas -larpack +libDynaMMo.dylib: + clang++ -dynamiclib -O3 -fPIC -std=c++17 -o lib_dynammo.dylib \ + -I/opt/homebrew/include \ + -L/opt/homebrew/lib -L/opt/homebrew/opt/openblas/lib \ + Algebra/Auxiliary.cpp Algorithms/DynaMMo.cpp shared/SharedLibDynaMMo.cpp \ + -larmadillo -lopenblas -larpack + +# ================================================================================================================================== + libNMF.so: g++ -O3 -D ARMA_DONT_USE_WRAPPER -fPIC -rdynamic -shared -o lib_rosl.so -Wall -Werror -Wextra -pedantic \ -Wconversion -Wsign-conversion -msse2 -msse3 -msse4 -msse4.1 -msse4.2 -fopenmp -I/usr/include/ensmallen -std=gnu++14 \ Algorithms/NMFMissingValueRecovery.cpp shared/SharedLibNMF.cpp \ -lopenblas -larpack +libNMF.dylib: + clang++ -dynamiclib -O3 -fPIC -std=c++17 -o lib_nmf.dylib \ + -I/opt/homebrew/include -I/opt/homebrew/include/ensmallen \ + -L/opt/homebrew/lib -L/opt/homebrew/opt/openblas/lib \ + Algorithms/NMFMissingValueRecovery.cpp shared/SharedLibNMF.cpp \ + -larmadillo -lopenblas -larpack + +# ================================================================================================================================== + libROSL.so: g++ -O3 -D ARMA_DONT_USE_WRAPPER -fPIC -rdynamic -shared -o lib_rosl.so -Wall -Werror -Wextra -pedantic \ -Wconversion -Wsign-conversion -msse2 -msse3 -msse4 -msse4.1 -msse4.2 -fopenmp -std=gnu++14 \ Algebra/Auxiliary.cpp Algorithms/ROSL.cpp shared/SharedLibROSL.cpp \ -lopenblas -larpack +libROSL.dylib: + clang++ -dynamiclib -O3 -fPIC -std=c++17 -o lib_rosl.dylib \ + -I/opt/homebrew/include \ + -L/opt/homebrew/lib -L/opt/homebrew/opt/openblas/lib \ + Algebra/Auxiliary.cpp Algorithms/ROSL.cpp shared/SharedLibROSL.cpp \ + -larmadillo -lopenblas -larpack + +# ================================================================================================================================== + libSoftImpute.so: g++ -O3 -D ARMA_DONT_USE_WRAPPER -fPIC -rdynamic -shared -o lib_soft_impute.so -Wall -Werror -Wextra -pedantic \ -Wconversion -Wsign-conversion -msse2 -msse3 -msse4 -msse4.1 -msse4.2 -fopenmp -std=gnu++14 \ Algebra/RSVD.cpp Algorithms/SoftImpute.cpp shared/SharedLibSoftImpute.cpp \ -lopenblas -larpack +libSoftImpute.dylib: + clang++ -dynamiclib -O3 -fPIC -std=c++17 -o lib_soft_impute.dylib \ + -I/opt/homebrew/include \ + -L/opt/homebrew/lib -L/opt/homebrew/opt/openblas/lib \ + Algebra/RSVD.cpp Algorithms/SoftImpute.cpp shared/SharedLibSoftImpute.cpp \ + -larmadillo -lopenblas -larpack + +# ================================================================================================================================== + libSPIRIT.so: g++ -O3 -D ARMA_DONT_USE_WRAPPER -fPIC -rdynamic -shared -o lib_spirit.so -Wall -Werror -Wextra -pedantic \ -Wconversion -Wsign-conversion -msse2 -msse3 -msse4 -msse4.1 -msse4.2 -fopenmp -std=gnu++14 \ Algorithms/SPIRIT.cpp shared/SharedLibSPIRIT.cpp \ -lopenblas -larpack +libSPIRIT.dylib: + clang++ -dynamiclib -O3 -fPIC -std=c++17 -o lib_spirit.dylib \ + -I/opt/homebrew/include \ + -L/opt/homebrew/lib -L/opt/homebrew/opt/openblas/lib \ + Algorithms/SPIRIT.cpp shared/SharedLibSPIRIT.cpp \ + -larmadillo -lopenblas -larpack + +# ================================================================================================================================== + libSVT.so: g++ -O3 -D ARMA_DONT_USE_WRAPPER -fPIC -rdynamic -shared -o lib_svt.so -Wall -Werror -Wextra -pedantic \ -Wconversion -Wsign-conversion -msse2 -msse3 -msse4 -msse4.1 -msse4.2 -fopenmp -std=gnu++14 \ Algorithms/SVT.cpp shared/SharedLibSVT.cpp \ -lopenblas -larpack +libSVT.dylib: + clang++ -dynamiclib -O3 -fPIC -std=c++17 -o lib_svt.dylib \ + -I/opt/homebrew/include \ + -L/opt/homebrew/lib -L/opt/homebrew/opt/openblas/lib \ + Algorithms/SVT.cpp shared/SharedLibSVT.cpp \ + -larmadillo -lopenblas -larpack + +# ================================================================================================================================== + libTKCM.so: g++ -O3 -D ARMA_DONT_USE_WRAPPER -fPIC -rdynamic -shared -o lib_tkcm.so -Wall -Werror -Wextra -pedantic \ -Wconversion -Wsign-conversion -msse2 -msse3 -msse4 -msse4.1 -msse4.2 -fopenmp -std=gnu++14 \ Algorithms/TKCM.cpp shared/SharedLibTKCM.cpp \ -lopenblas -larpack +libTKCM.dylib: + clang++ -dynamiclib -O3 -fPIC -std=c++17 -o lib_tkcm.dylib \ + -I/opt/homebrew/include \ + -L/opt/homebrew/lib -L/opt/homebrew/opt/openblas/lib \ + Algorithms/TKCM.cpp shared/SharedLibTKCM.cpp \ + -larmadillo -lopenblas -larpack + +# ================================================================================================================================== libCDREC.so: g++ -O3 -D ARMA_DONT_USE_WRAPPER -fPIC -rdynamic -shared -o lib_cdrec.so -Wall -Werror -Wextra -pedantic \ -Wconversion -Wsign-conversion -msse2 -msse3 -msse4 -msse4.1 -msse4.2 -fopenmp -std=gnu++14 \ Stats/Correlation.cpp Algorithms/CDMissingValueRecovery.cpp Algebra/Auxiliary.cpp \ Algebra/CentroidDecomposition.cpp shared/SharedLibCDREC.cpp \ -lopenblas -larpack -lmlpack + +libCDREC.dylib: + clang++ -dynamiclib -O3 -fPIC -std=c++17 -o lib_cdrec.dylib \ + -I/opt/homebrew/include \ + -L/opt/homebrew/lib \ + -L/opt/homebrew/opt/openblas/lib \ + Stats/Correlation.cpp Algorithms/CDMissingValueRecovery.cpp Algebra/Auxiliary.cpp \ + Algebra/CentroidDecomposition.cpp shared/SharedLibCDREC.cpp \ + -larmadillo -lopenblas -larpack +# ================================================================================================================================== + + libAlgoCollection.dll: g++ -O3 -D ARMA_DONT_USE_WRAPPER -shared -o libAlgoCollection.dll -Wall -Werror -Wextra -pedantic -Wconversion -Wsign-conversion -msse2 -msse3 -msse4 -msse4.1 -msse4.2 -fopenmp -std=gnu++14 -fPIC \ diff --git a/imputegap/wrapper/AlgoPython/GRIN/logs/grin/2025-03-21_10-04-56_42/epoch=19-step=20.ckpt b/imputegap/wrapper/AlgoPython/GRIN/logs/grin/2025-03-21_10-04-56_42/epoch=19-step=20.ckpt new file mode 100644 index 00000000..51ad7318 Binary files /dev/null and b/imputegap/wrapper/AlgoPython/GRIN/logs/grin/2025-03-21_10-04-56_42/epoch=19-step=20.ckpt differ diff --git a/imputegap/wrapper/AlgoPython/GRIN/logs/grin/2025-03-21_10-04-56_42/model/version_0/events.out.tfevents.1742547910.diufpc048844.345185.0 b/imputegap/wrapper/AlgoPython/GRIN/logs/grin/2025-03-21_10-04-56_42/model/version_0/events.out.tfevents.1742547910.diufpc048844.345185.0 new file mode 100644 index 00000000..71d928c8 Binary files /dev/null and b/imputegap/wrapper/AlgoPython/GRIN/logs/grin/2025-03-21_10-04-56_42/model/version_0/events.out.tfevents.1742547910.diufpc048844.345185.0 differ diff --git a/imputegap/wrapper/AlgoPython/GRIN/logs/grin/2025-03-21_10-04-56_42/model/version_0/events.out.tfevents.1742547938.diufpc048844.345185.1 b/imputegap/wrapper/AlgoPython/GRIN/logs/grin/2025-03-21_10-04-56_42/model/version_0/events.out.tfevents.1742547938.diufpc048844.345185.1 new file mode 100644 index 00000000..bbe769d3 Binary files /dev/null and b/imputegap/wrapper/AlgoPython/GRIN/logs/grin/2025-03-21_10-04-56_42/model/version_0/events.out.tfevents.1742547938.diufpc048844.345185.1 differ diff --git a/imputegap/wrapper/AlgoPython/GRIN/logs/grin/2025-03-21_10-04-56_42/model/version_0/hparams.yaml b/imputegap/wrapper/AlgoPython/GRIN/logs/grin/2025-03-21_10-04-56_42/model/version_0/hparams.yaml new file mode 100644 index 00000000..15c3a699 --- /dev/null +++ b/imputegap/wrapper/AlgoPython/GRIN/logs/grin/2025-03-21_10-04-56_42/model/version_0/hparams.yaml @@ -0,0 +1,9231 @@ +adj: !!python/object/apply:numpy.core.multiarray._reconstruct + args: + - !!python/name:numpy.ndarray '' + - !!python/tuple + - 0 + - !!binary | + Yg== + state: !!python/tuple + - 1 + - !!python/tuple + - 256 + - 256 + - !!python/object/apply:numpy.dtype + args: + - f8 + - false + - true + state: !!python/tuple + - 3 + - < + - null + - null + - null + - -1 + - -1 + - 0 + - false + - !!binary | + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA + AAA= +d_ff: 16 +d_hidden: 32 +d_in: 1 +ff_dropout: 0.1 diff --git a/imputegap/wrapper/AlgoPython/MissNet/temp/model.pkl b/imputegap/wrapper/AlgoPython/MissNet/temp/model.pkl new file mode 100644 index 00000000..bfc2cd50 Binary files /dev/null and b/imputegap/wrapper/AlgoPython/MissNet/temp/model.pkl differ diff --git a/requirements.txt b/requirements.txt index cec68d2b..106bf717 100644 --- a/requirements.txt +++ b/requirements.txt @@ -5,7 +5,6 @@ toml==0.10.2 scikit-learn>=1.5.0 #scikit-learn==1.3.2 scipy==1.14.1 -setuptools==75.1.0 tensorflow==2.17.0 # Additional Libraries diff --git a/requirements_dev.txt b/requirements_dev.txt index 2938aecf..6607b09a 100644 --- a/requirements_dev.txt +++ b/requirements_dev.txt @@ -1,5 +1,4 @@ torch-geometric==2.6.1 -torch-cluster==1.6.3 pytorch-lightning==2.5.0 torchmetrics==1.6.1 lightning==2.5.0 diff --git a/setup.py b/setup.py index 618c9b84..e2a7675f 100644 --- a/setup.py +++ b/setup.py @@ -1,10 +1,9 @@ import pathlib - import setuptools setuptools.setup( name="imputegap", - version="1.0.6", + version="1.0.7", description="A Library of Imputation Techniques for Time Series Data", long_description=open('README.md').read(), long_description_content_type="text/markdown", @@ -13,7 +12,7 @@ author_email="quentin.nater@unifr.ch", license="MIT License", project_urls = { - "Documentation": "https://imputegap.readthedocs.io/", + "Documentation": "https://exascaleinfolab.github.io/ImputeGAP/", "Source" : "https://github.com/eXascaleInfolab/ImputeGAP" }, classifiers=[ @@ -37,6 +36,7 @@ 'dataset/*.txt', # Include TXT files from dataset 'algorithms/lib/*.dll', # Include DLL files from algorithms/lib (for Windows) 'algorithms/lib/*.so' # Include SO files from algorithms/lib (for Linux/Unix) + 'algorithms/lib/*.dylib' # Include dylib files from algorithms/lib (for MACOS) ], }, entry_points={"console_scripts": ["imputegap = imputegap.runner_display:display_title"]} diff --git a/tests/incomp_data.tmp b/tests/incomp_data.tmp deleted file mode 100644 index 74543839..00000000 --- a/tests/incomp_data.tmp +++ /dev/null @@ -1,64 +0,0 @@ -{"label": 0, "forward": {"values": [[1.0], [0.9428596506626875], [0.8857193013253751], [0.8571344977910412], [0.8143011790865736], [0.7714386026507505], [0.7142982533134381], [0.6857134497791041], [0.6999912226805933], [0.7428537991164165], [0.7857163755522396], [0.8143011790865736], [0.8143011790865736], [0.7999941484537288], [0.7999941484537288], [0.7999941484537288], [0.8143011790865736], [0.8143011790865736], [0.7999941484537288], [0.7857163755522396], [0.7857163755522396], [0.7428537991164165], [0.6999912226805933], [0.6142953275403026], [0.5428479475701454], [0.5142924017671671], [0.5571549782029901], [0.642850873343281], [0.7285760262149272], [0.7857163755522396], [0.7714386026507505], [0.7571608297492612], [0.7571608297492612], [0.7999941484537288], [0.842856724889552], [0.871441528423886], [0.8571344977910412], [0.8143011790865736], [0.7999941484537288], [0.7857163755522396], [0.7857163755522396], [0.7571608297492612], [0.6999912226805933], [0.6285731004417917], [0.6142953275403026], [0.6571579039761256], [0.7428537991164165], [0.7857163755522396], [0.7999941484537288], [0.7571608297492612], [0.7142982533134381], [0.6571579039761256], [0.6285731004417917], [0.5714327511044793], [0.5142924017671671], [0.485707598232833], [0.485707598232833], [0.5428479475701454], [0.5857105240059685], [0.5857105240059685], [0.5428479475701454], [0.4999853711343222], [0.47142982533134375], [0.5285701746686562], [0.6142953275403026], [0.6857134497791041], [0.6999912226805933], [0.6571579039761256], [0.5999882969074578], [0.5714327511044793], [0.5999882969074578], [0.671435676877615], [0.7428537991164165], [0.7714386026507505], [0.7571608297492612], [0.6571579039761256], [0.485707598232833], [0.30000877731940667], [0.15714327511044798], [0.12855847157611403], [0.24283917025073876], [0.44284502179700985], [0.6285731004417917], [0.6999912226805933], [0.6142953275403026], [0.44284502179700985], [0.2857017466865619], [0.24283917025073876], [0.2714239737850727], [0.35714912665671905], [0.3999824453611867], [0.37142689955820823], [0.31428655022089586], [0.22856139734924957], [0.1714210480119372], [0.14283624447760324], [0.15714327511044798], [0.1856988209134264], [0.24283917025073876], [0.30000877731940667], [0.3285643231223851], [0.3285643231223851], [0.2714239737850727], [0.1856988209134264], [0.11428069867462473], [0.10000292577313552], [0.12855847157611403], [0.20000585154627115], [0.2714239737850727], [0.3428420960238743], [0.37142689955820823], [0.37142689955820823], [0.3428420960238743], [0.30000877731940667], [0.25714620088358353], [0.22856139734924957], [0.22856139734924957], [0.24283917025073876], [0.2714239737850727], [0.30000877731940667], [0.30000877731940667], [0.24283917025073876], [0.1714210480119372], [0.10000292577313552], [0.07141812223880156], [0.07141812223880156], [0.11428069867462473], [0.15714327511044798], [0.1714210480119372], [0.15714327511044798], [0.10000292577313552], [0.042833318704467715], [0.0], [0.0], [0.057140349337312366], [0.12855847157611403], [0.21428362444776036], [0.2714239737850727], [0.30000877731940667], [0.2714239737850727], [0.20000585154627115], [0.14283624447760324], [0.08569589514029087], [0.057140349337312366], [0.07141812223880156], [0.10000292577313552], [0.1714210480119372], [0.24283917025073876], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.44284502179700985], [0.4142894759940314], [0.31428655022089586], [0.21428362444776036], [0.1714210480119372], [0.21428362444776036], [0.3285643231223851], [0.45715205242985457], [0.5714327511044793], [0.6285731004417917], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.44284502179700985], [0.44284502179700985], [0.4142894759940314], [0.3999824453611867], [0.3999824453611867], [0.4142894759940314], [0.44284502179700985], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.6999912226805933], [0.7571608297492612], [0.7571608297492612], [0.6571579039761256], [0.5285701746686562], [0.4285672488955206], [0.4142894759940314], [0.47142982533134375], [0.5428479475701454], [0.5857105240059685], [0.5857105240059685], [0.5857105240059685], [0.5714327511044793], [0.5714327511044793], [0.5714327511044793], [0.5571549782029901], [0.5285701746686562], [0.47142982533134375], [0.4142894759940314], [0.3999824453611867], [0.44284502179700985], [0.5571549782029901], [0.7142982533134381], [0.8143011790865736], [0.8285789519880628], [0.7428537991164165], [0.6285731004417917], [0.5714327511044793], [0.5857105240059685], [0.6571579039761256], [0.6999912226805933], [0.6999912226805933], [0.642850873343281], [0.5999882969074578], [0.5999882969074578], [0.6285731004417917], [0.6857134497791041], [0.7285760262149272], [0.7428537991164165], [0.7285760262149272], [0.6999912226805933], [0.6285731004417917], [0.5428479475701454], [0.47142982533134375], [0.44284502179700985], [0.4999853711343222], [0.6285731004417917], [0.7857163755522396], [0.8999970742268644], [0.871441528423886], [0.7285760262149272]], "masks": [[1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [1], [1], [1], [1], [1], [1], [1], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1]], "evals": [[1.0], [0.9428596506626875], [0.8857193013253751], [0.8571344977910412], [0.8143011790865736], [0.7714386026507505], [0.7142982533134381], [0.6857134497791041], [0.6999912226805933], [0.7428537991164165], [0.7857163755522396], [0.8143011790865736], [0.8143011790865736], [0.7999941484537288], [0.7999941484537288], [0.7999941484537288], [0.8143011790865736], [0.8143011790865736], [0.7999941484537288], [0.7857163755522396], [0.7857163755522396], [0.7428537991164165], [0.6999912226805933], [0.6142953275403026], [0.5428479475701454], [0.5142924017671671], [0.5571549782029901], [0.642850873343281], [0.7285760262149272], [0.7857163755522396], [0.7714386026507505], [0.7571608297492612], [0.7571608297492612], [0.7999941484537288], [0.842856724889552], [0.871441528423886], [0.8571344977910412], [0.8143011790865736], [0.7999941484537288], [0.7857163755522396], [0.7857163755522396], [0.7571608297492612], [0.6999912226805933], [0.6285731004417917], [0.6142953275403026], [0.6571579039761256], [0.7428537991164165], [0.7857163755522396], [0.7999941484537288], [0.7571608297492612], [0.7142982533134381], [0.6571579039761256], [0.6285731004417917], [0.5714327511044793], [0.5142924017671671], [0.485707598232833], [0.485707598232833], [0.5428479475701454], [0.5857105240059685], [0.5857105240059685], [0.5428479475701454], [0.4999853711343222], [0.47142982533134375], [0.5285701746686562], [0.6142953275403026], [0.6857134497791041], [0.6999912226805933], [0.6571579039761256], [0.5999882969074578], [0.5714327511044793], [0.5999882969074578], [0.671435676877615], [0.7428537991164165], [0.7714386026507505], [0.7571608297492612], [0.6571579039761256], [0.485707598232833], [0.30000877731940667], [0.15714327511044798], [0.12855847157611403], [0.24283917025073876], [0.44284502179700985], [0.6285731004417917], [0.6999912226805933], [0.6142953275403026], [0.44284502179700985], [0.2857017466865619], [0.24283917025073876], [0.2714239737850727], [0.35714912665671905], [0.3999824453611867], [0.37142689955820823], [0.31428655022089586], [0.22856139734924957], [0.1714210480119372], [0.14283624447760324], [0.15714327511044798], [0.1856988209134264], [0.24283917025073876], [0.30000877731940667], [0.3285643231223851], [0.3285643231223851], [0.2714239737850727], [0.1856988209134264], [0.11428069867462473], [0.10000292577313552], [0.12855847157611403], [0.20000585154627115], [0.2714239737850727], [0.3428420960238743], [0.37142689955820823], [0.37142689955820823], [0.3428420960238743], [0.30000877731940667], [0.25714620088358353], [0.22856139734924957], [0.22856139734924957], [0.24283917025073876], [0.2714239737850727], [0.30000877731940667], [0.30000877731940667], [0.24283917025073876], [0.1714210480119372], [0.10000292577313552], [0.07141812223880156], [0.07141812223880156], [0.11428069867462473], [0.15714327511044798], [0.1714210480119372], [0.15714327511044798], [0.10000292577313552], [0.042833318704467715], [0.0], [0.0], [0.057140349337312366], [0.12855847157611403], [0.21428362444776036], [0.2714239737850727], [0.30000877731940667], [0.2714239737850727], [0.20000585154627115], [0.14283624447760324], [0.08569589514029087], [0.057140349337312366], [0.07141812223880156], [0.10000292577313552], [0.1714210480119372], [0.24283917025073876], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.44284502179700985], [0.4142894759940314], [0.31428655022089586], [0.21428362444776036], [0.1714210480119372], [0.21428362444776036], [0.3285643231223851], [0.45715205242985457], [0.5714327511044793], [0.6285731004417917], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.44284502179700985], [0.44284502179700985], [0.4142894759940314], [0.3999824453611867], [0.3999824453611867], [0.4142894759940314], [0.44284502179700985], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.6999912226805933], [0.7571608297492612], [0.7571608297492612], [0.6571579039761256], [0.5285701746686562], [0.4285672488955206], [0.4142894759940314], [0.47142982533134375], [0.5428479475701454], [0.5857105240059685], [0.5857105240059685], [0.5857105240059685], [0.5714327511044793], [0.5714327511044793], [0.5714327511044793], [0.5571549782029901], [0.5285701746686562], [0.47142982533134375], [0.4142894759940314], [0.3999824453611867], [0.44284502179700985], [0.5571549782029901], [0.7142982533134381], [0.8143011790865736], [0.8285789519880628], [0.7428537991164165], [0.6285731004417917], [0.5714327511044793], [0.5857105240059685], [0.6571579039761256], [0.6999912226805933], [0.6999912226805933], [0.642850873343281], [0.5999882969074578], [0.5999882969074578], [0.6285731004417917], [0.6857134497791041], [0.7285760262149272], [0.7428537991164165], [0.7285760262149272], [0.6999912226805933], [0.6285731004417917], [0.5428479475701454], [0.47142982533134375], [0.44284502179700985], [0.4999853711343222], [0.6285731004417917], [0.7857163755522396], [0.8999970742268644], [0.871441528423886], [0.7285760262149272]], "eval_masks": [[0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0]], "forwards": [[1.0], [0.9428596506626875], [0.8857193013253751], [0.8571344977910412], [0.8143011790865736], [0.7714386026507505], [0.7142982533134381], [0.6857134497791041], [0.6999912226805933], [0.7428537991164165], [0.7857163755522396], [0.8143011790865736], [0.8143011790865736], [0.7999941484537288], [0.7999941484537288], [0.7999941484537288], [0.8143011790865736], [0.8143011790865736], [0.7999941484537288], [0.7857163755522396], [0.7857163755522396], [0.7428537991164165], [0.6999912226805933], [0.6142953275403026], [0.5428479475701454], [0.5142924017671671], [0.5571549782029901], [0.642850873343281], [0.7285760262149272], [0.7857163755522396], [0.7714386026507505], [0.7571608297492612], [0.7571608297492612], [0.7999941484537288], [0.842856724889552], [0.871441528423886], [0.8571344977910412], [0.8143011790865736], [0.7999941484537288], [0.7857163755522396], [0.7857163755522396], [0.7571608297492612], [0.6999912226805933], [0.6285731004417917], [0.6142953275403026], [0.6571579039761256], [0.7428537991164165], [0.7857163755522396], [0.7999941484537288], [0.7571608297492612], [0.7142982533134381], [0.6571579039761256], [0.6285731004417917], [0.5714327511044793], [0.5142924017671671], [0.485707598232833], [0.485707598232833], [0.5428479475701454], [0.5857105240059685], [0.5857105240059685], [0.5428479475701454], [0.4999853711343222], [0.47142982533134375], [0.5285701746686562], [0.6142953275403026], [0.6857134497791041], [0.6999912226805933], [0.6571579039761256], [0.5999882969074578], [0.5714327511044793], [0.5999882969074578], [0.671435676877615], [0.7428537991164165], [0.7714386026507505], [0.7571608297492612], [0.6571579039761256], [0.485707598232833], [0.30000877731940667], [0.15714327511044798], [0.12855847157611403], [0.24283917025073876], [0.44284502179700985], [0.6285731004417917], [0.6999912226805933], [0.6142953275403026], [0.44284502179700985], [0.2857017466865619], [0.24283917025073876], [0.2714239737850727], [0.35714912665671905], [0.3999824453611867], [0.37142689955820823], [0.31428655022089586], [0.22856139734924957], [0.1714210480119372], [0.14283624447760324], [0.15714327511044798], [0.1856988209134264], [0.24283917025073876], [0.30000877731940667], [0.3285643231223851], [0.3285643231223851], [0.2714239737850727], [0.1856988209134264], [0.11428069867462473], [0.10000292577313552], [0.12855847157611403], [0.20000585154627115], [0.2714239737850727], [0.3428420960238743], [0.37142689955820823], [0.37142689955820823], [0.3428420960238743], [0.30000877731940667], [0.25714620088358353], [0.22856139734924957], [0.22856139734924957], [0.24283917025073876], [0.2714239737850727], [0.30000877731940667], [0.30000877731940667], [0.24283917025073876], [0.1714210480119372], [0.10000292577313552], [0.07141812223880156], [0.07141812223880156], [0.11428069867462473], [0.15714327511044798], [0.1714210480119372], [0.15714327511044798], [0.10000292577313552], [0.042833318704467715], [0.0], [0.0], [0.057140349337312366], [0.12855847157611403], [0.21428362444776036], [0.2714239737850727], [0.30000877731940667], [0.2714239737850727], [0.20000585154627115], [0.14283624447760324], [0.08569589514029087], [0.057140349337312366], [0.07141812223880156], [0.10000292577313552], [0.1714210480119372], [0.24283917025073876], [0.24283917025073876], [0.24283917025073876], [0.24283917025073876], [0.24283917025073876], [0.24283917025073876], [0.24283917025073876], [0.24283917025073876], [0.24283917025073876], [0.24283917025073876], [0.24283917025073876], [0.24283917025073876], [0.24283917025073876], [0.24283917025073876], [0.24283917025073876], [0.24283917025073876], [0.24283917025073876], [0.24283917025073876], [0.24283917025073876], [0.24283917025073876], [0.24283917025073876], [0.44284502179700985], [0.4142894759940314], [0.31428655022089586], [0.21428362444776036], [0.1714210480119372], [0.21428362444776036], [0.3285643231223851], [0.45715205242985457], [0.5714327511044793], [0.6285731004417917], [0.6285731004417917], [0.6285731004417917], [0.6285731004417917], [0.6285731004417917], [0.6285731004417917], [0.6285731004417917], [0.6285731004417917], [0.6285731004417917], [0.6285731004417917], [0.6285731004417917], [0.44284502179700985], [0.44284502179700985], [0.4142894759940314], [0.3999824453611867], [0.3999824453611867], [0.4142894759940314], [0.44284502179700985], [0.44284502179700985], [0.44284502179700985], [0.44284502179700985], [0.44284502179700985], [0.44284502179700985], [0.44284502179700985], [0.44284502179700985], [0.44284502179700985], [0.44284502179700985], [0.44284502179700985], [0.6999912226805933], [0.7571608297492612], [0.7571608297492612], [0.6571579039761256], [0.5285701746686562], [0.4285672488955206], [0.4142894759940314], [0.47142982533134375], [0.5428479475701454], [0.5857105240059685], [0.5857105240059685], [0.5857105240059685], [0.5714327511044793], [0.5714327511044793], [0.5714327511044793], [0.5571549782029901], [0.5285701746686562], [0.47142982533134375], [0.4142894759940314], [0.3999824453611867], [0.44284502179700985], [0.5571549782029901], [0.7142982533134381], [0.8143011790865736], [0.8285789519880628], [0.7428537991164165], [0.6285731004417917], [0.5714327511044793], [0.5857105240059685], [0.6571579039761256], [0.6999912226805933], [0.6999912226805933], [0.642850873343281], [0.5999882969074578], [0.5999882969074578], [0.6285731004417917], [0.6857134497791041], [0.7285760262149272], [0.7428537991164165], [0.7285760262149272], [0.6999912226805933], [0.6285731004417917], [0.5428479475701454], [0.47142982533134375], [0.44284502179700985], [0.4999853711343222], [0.6285731004417917], [0.7857163755522396], [0.8999970742268644], [0.871441528423886], [0.7285760262149272]], "deltas": [[1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [2.0], [3.0], [4.0], [5.0], [6.0], [7.0], [8.0], [9.0], [10.0], [11.0], [12.0], [13.0], [14.0], [15.0], [16.0], [17.0], [18.0], [19.0], [20.0], [21.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [2.0], [3.0], [4.0], [5.0], [6.0], [7.0], [8.0], [9.0], [10.0], [11.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [2.0], [3.0], [4.0], [5.0], [6.0], [7.0], [8.0], [9.0], [10.0], [11.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0]]}, "backward": {"values": [[0.7285760262149272], [0.871441528423886], [0.8999970742268644], [0.7857163755522396], [0.6285731004417917], [0.4999853711343222], [0.44284502179700985], [0.47142982533134375], [0.5428479475701454], [0.6285731004417917], [0.6999912226805933], [0.7285760262149272], [0.7428537991164165], [0.7285760262149272], [0.6857134497791041], [0.6285731004417917], [0.5999882969074578], [0.5999882969074578], [0.642850873343281], [0.6999912226805933], [0.6999912226805933], [0.6571579039761256], [0.5857105240059685], [0.5714327511044793], [0.6285731004417917], [0.7428537991164165], [0.8285789519880628], [0.8143011790865736], [0.7142982533134381], [0.5571549782029901], [0.44284502179700985], [0.3999824453611867], [0.4142894759940314], [0.47142982533134375], [0.5285701746686562], [0.5571549782029901], [0.5714327511044793], [0.5714327511044793], [0.5714327511044793], [0.5857105240059685], [0.5857105240059685], [0.5857105240059685], [0.5428479475701454], [0.47142982533134375], [0.4142894759940314], [0.4285672488955206], [0.5285701746686562], [0.6571579039761256], [0.7571608297492612], [0.7571608297492612], [0.6999912226805933], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.44284502179700985], [0.4142894759940314], [0.3999824453611867], [0.3999824453611867], [0.4142894759940314], [0.44284502179700985], [0.44284502179700985], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.6285731004417917], [0.5714327511044793], [0.45715205242985457], [0.3285643231223851], [0.21428362444776036], [0.1714210480119372], [0.21428362444776036], [0.31428655022089586], [0.4142894759940314], [0.44284502179700985], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.24283917025073876], [0.1714210480119372], [0.10000292577313552], [0.07141812223880156], [0.057140349337312366], [0.08569589514029087], [0.14283624447760324], [0.20000585154627115], [0.2714239737850727], [0.30000877731940667], [0.2714239737850727], [0.21428362444776036], [0.12855847157611403], [0.057140349337312366], [0.0], [0.0], [0.042833318704467715], [0.10000292577313552], [0.15714327511044798], [0.1714210480119372], [0.15714327511044798], [0.11428069867462473], [0.07141812223880156], [0.07141812223880156], [0.10000292577313552], [0.1714210480119372], [0.24283917025073876], [0.30000877731940667], [0.30000877731940667], [0.2714239737850727], [0.24283917025073876], [0.22856139734924957], [0.22856139734924957], [0.25714620088358353], [0.30000877731940667], [0.3428420960238743], [0.37142689955820823], [0.37142689955820823], [0.3428420960238743], [0.2714239737850727], [0.20000585154627115], [0.12855847157611403], [0.10000292577313552], [0.11428069867462473], [0.1856988209134264], [0.2714239737850727], [0.3285643231223851], [0.3285643231223851], [0.30000877731940667], [0.24283917025073876], [0.1856988209134264], [0.15714327511044798], [0.14283624447760324], [0.1714210480119372], [0.22856139734924957], [0.31428655022089586], [0.37142689955820823], [0.3999824453611867], [0.35714912665671905], [0.2714239737850727], [0.24283917025073876], [0.2857017466865619], [0.44284502179700985], [0.6142953275403026], [0.6999912226805933], [0.6285731004417917], [0.44284502179700985], [0.24283917025073876], [0.12855847157611403], [0.15714327511044798], [0.30000877731940667], [0.485707598232833], [0.6571579039761256], [0.7571608297492612], [0.7714386026507505], [0.7428537991164165], [0.671435676877615], [0.5999882969074578], [0.5714327511044793], [0.5999882969074578], [0.6571579039761256], [0.6999912226805933], [0.6857134497791041], [0.6142953275403026], [0.5285701746686562], [0.47142982533134375], [0.4999853711343222], [0.5428479475701454], [0.5857105240059685], [0.5857105240059685], [0.5428479475701454], [0.485707598232833], [0.485707598232833], [0.5142924017671671], [0.5714327511044793], [0.6285731004417917], [0.6571579039761256], [0.7142982533134381], [0.7571608297492612], [0.7999941484537288], [0.7857163755522396], [0.7428537991164165], [0.6571579039761256], [0.6142953275403026], [0.6285731004417917], [0.6999912226805933], [0.7571608297492612], [0.7857163755522396], [0.7857163755522396], [0.7999941484537288], [0.8143011790865736], [0.8571344977910412], [0.871441528423886], [0.842856724889552], [0.7999941484537288], [0.7571608297492612], [0.7571608297492612], [0.7714386026507505], [0.7857163755522396], [0.7285760262149272], [0.642850873343281], [0.5571549782029901], [0.5142924017671671], [0.5428479475701454], [0.6142953275403026], [0.6999912226805933], [0.7428537991164165], [0.7857163755522396], [0.7857163755522396], [0.7999941484537288], [0.8143011790865736], [0.8143011790865736], [0.7999941484537288], [0.7999941484537288], [0.7999941484537288], [0.8143011790865736], [0.8143011790865736], [0.7857163755522396], [0.7428537991164165], [0.6999912226805933], [0.6857134497791041], [0.7142982533134381], [0.7714386026507505], [0.8143011790865736], [0.8571344977910412], [0.8857193013253751], [0.9428596506626875], [1.0]], "masks": [[1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [1], [1], [1], [1], [1], [1], [1], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1]], "evals": [[0.7285760262149272], [0.871441528423886], [0.8999970742268644], [0.7857163755522396], [0.6285731004417917], [0.4999853711343222], [0.44284502179700985], [0.47142982533134375], [0.5428479475701454], [0.6285731004417917], [0.6999912226805933], [0.7285760262149272], [0.7428537991164165], [0.7285760262149272], [0.6857134497791041], [0.6285731004417917], [0.5999882969074578], [0.5999882969074578], [0.642850873343281], [0.6999912226805933], [0.6999912226805933], [0.6571579039761256], [0.5857105240059685], [0.5714327511044793], [0.6285731004417917], [0.7428537991164165], [0.8285789519880628], [0.8143011790865736], [0.7142982533134381], [0.5571549782029901], [0.44284502179700985], [0.3999824453611867], [0.4142894759940314], [0.47142982533134375], [0.5285701746686562], [0.5571549782029901], [0.5714327511044793], [0.5714327511044793], [0.5714327511044793], [0.5857105240059685], [0.5857105240059685], [0.5857105240059685], [0.5428479475701454], [0.47142982533134375], [0.4142894759940314], [0.4285672488955206], [0.5285701746686562], [0.6571579039761256], [0.7571608297492612], [0.7571608297492612], [0.6999912226805933], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.44284502179700985], [0.4142894759940314], [0.3999824453611867], [0.3999824453611867], [0.4142894759940314], [0.44284502179700985], [0.44284502179700985], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.6285731004417917], [0.5714327511044793], [0.45715205242985457], [0.3285643231223851], [0.21428362444776036], [0.1714210480119372], [0.21428362444776036], [0.31428655022089586], [0.4142894759940314], [0.44284502179700985], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.24283917025073876], [0.1714210480119372], [0.10000292577313552], [0.07141812223880156], [0.057140349337312366], [0.08569589514029087], [0.14283624447760324], [0.20000585154627115], [0.2714239737850727], [0.30000877731940667], [0.2714239737850727], [0.21428362444776036], [0.12855847157611403], [0.057140349337312366], [0.0], [0.0], [0.042833318704467715], [0.10000292577313552], [0.15714327511044798], [0.1714210480119372], [0.15714327511044798], [0.11428069867462473], [0.07141812223880156], [0.07141812223880156], [0.10000292577313552], [0.1714210480119372], [0.24283917025073876], [0.30000877731940667], [0.30000877731940667], [0.2714239737850727], [0.24283917025073876], [0.22856139734924957], [0.22856139734924957], [0.25714620088358353], [0.30000877731940667], [0.3428420960238743], [0.37142689955820823], [0.37142689955820823], [0.3428420960238743], [0.2714239737850727], [0.20000585154627115], [0.12855847157611403], [0.10000292577313552], [0.11428069867462473], [0.1856988209134264], [0.2714239737850727], [0.3285643231223851], [0.3285643231223851], [0.30000877731940667], [0.24283917025073876], [0.1856988209134264], [0.15714327511044798], [0.14283624447760324], [0.1714210480119372], [0.22856139734924957], [0.31428655022089586], [0.37142689955820823], [0.3999824453611867], [0.35714912665671905], [0.2714239737850727], [0.24283917025073876], [0.2857017466865619], [0.44284502179700985], [0.6142953275403026], [0.6999912226805933], [0.6285731004417917], [0.44284502179700985], [0.24283917025073876], [0.12855847157611403], [0.15714327511044798], [0.30000877731940667], [0.485707598232833], [0.6571579039761256], [0.7571608297492612], [0.7714386026507505], [0.7428537991164165], [0.671435676877615], [0.5999882969074578], [0.5714327511044793], [0.5999882969074578], [0.6571579039761256], [0.6999912226805933], [0.6857134497791041], [0.6142953275403026], [0.5285701746686562], [0.47142982533134375], [0.4999853711343222], [0.5428479475701454], [0.5857105240059685], [0.5857105240059685], [0.5428479475701454], [0.485707598232833], [0.485707598232833], [0.5142924017671671], [0.5714327511044793], [0.6285731004417917], [0.6571579039761256], [0.7142982533134381], [0.7571608297492612], [0.7999941484537288], [0.7857163755522396], [0.7428537991164165], [0.6571579039761256], [0.6142953275403026], [0.6285731004417917], [0.6999912226805933], [0.7571608297492612], [0.7857163755522396], [0.7857163755522396], [0.7999941484537288], [0.8143011790865736], [0.8571344977910412], [0.871441528423886], [0.842856724889552], [0.7999941484537288], [0.7571608297492612], [0.7571608297492612], [0.7714386026507505], [0.7857163755522396], [0.7285760262149272], [0.642850873343281], [0.5571549782029901], [0.5142924017671671], [0.5428479475701454], [0.6142953275403026], [0.6999912226805933], [0.7428537991164165], [0.7857163755522396], [0.7857163755522396], [0.7999941484537288], [0.8143011790865736], [0.8143011790865736], [0.7999941484537288], [0.7999941484537288], [0.7999941484537288], [0.8143011790865736], [0.8143011790865736], [0.7857163755522396], [0.7428537991164165], [0.6999912226805933], [0.6857134497791041], [0.7142982533134381], [0.7714386026507505], [0.8143011790865736], [0.8571344977910412], [0.8857193013253751], [0.9428596506626875], [1.0]], "eval_masks": [[0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0]], "forwards": [[0.7285760262149272], [0.871441528423886], [0.8999970742268644], [0.7857163755522396], [0.6285731004417917], [0.4999853711343222], [0.44284502179700985], [0.47142982533134375], [0.5428479475701454], [0.6285731004417917], [0.6999912226805933], [0.7285760262149272], [0.7428537991164165], [0.7285760262149272], [0.6857134497791041], [0.6285731004417917], [0.5999882969074578], [0.5999882969074578], [0.642850873343281], [0.6999912226805933], [0.6999912226805933], [0.6571579039761256], [0.5857105240059685], [0.5714327511044793], [0.6285731004417917], [0.7428537991164165], [0.8285789519880628], [0.8143011790865736], [0.7142982533134381], [0.5571549782029901], [0.44284502179700985], [0.3999824453611867], [0.4142894759940314], [0.47142982533134375], [0.5285701746686562], [0.5571549782029901], [0.5714327511044793], [0.5714327511044793], [0.5714327511044793], [0.5857105240059685], [0.5857105240059685], [0.5857105240059685], [0.5428479475701454], [0.47142982533134375], [0.4142894759940314], [0.4285672488955206], [0.5285701746686562], [0.6571579039761256], [0.7571608297492612], [0.7571608297492612], [0.6999912226805933], [0.6999912226805933], [0.6999912226805933], [0.6999912226805933], [0.6999912226805933], [0.6999912226805933], [0.6999912226805933], [0.6999912226805933], [0.6999912226805933], [0.6999912226805933], [0.6999912226805933], [0.44284502179700985], [0.4142894759940314], [0.3999824453611867], [0.3999824453611867], [0.4142894759940314], [0.44284502179700985], [0.44284502179700985], [0.44284502179700985], [0.44284502179700985], [0.44284502179700985], [0.44284502179700985], [0.44284502179700985], [0.44284502179700985], [0.44284502179700985], [0.44284502179700985], [0.44284502179700985], [0.44284502179700985], [0.6285731004417917], [0.5714327511044793], [0.45715205242985457], [0.3285643231223851], [0.21428362444776036], [0.1714210480119372], [0.21428362444776036], [0.31428655022089586], [0.4142894759940314], [0.44284502179700985], [0.44284502179700985], [0.44284502179700985], [0.44284502179700985], [0.44284502179700985], [0.44284502179700985], [0.44284502179700985], [0.44284502179700985], [0.44284502179700985], [0.44284502179700985], [0.44284502179700985], [0.44284502179700985], [0.44284502179700985], [0.44284502179700985], [0.44284502179700985], [0.44284502179700985], [0.44284502179700985], [0.44284502179700985], [0.44284502179700985], [0.44284502179700985], [0.44284502179700985], [0.24283917025073876], [0.1714210480119372], [0.10000292577313552], [0.07141812223880156], [0.057140349337312366], [0.08569589514029087], [0.14283624447760324], [0.20000585154627115], [0.2714239737850727], [0.30000877731940667], [0.2714239737850727], [0.21428362444776036], [0.12855847157611403], [0.057140349337312366], [0.0], [0.0], [0.042833318704467715], [0.10000292577313552], [0.15714327511044798], [0.1714210480119372], [0.15714327511044798], [0.11428069867462473], [0.07141812223880156], [0.07141812223880156], [0.10000292577313552], [0.1714210480119372], [0.24283917025073876], [0.30000877731940667], [0.30000877731940667], [0.2714239737850727], [0.24283917025073876], [0.22856139734924957], [0.22856139734924957], [0.25714620088358353], [0.30000877731940667], [0.3428420960238743], [0.37142689955820823], [0.37142689955820823], [0.3428420960238743], [0.2714239737850727], [0.20000585154627115], [0.12855847157611403], [0.10000292577313552], [0.11428069867462473], [0.1856988209134264], [0.2714239737850727], [0.3285643231223851], [0.3285643231223851], [0.30000877731940667], [0.24283917025073876], [0.1856988209134264], [0.15714327511044798], [0.14283624447760324], [0.1714210480119372], [0.22856139734924957], [0.31428655022089586], [0.37142689955820823], [0.3999824453611867], [0.35714912665671905], [0.2714239737850727], [0.24283917025073876], [0.2857017466865619], [0.44284502179700985], [0.6142953275403026], [0.6999912226805933], [0.6285731004417917], [0.44284502179700985], [0.24283917025073876], [0.12855847157611403], [0.15714327511044798], [0.30000877731940667], [0.485707598232833], [0.6571579039761256], [0.7571608297492612], [0.7714386026507505], [0.7428537991164165], [0.671435676877615], [0.5999882969074578], [0.5714327511044793], [0.5999882969074578], [0.6571579039761256], [0.6999912226805933], [0.6857134497791041], [0.6142953275403026], [0.5285701746686562], [0.47142982533134375], [0.4999853711343222], [0.5428479475701454], [0.5857105240059685], [0.5857105240059685], [0.5428479475701454], [0.485707598232833], [0.485707598232833], [0.5142924017671671], [0.5714327511044793], [0.6285731004417917], [0.6571579039761256], [0.7142982533134381], [0.7571608297492612], [0.7999941484537288], [0.7857163755522396], [0.7428537991164165], [0.6571579039761256], [0.6142953275403026], [0.6285731004417917], [0.6999912226805933], [0.7571608297492612], [0.7857163755522396], [0.7857163755522396], [0.7999941484537288], [0.8143011790865736], [0.8571344977910412], [0.871441528423886], [0.842856724889552], [0.7999941484537288], [0.7571608297492612], [0.7571608297492612], [0.7714386026507505], [0.7857163755522396], [0.7285760262149272], [0.642850873343281], [0.5571549782029901], [0.5142924017671671], [0.5428479475701454], [0.6142953275403026], [0.6999912226805933], [0.7428537991164165], [0.7857163755522396], [0.7857163755522396], [0.7999941484537288], [0.8143011790865736], [0.8143011790865736], [0.7999941484537288], [0.7999941484537288], [0.7999941484537288], [0.8143011790865736], [0.8143011790865736], [0.7857163755522396], [0.7428537991164165], [0.6999912226805933], [0.6857134497791041], [0.7142982533134381], [0.7714386026507505], [0.8143011790865736], [0.8571344977910412], [0.8857193013253751], [0.9428596506626875], [1.0]], "deltas": [[1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [2.0], [3.0], [4.0], [5.0], [6.0], [7.0], [8.0], [9.0], [10.0], [11.0], [12.0], [13.0], [14.0], [15.0], [16.0], [17.0], [18.0], [19.0], [20.0], [21.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [2.0], [3.0], [4.0], [5.0], [6.0], [7.0], [8.0], [9.0], [10.0], [11.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [2.0], [3.0], [4.0], [5.0], [6.0], [7.0], [8.0], [9.0], [10.0], [11.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0]]}} -{"label": 0, "forward": {"values": [[1.0], [0.972238024803732], [0.9444476049607465], [0.9027761975196268], [0.8472238024803732], [0.763880987598134], [0.722238024803732], [0.722238024803732], [0.763880987598134], [0.8472238024803732], [0.9027761975196268], [0.9166856297644784], [0.8750142223233588], [0.8194618272841052], [0.7777904198429856], [0.763880987598134], [0.7777904198429856], [0.8194618272841052], [0.8611047900785073], [0.8888952099214928], [0.8750142223233588], [0.8055523950392537], [0.6944476049607464], [0.5694618272841052], [0.5000000000000001], [0.5000000000000001], [0.5555523950392537], [0.6527761975196269], [0.722238024803732], [0.763880987598134], [0.7777904198429856], [0.7916714074411196], [0.8194618272841052], [0.8611047900785073], [0.9027761975196268], [0.9027761975196268], [0.8888952099214928], [0.8750142223233588], [0.8750142223233588], [0.8750142223233588], [0.8611047900785073], [0.8472238024803732], [0.8194618272841052], [0.7916714074411196], [0.7777904198429856], [0.763880987598134], [0.7361190124018661], [0.7083285925588805], [0.7083285925588805], [0.7083285925588805], [0.722238024803732], [0.722238024803732], [0.6805666173626125], [0.5833428148822393], [0.48611901240186606], [0.4166571851177609], [0.43056661736261237], [0.48611901240186606], [0.5555523950392537], [0.5694618272841052], [0.5416714074411195], [0.5138809875981342], [0.5138809875981342], [0.5555523950392537], [0.6527761975196269], [0.7083285925588805], [0.722238024803732], [0.7083285925588805], [0.6666856297644784], [0.6527761975196269], [0.6527761975196269], [0.6805666173626125], [0.7083285925588805], [0.7083285925588805], [0.6805666173626125], [0.5972238024803733], [0.4583285925588804], [0.3194333826373877], [0.20832859255888048], [0.222238024803732], [0.3472238024803732], [0.5277904198429856], [0.6805666173626125], [0.6944476049607464], [0.5416714074411195], [0.3194333826373877], [0.1666571851177609], [0.15277619751962687], [0.26388098759813405], [0.4027761975196269], [0.5000000000000001], [0.5000000000000001], [0.43056661736261237], [0.3472238024803732], [0.25000000000000006], [0.15277619751962687], [0.06943338263738771], [0.0], [0.0], [0.08334281488223916], [0.19444760496074645], [0.30555239503925363], [0.3194333826373877], [0.26388098759813405], [0.18056661736261242], [0.11110479007850729], [0.11110479007850729], [0.13889520992149285], [0.19444760496074645], [0.25000000000000006], [0.26388098759813405], [0.27779041984298564], [0.27779041984298564], [0.29167140744111963], [0.29167140744111963], [0.3194333826373877], [0.3472238024803732], [0.4027761975196269], [0.43056661736261237], [0.43056661736261237], [0.36110479007850727], [0.26388098759813405], [0.15277619751962687], [0.08334281488223916], [0.04167140744111958], [0.06943338263738771], [0.11110479007850729], [0.1666571851177609], [0.20832859255888048], [0.23611901240186603], [0.222238024803732], [0.20832859255888048], [0.1666571851177609], [0.11110479007850729], [0.08334281488223916], [0.08334281488223916], [0.11110479007850729], [0.15277619751962687], [0.19444760496074645], [0.222238024803732], [0.222238024803732], [0.19444760496074645], [0.13889520992149285], [0.09722380248037328], [0.06943338263738771], [0.08334281488223916], [0.15277619751962687], [0.222238024803732], [0.3194333826373877], [0.3472238024803732], [0.3194333826373877], [0.27779041984298564], [0.23611901240186603], [0.23611901240186603], [0.29167140744111963], [0.36110479007850727], [0.4166571851177609], [0.4444476049607465], [0.4166571851177609], [0.36110479007850727], [0.27779041984298564], [0.19444760496074645], [0.15277619751962687], [0.19444760496074645], [0.27779041984298564], [0.4027761975196269], [0.5000000000000001], [0.5416714074411195], [0.5555523950392537], [0.5138809875981342], [0.4583285925588804], [0.3888952099214928], [0.3472238024803732], [0.36110479007850727], [0.43056661736261237], [0.5277904198429856], [0.6250142223233587], [0.6666856297644784], [0.6527761975196269], [0.6250142223233587], [0.6111047900785073], [0.6250142223233587], [0.6527761975196269], [0.6527761975196269], [0.6388952099214928], [0.6111047900785073], [0.5972238024803733], [0.5972238024803733], [0.6111047900785073], [0.6111047900785073], [0.6111047900785073], [0.5972238024803733], [0.5972238024803733], [0.5972238024803733], [0.6111047900785073], [0.6388952099214928], [0.6388952099214928], [0.6527761975196269], [0.6527761975196269], [0.6388952099214928], [0.6250142223233587], [0.6111047900785073], [0.6388952099214928], [0.722238024803732], [0.8333428148822392], [0.9305666173626125], [0.972238024803732], [0.9166856297644784], [0.8055523950392537], [0.6527761975196269], [0.5833428148822393], [0.6111047900785073], [0.7361190124018661], [0.8611047900785073], [0.9166856297644784], [0.8888952099214928], [0.8055523950392537], [0.7083285925588805], [0.6666856297644784], [0.6527761975196269], [0.6666856297644784], [0.6666856297644784], [0.6250142223233587], [0.5833428148822393], [0.5555523950392537], [0.5833428148822393], [0.6805666173626125], [0.8055523950392537], [0.9166856297644784], [0.9583285925588805], [0.9444476049607465], [0.9027761975196268], [0.8472238024803732], [0.8333428148822392], [0.8333428148822392], [0.8333428148822392], [0.8194618272841052], [0.7916714074411196], [0.7777904198429856], [0.7916714074411196], [0.8194618272841052], [0.8472238024803732], [0.8750142223233588], [0.8888952099214928], [0.8750142223233588], [0.8750142223233588], [0.8472238024803732], [0.8055523950392537], [0.7916714074411196], [0.7916714074411196], [0.8194618272841052], [0.8888952099214928], [0.9444476049607465], [0.986119012401866], [0.986119012401866], [0.9027761975196268]], "masks": [[1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1]], "evals": [[1.0], [0.972238024803732], [0.9444476049607465], [0.9027761975196268], [0.8472238024803732], [0.763880987598134], [0.722238024803732], [0.722238024803732], [0.763880987598134], [0.8472238024803732], [0.9027761975196268], [0.9166856297644784], [0.8750142223233588], [0.8194618272841052], [0.7777904198429856], [0.763880987598134], [0.7777904198429856], [0.8194618272841052], [0.8611047900785073], [0.8888952099214928], [0.8750142223233588], [0.8055523950392537], [0.6944476049607464], [0.5694618272841052], [0.5000000000000001], [0.5000000000000001], [0.5555523950392537], [0.6527761975196269], [0.722238024803732], [0.763880987598134], [0.7777904198429856], [0.7916714074411196], [0.8194618272841052], [0.8611047900785073], [0.9027761975196268], [0.9027761975196268], [0.8888952099214928], [0.8750142223233588], [0.8750142223233588], [0.8750142223233588], [0.8611047900785073], [0.8472238024803732], [0.8194618272841052], [0.7916714074411196], [0.7777904198429856], [0.763880987598134], [0.7361190124018661], [0.7083285925588805], [0.7083285925588805], [0.7083285925588805], [0.722238024803732], [0.722238024803732], [0.6805666173626125], [0.5833428148822393], [0.48611901240186606], [0.4166571851177609], [0.43056661736261237], [0.48611901240186606], [0.5555523950392537], [0.5694618272841052], [0.5416714074411195], [0.5138809875981342], [0.5138809875981342], [0.5555523950392537], [0.6527761975196269], [0.7083285925588805], [0.722238024803732], [0.7083285925588805], [0.6666856297644784], [0.6527761975196269], [0.6527761975196269], [0.6805666173626125], [0.7083285925588805], [0.7083285925588805], [0.6805666173626125], [0.5972238024803733], [0.4583285925588804], [0.3194333826373877], [0.20832859255888048], [0.222238024803732], [0.3472238024803732], [0.5277904198429856], [0.6805666173626125], [0.6944476049607464], [0.5416714074411195], [0.3194333826373877], [0.1666571851177609], [0.15277619751962687], [0.26388098759813405], [0.4027761975196269], [0.5000000000000001], [0.5000000000000001], [0.43056661736261237], [0.3472238024803732], [0.25000000000000006], [0.15277619751962687], [0.06943338263738771], [0.0], [0.0], [0.08334281488223916], [0.19444760496074645], [0.30555239503925363], [0.3194333826373877], [0.26388098759813405], [0.18056661736261242], [0.11110479007850729], [0.11110479007850729], [0.13889520992149285], [0.19444760496074645], [0.25000000000000006], [0.26388098759813405], [0.27779041984298564], [0.27779041984298564], [0.29167140744111963], [0.29167140744111963], [0.3194333826373877], [0.3472238024803732], [0.4027761975196269], [0.43056661736261237], [0.43056661736261237], [0.36110479007850727], [0.26388098759813405], [0.15277619751962687], [0.08334281488223916], [0.04167140744111958], [0.06943338263738771], [0.11110479007850729], [0.1666571851177609], [0.20832859255888048], [0.23611901240186603], [0.222238024803732], [0.20832859255888048], [0.1666571851177609], [0.11110479007850729], [0.08334281488223916], [0.08334281488223916], [0.11110479007850729], [0.15277619751962687], [0.19444760496074645], [0.222238024803732], [0.222238024803732], [0.19444760496074645], [0.13889520992149285], [0.09722380248037328], [0.06943338263738771], [0.08334281488223916], [0.15277619751962687], [0.222238024803732], [0.3194333826373877], [0.3472238024803732], [0.3194333826373877], [0.27779041984298564], [0.23611901240186603], [0.23611901240186603], [0.29167140744111963], [0.36110479007850727], [0.4166571851177609], [0.4444476049607465], [0.4166571851177609], [0.36110479007850727], [0.27779041984298564], [0.19444760496074645], [0.15277619751962687], [0.19444760496074645], [0.27779041984298564], [0.4027761975196269], [0.5000000000000001], [0.5416714074411195], [0.5555523950392537], [0.5138809875981342], [0.4583285925588804], [0.3888952099214928], [0.3472238024803732], [0.36110479007850727], [0.43056661736261237], [0.5277904198429856], [0.6250142223233587], [0.6666856297644784], [0.6527761975196269], [0.6250142223233587], [0.6111047900785073], [0.6250142223233587], [0.6527761975196269], [0.6527761975196269], [0.6388952099214928], [0.6111047900785073], [0.5972238024803733], [0.5972238024803733], [0.6111047900785073], [0.6111047900785073], [0.6111047900785073], [0.5972238024803733], [0.5972238024803733], [0.5972238024803733], [0.6111047900785073], [0.6388952099214928], [0.6388952099214928], [0.6527761975196269], [0.6527761975196269], [0.6388952099214928], [0.6250142223233587], [0.6111047900785073], [0.6388952099214928], [0.722238024803732], [0.8333428148822392], [0.9305666173626125], [0.972238024803732], [0.9166856297644784], [0.8055523950392537], [0.6527761975196269], [0.5833428148822393], [0.6111047900785073], [0.7361190124018661], [0.8611047900785073], [0.9166856297644784], [0.8888952099214928], [0.8055523950392537], [0.7083285925588805], [0.6666856297644784], [0.6527761975196269], [0.6666856297644784], [0.6666856297644784], [0.6250142223233587], [0.5833428148822393], [0.5555523950392537], [0.5833428148822393], [0.6805666173626125], [0.8055523950392537], [0.9166856297644784], [0.9583285925588805], [0.9444476049607465], [0.9027761975196268], [0.8472238024803732], [0.8333428148822392], [0.8333428148822392], [0.8333428148822392], [0.8194618272841052], [0.7916714074411196], [0.7777904198429856], [0.7916714074411196], [0.8194618272841052], [0.8472238024803732], [0.8750142223233588], [0.8888952099214928], [0.8750142223233588], [0.8750142223233588], [0.8472238024803732], [0.8055523950392537], [0.7916714074411196], [0.7916714074411196], [0.8194618272841052], [0.8888952099214928], [0.9444476049607465], [0.986119012401866], [0.986119012401866], [0.9027761975196268]], "eval_masks": [[0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0]], "forwards": [[1.0], [0.972238024803732], [0.9444476049607465], [0.9027761975196268], [0.8472238024803732], [0.763880987598134], [0.722238024803732], [0.722238024803732], [0.763880987598134], [0.8472238024803732], [0.9027761975196268], [0.9166856297644784], [0.8750142223233588], [0.8194618272841052], [0.7777904198429856], [0.763880987598134], [0.7777904198429856], [0.8194618272841052], [0.8611047900785073], [0.8888952099214928], [0.8750142223233588], [0.8055523950392537], [0.6944476049607464], [0.5694618272841052], [0.5000000000000001], [0.5000000000000001], [0.5555523950392537], [0.6527761975196269], [0.722238024803732], [0.763880987598134], [0.7777904198429856], [0.7916714074411196], [0.8194618272841052], [0.8611047900785073], [0.9027761975196268], [0.9027761975196268], [0.8888952099214928], [0.8750142223233588], [0.8750142223233588], [0.8750142223233588], [0.8611047900785073], [0.8472238024803732], [0.8194618272841052], [0.7916714074411196], [0.7777904198429856], [0.763880987598134], [0.7361190124018661], [0.7083285925588805], [0.7083285925588805], [0.7083285925588805], [0.722238024803732], [0.722238024803732], [0.6805666173626125], [0.5833428148822393], [0.48611901240186606], [0.4166571851177609], [0.43056661736261237], [0.48611901240186606], [0.5555523950392537], [0.5694618272841052], [0.5416714074411195], [0.5138809875981342], [0.5138809875981342], [0.5555523950392537], [0.6527761975196269], [0.7083285925588805], [0.722238024803732], [0.7083285925588805], [0.6666856297644784], [0.6527761975196269], [0.6527761975196269], [0.6805666173626125], [0.7083285925588805], [0.7083285925588805], [0.6805666173626125], [0.5972238024803733], [0.4583285925588804], [0.3194333826373877], [0.20832859255888048], [0.222238024803732], [0.3472238024803732], [0.5277904198429856], [0.6805666173626125], [0.6944476049607464], [0.5416714074411195], [0.3194333826373877], [0.1666571851177609], [0.15277619751962687], [0.26388098759813405], [0.4027761975196269], [0.5000000000000001], [0.5000000000000001], [0.43056661736261237], [0.3472238024803732], [0.25000000000000006], [0.15277619751962687], [0.06943338263738771], [0.0], [0.0], [0.08334281488223916], [0.19444760496074645], [0.30555239503925363], [0.3194333826373877], [0.26388098759813405], [0.18056661736261242], [0.11110479007850729], [0.11110479007850729], [0.13889520992149285], [0.19444760496074645], [0.25000000000000006], [0.26388098759813405], [0.27779041984298564], [0.27779041984298564], [0.29167140744111963], [0.29167140744111963], [0.3194333826373877], [0.3472238024803732], [0.4027761975196269], [0.43056661736261237], [0.43056661736261237], [0.36110479007850727], [0.26388098759813405], [0.15277619751962687], [0.08334281488223916], [0.04167140744111958], [0.06943338263738771], [0.11110479007850729], [0.1666571851177609], [0.20832859255888048], [0.23611901240186603], [0.222238024803732], [0.20832859255888048], [0.1666571851177609], [0.11110479007850729], [0.08334281488223916], [0.08334281488223916], [0.11110479007850729], [0.15277619751962687], [0.19444760496074645], [0.222238024803732], [0.222238024803732], [0.19444760496074645], [0.13889520992149285], [0.09722380248037328], [0.06943338263738771], [0.08334281488223916], [0.15277619751962687], [0.222238024803732], [0.3194333826373877], [0.3472238024803732], [0.3194333826373877], [0.27779041984298564], [0.23611901240186603], [0.23611901240186603], [0.29167140744111963], [0.36110479007850727], [0.4166571851177609], [0.4444476049607465], [0.4166571851177609], [0.36110479007850727], [0.27779041984298564], [0.19444760496074645], [0.15277619751962687], [0.19444760496074645], [0.27779041984298564], [0.4027761975196269], [0.5000000000000001], [0.5416714074411195], [0.5555523950392537], [0.5138809875981342], [0.4583285925588804], [0.3888952099214928], [0.3472238024803732], [0.36110479007850727], [0.43056661736261237], [0.5277904198429856], [0.6250142223233587], [0.6666856297644784], [0.6527761975196269], [0.6250142223233587], [0.6111047900785073], [0.6250142223233587], [0.6527761975196269], [0.6527761975196269], [0.6388952099214928], [0.6111047900785073], [0.5972238024803733], [0.5972238024803733], [0.6111047900785073], [0.6111047900785073], [0.6111047900785073], [0.5972238024803733], [0.5972238024803733], [0.5972238024803733], [0.6111047900785073], [0.6388952099214928], [0.6388952099214928], [0.6527761975196269], [0.6527761975196269], [0.6388952099214928], [0.6250142223233587], [0.6111047900785073], [0.6388952099214928], [0.722238024803732], [0.8333428148822392], [0.9305666173626125], [0.972238024803732], [0.9166856297644784], [0.8055523950392537], [0.6527761975196269], [0.5833428148822393], [0.6111047900785073], [0.7361190124018661], [0.8611047900785073], [0.9166856297644784], [0.8888952099214928], [0.8055523950392537], [0.7083285925588805], [0.6666856297644784], [0.6527761975196269], [0.6666856297644784], [0.6666856297644784], [0.6250142223233587], [0.5833428148822393], [0.5555523950392537], [0.5833428148822393], [0.6805666173626125], [0.8055523950392537], [0.9166856297644784], [0.9583285925588805], [0.9444476049607465], [0.9027761975196268], [0.8472238024803732], [0.8333428148822392], [0.8333428148822392], [0.8333428148822392], [0.8194618272841052], [0.7916714074411196], [0.7777904198429856], [0.7916714074411196], [0.8194618272841052], [0.8472238024803732], [0.8750142223233588], [0.8888952099214928], [0.8750142223233588], [0.8750142223233588], [0.8472238024803732], [0.8055523950392537], [0.7916714074411196], [0.7916714074411196], [0.8194618272841052], [0.8888952099214928], [0.9444476049607465], [0.986119012401866], [0.986119012401866], [0.9027761975196268]], "deltas": [[1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0]]}, "backward": {"values": [[0.9027761975196268], [0.986119012401866], [0.986119012401866], [0.9444476049607465], [0.8888952099214928], [0.8194618272841052], [0.7916714074411196], [0.7916714074411196], [0.8055523950392537], [0.8472238024803732], [0.8750142223233588], [0.8750142223233588], [0.8888952099214928], [0.8750142223233588], [0.8472238024803732], [0.8194618272841052], [0.7916714074411196], [0.7777904198429856], [0.7916714074411196], [0.8194618272841052], [0.8333428148822392], [0.8333428148822392], [0.8333428148822392], [0.8472238024803732], [0.9027761975196268], [0.9444476049607465], [0.9583285925588805], [0.9166856297644784], [0.8055523950392537], [0.6805666173626125], [0.5833428148822393], [0.5555523950392537], [0.5833428148822393], [0.6250142223233587], [0.6666856297644784], [0.6666856297644784], [0.6527761975196269], [0.6666856297644784], [0.7083285925588805], [0.8055523950392537], [0.8888952099214928], [0.9166856297644784], [0.8611047900785073], [0.7361190124018661], [0.6111047900785073], [0.5833428148822393], [0.6527761975196269], [0.8055523950392537], [0.9166856297644784], [0.972238024803732], [0.9305666173626125], [0.8333428148822392], [0.722238024803732], [0.6388952099214928], [0.6111047900785073], [0.6250142223233587], [0.6388952099214928], [0.6527761975196269], [0.6527761975196269], [0.6388952099214928], [0.6388952099214928], [0.6111047900785073], [0.5972238024803733], [0.5972238024803733], [0.5972238024803733], [0.6111047900785073], [0.6111047900785073], [0.6111047900785073], [0.5972238024803733], [0.5972238024803733], [0.6111047900785073], [0.6388952099214928], [0.6527761975196269], [0.6527761975196269], [0.6250142223233587], [0.6111047900785073], [0.6250142223233587], [0.6527761975196269], [0.6666856297644784], [0.6250142223233587], [0.5277904198429856], [0.43056661736261237], [0.36110479007850727], [0.3472238024803732], [0.3888952099214928], [0.4583285925588804], [0.5138809875981342], [0.5555523950392537], [0.5416714074411195], [0.5000000000000001], [0.4027761975196269], [0.27779041984298564], [0.19444760496074645], [0.15277619751962687], [0.19444760496074645], [0.27779041984298564], [0.36110479007850727], [0.4166571851177609], [0.4444476049607465], [0.4166571851177609], [0.36110479007850727], [0.29167140744111963], [0.23611901240186603], [0.23611901240186603], [0.27779041984298564], [0.3194333826373877], [0.3472238024803732], [0.3194333826373877], [0.222238024803732], [0.15277619751962687], [0.08334281488223916], [0.06943338263738771], [0.09722380248037328], [0.13889520992149285], [0.19444760496074645], [0.222238024803732], [0.222238024803732], [0.19444760496074645], [0.15277619751962687], [0.11110479007850729], [0.08334281488223916], [0.08334281488223916], [0.11110479007850729], [0.1666571851177609], [0.20832859255888048], [0.222238024803732], [0.23611901240186603], [0.20832859255888048], [0.1666571851177609], [0.11110479007850729], [0.06943338263738771], [0.04167140744111958], [0.08334281488223916], [0.15277619751962687], [0.26388098759813405], [0.36110479007850727], [0.43056661736261237], [0.43056661736261237], [0.4027761975196269], [0.3472238024803732], [0.3194333826373877], [0.29167140744111963], [0.29167140744111963], [0.27779041984298564], [0.27779041984298564], [0.26388098759813405], [0.25000000000000006], [0.19444760496074645], [0.13889520992149285], [0.11110479007850729], [0.11110479007850729], [0.18056661736261242], [0.26388098759813405], [0.3194333826373877], [0.30555239503925363], [0.19444760496074645], [0.08334281488223916], [0.0], [0.0], [0.06943338263738771], [0.15277619751962687], [0.25000000000000006], [0.3472238024803732], [0.43056661736261237], [0.5000000000000001], [0.5000000000000001], [0.4027761975196269], [0.26388098759813405], [0.15277619751962687], [0.1666571851177609], [0.3194333826373877], [0.5416714074411195], [0.6944476049607464], [0.6805666173626125], [0.5277904198429856], [0.3472238024803732], [0.222238024803732], [0.20832859255888048], [0.3194333826373877], [0.4583285925588804], [0.5972238024803733], [0.6805666173626125], [0.7083285925588805], [0.7083285925588805], [0.6805666173626125], [0.6527761975196269], [0.6527761975196269], [0.6666856297644784], [0.7083285925588805], [0.722238024803732], [0.7083285925588805], [0.6527761975196269], [0.5555523950392537], [0.5138809875981342], [0.5138809875981342], [0.5416714074411195], [0.5694618272841052], [0.5555523950392537], [0.48611901240186606], [0.43056661736261237], [0.4166571851177609], [0.48611901240186606], [0.5833428148822393], [0.6805666173626125], [0.722238024803732], [0.722238024803732], [0.7083285925588805], [0.7083285925588805], [0.7083285925588805], [0.7361190124018661], [0.763880987598134], [0.7777904198429856], [0.7916714074411196], [0.8194618272841052], [0.8472238024803732], [0.8611047900785073], [0.8750142223233588], [0.8750142223233588], [0.8750142223233588], [0.8888952099214928], [0.9027761975196268], [0.9027761975196268], [0.8611047900785073], [0.8194618272841052], [0.7916714074411196], [0.7777904198429856], [0.763880987598134], [0.722238024803732], [0.6527761975196269], [0.5555523950392537], [0.5000000000000001], [0.5000000000000001], [0.5694618272841052], [0.6944476049607464], [0.8055523950392537], [0.8750142223233588], [0.8888952099214928], [0.8611047900785073], [0.8194618272841052], [0.7777904198429856], [0.763880987598134], [0.7777904198429856], [0.8194618272841052], [0.8750142223233588], [0.9166856297644784], [0.9027761975196268], [0.8472238024803732], [0.763880987598134], [0.722238024803732], [0.722238024803732], [0.763880987598134], [0.8472238024803732], [0.9027761975196268], [0.9444476049607465], [0.972238024803732], [1.0]], "masks": [[1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1]], "evals": [[0.9027761975196268], [0.986119012401866], [0.986119012401866], [0.9444476049607465], [0.8888952099214928], [0.8194618272841052], [0.7916714074411196], [0.7916714074411196], [0.8055523950392537], [0.8472238024803732], [0.8750142223233588], [0.8750142223233588], [0.8888952099214928], [0.8750142223233588], [0.8472238024803732], [0.8194618272841052], [0.7916714074411196], [0.7777904198429856], [0.7916714074411196], [0.8194618272841052], [0.8333428148822392], [0.8333428148822392], [0.8333428148822392], [0.8472238024803732], [0.9027761975196268], [0.9444476049607465], [0.9583285925588805], [0.9166856297644784], [0.8055523950392537], [0.6805666173626125], [0.5833428148822393], [0.5555523950392537], [0.5833428148822393], [0.6250142223233587], [0.6666856297644784], [0.6666856297644784], [0.6527761975196269], [0.6666856297644784], [0.7083285925588805], [0.8055523950392537], [0.8888952099214928], [0.9166856297644784], [0.8611047900785073], [0.7361190124018661], [0.6111047900785073], [0.5833428148822393], [0.6527761975196269], [0.8055523950392537], [0.9166856297644784], [0.972238024803732], [0.9305666173626125], [0.8333428148822392], [0.722238024803732], [0.6388952099214928], [0.6111047900785073], [0.6250142223233587], [0.6388952099214928], [0.6527761975196269], [0.6527761975196269], [0.6388952099214928], [0.6388952099214928], [0.6111047900785073], [0.5972238024803733], [0.5972238024803733], [0.5972238024803733], [0.6111047900785073], [0.6111047900785073], [0.6111047900785073], [0.5972238024803733], [0.5972238024803733], [0.6111047900785073], [0.6388952099214928], [0.6527761975196269], [0.6527761975196269], [0.6250142223233587], [0.6111047900785073], [0.6250142223233587], [0.6527761975196269], [0.6666856297644784], [0.6250142223233587], [0.5277904198429856], [0.43056661736261237], [0.36110479007850727], [0.3472238024803732], [0.3888952099214928], [0.4583285925588804], [0.5138809875981342], [0.5555523950392537], [0.5416714074411195], [0.5000000000000001], [0.4027761975196269], [0.27779041984298564], [0.19444760496074645], [0.15277619751962687], [0.19444760496074645], [0.27779041984298564], [0.36110479007850727], [0.4166571851177609], [0.4444476049607465], [0.4166571851177609], [0.36110479007850727], [0.29167140744111963], [0.23611901240186603], [0.23611901240186603], [0.27779041984298564], [0.3194333826373877], [0.3472238024803732], [0.3194333826373877], [0.222238024803732], [0.15277619751962687], [0.08334281488223916], [0.06943338263738771], [0.09722380248037328], [0.13889520992149285], [0.19444760496074645], [0.222238024803732], [0.222238024803732], [0.19444760496074645], [0.15277619751962687], [0.11110479007850729], [0.08334281488223916], [0.08334281488223916], [0.11110479007850729], [0.1666571851177609], [0.20832859255888048], [0.222238024803732], [0.23611901240186603], [0.20832859255888048], [0.1666571851177609], [0.11110479007850729], [0.06943338263738771], [0.04167140744111958], [0.08334281488223916], [0.15277619751962687], [0.26388098759813405], [0.36110479007850727], [0.43056661736261237], [0.43056661736261237], [0.4027761975196269], [0.3472238024803732], [0.3194333826373877], [0.29167140744111963], [0.29167140744111963], [0.27779041984298564], [0.27779041984298564], [0.26388098759813405], [0.25000000000000006], [0.19444760496074645], [0.13889520992149285], [0.11110479007850729], [0.11110479007850729], [0.18056661736261242], [0.26388098759813405], [0.3194333826373877], [0.30555239503925363], [0.19444760496074645], [0.08334281488223916], [0.0], [0.0], [0.06943338263738771], [0.15277619751962687], [0.25000000000000006], [0.3472238024803732], [0.43056661736261237], [0.5000000000000001], [0.5000000000000001], [0.4027761975196269], [0.26388098759813405], [0.15277619751962687], [0.1666571851177609], [0.3194333826373877], [0.5416714074411195], [0.6944476049607464], [0.6805666173626125], [0.5277904198429856], [0.3472238024803732], [0.222238024803732], [0.20832859255888048], [0.3194333826373877], [0.4583285925588804], [0.5972238024803733], [0.6805666173626125], [0.7083285925588805], [0.7083285925588805], [0.6805666173626125], [0.6527761975196269], [0.6527761975196269], [0.6666856297644784], [0.7083285925588805], [0.722238024803732], [0.7083285925588805], [0.6527761975196269], [0.5555523950392537], [0.5138809875981342], [0.5138809875981342], [0.5416714074411195], [0.5694618272841052], [0.5555523950392537], [0.48611901240186606], [0.43056661736261237], [0.4166571851177609], [0.48611901240186606], [0.5833428148822393], [0.6805666173626125], [0.722238024803732], [0.722238024803732], [0.7083285925588805], [0.7083285925588805], [0.7083285925588805], [0.7361190124018661], [0.763880987598134], [0.7777904198429856], [0.7916714074411196], [0.8194618272841052], [0.8472238024803732], [0.8611047900785073], [0.8750142223233588], [0.8750142223233588], [0.8750142223233588], [0.8888952099214928], [0.9027761975196268], [0.9027761975196268], [0.8611047900785073], [0.8194618272841052], [0.7916714074411196], [0.7777904198429856], [0.763880987598134], [0.722238024803732], [0.6527761975196269], [0.5555523950392537], [0.5000000000000001], [0.5000000000000001], [0.5694618272841052], [0.6944476049607464], [0.8055523950392537], [0.8750142223233588], [0.8888952099214928], [0.8611047900785073], [0.8194618272841052], [0.7777904198429856], [0.763880987598134], [0.7777904198429856], [0.8194618272841052], [0.8750142223233588], [0.9166856297644784], [0.9027761975196268], [0.8472238024803732], [0.763880987598134], [0.722238024803732], [0.722238024803732], [0.763880987598134], [0.8472238024803732], [0.9027761975196268], [0.9444476049607465], [0.972238024803732], [1.0]], "eval_masks": [[0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0]], "forwards": [[0.9027761975196268], [0.986119012401866], [0.986119012401866], [0.9444476049607465], [0.8888952099214928], [0.8194618272841052], [0.7916714074411196], [0.7916714074411196], [0.8055523950392537], [0.8472238024803732], [0.8750142223233588], [0.8750142223233588], [0.8888952099214928], [0.8750142223233588], [0.8472238024803732], [0.8194618272841052], [0.7916714074411196], [0.7777904198429856], [0.7916714074411196], [0.8194618272841052], [0.8333428148822392], [0.8333428148822392], [0.8333428148822392], [0.8472238024803732], [0.9027761975196268], [0.9444476049607465], [0.9583285925588805], [0.9166856297644784], [0.8055523950392537], [0.6805666173626125], [0.5833428148822393], [0.5555523950392537], [0.5833428148822393], [0.6250142223233587], [0.6666856297644784], [0.6666856297644784], [0.6527761975196269], [0.6666856297644784], [0.7083285925588805], [0.8055523950392537], [0.8888952099214928], [0.9166856297644784], [0.8611047900785073], [0.7361190124018661], [0.6111047900785073], [0.5833428148822393], [0.6527761975196269], [0.8055523950392537], [0.9166856297644784], [0.972238024803732], [0.9305666173626125], [0.8333428148822392], [0.722238024803732], [0.6388952099214928], [0.6111047900785073], [0.6250142223233587], [0.6388952099214928], [0.6527761975196269], [0.6527761975196269], [0.6388952099214928], [0.6388952099214928], [0.6111047900785073], [0.5972238024803733], [0.5972238024803733], [0.5972238024803733], [0.6111047900785073], [0.6111047900785073], [0.6111047900785073], [0.5972238024803733], [0.5972238024803733], [0.6111047900785073], [0.6388952099214928], [0.6527761975196269], [0.6527761975196269], [0.6250142223233587], [0.6111047900785073], [0.6250142223233587], [0.6527761975196269], [0.6666856297644784], [0.6250142223233587], [0.5277904198429856], [0.43056661736261237], [0.36110479007850727], [0.3472238024803732], [0.3888952099214928], [0.4583285925588804], [0.5138809875981342], [0.5555523950392537], [0.5416714074411195], [0.5000000000000001], [0.4027761975196269], [0.27779041984298564], [0.19444760496074645], [0.15277619751962687], [0.19444760496074645], [0.27779041984298564], [0.36110479007850727], [0.4166571851177609], [0.4444476049607465], [0.4166571851177609], [0.36110479007850727], [0.29167140744111963], [0.23611901240186603], [0.23611901240186603], [0.27779041984298564], [0.3194333826373877], [0.3472238024803732], [0.3194333826373877], [0.222238024803732], [0.15277619751962687], [0.08334281488223916], [0.06943338263738771], [0.09722380248037328], [0.13889520992149285], [0.19444760496074645], [0.222238024803732], [0.222238024803732], [0.19444760496074645], [0.15277619751962687], [0.11110479007850729], [0.08334281488223916], [0.08334281488223916], [0.11110479007850729], [0.1666571851177609], [0.20832859255888048], [0.222238024803732], [0.23611901240186603], [0.20832859255888048], [0.1666571851177609], [0.11110479007850729], [0.06943338263738771], [0.04167140744111958], [0.08334281488223916], [0.15277619751962687], [0.26388098759813405], [0.36110479007850727], [0.43056661736261237], [0.43056661736261237], [0.4027761975196269], [0.3472238024803732], [0.3194333826373877], [0.29167140744111963], [0.29167140744111963], [0.27779041984298564], [0.27779041984298564], [0.26388098759813405], [0.25000000000000006], [0.19444760496074645], [0.13889520992149285], [0.11110479007850729], [0.11110479007850729], [0.18056661736261242], [0.26388098759813405], [0.3194333826373877], [0.30555239503925363], [0.19444760496074645], [0.08334281488223916], [0.0], [0.0], [0.06943338263738771], [0.15277619751962687], [0.25000000000000006], [0.3472238024803732], [0.43056661736261237], [0.5000000000000001], [0.5000000000000001], [0.4027761975196269], [0.26388098759813405], [0.15277619751962687], [0.1666571851177609], [0.3194333826373877], [0.5416714074411195], [0.6944476049607464], [0.6805666173626125], [0.5277904198429856], [0.3472238024803732], [0.222238024803732], [0.20832859255888048], [0.3194333826373877], [0.4583285925588804], [0.5972238024803733], [0.6805666173626125], [0.7083285925588805], [0.7083285925588805], [0.6805666173626125], [0.6527761975196269], [0.6527761975196269], [0.6666856297644784], [0.7083285925588805], [0.722238024803732], [0.7083285925588805], [0.6527761975196269], [0.5555523950392537], [0.5138809875981342], [0.5138809875981342], [0.5416714074411195], [0.5694618272841052], [0.5555523950392537], [0.48611901240186606], [0.43056661736261237], [0.4166571851177609], [0.48611901240186606], [0.5833428148822393], [0.6805666173626125], [0.722238024803732], [0.722238024803732], [0.7083285925588805], [0.7083285925588805], [0.7083285925588805], [0.7361190124018661], [0.763880987598134], [0.7777904198429856], [0.7916714074411196], [0.8194618272841052], [0.8472238024803732], [0.8611047900785073], [0.8750142223233588], [0.8750142223233588], [0.8750142223233588], [0.8888952099214928], [0.9027761975196268], [0.9027761975196268], [0.8611047900785073], [0.8194618272841052], [0.7916714074411196], [0.7777904198429856], [0.763880987598134], [0.722238024803732], [0.6527761975196269], [0.5555523950392537], [0.5000000000000001], [0.5000000000000001], [0.5694618272841052], [0.6944476049607464], [0.8055523950392537], [0.8750142223233588], [0.8888952099214928], [0.8611047900785073], [0.8194618272841052], [0.7777904198429856], [0.763880987598134], [0.7777904198429856], [0.8194618272841052], [0.8750142223233588], [0.9166856297644784], [0.9027761975196268], [0.8472238024803732], [0.763880987598134], [0.722238024803732], [0.722238024803732], [0.763880987598134], [0.8472238024803732], [0.9027761975196268], [0.9444476049607465], [0.972238024803732], [1.0]], "deltas": [[1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0]]}} -{"label": 0, "forward": {"values": [[1.0], [0.986119012401866], [0.986119012401866], [0.972238024803732], [0.9166571851177608], [0.8472238024803732], [0.7777904198429856], [0.75], [0.75], [0.7777904198429856], [0.8055523950392537], [0.8333428148822392], [0.8611047900785073], [0.8888952099214928], [0.8888952099214928], [0.8611047900785073], [0.8194333826373876], [0.7916714074411196], [0.7916714074411196], [0.8333428148822392], [0.8750142223233588], [0.8888952099214928], [0.8194333826373876], [0.7361190124018661], [0.6527761975196269], [0.6250142223233587], [0.6527761975196269], [0.7083285925588805], [0.7361190124018661], [0.75], [0.7361190124018661], [0.7083285925588805], [0.6944476049607464], [0.6944476049607464], [0.722238024803732], [0.75], [0.8055523950392537], [0.8611047900785073], [0.8888952099214928], [0.8888952099214928], [0.8472238024803732], [0.763880987598134], [0.6805666173626125], [0.6111047900785073], [0.6111047900785073], [0.6527761975196269], [0.7083285925588805], [0.75], [0.75], [0.7361190124018661], [0.6944476049607464], [0.6527761975196269], [0.6111047900785073], [0.5555523950392536], [0.5000000000000001], [0.4722095801570144], [0.486119012401866], [0.5000000000000001], [0.5000000000000001], [0.486119012401866], [0.43056661736261237], [0.40277619751962684], [0.43056661736261237], [0.5277904198429856], [0.6388952099214927], [0.7083285925588805], [0.6944476049607464], [0.6250142223233587], [0.5416714074411195], [0.5138809875981342], [0.5555523950392536], [0.6388952099214927], [0.75], [0.8194333826373876], [0.8194333826373876], [0.7361190124018661], [0.5416714074411195], [0.27779041984298564], [0.06943338263738762], [0.0], [0.13889520992149276], [0.43056661736261237], [0.722238024803732], [0.8750142223233588], [0.8333428148822392], [0.6388952099214927], [0.4444476049607464], [0.3194333826373877], [0.3194333826373877], [0.36110479007850727], [0.40277619751962684], [0.41665718511776084], [0.3888952099214928], [0.37498577767664126], [0.36110479007850727], [0.3333428148822392], [0.30555239503925363], [0.29167140744111963], [0.30555239503925363], [0.36110479007850727], [0.43056661736261237], [0.4444476049607464], [0.41665718511776084], [0.30555239503925363], [0.2222095801570145], [0.18056661736261234], [0.19444760496074645], [0.26388098759813405], [0.3472238024803732], [0.4444476049607464], [0.5000000000000001], [0.5416714074411195], [0.5416714074411195], [0.486119012401866], [0.3888952099214928], [0.3194333826373877], [0.26388098759813405], [0.26388098759813405], [0.29167140744111963], [0.30555239503925363], [0.3194333826373877], [0.3194333826373877], [0.3194333826373877], [0.3194333826373877], [0.30555239503925363], [0.27779041984298564], [0.23611901240186603], [0.19444760496074645], [0.13889520992149276], [0.1111047900785072], [0.08334281488223916], [0.0555523950392536], [0.0555523950392536], [0.08334281488223916], [0.1666571851177609], [0.27779041984298564], [0.3888952099214928], [0.4444476049607464], [0.43056661736261237], [0.36110479007850727], [0.27779041984298564], [0.19444760496074645], [0.1666571851177609], [0.1666571851177609], [0.18056661736261234], [0.20832859255888048], [0.23611901240186603], [0.27779041984298564], [0.3472238024803732], [0.3888952099214928], [0.40277619751962684], [0.37498577767664126], [0.3333428148822392], [0.30555239503925363], [0.3333428148822392], [0.3888952099214928], [0.4583285925588804], [0.5000000000000001], [0.4722095801570144], [0.40277619751962684], [0.30555239503925363], [0.19444760496074645], [0.09722380248037317], [0.04167140744111958], [0.06943338263738762], [0.18056661736261234], [0.3333428148822392], [0.4722095801570144], [0.5277904198429856], [0.4722095801570144], [0.3333428148822392], [0.18056661736261234], [0.08334281488223916], [0.1111047900785072], [0.23611901240186603], [0.3888952099214928], [0.5277904198429856], [0.5694333826373876], [0.5277904198429856], [0.4444476049607464], [0.36110479007850727], [0.3194333826373877], [0.3333428148822392], [0.40277619751962684], [0.486119012401866], [0.5277904198429856], [0.5416714074411195], [0.5000000000000001], [0.43056661736261237], [0.37498577767664126], [0.36110479007850727], [0.3888952099214928], [0.4444476049607464], [0.4722095801570144], [0.4583285925588804], [0.4444476049607464], [0.43056661736261237], [0.4583285925588804], [0.5277904198429856], [0.5972238024803733], [0.6250142223233587], [0.5833428148822393], [0.5277904198429856], [0.5000000000000001], [0.5277904198429856], [0.5972238024803733], [0.6944476049607464], [0.75], [0.75], [0.6805666173626125], [0.5833428148822393], [0.486119012401866], [0.41665718511776084], [0.37498577767664126], [0.3888952099214928], [0.4444476049607464], [0.5555523950392536], [0.6527761975196269], [0.722238024803732], [0.6944476049607464], [0.5694333826373876], [0.43056661736261237], [0.30555239503925363], [0.27779041984298564], [0.37498577767664126], [0.5416714074411195], [0.722238024803732], [0.8055523950392537], [0.763880987598134], [0.5972238024803733], [0.41665718511776084], [0.29167140744111963], [0.30555239503925363], [0.4444476049607464], [0.6111047900785073], [0.6944476049607464], [0.6666571851177608], [0.5555523950392536], [0.43056661736261237], [0.36110479007850727], [0.36110479007850727], [0.40277619751962684], [0.486119012401866], [0.5555523950392536], [0.5972238024803733], [0.5694333826373876], [0.4583285925588804], [0.27779041984298564], [0.1111047900785072], [0.06943338263738762], [0.19444760496074645], [0.4444476049607464], [0.6944476049607464], [0.8333428148822392], [0.7777904198429856], [0.5555523950392536]], "masks": [[1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1]], "evals": [[1.0], [0.986119012401866], [0.986119012401866], [0.972238024803732], [0.9166571851177608], [0.8472238024803732], [0.7777904198429856], [0.75], [0.75], [0.7777904198429856], [0.8055523950392537], [0.8333428148822392], [0.8611047900785073], [0.8888952099214928], [0.8888952099214928], [0.8611047900785073], [0.8194333826373876], [0.7916714074411196], [0.7916714074411196], [0.8333428148822392], [0.8750142223233588], [0.8888952099214928], [0.8194333826373876], [0.7361190124018661], [0.6527761975196269], [0.6250142223233587], [0.6527761975196269], [0.7083285925588805], [0.7361190124018661], [0.75], [0.7361190124018661], [0.7083285925588805], [0.6944476049607464], [0.6944476049607464], [0.722238024803732], [0.75], [0.8055523950392537], [0.8611047900785073], [0.8888952099214928], [0.8888952099214928], [0.8472238024803732], [0.763880987598134], [0.6805666173626125], [0.6111047900785073], [0.6111047900785073], [0.6527761975196269], [0.7083285925588805], [0.75], [0.75], [0.7361190124018661], [0.6944476049607464], [0.6527761975196269], [0.6111047900785073], [0.5555523950392536], [0.5000000000000001], [0.4722095801570144], [0.486119012401866], [0.5000000000000001], [0.5000000000000001], [0.486119012401866], [0.43056661736261237], [0.40277619751962684], [0.43056661736261237], [0.5277904198429856], [0.6388952099214927], [0.7083285925588805], [0.6944476049607464], [0.6250142223233587], [0.5416714074411195], [0.5138809875981342], [0.5555523950392536], [0.6388952099214927], [0.75], [0.8194333826373876], [0.8194333826373876], [0.7361190124018661], [0.5416714074411195], [0.27779041984298564], [0.06943338263738762], [0.0], [0.13889520992149276], [0.43056661736261237], [0.722238024803732], [0.8750142223233588], [0.8333428148822392], [0.6388952099214927], [0.4444476049607464], [0.3194333826373877], [0.3194333826373877], [0.36110479007850727], [0.40277619751962684], [0.41665718511776084], [0.3888952099214928], [0.37498577767664126], [0.36110479007850727], [0.3333428148822392], [0.30555239503925363], [0.29167140744111963], [0.30555239503925363], [0.36110479007850727], [0.43056661736261237], [0.4444476049607464], [0.41665718511776084], [0.30555239503925363], [0.2222095801570145], [0.18056661736261234], [0.19444760496074645], [0.26388098759813405], [0.3472238024803732], [0.4444476049607464], [0.5000000000000001], [0.5416714074411195], [0.5416714074411195], [0.486119012401866], [0.3888952099214928], [0.3194333826373877], [0.26388098759813405], [0.26388098759813405], [0.29167140744111963], [0.30555239503925363], [0.3194333826373877], [0.3194333826373877], [0.3194333826373877], [0.3194333826373877], [0.30555239503925363], [0.27779041984298564], [0.23611901240186603], [0.19444760496074645], [0.13889520992149276], [0.1111047900785072], [0.08334281488223916], [0.0555523950392536], [0.0555523950392536], [0.08334281488223916], [0.1666571851177609], [0.27779041984298564], [0.3888952099214928], [0.4444476049607464], [0.43056661736261237], [0.36110479007850727], [0.27779041984298564], [0.19444760496074645], [0.1666571851177609], [0.1666571851177609], [0.18056661736261234], [0.20832859255888048], [0.23611901240186603], [0.27779041984298564], [0.3472238024803732], [0.3888952099214928], [0.40277619751962684], [0.37498577767664126], [0.3333428148822392], [0.30555239503925363], [0.3333428148822392], [0.3888952099214928], [0.4583285925588804], [0.5000000000000001], [0.4722095801570144], [0.40277619751962684], [0.30555239503925363], [0.19444760496074645], [0.09722380248037317], [0.04167140744111958], [0.06943338263738762], [0.18056661736261234], [0.3333428148822392], [0.4722095801570144], [0.5277904198429856], [0.4722095801570144], [0.3333428148822392], [0.18056661736261234], [0.08334281488223916], [0.1111047900785072], [0.23611901240186603], [0.3888952099214928], [0.5277904198429856], [0.5694333826373876], [0.5277904198429856], [0.4444476049607464], [0.36110479007850727], [0.3194333826373877], [0.3333428148822392], [0.40277619751962684], [0.486119012401866], [0.5277904198429856], [0.5416714074411195], [0.5000000000000001], [0.43056661736261237], [0.37498577767664126], [0.36110479007850727], [0.3888952099214928], [0.4444476049607464], [0.4722095801570144], [0.4583285925588804], [0.4444476049607464], [0.43056661736261237], [0.4583285925588804], [0.5277904198429856], [0.5972238024803733], [0.6250142223233587], [0.5833428148822393], [0.5277904198429856], [0.5000000000000001], [0.5277904198429856], [0.5972238024803733], [0.6944476049607464], [0.75], [0.75], [0.6805666173626125], [0.5833428148822393], [0.486119012401866], [0.41665718511776084], [0.37498577767664126], [0.3888952099214928], [0.4444476049607464], [0.5555523950392536], [0.6527761975196269], [0.722238024803732], [0.6944476049607464], [0.5694333826373876], [0.43056661736261237], [0.30555239503925363], [0.27779041984298564], [0.37498577767664126], [0.5416714074411195], [0.722238024803732], [0.8055523950392537], [0.763880987598134], [0.5972238024803733], [0.41665718511776084], [0.29167140744111963], [0.30555239503925363], [0.4444476049607464], [0.6111047900785073], [0.6944476049607464], [0.6666571851177608], [0.5555523950392536], [0.43056661736261237], [0.36110479007850727], [0.36110479007850727], [0.40277619751962684], [0.486119012401866], [0.5555523950392536], [0.5972238024803733], [0.5694333826373876], [0.4583285925588804], [0.27779041984298564], [0.1111047900785072], [0.06943338263738762], [0.19444760496074645], [0.4444476049607464], [0.6944476049607464], [0.8333428148822392], [0.7777904198429856], [0.5555523950392536]], "eval_masks": [[0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0]], "forwards": [[1.0], [0.986119012401866], [0.986119012401866], [0.972238024803732], [0.9166571851177608], [0.8472238024803732], [0.7777904198429856], [0.75], [0.75], [0.7777904198429856], [0.8055523950392537], [0.8333428148822392], [0.8611047900785073], [0.8888952099214928], [0.8888952099214928], [0.8611047900785073], [0.8194333826373876], [0.7916714074411196], [0.7916714074411196], [0.8333428148822392], [0.8750142223233588], [0.8888952099214928], [0.8194333826373876], [0.7361190124018661], [0.6527761975196269], [0.6250142223233587], [0.6527761975196269], [0.7083285925588805], [0.7361190124018661], [0.75], [0.7361190124018661], [0.7083285925588805], [0.6944476049607464], [0.6944476049607464], [0.722238024803732], [0.75], [0.8055523950392537], [0.8611047900785073], [0.8888952099214928], [0.8888952099214928], [0.8472238024803732], [0.763880987598134], [0.6805666173626125], [0.6111047900785073], [0.6111047900785073], [0.6527761975196269], [0.7083285925588805], [0.75], [0.75], [0.7361190124018661], [0.6944476049607464], [0.6527761975196269], [0.6111047900785073], [0.5555523950392536], [0.5000000000000001], [0.4722095801570144], [0.486119012401866], [0.5000000000000001], [0.5000000000000001], [0.486119012401866], [0.43056661736261237], [0.40277619751962684], [0.43056661736261237], [0.5277904198429856], [0.6388952099214927], [0.7083285925588805], [0.6944476049607464], [0.6250142223233587], [0.5416714074411195], [0.5138809875981342], [0.5555523950392536], [0.6388952099214927], [0.75], [0.8194333826373876], [0.8194333826373876], [0.7361190124018661], [0.5416714074411195], [0.27779041984298564], [0.06943338263738762], [0.0], [0.13889520992149276], [0.43056661736261237], [0.722238024803732], [0.8750142223233588], [0.8333428148822392], [0.6388952099214927], [0.4444476049607464], [0.3194333826373877], [0.3194333826373877], [0.36110479007850727], [0.40277619751962684], [0.41665718511776084], [0.3888952099214928], [0.37498577767664126], [0.36110479007850727], [0.3333428148822392], [0.30555239503925363], [0.29167140744111963], [0.30555239503925363], [0.36110479007850727], [0.43056661736261237], [0.4444476049607464], [0.41665718511776084], [0.30555239503925363], [0.2222095801570145], [0.18056661736261234], [0.19444760496074645], [0.26388098759813405], [0.3472238024803732], [0.4444476049607464], [0.5000000000000001], [0.5416714074411195], [0.5416714074411195], [0.486119012401866], [0.3888952099214928], [0.3194333826373877], [0.26388098759813405], [0.26388098759813405], [0.29167140744111963], [0.30555239503925363], [0.3194333826373877], [0.3194333826373877], [0.3194333826373877], [0.3194333826373877], [0.30555239503925363], [0.27779041984298564], [0.23611901240186603], [0.19444760496074645], [0.13889520992149276], [0.1111047900785072], [0.08334281488223916], [0.0555523950392536], [0.0555523950392536], [0.08334281488223916], [0.1666571851177609], [0.27779041984298564], [0.3888952099214928], [0.4444476049607464], [0.43056661736261237], [0.36110479007850727], [0.27779041984298564], [0.19444760496074645], [0.1666571851177609], [0.1666571851177609], [0.18056661736261234], [0.20832859255888048], [0.23611901240186603], [0.27779041984298564], [0.3472238024803732], [0.3888952099214928], [0.40277619751962684], [0.37498577767664126], [0.3333428148822392], [0.30555239503925363], [0.3333428148822392], [0.3888952099214928], [0.4583285925588804], [0.5000000000000001], [0.4722095801570144], [0.40277619751962684], [0.30555239503925363], [0.19444760496074645], [0.09722380248037317], [0.04167140744111958], [0.06943338263738762], [0.18056661736261234], [0.3333428148822392], [0.4722095801570144], [0.5277904198429856], [0.4722095801570144], [0.3333428148822392], [0.18056661736261234], [0.08334281488223916], [0.1111047900785072], [0.23611901240186603], [0.3888952099214928], [0.5277904198429856], [0.5694333826373876], [0.5277904198429856], [0.4444476049607464], [0.36110479007850727], [0.3194333826373877], [0.3333428148822392], [0.40277619751962684], [0.486119012401866], [0.5277904198429856], [0.5416714074411195], [0.5000000000000001], [0.43056661736261237], [0.37498577767664126], [0.36110479007850727], [0.3888952099214928], [0.4444476049607464], [0.4722095801570144], [0.4583285925588804], [0.4444476049607464], [0.43056661736261237], [0.4583285925588804], [0.5277904198429856], [0.5972238024803733], [0.6250142223233587], [0.5833428148822393], [0.5277904198429856], [0.5000000000000001], [0.5277904198429856], [0.5972238024803733], [0.6944476049607464], [0.75], [0.75], [0.6805666173626125], [0.5833428148822393], [0.486119012401866], [0.41665718511776084], [0.37498577767664126], [0.3888952099214928], [0.4444476049607464], [0.5555523950392536], [0.6527761975196269], [0.722238024803732], [0.6944476049607464], [0.5694333826373876], [0.43056661736261237], [0.30555239503925363], [0.27779041984298564], [0.37498577767664126], [0.5416714074411195], [0.722238024803732], [0.8055523950392537], [0.763880987598134], [0.5972238024803733], [0.41665718511776084], [0.29167140744111963], [0.30555239503925363], [0.4444476049607464], [0.6111047900785073], [0.6944476049607464], [0.6666571851177608], [0.5555523950392536], [0.43056661736261237], [0.36110479007850727], [0.36110479007850727], [0.40277619751962684], [0.486119012401866], [0.5555523950392536], [0.5972238024803733], [0.5694333826373876], [0.4583285925588804], [0.27779041984298564], [0.1111047900785072], [0.06943338263738762], [0.19444760496074645], [0.4444476049607464], [0.6944476049607464], [0.8333428148822392], [0.7777904198429856], [0.5555523950392536]], "deltas": [[1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0]]}, "backward": {"values": [[0.5555523950392536], [0.7777904198429856], [0.8333428148822392], [0.6944476049607464], [0.4444476049607464], [0.19444760496074645], [0.06943338263738762], [0.1111047900785072], [0.27779041984298564], [0.4583285925588804], [0.5694333826373876], [0.5972238024803733], [0.5555523950392536], [0.486119012401866], [0.40277619751962684], [0.36110479007850727], [0.36110479007850727], [0.43056661736261237], [0.5555523950392536], [0.6666571851177608], [0.6944476049607464], [0.6111047900785073], [0.4444476049607464], [0.30555239503925363], [0.29167140744111963], [0.41665718511776084], [0.5972238024803733], [0.763880987598134], [0.8055523950392537], [0.722238024803732], [0.5416714074411195], [0.37498577767664126], [0.27779041984298564], [0.30555239503925363], [0.43056661736261237], [0.5694333826373876], [0.6944476049607464], [0.722238024803732], [0.6527761975196269], [0.5555523950392536], [0.4444476049607464], [0.3888952099214928], [0.37498577767664126], [0.41665718511776084], [0.486119012401866], [0.5833428148822393], [0.6805666173626125], [0.75], [0.75], [0.6944476049607464], [0.5972238024803733], [0.5277904198429856], [0.5000000000000001], [0.5277904198429856], [0.5833428148822393], [0.6250142223233587], [0.5972238024803733], [0.5277904198429856], [0.4583285925588804], [0.43056661736261237], [0.4444476049607464], [0.4583285925588804], [0.4722095801570144], [0.4444476049607464], [0.3888952099214928], [0.36110479007850727], [0.37498577767664126], [0.43056661736261237], [0.5000000000000001], [0.5416714074411195], [0.5277904198429856], [0.486119012401866], [0.40277619751962684], [0.3333428148822392], [0.3194333826373877], [0.36110479007850727], [0.4444476049607464], [0.5277904198429856], [0.5694333826373876], [0.5277904198429856], [0.3888952099214928], [0.23611901240186603], [0.1111047900785072], [0.08334281488223916], [0.18056661736261234], [0.3333428148822392], [0.4722095801570144], [0.5277904198429856], [0.4722095801570144], [0.3333428148822392], [0.18056661736261234], [0.06943338263738762], [0.04167140744111958], [0.09722380248037317], [0.19444760496074645], [0.30555239503925363], [0.40277619751962684], [0.4722095801570144], [0.5000000000000001], [0.4583285925588804], [0.3888952099214928], [0.3333428148822392], [0.30555239503925363], [0.3333428148822392], [0.37498577767664126], [0.40277619751962684], [0.3888952099214928], [0.3472238024803732], [0.27779041984298564], [0.23611901240186603], [0.20832859255888048], [0.18056661736261234], [0.1666571851177609], [0.1666571851177609], [0.19444760496074645], [0.27779041984298564], [0.36110479007850727], [0.43056661736261237], [0.4444476049607464], [0.3888952099214928], [0.27779041984298564], [0.1666571851177609], [0.08334281488223916], [0.0555523950392536], [0.0555523950392536], [0.08334281488223916], [0.1111047900785072], [0.13889520992149276], [0.19444760496074645], [0.23611901240186603], [0.27779041984298564], [0.30555239503925363], [0.3194333826373877], [0.3194333826373877], [0.3194333826373877], [0.3194333826373877], [0.30555239503925363], [0.29167140744111963], [0.26388098759813405], [0.26388098759813405], [0.3194333826373877], [0.3888952099214928], [0.486119012401866], [0.5416714074411195], [0.5416714074411195], [0.5000000000000001], [0.4444476049607464], [0.3472238024803732], [0.26388098759813405], [0.19444760496074645], [0.18056661736261234], [0.2222095801570145], [0.30555239503925363], [0.41665718511776084], [0.4444476049607464], [0.43056661736261237], [0.36110479007850727], [0.30555239503925363], [0.29167140744111963], [0.30555239503925363], [0.3333428148822392], [0.36110479007850727], [0.37498577767664126], [0.3888952099214928], [0.41665718511776084], [0.40277619751962684], [0.36110479007850727], [0.3194333826373877], [0.3194333826373877], [0.4444476049607464], [0.6388952099214927], [0.8333428148822392], [0.8750142223233588], [0.722238024803732], [0.43056661736261237], [0.13889520992149276], [0.0], [0.06943338263738762], [0.27779041984298564], [0.5416714074411195], [0.7361190124018661], [0.8194333826373876], [0.8194333826373876], [0.75], [0.6388952099214927], [0.5555523950392536], [0.5138809875981342], [0.5416714074411195], [0.6250142223233587], [0.6944476049607464], [0.7083285925588805], [0.6388952099214927], [0.5277904198429856], [0.43056661736261237], [0.40277619751962684], [0.43056661736261237], [0.486119012401866], [0.5000000000000001], [0.5000000000000001], [0.486119012401866], [0.4722095801570144], [0.5000000000000001], [0.5555523950392536], [0.6111047900785073], [0.6527761975196269], [0.6944476049607464], [0.7361190124018661], [0.75], [0.75], [0.7083285925588805], [0.6527761975196269], [0.6111047900785073], [0.6111047900785073], [0.6805666173626125], [0.763880987598134], [0.8472238024803732], [0.8888952099214928], [0.8888952099214928], [0.8611047900785073], [0.8055523950392537], [0.75], [0.722238024803732], [0.6944476049607464], [0.6944476049607464], [0.7083285925588805], [0.7361190124018661], [0.75], [0.7361190124018661], [0.7083285925588805], [0.6527761975196269], [0.6250142223233587], [0.6527761975196269], [0.7361190124018661], [0.8194333826373876], [0.8888952099214928], [0.8750142223233588], [0.8333428148822392], [0.7916714074411196], [0.7916714074411196], [0.8194333826373876], [0.8611047900785073], [0.8888952099214928], [0.8888952099214928], [0.8611047900785073], [0.8333428148822392], [0.8055523950392537], [0.7777904198429856], [0.75], [0.75], [0.7777904198429856], [0.8472238024803732], [0.9166571851177608], [0.972238024803732], [0.986119012401866], [0.986119012401866], [1.0]], "masks": [[1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1]], "evals": [[0.5555523950392536], [0.7777904198429856], [0.8333428148822392], [0.6944476049607464], [0.4444476049607464], [0.19444760496074645], [0.06943338263738762], [0.1111047900785072], [0.27779041984298564], [0.4583285925588804], [0.5694333826373876], [0.5972238024803733], [0.5555523950392536], [0.486119012401866], [0.40277619751962684], [0.36110479007850727], [0.36110479007850727], [0.43056661736261237], [0.5555523950392536], [0.6666571851177608], [0.6944476049607464], [0.6111047900785073], [0.4444476049607464], [0.30555239503925363], [0.29167140744111963], [0.41665718511776084], [0.5972238024803733], [0.763880987598134], [0.8055523950392537], [0.722238024803732], [0.5416714074411195], [0.37498577767664126], [0.27779041984298564], [0.30555239503925363], [0.43056661736261237], [0.5694333826373876], [0.6944476049607464], [0.722238024803732], [0.6527761975196269], [0.5555523950392536], [0.4444476049607464], [0.3888952099214928], [0.37498577767664126], [0.41665718511776084], [0.486119012401866], [0.5833428148822393], [0.6805666173626125], [0.75], [0.75], [0.6944476049607464], [0.5972238024803733], [0.5277904198429856], [0.5000000000000001], [0.5277904198429856], [0.5833428148822393], [0.6250142223233587], [0.5972238024803733], [0.5277904198429856], [0.4583285925588804], [0.43056661736261237], [0.4444476049607464], [0.4583285925588804], [0.4722095801570144], [0.4444476049607464], [0.3888952099214928], [0.36110479007850727], [0.37498577767664126], [0.43056661736261237], [0.5000000000000001], [0.5416714074411195], [0.5277904198429856], [0.486119012401866], [0.40277619751962684], [0.3333428148822392], [0.3194333826373877], [0.36110479007850727], [0.4444476049607464], [0.5277904198429856], [0.5694333826373876], [0.5277904198429856], [0.3888952099214928], [0.23611901240186603], [0.1111047900785072], [0.08334281488223916], [0.18056661736261234], [0.3333428148822392], [0.4722095801570144], [0.5277904198429856], [0.4722095801570144], [0.3333428148822392], [0.18056661736261234], [0.06943338263738762], [0.04167140744111958], [0.09722380248037317], [0.19444760496074645], [0.30555239503925363], [0.40277619751962684], [0.4722095801570144], [0.5000000000000001], [0.4583285925588804], [0.3888952099214928], [0.3333428148822392], [0.30555239503925363], [0.3333428148822392], [0.37498577767664126], [0.40277619751962684], [0.3888952099214928], [0.3472238024803732], [0.27779041984298564], [0.23611901240186603], [0.20832859255888048], [0.18056661736261234], [0.1666571851177609], [0.1666571851177609], [0.19444760496074645], [0.27779041984298564], [0.36110479007850727], [0.43056661736261237], [0.4444476049607464], [0.3888952099214928], [0.27779041984298564], [0.1666571851177609], [0.08334281488223916], [0.0555523950392536], [0.0555523950392536], [0.08334281488223916], [0.1111047900785072], [0.13889520992149276], [0.19444760496074645], [0.23611901240186603], [0.27779041984298564], [0.30555239503925363], [0.3194333826373877], [0.3194333826373877], [0.3194333826373877], [0.3194333826373877], [0.30555239503925363], [0.29167140744111963], [0.26388098759813405], [0.26388098759813405], [0.3194333826373877], [0.3888952099214928], [0.486119012401866], [0.5416714074411195], [0.5416714074411195], [0.5000000000000001], [0.4444476049607464], [0.3472238024803732], [0.26388098759813405], [0.19444760496074645], [0.18056661736261234], [0.2222095801570145], [0.30555239503925363], [0.41665718511776084], [0.4444476049607464], [0.43056661736261237], [0.36110479007850727], [0.30555239503925363], [0.29167140744111963], [0.30555239503925363], [0.3333428148822392], [0.36110479007850727], [0.37498577767664126], [0.3888952099214928], [0.41665718511776084], [0.40277619751962684], [0.36110479007850727], [0.3194333826373877], [0.3194333826373877], [0.4444476049607464], [0.6388952099214927], [0.8333428148822392], [0.8750142223233588], [0.722238024803732], [0.43056661736261237], [0.13889520992149276], [0.0], [0.06943338263738762], [0.27779041984298564], [0.5416714074411195], [0.7361190124018661], [0.8194333826373876], [0.8194333826373876], [0.75], [0.6388952099214927], [0.5555523950392536], [0.5138809875981342], [0.5416714074411195], [0.6250142223233587], [0.6944476049607464], [0.7083285925588805], [0.6388952099214927], [0.5277904198429856], [0.43056661736261237], [0.40277619751962684], [0.43056661736261237], [0.486119012401866], [0.5000000000000001], [0.5000000000000001], [0.486119012401866], [0.4722095801570144], [0.5000000000000001], [0.5555523950392536], [0.6111047900785073], [0.6527761975196269], [0.6944476049607464], [0.7361190124018661], [0.75], [0.75], [0.7083285925588805], [0.6527761975196269], [0.6111047900785073], [0.6111047900785073], [0.6805666173626125], [0.763880987598134], [0.8472238024803732], [0.8888952099214928], [0.8888952099214928], [0.8611047900785073], [0.8055523950392537], [0.75], [0.722238024803732], [0.6944476049607464], [0.6944476049607464], [0.7083285925588805], [0.7361190124018661], [0.75], [0.7361190124018661], [0.7083285925588805], [0.6527761975196269], [0.6250142223233587], [0.6527761975196269], [0.7361190124018661], [0.8194333826373876], [0.8888952099214928], [0.8750142223233588], [0.8333428148822392], [0.7916714074411196], [0.7916714074411196], [0.8194333826373876], [0.8611047900785073], [0.8888952099214928], [0.8888952099214928], [0.8611047900785073], [0.8333428148822392], [0.8055523950392537], [0.7777904198429856], [0.75], [0.75], [0.7777904198429856], [0.8472238024803732], [0.9166571851177608], [0.972238024803732], [0.986119012401866], [0.986119012401866], [1.0]], "eval_masks": [[0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0]], "forwards": [[0.5555523950392536], [0.7777904198429856], [0.8333428148822392], [0.6944476049607464], [0.4444476049607464], [0.19444760496074645], [0.06943338263738762], [0.1111047900785072], [0.27779041984298564], [0.4583285925588804], [0.5694333826373876], [0.5972238024803733], [0.5555523950392536], [0.486119012401866], [0.40277619751962684], [0.36110479007850727], [0.36110479007850727], [0.43056661736261237], [0.5555523950392536], [0.6666571851177608], [0.6944476049607464], [0.6111047900785073], [0.4444476049607464], [0.30555239503925363], [0.29167140744111963], [0.41665718511776084], [0.5972238024803733], [0.763880987598134], [0.8055523950392537], [0.722238024803732], [0.5416714074411195], [0.37498577767664126], [0.27779041984298564], [0.30555239503925363], [0.43056661736261237], [0.5694333826373876], [0.6944476049607464], [0.722238024803732], [0.6527761975196269], [0.5555523950392536], [0.4444476049607464], [0.3888952099214928], [0.37498577767664126], [0.41665718511776084], [0.486119012401866], [0.5833428148822393], [0.6805666173626125], [0.75], [0.75], [0.6944476049607464], [0.5972238024803733], [0.5277904198429856], [0.5000000000000001], [0.5277904198429856], [0.5833428148822393], [0.6250142223233587], [0.5972238024803733], [0.5277904198429856], [0.4583285925588804], [0.43056661736261237], [0.4444476049607464], [0.4583285925588804], [0.4722095801570144], [0.4444476049607464], [0.3888952099214928], [0.36110479007850727], [0.37498577767664126], [0.43056661736261237], [0.5000000000000001], [0.5416714074411195], [0.5277904198429856], [0.486119012401866], [0.40277619751962684], [0.3333428148822392], [0.3194333826373877], [0.36110479007850727], [0.4444476049607464], [0.5277904198429856], [0.5694333826373876], [0.5277904198429856], [0.3888952099214928], [0.23611901240186603], [0.1111047900785072], [0.08334281488223916], [0.18056661736261234], [0.3333428148822392], [0.4722095801570144], [0.5277904198429856], [0.4722095801570144], [0.3333428148822392], [0.18056661736261234], [0.06943338263738762], [0.04167140744111958], [0.09722380248037317], [0.19444760496074645], [0.30555239503925363], [0.40277619751962684], [0.4722095801570144], [0.5000000000000001], [0.4583285925588804], [0.3888952099214928], [0.3333428148822392], [0.30555239503925363], [0.3333428148822392], [0.37498577767664126], [0.40277619751962684], [0.3888952099214928], [0.3472238024803732], [0.27779041984298564], [0.23611901240186603], [0.20832859255888048], [0.18056661736261234], [0.1666571851177609], [0.1666571851177609], [0.19444760496074645], [0.27779041984298564], [0.36110479007850727], [0.43056661736261237], [0.4444476049607464], [0.3888952099214928], [0.27779041984298564], [0.1666571851177609], [0.08334281488223916], [0.0555523950392536], [0.0555523950392536], [0.08334281488223916], [0.1111047900785072], [0.13889520992149276], [0.19444760496074645], [0.23611901240186603], [0.27779041984298564], [0.30555239503925363], [0.3194333826373877], [0.3194333826373877], [0.3194333826373877], [0.3194333826373877], [0.30555239503925363], [0.29167140744111963], [0.26388098759813405], [0.26388098759813405], [0.3194333826373877], [0.3888952099214928], [0.486119012401866], [0.5416714074411195], [0.5416714074411195], [0.5000000000000001], [0.4444476049607464], [0.3472238024803732], [0.26388098759813405], [0.19444760496074645], [0.18056661736261234], [0.2222095801570145], [0.30555239503925363], [0.41665718511776084], [0.4444476049607464], [0.43056661736261237], [0.36110479007850727], [0.30555239503925363], [0.29167140744111963], [0.30555239503925363], [0.3333428148822392], [0.36110479007850727], [0.37498577767664126], [0.3888952099214928], [0.41665718511776084], [0.40277619751962684], [0.36110479007850727], [0.3194333826373877], [0.3194333826373877], [0.4444476049607464], [0.6388952099214927], [0.8333428148822392], [0.8750142223233588], [0.722238024803732], [0.43056661736261237], [0.13889520992149276], [0.0], [0.06943338263738762], [0.27779041984298564], [0.5416714074411195], [0.7361190124018661], [0.8194333826373876], [0.8194333826373876], [0.75], [0.6388952099214927], [0.5555523950392536], [0.5138809875981342], [0.5416714074411195], [0.6250142223233587], [0.6944476049607464], [0.7083285925588805], [0.6388952099214927], [0.5277904198429856], [0.43056661736261237], [0.40277619751962684], [0.43056661736261237], [0.486119012401866], [0.5000000000000001], [0.5000000000000001], [0.486119012401866], [0.4722095801570144], [0.5000000000000001], [0.5555523950392536], [0.6111047900785073], [0.6527761975196269], [0.6944476049607464], [0.7361190124018661], [0.75], [0.75], [0.7083285925588805], [0.6527761975196269], [0.6111047900785073], [0.6111047900785073], [0.6805666173626125], [0.763880987598134], [0.8472238024803732], [0.8888952099214928], [0.8888952099214928], [0.8611047900785073], [0.8055523950392537], [0.75], [0.722238024803732], [0.6944476049607464], [0.6944476049607464], [0.7083285925588805], [0.7361190124018661], [0.75], [0.7361190124018661], [0.7083285925588805], [0.6527761975196269], [0.6250142223233587], [0.6527761975196269], [0.7361190124018661], [0.8194333826373876], [0.8888952099214928], [0.8750142223233588], [0.8333428148822392], [0.7916714074411196], [0.7916714074411196], [0.8194333826373876], [0.8611047900785073], [0.8888952099214928], [0.8888952099214928], [0.8611047900785073], [0.8333428148822392], [0.8055523950392537], [0.7777904198429856], [0.75], [0.75], [0.7777904198429856], [0.8472238024803732], [0.9166571851177608], [0.972238024803732], [0.986119012401866], [0.986119012401866], [1.0]], "deltas": [[1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0]]}} -{"label": 0, "forward": {"values": [[0.9756237668273433], [0.9756237668273433], [1.0], [1.0], [0.9634356502410151], [0.8902569994255601], [0.8170783486101052], [0.7804890232023777], [0.8170783486101052], [0.8536676740178326], [0.8902569994255601], [0.8658557906041608], [0.7804890232023777], [0.6707460226279378], [0.6097554883988112], [0.5975673718124829], [0.6341566972202103], [0.7195234646219936], [0.7927021154374485], [0.8414795574315043], [0.8658557906041608], [0.8292914408451759], [0.756112790029721], [0.682934139214266], [0.6219685806338819], [0.5975673718124829], [0.6219685806338819], [0.6463448138065386], [0.6463448138065386], [0.6585579060416095], [0.6951222558005944], [0.7317115812083219], [0.7439246734433927], [0.7073353480356652], [0.6463448138065386], [0.5975673718124829], [0.6219685806338819], [0.7073353480356652], [0.7804890232023777], [0.7927021154374485], [0.7317115812083219], [0.6341566972202103], [0.5609780464047553], [0.5609780464047553], [0.5975673718124829], [0.6097554883988112], [0.5609780464047553], [0.5000124878243712], [0.47561127900297206], [0.548789929818427], [0.6707460226279378], [0.7439246734433927], [0.7195234646219936], [0.5975673718124829], [0.43904692924398714], [0.341467069607133], [0.341467069607133], [0.4268338370089163], [0.5000124878243712], [0.5609780464047553], [0.5975673718124829], [0.6341566972202103], [0.6585579060416095], [0.6463448138065386], [0.6097554883988112], [0.5731911386398262], [0.548789929818427], [0.5853792552261545], [0.6463448138065386], [0.6951222558005944], [0.6951222558005944], [0.6707460226279378], [0.6341566972202103], [0.6097554883988112], [0.5609780464047553], [0.47561127900297206], [0.35368016184220386], [0.24391218561902148], [0.23172406903269316], [0.35368016184220386], [0.5731911386398262], [0.7804890232023777], [0.8658557906041608], [0.8048902320237769], [0.6219685806338819], [0.41464572042258796], [0.2561003022053498], [0.20732286021129404], [0.280501511026749], [0.4268338370089163], [0.5975673718124829], [0.756112790029721], [0.8658557906041608], [0.8780688828392318], [0.7804890232023777], [0.5731911386398262], [0.341467069607133], [0.1219560928095108], [0.0], [0.03658932540772755], [0.18294662703863732], [0.40245760383625967], [0.6097554883988112], [0.7195234646219936], [0.7439246734433927], [0.6951222558005944], [0.6463448138065386], [0.6097554883988112], [0.5853792552261545], [0.5366018132320987], [0.43904692924398714], [0.341467069607133], [0.3170908364344764], [0.39024451160118884], [0.548789929818427], [0.6951222558005944], [0.7683009066160493], [0.756112790029721], [0.7073353480356652], [0.6707460226279378], [0.6341566972202103], [0.5366018132320987], [0.40245760383625967], [0.21951097679762235], [0.08536676740178324], [0.08536676740178324], [0.23172406903269316], [0.43904692924398714], [0.5975673718124829], [0.6341566972202103], [0.548789929818427], [0.4268338370089163], [0.32927895302080473], [0.280501511026749], [0.2561003022053498], [0.23172406903269316], [0.23172406903269316], [0.24391218561902148], [0.2683133944404206], [0.3048777441994056], [0.3170908364344764], [0.3048777441994056], [0.3048777441994056], [0.32927895302080473], [0.35368016184220386], [0.39024451160118884], [0.41464572042258796], [0.41464572042258796], [0.4268338370089163], [0.43904692924398714], [0.43904692924398714], [0.4268338370089163], [0.39024451160118884], [0.39024451160118884], [0.45123504583031543], [0.5731911386398262], [0.7195234646219936], [0.8048902320237769], [0.7683009066160493], [0.6463448138065386], [0.4878243712380429], [0.40245760383625967], [0.40245760383625967], [0.47561127900297206], [0.5609780464047553], [0.6463448138065386], [0.7073353480356652], [0.7439246734433927], [0.7683009066160493], [0.7683009066160493], [0.7195234646219936], [0.6219685806338819], [0.548789929818427], [0.5243887209970279], [0.5853792552261545], [0.7073353480356652], [0.8048902320237769], [0.8292914408451759], [0.8048902320237769], [0.7439246734433927], [0.682934139214266], [0.6707460226279378], [0.6585579060416095], [0.6463448138065386], [0.5975673718124829], [0.5243887209970279], [0.4634231624166438], [0.4268338370089163], [0.43904692924398714], [0.4878243712380429], [0.5366018132320987], [0.5609780464047553], [0.5609780464047553], [0.548789929818427], [0.5366018132320987], [0.548789929818427], [0.5853792552261545], [0.6463448138065386], [0.6951222558005944], [0.7195234646219936], [0.6951222558005944], [0.6463448138065386], [0.6097554883988112], [0.5975673718124829], [0.6341566972202103], [0.682934139214266], [0.6951222558005944], [0.6463448138065386], [0.5366018132320987], [0.45123504583031543], [0.45123504583031543], [0.5609780464047553], [0.7317115812083219], [0.8536676740178326], [0.8658557906041608], [0.7683009066160493], [0.6219685806338819], [0.5122006044106996], [0.47561127900297206], [0.47561127900297206], [0.47561127900297206], [0.45123504583031543], [0.41464572042258796], [0.41464572042258796], [0.4634231624166438], [0.5366018132320987], [0.5975673718124829], [0.6463448138065386], [0.6463448138065386], [0.6341566972202103], [0.6341566972202103], [0.6219685806338819], [0.5853792552261545], [0.548789929818427], [0.5243887209970279], [0.5366018132320987], [0.5609780464047553], [0.5853792552261545], [0.5731911386398262], [0.5366018132320987], [0.5000124878243712], [0.4878243712380429], [0.5000124878243712], [0.5243887209970279], [0.5122006044106996], [0.47561127900297206], [0.45123504583031543], [0.47561127900297206], [0.5609780464047553], [0.6585579060416095], [0.7195234646219936], [0.7073353480356652], [0.6463448138065386], [0.548789929818427], [0.5000124878243712], [0.5000124878243712]], "masks": [[1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1]], "evals": [[0.9756237668273433], [0.9756237668273433], [1.0], [1.0], [0.9634356502410151], [0.8902569994255601], [0.8170783486101052], [0.7804890232023777], [0.8170783486101052], [0.8536676740178326], [0.8902569994255601], [0.8658557906041608], [0.7804890232023777], [0.6707460226279378], [0.6097554883988112], [0.5975673718124829], [0.6341566972202103], [0.7195234646219936], [0.7927021154374485], [0.8414795574315043], [0.8658557906041608], [0.8292914408451759], [0.756112790029721], [0.682934139214266], [0.6219685806338819], [0.5975673718124829], [0.6219685806338819], [0.6463448138065386], [0.6463448138065386], [0.6585579060416095], [0.6951222558005944], [0.7317115812083219], [0.7439246734433927], [0.7073353480356652], [0.6463448138065386], [0.5975673718124829], [0.6219685806338819], [0.7073353480356652], [0.7804890232023777], [0.7927021154374485], [0.7317115812083219], [0.6341566972202103], [0.5609780464047553], [0.5609780464047553], [0.5975673718124829], [0.6097554883988112], [0.5609780464047553], [0.5000124878243712], [0.47561127900297206], [0.548789929818427], [0.6707460226279378], [0.7439246734433927], [0.7195234646219936], [0.5975673718124829], [0.43904692924398714], [0.341467069607133], [0.341467069607133], [0.4268338370089163], [0.5000124878243712], [0.5609780464047553], [0.5975673718124829], [0.6341566972202103], [0.6585579060416095], [0.6463448138065386], [0.6097554883988112], [0.5731911386398262], [0.548789929818427], [0.5853792552261545], [0.6463448138065386], [0.6951222558005944], [0.6951222558005944], [0.6707460226279378], [0.6341566972202103], [0.6097554883988112], [0.5609780464047553], [0.47561127900297206], [0.35368016184220386], [0.24391218561902148], [0.23172406903269316], [0.35368016184220386], [0.5731911386398262], [0.7804890232023777], [0.8658557906041608], [0.8048902320237769], [0.6219685806338819], [0.41464572042258796], [0.2561003022053498], [0.20732286021129404], [0.280501511026749], [0.4268338370089163], [0.5975673718124829], [0.756112790029721], [0.8658557906041608], [0.8780688828392318], [0.7804890232023777], [0.5731911386398262], [0.341467069607133], [0.1219560928095108], [0.0], [0.03658932540772755], [0.18294662703863732], [0.40245760383625967], [0.6097554883988112], [0.7195234646219936], [0.7439246734433927], [0.6951222558005944], [0.6463448138065386], [0.6097554883988112], [0.5853792552261545], [0.5366018132320987], [0.43904692924398714], [0.341467069607133], [0.3170908364344764], [0.39024451160118884], [0.548789929818427], [0.6951222558005944], [0.7683009066160493], [0.756112790029721], [0.7073353480356652], [0.6707460226279378], [0.6341566972202103], [0.5366018132320987], [0.40245760383625967], [0.21951097679762235], [0.08536676740178324], [0.08536676740178324], [0.23172406903269316], [0.43904692924398714], [0.5975673718124829], [0.6341566972202103], [0.548789929818427], [0.4268338370089163], [0.32927895302080473], [0.280501511026749], [0.2561003022053498], [0.23172406903269316], [0.23172406903269316], [0.24391218561902148], [0.2683133944404206], [0.3048777441994056], [0.3170908364344764], [0.3048777441994056], [0.3048777441994056], [0.32927895302080473], [0.35368016184220386], [0.39024451160118884], [0.41464572042258796], [0.41464572042258796], [0.4268338370089163], [0.43904692924398714], [0.43904692924398714], [0.4268338370089163], [0.39024451160118884], [0.39024451160118884], [0.45123504583031543], [0.5731911386398262], [0.7195234646219936], [0.8048902320237769], [0.7683009066160493], [0.6463448138065386], [0.4878243712380429], [0.40245760383625967], [0.40245760383625967], [0.47561127900297206], [0.5609780464047553], [0.6463448138065386], [0.7073353480356652], [0.7439246734433927], [0.7683009066160493], [0.7683009066160493], [0.7195234646219936], [0.6219685806338819], [0.548789929818427], [0.5243887209970279], [0.5853792552261545], [0.7073353480356652], [0.8048902320237769], [0.8292914408451759], [0.8048902320237769], [0.7439246734433927], [0.682934139214266], [0.6707460226279378], [0.6585579060416095], [0.6463448138065386], [0.5975673718124829], [0.5243887209970279], [0.4634231624166438], [0.4268338370089163], [0.43904692924398714], [0.4878243712380429], [0.5366018132320987], [0.5609780464047553], [0.5609780464047553], [0.548789929818427], [0.5366018132320987], [0.548789929818427], [0.5853792552261545], [0.6463448138065386], [0.6951222558005944], [0.7195234646219936], [0.6951222558005944], [0.6463448138065386], [0.6097554883988112], [0.5975673718124829], [0.6341566972202103], [0.682934139214266], [0.6951222558005944], [0.6463448138065386], [0.5366018132320987], [0.45123504583031543], [0.45123504583031543], [0.5609780464047553], [0.7317115812083219], [0.8536676740178326], [0.8658557906041608], [0.7683009066160493], [0.6219685806338819], [0.5122006044106996], [0.47561127900297206], [0.47561127900297206], [0.47561127900297206], [0.45123504583031543], [0.41464572042258796], [0.41464572042258796], [0.4634231624166438], [0.5366018132320987], [0.5975673718124829], [0.6463448138065386], [0.6463448138065386], [0.6341566972202103], [0.6341566972202103], [0.6219685806338819], [0.5853792552261545], [0.548789929818427], [0.5243887209970279], [0.5366018132320987], [0.5609780464047553], [0.5853792552261545], [0.5731911386398262], [0.5366018132320987], [0.5000124878243712], [0.4878243712380429], [0.5000124878243712], [0.5243887209970279], [0.5122006044106996], [0.47561127900297206], [0.45123504583031543], [0.47561127900297206], [0.5609780464047553], [0.6585579060416095], [0.7195234646219936], [0.7073353480356652], [0.6463448138065386], [0.548789929818427], [0.5000124878243712], [0.5000124878243712]], "eval_masks": [[0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0]], "forwards": [[0.9756237668273433], [0.9756237668273433], [1.0], [1.0], [0.9634356502410151], [0.8902569994255601], [0.8170783486101052], [0.7804890232023777], [0.8170783486101052], [0.8536676740178326], [0.8902569994255601], [0.8658557906041608], [0.7804890232023777], [0.6707460226279378], [0.6097554883988112], [0.5975673718124829], [0.6341566972202103], [0.7195234646219936], [0.7927021154374485], [0.8414795574315043], [0.8658557906041608], [0.8292914408451759], [0.756112790029721], [0.682934139214266], [0.6219685806338819], [0.5975673718124829], [0.6219685806338819], [0.6463448138065386], [0.6463448138065386], [0.6585579060416095], [0.6951222558005944], [0.7317115812083219], [0.7439246734433927], [0.7073353480356652], [0.6463448138065386], [0.5975673718124829], [0.6219685806338819], [0.7073353480356652], [0.7804890232023777], [0.7927021154374485], [0.7317115812083219], [0.6341566972202103], [0.5609780464047553], [0.5609780464047553], [0.5975673718124829], [0.6097554883988112], [0.5609780464047553], [0.5000124878243712], [0.47561127900297206], [0.548789929818427], [0.6707460226279378], [0.7439246734433927], [0.7195234646219936], [0.5975673718124829], [0.43904692924398714], [0.341467069607133], [0.341467069607133], [0.4268338370089163], [0.5000124878243712], [0.5609780464047553], [0.5975673718124829], [0.6341566972202103], [0.6585579060416095], [0.6463448138065386], [0.6097554883988112], [0.5731911386398262], [0.548789929818427], [0.5853792552261545], [0.6463448138065386], [0.6951222558005944], [0.6951222558005944], [0.6707460226279378], [0.6341566972202103], [0.6097554883988112], [0.5609780464047553], [0.47561127900297206], [0.35368016184220386], [0.24391218561902148], [0.23172406903269316], [0.35368016184220386], [0.5731911386398262], [0.7804890232023777], [0.8658557906041608], [0.8048902320237769], [0.6219685806338819], [0.41464572042258796], [0.2561003022053498], [0.20732286021129404], [0.280501511026749], [0.4268338370089163], [0.5975673718124829], [0.756112790029721], [0.8658557906041608], [0.8780688828392318], [0.7804890232023777], [0.5731911386398262], [0.341467069607133], [0.1219560928095108], [0.0], [0.03658932540772755], [0.18294662703863732], [0.40245760383625967], [0.6097554883988112], [0.7195234646219936], [0.7439246734433927], [0.6951222558005944], [0.6463448138065386], [0.6097554883988112], [0.5853792552261545], [0.5366018132320987], [0.43904692924398714], [0.341467069607133], [0.3170908364344764], [0.39024451160118884], [0.548789929818427], [0.6951222558005944], [0.7683009066160493], [0.756112790029721], [0.7073353480356652], [0.6707460226279378], [0.6341566972202103], [0.5366018132320987], [0.40245760383625967], [0.21951097679762235], [0.08536676740178324], [0.08536676740178324], [0.23172406903269316], [0.43904692924398714], [0.5975673718124829], [0.6341566972202103], [0.548789929818427], [0.4268338370089163], [0.32927895302080473], [0.280501511026749], [0.2561003022053498], [0.23172406903269316], [0.23172406903269316], [0.24391218561902148], [0.2683133944404206], [0.3048777441994056], [0.3170908364344764], [0.3048777441994056], [0.3048777441994056], [0.32927895302080473], [0.35368016184220386], [0.39024451160118884], [0.41464572042258796], [0.41464572042258796], [0.4268338370089163], [0.43904692924398714], [0.43904692924398714], [0.4268338370089163], [0.39024451160118884], [0.39024451160118884], [0.45123504583031543], [0.5731911386398262], [0.7195234646219936], [0.8048902320237769], [0.7683009066160493], [0.6463448138065386], [0.4878243712380429], [0.40245760383625967], [0.40245760383625967], [0.47561127900297206], [0.5609780464047553], [0.6463448138065386], [0.7073353480356652], [0.7439246734433927], [0.7683009066160493], [0.7683009066160493], [0.7195234646219936], [0.6219685806338819], [0.548789929818427], [0.5243887209970279], [0.5853792552261545], [0.7073353480356652], [0.8048902320237769], [0.8292914408451759], [0.8048902320237769], [0.7439246734433927], [0.682934139214266], [0.6707460226279378], [0.6585579060416095], [0.6463448138065386], [0.5975673718124829], [0.5243887209970279], [0.4634231624166438], [0.4268338370089163], [0.43904692924398714], [0.4878243712380429], [0.5366018132320987], [0.5609780464047553], [0.5609780464047553], [0.548789929818427], [0.5366018132320987], [0.548789929818427], [0.5853792552261545], [0.6463448138065386], [0.6951222558005944], [0.7195234646219936], [0.6951222558005944], [0.6463448138065386], [0.6097554883988112], [0.5975673718124829], [0.6341566972202103], [0.682934139214266], [0.6951222558005944], [0.6463448138065386], [0.5366018132320987], [0.45123504583031543], [0.45123504583031543], [0.5609780464047553], [0.7317115812083219], [0.8536676740178326], [0.8658557906041608], [0.7683009066160493], [0.6219685806338819], [0.5122006044106996], [0.47561127900297206], [0.47561127900297206], [0.47561127900297206], [0.45123504583031543], [0.41464572042258796], [0.41464572042258796], [0.4634231624166438], [0.5366018132320987], [0.5975673718124829], [0.6463448138065386], [0.6463448138065386], [0.6341566972202103], [0.6341566972202103], [0.6219685806338819], [0.5853792552261545], [0.548789929818427], [0.5243887209970279], [0.5366018132320987], [0.5609780464047553], [0.5853792552261545], [0.5731911386398262], [0.5366018132320987], [0.5000124878243712], [0.4878243712380429], [0.5000124878243712], [0.5243887209970279], [0.5122006044106996], [0.47561127900297206], [0.45123504583031543], [0.47561127900297206], [0.5609780464047553], [0.6585579060416095], [0.7195234646219936], [0.7073353480356652], [0.6463448138065386], [0.548789929818427], [0.5000124878243712], [0.5000124878243712]], "deltas": [[1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0]]}, "backward": {"values": [[0.5000124878243712], [0.5000124878243712], [0.548789929818427], [0.6463448138065386], [0.7073353480356652], [0.7195234646219936], [0.6585579060416095], [0.5609780464047553], [0.47561127900297206], [0.45123504583031543], [0.47561127900297206], [0.5122006044106996], [0.5243887209970279], [0.5000124878243712], [0.4878243712380429], [0.5000124878243712], [0.5366018132320987], [0.5731911386398262], [0.5853792552261545], [0.5609780464047553], [0.5366018132320987], [0.5243887209970279], [0.548789929818427], [0.5853792552261545], [0.6219685806338819], [0.6341566972202103], [0.6341566972202103], [0.6463448138065386], [0.6463448138065386], [0.5975673718124829], [0.5366018132320987], [0.4634231624166438], [0.41464572042258796], [0.41464572042258796], [0.45123504583031543], [0.47561127900297206], [0.47561127900297206], [0.47561127900297206], [0.5122006044106996], [0.6219685806338819], [0.7683009066160493], [0.8658557906041608], [0.8536676740178326], [0.7317115812083219], [0.5609780464047553], [0.45123504583031543], [0.45123504583031543], [0.5366018132320987], [0.6463448138065386], [0.6951222558005944], [0.682934139214266], [0.6341566972202103], [0.5975673718124829], [0.6097554883988112], [0.6463448138065386], [0.6951222558005944], [0.7195234646219936], [0.6951222558005944], [0.6463448138065386], [0.5853792552261545], [0.548789929818427], [0.5366018132320987], [0.548789929818427], [0.5609780464047553], [0.5609780464047553], [0.5366018132320987], [0.4878243712380429], [0.43904692924398714], [0.4268338370089163], [0.4634231624166438], [0.5243887209970279], [0.5975673718124829], [0.6463448138065386], [0.6585579060416095], [0.6707460226279378], [0.682934139214266], [0.7439246734433927], [0.8048902320237769], [0.8292914408451759], [0.8048902320237769], [0.7073353480356652], [0.5853792552261545], [0.5243887209970279], [0.548789929818427], [0.6219685806338819], [0.7195234646219936], [0.7683009066160493], [0.7683009066160493], [0.7439246734433927], [0.7073353480356652], [0.6463448138065386], [0.5609780464047553], [0.47561127900297206], [0.40245760383625967], [0.40245760383625967], [0.4878243712380429], [0.6463448138065386], [0.7683009066160493], [0.8048902320237769], [0.7195234646219936], [0.5731911386398262], [0.45123504583031543], [0.39024451160118884], [0.39024451160118884], [0.4268338370089163], [0.43904692924398714], [0.43904692924398714], [0.4268338370089163], [0.41464572042258796], [0.41464572042258796], [0.39024451160118884], [0.35368016184220386], [0.32927895302080473], [0.3048777441994056], [0.3048777441994056], [0.3170908364344764], [0.3048777441994056], [0.2683133944404206], [0.24391218561902148], [0.23172406903269316], [0.23172406903269316], [0.2561003022053498], [0.280501511026749], [0.32927895302080473], [0.4268338370089163], [0.548789929818427], [0.6341566972202103], [0.5975673718124829], [0.43904692924398714], [0.23172406903269316], [0.08536676740178324], [0.08536676740178324], [0.21951097679762235], [0.40245760383625967], [0.5366018132320987], [0.6341566972202103], [0.6707460226279378], [0.7073353480356652], [0.756112790029721], [0.7683009066160493], [0.6951222558005944], [0.548789929818427], [0.39024451160118884], [0.3170908364344764], [0.341467069607133], [0.43904692924398714], [0.5366018132320987], [0.5853792552261545], [0.6097554883988112], [0.6463448138065386], [0.6951222558005944], [0.7439246734433927], [0.7195234646219936], [0.6097554883988112], [0.40245760383625967], [0.18294662703863732], [0.03658932540772755], [0.0], [0.1219560928095108], [0.341467069607133], [0.5731911386398262], [0.7804890232023777], [0.8780688828392318], [0.8658557906041608], [0.756112790029721], [0.5975673718124829], [0.4268338370089163], [0.280501511026749], [0.20732286021129404], [0.2561003022053498], [0.41464572042258796], [0.6219685806338819], [0.8048902320237769], [0.8658557906041608], [0.7804890232023777], [0.5731911386398262], [0.35368016184220386], [0.23172406903269316], [0.24391218561902148], [0.35368016184220386], [0.47561127900297206], [0.5609780464047553], [0.6097554883988112], [0.6341566972202103], [0.6707460226279378], [0.6951222558005944], [0.6951222558005944], [0.6463448138065386], [0.5853792552261545], [0.548789929818427], [0.5731911386398262], [0.6097554883988112], [0.6463448138065386], [0.6585579060416095], [0.6341566972202103], [0.5975673718124829], [0.5609780464047553], [0.5000124878243712], [0.4268338370089163], [0.341467069607133], [0.341467069607133], [0.43904692924398714], [0.5975673718124829], [0.7195234646219936], [0.7439246734433927], [0.6707460226279378], [0.548789929818427], [0.47561127900297206], [0.5000124878243712], [0.5609780464047553], [0.6097554883988112], [0.5975673718124829], [0.5609780464047553], [0.5609780464047553], [0.6341566972202103], [0.7317115812083219], [0.7927021154374485], [0.7804890232023777], [0.7073353480356652], [0.6219685806338819], [0.5975673718124829], [0.6463448138065386], [0.7073353480356652], [0.7439246734433927], [0.7317115812083219], [0.6951222558005944], [0.6585579060416095], [0.6463448138065386], [0.6463448138065386], [0.6219685806338819], [0.5975673718124829], [0.6219685806338819], [0.682934139214266], [0.756112790029721], [0.8292914408451759], [0.8658557906041608], [0.8414795574315043], [0.7927021154374485], [0.7195234646219936], [0.6341566972202103], [0.5975673718124829], [0.6097554883988112], [0.6707460226279378], [0.7804890232023777], [0.8658557906041608], [0.8902569994255601], [0.8536676740178326], [0.8170783486101052], [0.7804890232023777], [0.8170783486101052], [0.8902569994255601], [0.9634356502410151], [1.0], [1.0], [0.9756237668273433], [0.9756237668273433]], "masks": [[1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1]], "evals": [[0.5000124878243712], [0.5000124878243712], [0.548789929818427], [0.6463448138065386], [0.7073353480356652], [0.7195234646219936], [0.6585579060416095], [0.5609780464047553], [0.47561127900297206], [0.45123504583031543], [0.47561127900297206], [0.5122006044106996], [0.5243887209970279], [0.5000124878243712], [0.4878243712380429], [0.5000124878243712], [0.5366018132320987], [0.5731911386398262], [0.5853792552261545], [0.5609780464047553], [0.5366018132320987], [0.5243887209970279], [0.548789929818427], [0.5853792552261545], [0.6219685806338819], [0.6341566972202103], [0.6341566972202103], [0.6463448138065386], [0.6463448138065386], [0.5975673718124829], [0.5366018132320987], [0.4634231624166438], [0.41464572042258796], [0.41464572042258796], [0.45123504583031543], [0.47561127900297206], [0.47561127900297206], [0.47561127900297206], [0.5122006044106996], [0.6219685806338819], [0.7683009066160493], [0.8658557906041608], [0.8536676740178326], [0.7317115812083219], [0.5609780464047553], [0.45123504583031543], [0.45123504583031543], [0.5366018132320987], [0.6463448138065386], [0.6951222558005944], [0.682934139214266], [0.6341566972202103], [0.5975673718124829], [0.6097554883988112], [0.6463448138065386], [0.6951222558005944], [0.7195234646219936], [0.6951222558005944], [0.6463448138065386], [0.5853792552261545], [0.548789929818427], [0.5366018132320987], [0.548789929818427], [0.5609780464047553], [0.5609780464047553], [0.5366018132320987], [0.4878243712380429], [0.43904692924398714], [0.4268338370089163], [0.4634231624166438], [0.5243887209970279], [0.5975673718124829], [0.6463448138065386], [0.6585579060416095], [0.6707460226279378], [0.682934139214266], [0.7439246734433927], [0.8048902320237769], [0.8292914408451759], [0.8048902320237769], [0.7073353480356652], [0.5853792552261545], [0.5243887209970279], [0.548789929818427], [0.6219685806338819], [0.7195234646219936], [0.7683009066160493], [0.7683009066160493], [0.7439246734433927], [0.7073353480356652], [0.6463448138065386], [0.5609780464047553], [0.47561127900297206], [0.40245760383625967], [0.40245760383625967], [0.4878243712380429], [0.6463448138065386], [0.7683009066160493], [0.8048902320237769], [0.7195234646219936], [0.5731911386398262], [0.45123504583031543], [0.39024451160118884], [0.39024451160118884], [0.4268338370089163], [0.43904692924398714], [0.43904692924398714], [0.4268338370089163], [0.41464572042258796], [0.41464572042258796], [0.39024451160118884], [0.35368016184220386], [0.32927895302080473], [0.3048777441994056], [0.3048777441994056], [0.3170908364344764], [0.3048777441994056], [0.2683133944404206], [0.24391218561902148], [0.23172406903269316], [0.23172406903269316], [0.2561003022053498], [0.280501511026749], [0.32927895302080473], [0.4268338370089163], [0.548789929818427], [0.6341566972202103], [0.5975673718124829], [0.43904692924398714], [0.23172406903269316], [0.08536676740178324], [0.08536676740178324], [0.21951097679762235], [0.40245760383625967], [0.5366018132320987], [0.6341566972202103], [0.6707460226279378], [0.7073353480356652], [0.756112790029721], [0.7683009066160493], [0.6951222558005944], [0.548789929818427], [0.39024451160118884], [0.3170908364344764], [0.341467069607133], [0.43904692924398714], [0.5366018132320987], [0.5853792552261545], [0.6097554883988112], [0.6463448138065386], [0.6951222558005944], [0.7439246734433927], [0.7195234646219936], [0.6097554883988112], [0.40245760383625967], [0.18294662703863732], [0.03658932540772755], [0.0], [0.1219560928095108], [0.341467069607133], [0.5731911386398262], [0.7804890232023777], [0.8780688828392318], [0.8658557906041608], [0.756112790029721], [0.5975673718124829], [0.4268338370089163], [0.280501511026749], [0.20732286021129404], [0.2561003022053498], [0.41464572042258796], [0.6219685806338819], [0.8048902320237769], [0.8658557906041608], [0.7804890232023777], [0.5731911386398262], [0.35368016184220386], [0.23172406903269316], [0.24391218561902148], [0.35368016184220386], [0.47561127900297206], [0.5609780464047553], [0.6097554883988112], [0.6341566972202103], [0.6707460226279378], [0.6951222558005944], [0.6951222558005944], [0.6463448138065386], [0.5853792552261545], [0.548789929818427], [0.5731911386398262], [0.6097554883988112], [0.6463448138065386], [0.6585579060416095], [0.6341566972202103], [0.5975673718124829], [0.5609780464047553], [0.5000124878243712], [0.4268338370089163], [0.341467069607133], [0.341467069607133], [0.43904692924398714], [0.5975673718124829], [0.7195234646219936], [0.7439246734433927], [0.6707460226279378], [0.548789929818427], [0.47561127900297206], [0.5000124878243712], [0.5609780464047553], [0.6097554883988112], [0.5975673718124829], [0.5609780464047553], [0.5609780464047553], [0.6341566972202103], [0.7317115812083219], [0.7927021154374485], [0.7804890232023777], [0.7073353480356652], [0.6219685806338819], [0.5975673718124829], [0.6463448138065386], [0.7073353480356652], [0.7439246734433927], [0.7317115812083219], [0.6951222558005944], [0.6585579060416095], [0.6463448138065386], [0.6463448138065386], [0.6219685806338819], [0.5975673718124829], [0.6219685806338819], [0.682934139214266], [0.756112790029721], [0.8292914408451759], [0.8658557906041608], [0.8414795574315043], [0.7927021154374485], [0.7195234646219936], [0.6341566972202103], [0.5975673718124829], [0.6097554883988112], [0.6707460226279378], [0.7804890232023777], [0.8658557906041608], [0.8902569994255601], [0.8536676740178326], [0.8170783486101052], [0.7804890232023777], [0.8170783486101052], [0.8902569994255601], [0.9634356502410151], [1.0], [1.0], [0.9756237668273433], [0.9756237668273433]], "eval_masks": [[0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0]], "forwards": [[0.5000124878243712], [0.5000124878243712], [0.548789929818427], [0.6463448138065386], [0.7073353480356652], [0.7195234646219936], [0.6585579060416095], [0.5609780464047553], [0.47561127900297206], [0.45123504583031543], [0.47561127900297206], [0.5122006044106996], [0.5243887209970279], [0.5000124878243712], [0.4878243712380429], [0.5000124878243712], [0.5366018132320987], [0.5731911386398262], [0.5853792552261545], [0.5609780464047553], [0.5366018132320987], [0.5243887209970279], [0.548789929818427], [0.5853792552261545], [0.6219685806338819], [0.6341566972202103], [0.6341566972202103], [0.6463448138065386], [0.6463448138065386], [0.5975673718124829], [0.5366018132320987], [0.4634231624166438], [0.41464572042258796], [0.41464572042258796], [0.45123504583031543], [0.47561127900297206], [0.47561127900297206], [0.47561127900297206], [0.5122006044106996], [0.6219685806338819], [0.7683009066160493], [0.8658557906041608], [0.8536676740178326], [0.7317115812083219], [0.5609780464047553], [0.45123504583031543], [0.45123504583031543], [0.5366018132320987], [0.6463448138065386], [0.6951222558005944], [0.682934139214266], [0.6341566972202103], [0.5975673718124829], [0.6097554883988112], [0.6463448138065386], [0.6951222558005944], [0.7195234646219936], [0.6951222558005944], [0.6463448138065386], [0.5853792552261545], [0.548789929818427], [0.5366018132320987], [0.548789929818427], [0.5609780464047553], [0.5609780464047553], [0.5366018132320987], [0.4878243712380429], [0.43904692924398714], [0.4268338370089163], [0.4634231624166438], [0.5243887209970279], [0.5975673718124829], [0.6463448138065386], [0.6585579060416095], [0.6707460226279378], [0.682934139214266], [0.7439246734433927], [0.8048902320237769], [0.8292914408451759], [0.8048902320237769], [0.7073353480356652], [0.5853792552261545], [0.5243887209970279], [0.548789929818427], [0.6219685806338819], [0.7195234646219936], [0.7683009066160493], [0.7683009066160493], [0.7439246734433927], [0.7073353480356652], [0.6463448138065386], [0.5609780464047553], [0.47561127900297206], [0.40245760383625967], [0.40245760383625967], [0.4878243712380429], [0.6463448138065386], [0.7683009066160493], [0.8048902320237769], [0.7195234646219936], [0.5731911386398262], [0.45123504583031543], [0.39024451160118884], [0.39024451160118884], [0.4268338370089163], [0.43904692924398714], [0.43904692924398714], [0.4268338370089163], [0.41464572042258796], [0.41464572042258796], [0.39024451160118884], [0.35368016184220386], [0.32927895302080473], [0.3048777441994056], [0.3048777441994056], [0.3170908364344764], [0.3048777441994056], [0.2683133944404206], [0.24391218561902148], [0.23172406903269316], [0.23172406903269316], [0.2561003022053498], [0.280501511026749], [0.32927895302080473], [0.4268338370089163], [0.548789929818427], [0.6341566972202103], [0.5975673718124829], [0.43904692924398714], [0.23172406903269316], [0.08536676740178324], [0.08536676740178324], [0.21951097679762235], [0.40245760383625967], [0.5366018132320987], [0.6341566972202103], [0.6707460226279378], [0.7073353480356652], [0.756112790029721], [0.7683009066160493], [0.6951222558005944], [0.548789929818427], [0.39024451160118884], [0.3170908364344764], [0.341467069607133], [0.43904692924398714], [0.5366018132320987], [0.5853792552261545], [0.6097554883988112], [0.6463448138065386], [0.6951222558005944], [0.7439246734433927], [0.7195234646219936], [0.6097554883988112], [0.40245760383625967], [0.18294662703863732], [0.03658932540772755], [0.0], [0.1219560928095108], [0.341467069607133], [0.5731911386398262], [0.7804890232023777], [0.8780688828392318], [0.8658557906041608], [0.756112790029721], [0.5975673718124829], [0.4268338370089163], [0.280501511026749], [0.20732286021129404], [0.2561003022053498], [0.41464572042258796], [0.6219685806338819], [0.8048902320237769], [0.8658557906041608], [0.7804890232023777], [0.5731911386398262], [0.35368016184220386], [0.23172406903269316], [0.24391218561902148], [0.35368016184220386], [0.47561127900297206], [0.5609780464047553], [0.6097554883988112], [0.6341566972202103], [0.6707460226279378], [0.6951222558005944], [0.6951222558005944], [0.6463448138065386], [0.5853792552261545], [0.548789929818427], [0.5731911386398262], [0.6097554883988112], [0.6463448138065386], [0.6585579060416095], [0.6341566972202103], [0.5975673718124829], [0.5609780464047553], [0.5000124878243712], [0.4268338370089163], [0.341467069607133], [0.341467069607133], [0.43904692924398714], [0.5975673718124829], [0.7195234646219936], [0.7439246734433927], [0.6707460226279378], [0.548789929818427], [0.47561127900297206], [0.5000124878243712], [0.5609780464047553], [0.6097554883988112], [0.5975673718124829], [0.5609780464047553], [0.5609780464047553], [0.6341566972202103], [0.7317115812083219], [0.7927021154374485], [0.7804890232023777], [0.7073353480356652], [0.6219685806338819], [0.5975673718124829], [0.6463448138065386], [0.7073353480356652], [0.7439246734433927], [0.7317115812083219], [0.6951222558005944], [0.6585579060416095], [0.6463448138065386], [0.6463448138065386], [0.6219685806338819], [0.5975673718124829], [0.6219685806338819], [0.682934139214266], [0.756112790029721], [0.8292914408451759], [0.8658557906041608], [0.8414795574315043], [0.7927021154374485], [0.7195234646219936], [0.6341566972202103], [0.5975673718124829], [0.6097554883988112], [0.6707460226279378], [0.7804890232023777], [0.8658557906041608], [0.8902569994255601], [0.8536676740178326], [0.8170783486101052], [0.7804890232023777], [0.8170783486101052], [0.8902569994255601], [0.9634356502410151], [1.0], [1.0], [0.9756237668273433], [0.9756237668273433]], "deltas": [[1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0]]}} -{"label": 0, "forward": {"values": [[0.9807798345805434], [0.9423001181567545], [0.9038597873178416], [0.8461599054745962], [0.8076801890508073], [0.7692398582118943], [0.7307601417881054], [0.711539976368649], [0.711539976368649], [0.711539976368649], [0.7307601417881054], [0.7692398582118943], [0.8076801890508073], [0.8461599054745962], [0.8653800708940527], [0.8653800708940527], [0.8653800708940527], [0.8461599054745962], [0.8269397400551397], [0.7884600236313508], [0.750019692792438], [0.6730602599448601], [0.5769200472627019], [0.48077983458054346], [0.461520283576211], [0.48077983458054346], [0.5576998818432453], [0.6730602599448601], [0.750019692792438], [0.7692398582118943], [0.750019692792438], [0.7307601417881054], [0.750019692792438], [0.7884600236313508], [0.8269397400551397], [0.8461599054745962], [0.8461599054745962], [0.8269397400551397], [0.8076801890508073], [0.7692398582118943], [0.7307601417881054], [0.6730602599448601], [0.6346199291059472], [0.6346199291059472], [0.6730602599448601], [0.711539976368649], [0.7307601417881054], [0.7307601417881054], [0.711539976368649], [0.6923198109491926], [0.6730602599448601], [0.6923198109491926], [0.6730602599448601], [0.6153997636864906], [0.538440330838913], [0.461520283576211], [0.461520283576211], [0.49999999999999994], [0.5576998818432453], [0.5769200472627019], [0.5576998818432453], [0.48077983458054346], [0.461520283576211], [0.48077983458054346], [0.5576998818432453], [0.6346199291059472], [0.6538400945254037], [0.6346199291059472], [0.5961402126821583], [0.6153997636864906], [0.6346199291059472], [0.6730602599448601], [0.6923198109491926], [0.6730602599448601], [0.6153997636864906], [0.538440330838913], [0.4230799527372981], [0.3076801890508073], [0.23076014178810547], [0.23076014178810547], [0.32690035447026383], [0.48077983458054346], [0.5961402126821583], [0.5769200472627019], [0.461520283576211], [0.2692398582118944], [0.15384009452540365], [0.15384009452540365], [0.3076801890508073], [0.461520283576211], [0.538440330838913], [0.5192201654194564], [0.3846002363135092], [0.21153997636864902], [0.09614021268215829], [0.03844033083891292], [0.05766049625836938], [0.09614021268215829], [0.1730602599448601], [0.2692398582118944], [0.3461599054745962], [0.3846002363135092], [0.32690035447026383], [0.23076014178810547], [0.11536037810161474], [0.05766049625836938], [0.09614021268215829], [0.19228042536431658], [0.3076801890508073], [0.3846002363135092], [0.40385978731784156], [0.3846002363135092], [0.3461599054745962], [0.28846002363135087], [0.23076014178810547], [0.19228042536431658], [0.19228042536431658], [0.21153997636864902], [0.24998030720756192], [0.28846002363135087], [0.28846002363135087], [0.24998030720756192], [0.1730602599448601], [0.09614021268215829], [0.05766049625836938], [0.03844033083891292], [0.03844033083891292], [0.05766049625836938], [0.07692004726270182], [0.07692004726270182], [0.07692004726270182], [0.03844033083891292], [0.01922016541945646], [0.0], [0.01922016541945646], [0.07692004726270182], [0.1730602599448601], [0.24998030720756192], [0.3076801890508073], [0.28846002363135087], [0.23076014178810547], [0.11536037810161474], [0.03844033083891292], [0.0], [0.03844033083891292], [0.11536037810161474], [0.21153997636864902], [0.3076801890508073], [0.3653800708940527], [0.3653800708940527], [0.3076801890508073], [0.21153997636864902], [0.1730602599448601], [0.19228042536431658], [0.28846002363135087], [0.3846002363135092], [0.461520283576211], [0.461520283576211], [0.40385978731784156], [0.3076801890508073], [0.21153997636864902], [0.1346199291059472], [0.07692004726270182], [0.03844033083891292], [0.05766049625836938], [0.11536037810161474], [0.23076014178810547], [0.3461599054745962], [0.4230799527372981], [0.4230799527372981], [0.3846002363135092], [0.2692398582118944], [0.21153997636864902], [0.21153997636864902], [0.28846002363135087], [0.40385978731784156], [0.538440330838913], [0.6346199291059472], [0.6538400945254037], [0.5961402126821583], [0.538440330838913], [0.461520283576211], [0.4423001181567546], [0.4423001181567546], [0.461520283576211], [0.49999999999999994], [0.538440330838913], [0.538440330838913], [0.48077983458054346], [0.4230799527372981], [0.3461599054745962], [0.32690035447026383], [0.3846002363135092], [0.4423001181567546], [0.5192201654194564], [0.5576998818432453], [0.538440330838913], [0.49999999999999994], [0.461520283576211], [0.4423001181567546], [0.461520283576211], [0.49999999999999994], [0.5576998818432453], [0.6538400945254037], [0.7307601417881054], [0.7884600236313508], [0.7884600236313508], [0.711539976368649], [0.6153997636864906], [0.538440330838913], [0.5192201654194564], [0.538440330838913], [0.5961402126821583], [0.6346199291059472], [0.6346199291059472], [0.5961402126821583], [0.5576998818432453], [0.5576998818432453], [0.5961402126821583], [0.6346199291059472], [0.6346199291059472], [0.5769200472627019], [0.461520283576211], [0.3653800708940527], [0.32690035447026383], [0.3846002363135092], [0.538440330838913], [0.711539976368649], [0.8076801890508073], [0.8269397400551397], [0.711539976368649], [0.5769200472627019], [0.461520283576211], [0.461520283576211], [0.538440330838913], [0.6346199291059472], [0.6730602599448601], [0.6538400945254037], [0.6153997636864906], [0.5576998818432453], [0.5576998818432453], [0.6153997636864906], [0.711539976368649], [0.7884600236313508], [0.8269397400551397], [0.8076801890508073], [0.711539976368649], [0.5769200472627019], [0.4230799527372981], [0.3653800708940527], [0.4230799527372981], [0.6153997636864906], [0.8461599054745962], [1.0], [1.0], [0.8076801890508073]], "masks": [[1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1]], "evals": [[0.9807798345805434], [0.9423001181567545], [0.9038597873178416], [0.8461599054745962], [0.8076801890508073], [0.7692398582118943], [0.7307601417881054], [0.711539976368649], [0.711539976368649], [0.711539976368649], [0.7307601417881054], [0.7692398582118943], [0.8076801890508073], [0.8461599054745962], [0.8653800708940527], [0.8653800708940527], [0.8653800708940527], [0.8461599054745962], [0.8269397400551397], [0.7884600236313508], [0.750019692792438], [0.6730602599448601], [0.5769200472627019], [0.48077983458054346], [0.461520283576211], [0.48077983458054346], [0.5576998818432453], [0.6730602599448601], [0.750019692792438], [0.7692398582118943], [0.750019692792438], [0.7307601417881054], [0.750019692792438], [0.7884600236313508], [0.8269397400551397], [0.8461599054745962], [0.8461599054745962], [0.8269397400551397], [0.8076801890508073], [0.7692398582118943], [0.7307601417881054], [0.6730602599448601], [0.6346199291059472], [0.6346199291059472], [0.6730602599448601], [0.711539976368649], [0.7307601417881054], [0.7307601417881054], [0.711539976368649], [0.6923198109491926], [0.6730602599448601], [0.6923198109491926], [0.6730602599448601], [0.6153997636864906], [0.538440330838913], [0.461520283576211], [0.461520283576211], [0.49999999999999994], [0.5576998818432453], [0.5769200472627019], [0.5576998818432453], [0.48077983458054346], [0.461520283576211], [0.48077983458054346], [0.5576998818432453], [0.6346199291059472], [0.6538400945254037], [0.6346199291059472], [0.5961402126821583], [0.6153997636864906], [0.6346199291059472], [0.6730602599448601], [0.6923198109491926], [0.6730602599448601], [0.6153997636864906], [0.538440330838913], [0.4230799527372981], [0.3076801890508073], [0.23076014178810547], [0.23076014178810547], [0.32690035447026383], [0.48077983458054346], [0.5961402126821583], [0.5769200472627019], [0.461520283576211], [0.2692398582118944], [0.15384009452540365], [0.15384009452540365], [0.3076801890508073], [0.461520283576211], [0.538440330838913], [0.5192201654194564], [0.3846002363135092], [0.21153997636864902], [0.09614021268215829], [0.03844033083891292], [0.05766049625836938], [0.09614021268215829], [0.1730602599448601], [0.2692398582118944], [0.3461599054745962], [0.3846002363135092], [0.32690035447026383], [0.23076014178810547], [0.11536037810161474], [0.05766049625836938], [0.09614021268215829], [0.19228042536431658], [0.3076801890508073], [0.3846002363135092], [0.40385978731784156], [0.3846002363135092], [0.3461599054745962], [0.28846002363135087], [0.23076014178810547], [0.19228042536431658], [0.19228042536431658], [0.21153997636864902], [0.24998030720756192], [0.28846002363135087], [0.28846002363135087], [0.24998030720756192], [0.1730602599448601], [0.09614021268215829], [0.05766049625836938], [0.03844033083891292], [0.03844033083891292], [0.05766049625836938], [0.07692004726270182], [0.07692004726270182], [0.07692004726270182], [0.03844033083891292], [0.01922016541945646], [0.0], [0.01922016541945646], [0.07692004726270182], [0.1730602599448601], [0.24998030720756192], [0.3076801890508073], [0.28846002363135087], [0.23076014178810547], [0.11536037810161474], [0.03844033083891292], [0.0], [0.03844033083891292], [0.11536037810161474], [0.21153997636864902], [0.3076801890508073], [0.3653800708940527], [0.3653800708940527], [0.3076801890508073], [0.21153997636864902], [0.1730602599448601], [0.19228042536431658], [0.28846002363135087], [0.3846002363135092], [0.461520283576211], [0.461520283576211], [0.40385978731784156], [0.3076801890508073], [0.21153997636864902], [0.1346199291059472], [0.07692004726270182], [0.03844033083891292], [0.05766049625836938], [0.11536037810161474], [0.23076014178810547], [0.3461599054745962], [0.4230799527372981], [0.4230799527372981], [0.3846002363135092], [0.2692398582118944], [0.21153997636864902], [0.21153997636864902], [0.28846002363135087], [0.40385978731784156], [0.538440330838913], [0.6346199291059472], [0.6538400945254037], [0.5961402126821583], [0.538440330838913], [0.461520283576211], [0.4423001181567546], [0.4423001181567546], [0.461520283576211], [0.49999999999999994], [0.538440330838913], [0.538440330838913], [0.48077983458054346], [0.4230799527372981], [0.3461599054745962], [0.32690035447026383], [0.3846002363135092], [0.4423001181567546], [0.5192201654194564], [0.5576998818432453], [0.538440330838913], [0.49999999999999994], [0.461520283576211], [0.4423001181567546], [0.461520283576211], [0.49999999999999994], [0.5576998818432453], [0.6538400945254037], [0.7307601417881054], [0.7884600236313508], [0.7884600236313508], [0.711539976368649], [0.6153997636864906], [0.538440330838913], [0.5192201654194564], [0.538440330838913], [0.5961402126821583], [0.6346199291059472], [0.6346199291059472], [0.5961402126821583], [0.5576998818432453], [0.5576998818432453], [0.5961402126821583], [0.6346199291059472], [0.6346199291059472], [0.5769200472627019], [0.461520283576211], [0.3653800708940527], [0.32690035447026383], [0.3846002363135092], [0.538440330838913], [0.711539976368649], [0.8076801890508073], [0.8269397400551397], [0.711539976368649], [0.5769200472627019], [0.461520283576211], [0.461520283576211], [0.538440330838913], [0.6346199291059472], [0.6730602599448601], [0.6538400945254037], [0.6153997636864906], [0.5576998818432453], [0.5576998818432453], [0.6153997636864906], [0.711539976368649], [0.7884600236313508], [0.8269397400551397], [0.8076801890508073], [0.711539976368649], [0.5769200472627019], [0.4230799527372981], [0.3653800708940527], [0.4230799527372981], [0.6153997636864906], [0.8461599054745962], [1.0], [1.0], [0.8076801890508073]], "eval_masks": [[0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0]], "forwards": [[0.9807798345805434], [0.9423001181567545], [0.9038597873178416], [0.8461599054745962], [0.8076801890508073], [0.7692398582118943], [0.7307601417881054], [0.711539976368649], [0.711539976368649], [0.711539976368649], [0.7307601417881054], [0.7692398582118943], [0.8076801890508073], [0.8461599054745962], [0.8653800708940527], [0.8653800708940527], [0.8653800708940527], [0.8461599054745962], [0.8269397400551397], [0.7884600236313508], [0.750019692792438], [0.6730602599448601], [0.5769200472627019], [0.48077983458054346], [0.461520283576211], [0.48077983458054346], [0.5576998818432453], [0.6730602599448601], [0.750019692792438], [0.7692398582118943], [0.750019692792438], [0.7307601417881054], [0.750019692792438], [0.7884600236313508], [0.8269397400551397], [0.8461599054745962], [0.8461599054745962], [0.8269397400551397], [0.8076801890508073], [0.7692398582118943], [0.7307601417881054], [0.6730602599448601], [0.6346199291059472], [0.6346199291059472], [0.6730602599448601], [0.711539976368649], [0.7307601417881054], [0.7307601417881054], [0.711539976368649], [0.6923198109491926], [0.6730602599448601], [0.6923198109491926], [0.6730602599448601], [0.6153997636864906], [0.538440330838913], [0.461520283576211], [0.461520283576211], [0.49999999999999994], [0.5576998818432453], [0.5769200472627019], [0.5576998818432453], [0.48077983458054346], [0.461520283576211], [0.48077983458054346], [0.5576998818432453], [0.6346199291059472], [0.6538400945254037], [0.6346199291059472], [0.5961402126821583], [0.6153997636864906], [0.6346199291059472], [0.6730602599448601], [0.6923198109491926], [0.6730602599448601], [0.6153997636864906], [0.538440330838913], [0.4230799527372981], [0.3076801890508073], [0.23076014178810547], [0.23076014178810547], [0.32690035447026383], [0.48077983458054346], [0.5961402126821583], [0.5769200472627019], [0.461520283576211], [0.2692398582118944], [0.15384009452540365], [0.15384009452540365], [0.3076801890508073], [0.461520283576211], [0.538440330838913], [0.5192201654194564], [0.3846002363135092], [0.21153997636864902], [0.09614021268215829], [0.03844033083891292], [0.05766049625836938], [0.09614021268215829], [0.1730602599448601], [0.2692398582118944], [0.3461599054745962], [0.3846002363135092], [0.32690035447026383], [0.23076014178810547], [0.11536037810161474], [0.05766049625836938], [0.09614021268215829], [0.19228042536431658], [0.3076801890508073], [0.3846002363135092], [0.40385978731784156], [0.3846002363135092], [0.3461599054745962], [0.28846002363135087], [0.23076014178810547], [0.19228042536431658], [0.19228042536431658], [0.21153997636864902], [0.24998030720756192], [0.28846002363135087], [0.28846002363135087], [0.24998030720756192], [0.1730602599448601], [0.09614021268215829], [0.05766049625836938], [0.03844033083891292], [0.03844033083891292], [0.05766049625836938], [0.07692004726270182], [0.07692004726270182], [0.07692004726270182], [0.03844033083891292], [0.01922016541945646], [0.0], [0.01922016541945646], [0.07692004726270182], [0.1730602599448601], [0.24998030720756192], [0.3076801890508073], [0.28846002363135087], [0.23076014178810547], [0.11536037810161474], [0.03844033083891292], [0.0], [0.03844033083891292], [0.11536037810161474], [0.21153997636864902], [0.3076801890508073], [0.3653800708940527], [0.3653800708940527], [0.3076801890508073], [0.21153997636864902], [0.1730602599448601], [0.19228042536431658], [0.28846002363135087], [0.3846002363135092], [0.461520283576211], [0.461520283576211], [0.40385978731784156], [0.3076801890508073], [0.21153997636864902], [0.1346199291059472], [0.07692004726270182], [0.03844033083891292], [0.05766049625836938], [0.11536037810161474], [0.23076014178810547], [0.3461599054745962], [0.4230799527372981], [0.4230799527372981], [0.3846002363135092], [0.2692398582118944], [0.21153997636864902], [0.21153997636864902], [0.28846002363135087], [0.40385978731784156], [0.538440330838913], [0.6346199291059472], [0.6538400945254037], [0.5961402126821583], [0.538440330838913], [0.461520283576211], [0.4423001181567546], [0.4423001181567546], [0.461520283576211], [0.49999999999999994], [0.538440330838913], [0.538440330838913], [0.48077983458054346], [0.4230799527372981], [0.3461599054745962], [0.32690035447026383], [0.3846002363135092], [0.4423001181567546], [0.5192201654194564], [0.5576998818432453], [0.538440330838913], [0.49999999999999994], [0.461520283576211], [0.4423001181567546], [0.461520283576211], [0.49999999999999994], [0.5576998818432453], [0.6538400945254037], [0.7307601417881054], [0.7884600236313508], [0.7884600236313508], [0.711539976368649], [0.6153997636864906], [0.538440330838913], [0.5192201654194564], [0.538440330838913], [0.5961402126821583], [0.6346199291059472], [0.6346199291059472], [0.5961402126821583], [0.5576998818432453], [0.5576998818432453], [0.5961402126821583], [0.6346199291059472], [0.6346199291059472], [0.5769200472627019], [0.461520283576211], [0.3653800708940527], [0.32690035447026383], [0.3846002363135092], [0.538440330838913], [0.711539976368649], [0.8076801890508073], [0.8269397400551397], [0.711539976368649], [0.5769200472627019], [0.461520283576211], [0.461520283576211], [0.538440330838913], [0.6346199291059472], [0.6730602599448601], [0.6538400945254037], [0.6153997636864906], [0.5576998818432453], [0.5576998818432453], [0.6153997636864906], [0.711539976368649], [0.7884600236313508], [0.8269397400551397], [0.8076801890508073], [0.711539976368649], [0.5769200472627019], [0.4230799527372981], [0.3653800708940527], [0.4230799527372981], [0.6153997636864906], [0.8461599054745962], [1.0], [1.0], [0.8076801890508073]], "deltas": [[1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0]]}, "backward": {"values": [[0.8076801890508073], [1.0], [1.0], [0.8461599054745962], [0.6153997636864906], [0.4230799527372981], [0.3653800708940527], [0.4230799527372981], [0.5769200472627019], [0.711539976368649], [0.8076801890508073], [0.8269397400551397], [0.7884600236313508], [0.711539976368649], [0.6153997636864906], [0.5576998818432453], [0.5576998818432453], [0.6153997636864906], [0.6538400945254037], [0.6730602599448601], [0.6346199291059472], [0.538440330838913], [0.461520283576211], [0.461520283576211], [0.5769200472627019], [0.711539976368649], [0.8269397400551397], [0.8076801890508073], [0.711539976368649], [0.538440330838913], [0.3846002363135092], [0.32690035447026383], [0.3653800708940527], [0.461520283576211], [0.5769200472627019], [0.6346199291059472], [0.6346199291059472], [0.5961402126821583], [0.5576998818432453], [0.5576998818432453], [0.5961402126821583], [0.6346199291059472], [0.6346199291059472], [0.5961402126821583], [0.538440330838913], [0.5192201654194564], [0.538440330838913], [0.6153997636864906], [0.711539976368649], [0.7884600236313508], [0.7884600236313508], [0.7307601417881054], [0.6538400945254037], [0.5576998818432453], [0.49999999999999994], [0.461520283576211], [0.4423001181567546], [0.461520283576211], [0.49999999999999994], [0.538440330838913], [0.5576998818432453], [0.5192201654194564], [0.4423001181567546], [0.3846002363135092], [0.32690035447026383], [0.3461599054745962], [0.4230799527372981], [0.48077983458054346], [0.538440330838913], [0.538440330838913], [0.49999999999999994], [0.461520283576211], [0.4423001181567546], [0.4423001181567546], [0.461520283576211], [0.538440330838913], [0.5961402126821583], [0.6538400945254037], [0.6346199291059472], [0.538440330838913], [0.40385978731784156], [0.28846002363135087], [0.21153997636864902], [0.21153997636864902], [0.2692398582118944], [0.3846002363135092], [0.4230799527372981], [0.4230799527372981], [0.3461599054745962], [0.23076014178810547], [0.11536037810161474], [0.05766049625836938], [0.03844033083891292], [0.07692004726270182], [0.1346199291059472], [0.21153997636864902], [0.3076801890508073], [0.40385978731784156], [0.461520283576211], [0.461520283576211], [0.3846002363135092], [0.28846002363135087], [0.19228042536431658], [0.1730602599448601], [0.21153997636864902], [0.3076801890508073], [0.3653800708940527], [0.3653800708940527], [0.3076801890508073], [0.21153997636864902], [0.11536037810161474], [0.03844033083891292], [0.0], [0.03844033083891292], [0.11536037810161474], [0.23076014178810547], [0.28846002363135087], [0.3076801890508073], [0.24998030720756192], [0.1730602599448601], [0.07692004726270182], [0.01922016541945646], [0.0], [0.01922016541945646], [0.03844033083891292], [0.07692004726270182], [0.07692004726270182], [0.07692004726270182], [0.05766049625836938], [0.03844033083891292], [0.03844033083891292], [0.05766049625836938], [0.09614021268215829], [0.1730602599448601], [0.24998030720756192], [0.28846002363135087], [0.28846002363135087], [0.24998030720756192], [0.21153997636864902], [0.19228042536431658], [0.19228042536431658], [0.23076014178810547], [0.28846002363135087], [0.3461599054745962], [0.3846002363135092], [0.40385978731784156], [0.3846002363135092], [0.3076801890508073], [0.19228042536431658], [0.09614021268215829], [0.05766049625836938], [0.11536037810161474], [0.23076014178810547], [0.32690035447026383], [0.3846002363135092], [0.3461599054745962], [0.2692398582118944], [0.1730602599448601], [0.09614021268215829], [0.05766049625836938], [0.03844033083891292], [0.09614021268215829], [0.21153997636864902], [0.3846002363135092], [0.5192201654194564], [0.538440330838913], [0.461520283576211], [0.3076801890508073], [0.15384009452540365], [0.15384009452540365], [0.2692398582118944], [0.461520283576211], [0.5769200472627019], [0.5961402126821583], [0.48077983458054346], [0.32690035447026383], [0.23076014178810547], [0.23076014178810547], [0.3076801890508073], [0.4230799527372981], [0.538440330838913], [0.6153997636864906], [0.6730602599448601], [0.6923198109491926], [0.6730602599448601], [0.6346199291059472], [0.6153997636864906], [0.5961402126821583], [0.6346199291059472], [0.6538400945254037], [0.6346199291059472], [0.5576998818432453], [0.48077983458054346], [0.461520283576211], [0.48077983458054346], [0.5576998818432453], [0.5769200472627019], [0.5576998818432453], [0.49999999999999994], [0.461520283576211], [0.461520283576211], [0.538440330838913], [0.6153997636864906], [0.6730602599448601], [0.6923198109491926], [0.6730602599448601], [0.6923198109491926], [0.711539976368649], [0.7307601417881054], [0.7307601417881054], [0.711539976368649], [0.6730602599448601], [0.6346199291059472], [0.6346199291059472], [0.6730602599448601], [0.7307601417881054], [0.7692398582118943], [0.8076801890508073], [0.8269397400551397], [0.8461599054745962], [0.8461599054745962], [0.8269397400551397], [0.7884600236313508], [0.750019692792438], [0.7307601417881054], [0.750019692792438], [0.7692398582118943], [0.750019692792438], [0.6730602599448601], [0.5576998818432453], [0.48077983458054346], [0.461520283576211], [0.48077983458054346], [0.5769200472627019], [0.6730602599448601], [0.750019692792438], [0.7884600236313508], [0.8269397400551397], [0.8461599054745962], [0.8653800708940527], [0.8653800708940527], [0.8653800708940527], [0.8461599054745962], [0.8076801890508073], [0.7692398582118943], [0.7307601417881054], [0.711539976368649], [0.711539976368649], [0.711539976368649], [0.7307601417881054], [0.7692398582118943], [0.8076801890508073], [0.8461599054745962], [0.9038597873178416], [0.9423001181567545], [0.9807798345805434]], "masks": [[1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1]], "evals": [[0.8076801890508073], [1.0], [1.0], [0.8461599054745962], [0.6153997636864906], [0.4230799527372981], [0.3653800708940527], [0.4230799527372981], [0.5769200472627019], [0.711539976368649], [0.8076801890508073], [0.8269397400551397], [0.7884600236313508], [0.711539976368649], [0.6153997636864906], [0.5576998818432453], [0.5576998818432453], [0.6153997636864906], [0.6538400945254037], [0.6730602599448601], [0.6346199291059472], [0.538440330838913], [0.461520283576211], [0.461520283576211], [0.5769200472627019], [0.711539976368649], [0.8269397400551397], [0.8076801890508073], [0.711539976368649], [0.538440330838913], [0.3846002363135092], [0.32690035447026383], [0.3653800708940527], [0.461520283576211], [0.5769200472627019], [0.6346199291059472], [0.6346199291059472], [0.5961402126821583], [0.5576998818432453], [0.5576998818432453], [0.5961402126821583], [0.6346199291059472], [0.6346199291059472], [0.5961402126821583], [0.538440330838913], [0.5192201654194564], [0.538440330838913], [0.6153997636864906], [0.711539976368649], [0.7884600236313508], [0.7884600236313508], [0.7307601417881054], [0.6538400945254037], [0.5576998818432453], [0.49999999999999994], [0.461520283576211], [0.4423001181567546], [0.461520283576211], [0.49999999999999994], [0.538440330838913], [0.5576998818432453], [0.5192201654194564], [0.4423001181567546], [0.3846002363135092], [0.32690035447026383], [0.3461599054745962], [0.4230799527372981], [0.48077983458054346], [0.538440330838913], [0.538440330838913], [0.49999999999999994], [0.461520283576211], [0.4423001181567546], [0.4423001181567546], [0.461520283576211], [0.538440330838913], [0.5961402126821583], [0.6538400945254037], [0.6346199291059472], [0.538440330838913], [0.40385978731784156], [0.28846002363135087], [0.21153997636864902], [0.21153997636864902], [0.2692398582118944], [0.3846002363135092], [0.4230799527372981], [0.4230799527372981], [0.3461599054745962], [0.23076014178810547], [0.11536037810161474], [0.05766049625836938], [0.03844033083891292], [0.07692004726270182], [0.1346199291059472], [0.21153997636864902], [0.3076801890508073], [0.40385978731784156], [0.461520283576211], [0.461520283576211], [0.3846002363135092], [0.28846002363135087], [0.19228042536431658], [0.1730602599448601], [0.21153997636864902], [0.3076801890508073], [0.3653800708940527], [0.3653800708940527], [0.3076801890508073], [0.21153997636864902], [0.11536037810161474], [0.03844033083891292], [0.0], [0.03844033083891292], [0.11536037810161474], [0.23076014178810547], [0.28846002363135087], [0.3076801890508073], [0.24998030720756192], [0.1730602599448601], [0.07692004726270182], [0.01922016541945646], [0.0], [0.01922016541945646], [0.03844033083891292], [0.07692004726270182], [0.07692004726270182], [0.07692004726270182], [0.05766049625836938], [0.03844033083891292], [0.03844033083891292], [0.05766049625836938], [0.09614021268215829], [0.1730602599448601], [0.24998030720756192], [0.28846002363135087], [0.28846002363135087], [0.24998030720756192], [0.21153997636864902], [0.19228042536431658], [0.19228042536431658], [0.23076014178810547], [0.28846002363135087], [0.3461599054745962], [0.3846002363135092], [0.40385978731784156], [0.3846002363135092], [0.3076801890508073], [0.19228042536431658], [0.09614021268215829], [0.05766049625836938], [0.11536037810161474], [0.23076014178810547], [0.32690035447026383], [0.3846002363135092], [0.3461599054745962], [0.2692398582118944], [0.1730602599448601], [0.09614021268215829], [0.05766049625836938], [0.03844033083891292], [0.09614021268215829], [0.21153997636864902], [0.3846002363135092], [0.5192201654194564], [0.538440330838913], [0.461520283576211], [0.3076801890508073], [0.15384009452540365], [0.15384009452540365], [0.2692398582118944], [0.461520283576211], [0.5769200472627019], [0.5961402126821583], [0.48077983458054346], [0.32690035447026383], [0.23076014178810547], [0.23076014178810547], [0.3076801890508073], [0.4230799527372981], [0.538440330838913], [0.6153997636864906], [0.6730602599448601], [0.6923198109491926], [0.6730602599448601], [0.6346199291059472], [0.6153997636864906], [0.5961402126821583], [0.6346199291059472], [0.6538400945254037], [0.6346199291059472], [0.5576998818432453], [0.48077983458054346], [0.461520283576211], [0.48077983458054346], [0.5576998818432453], [0.5769200472627019], [0.5576998818432453], [0.49999999999999994], [0.461520283576211], [0.461520283576211], [0.538440330838913], [0.6153997636864906], [0.6730602599448601], [0.6923198109491926], [0.6730602599448601], [0.6923198109491926], [0.711539976368649], [0.7307601417881054], [0.7307601417881054], [0.711539976368649], [0.6730602599448601], [0.6346199291059472], [0.6346199291059472], [0.6730602599448601], [0.7307601417881054], [0.7692398582118943], [0.8076801890508073], [0.8269397400551397], [0.8461599054745962], [0.8461599054745962], [0.8269397400551397], [0.7884600236313508], [0.750019692792438], [0.7307601417881054], [0.750019692792438], [0.7692398582118943], [0.750019692792438], [0.6730602599448601], [0.5576998818432453], [0.48077983458054346], [0.461520283576211], [0.48077983458054346], [0.5769200472627019], [0.6730602599448601], [0.750019692792438], [0.7884600236313508], [0.8269397400551397], [0.8461599054745962], [0.8653800708940527], [0.8653800708940527], [0.8653800708940527], [0.8461599054745962], [0.8076801890508073], [0.7692398582118943], [0.7307601417881054], [0.711539976368649], [0.711539976368649], [0.711539976368649], [0.7307601417881054], [0.7692398582118943], [0.8076801890508073], [0.8461599054745962], [0.9038597873178416], [0.9423001181567545], [0.9807798345805434]], "eval_masks": [[0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0]], "forwards": [[0.8076801890508073], [1.0], [1.0], [0.8461599054745962], [0.6153997636864906], [0.4230799527372981], [0.3653800708940527], [0.4230799527372981], [0.5769200472627019], [0.711539976368649], [0.8076801890508073], [0.8269397400551397], [0.7884600236313508], [0.711539976368649], [0.6153997636864906], [0.5576998818432453], [0.5576998818432453], [0.6153997636864906], [0.6538400945254037], [0.6730602599448601], [0.6346199291059472], [0.538440330838913], [0.461520283576211], [0.461520283576211], [0.5769200472627019], [0.711539976368649], [0.8269397400551397], [0.8076801890508073], [0.711539976368649], [0.538440330838913], [0.3846002363135092], [0.32690035447026383], [0.3653800708940527], [0.461520283576211], [0.5769200472627019], [0.6346199291059472], [0.6346199291059472], [0.5961402126821583], [0.5576998818432453], [0.5576998818432453], [0.5961402126821583], [0.6346199291059472], [0.6346199291059472], [0.5961402126821583], [0.538440330838913], [0.5192201654194564], [0.538440330838913], [0.6153997636864906], [0.711539976368649], [0.7884600236313508], [0.7884600236313508], [0.7307601417881054], [0.6538400945254037], [0.5576998818432453], [0.49999999999999994], [0.461520283576211], [0.4423001181567546], [0.461520283576211], [0.49999999999999994], [0.538440330838913], [0.5576998818432453], [0.5192201654194564], [0.4423001181567546], [0.3846002363135092], [0.32690035447026383], [0.3461599054745962], [0.4230799527372981], [0.48077983458054346], [0.538440330838913], [0.538440330838913], [0.49999999999999994], [0.461520283576211], [0.4423001181567546], [0.4423001181567546], [0.461520283576211], [0.538440330838913], [0.5961402126821583], [0.6538400945254037], [0.6346199291059472], [0.538440330838913], [0.40385978731784156], [0.28846002363135087], [0.21153997636864902], [0.21153997636864902], [0.2692398582118944], [0.3846002363135092], [0.4230799527372981], [0.4230799527372981], [0.3461599054745962], [0.23076014178810547], [0.11536037810161474], [0.05766049625836938], [0.03844033083891292], [0.07692004726270182], [0.1346199291059472], [0.21153997636864902], [0.3076801890508073], [0.40385978731784156], [0.461520283576211], [0.461520283576211], [0.3846002363135092], [0.28846002363135087], [0.19228042536431658], [0.1730602599448601], [0.21153997636864902], [0.3076801890508073], [0.3653800708940527], [0.3653800708940527], [0.3076801890508073], [0.21153997636864902], [0.11536037810161474], [0.03844033083891292], [0.0], [0.03844033083891292], [0.11536037810161474], [0.23076014178810547], [0.28846002363135087], [0.3076801890508073], [0.24998030720756192], [0.1730602599448601], [0.07692004726270182], [0.01922016541945646], [0.0], [0.01922016541945646], [0.03844033083891292], [0.07692004726270182], [0.07692004726270182], [0.07692004726270182], [0.05766049625836938], [0.03844033083891292], [0.03844033083891292], [0.05766049625836938], [0.09614021268215829], [0.1730602599448601], [0.24998030720756192], [0.28846002363135087], [0.28846002363135087], [0.24998030720756192], [0.21153997636864902], [0.19228042536431658], [0.19228042536431658], [0.23076014178810547], [0.28846002363135087], [0.3461599054745962], [0.3846002363135092], [0.40385978731784156], [0.3846002363135092], [0.3076801890508073], [0.19228042536431658], [0.09614021268215829], [0.05766049625836938], [0.11536037810161474], [0.23076014178810547], [0.32690035447026383], [0.3846002363135092], [0.3461599054745962], [0.2692398582118944], [0.1730602599448601], [0.09614021268215829], [0.05766049625836938], [0.03844033083891292], [0.09614021268215829], [0.21153997636864902], [0.3846002363135092], [0.5192201654194564], [0.538440330838913], [0.461520283576211], [0.3076801890508073], [0.15384009452540365], [0.15384009452540365], [0.2692398582118944], [0.461520283576211], [0.5769200472627019], [0.5961402126821583], [0.48077983458054346], [0.32690035447026383], [0.23076014178810547], [0.23076014178810547], [0.3076801890508073], [0.4230799527372981], [0.538440330838913], [0.6153997636864906], [0.6730602599448601], [0.6923198109491926], [0.6730602599448601], [0.6346199291059472], [0.6153997636864906], [0.5961402126821583], [0.6346199291059472], [0.6538400945254037], [0.6346199291059472], [0.5576998818432453], [0.48077983458054346], [0.461520283576211], [0.48077983458054346], [0.5576998818432453], [0.5769200472627019], [0.5576998818432453], [0.49999999999999994], [0.461520283576211], [0.461520283576211], [0.538440330838913], [0.6153997636864906], [0.6730602599448601], [0.6923198109491926], [0.6730602599448601], [0.6923198109491926], [0.711539976368649], [0.7307601417881054], [0.7307601417881054], [0.711539976368649], [0.6730602599448601], [0.6346199291059472], [0.6346199291059472], [0.6730602599448601], [0.7307601417881054], [0.7692398582118943], [0.8076801890508073], [0.8269397400551397], [0.8461599054745962], [0.8461599054745962], [0.8269397400551397], [0.7884600236313508], [0.750019692792438], [0.7307601417881054], [0.750019692792438], [0.7692398582118943], [0.750019692792438], [0.6730602599448601], [0.5576998818432453], [0.48077983458054346], [0.461520283576211], [0.48077983458054346], [0.5769200472627019], [0.6730602599448601], [0.750019692792438], [0.7884600236313508], [0.8269397400551397], [0.8461599054745962], [0.8653800708940527], [0.8653800708940527], [0.8653800708940527], [0.8461599054745962], [0.8076801890508073], [0.7692398582118943], [0.7307601417881054], [0.711539976368649], [0.711539976368649], [0.711539976368649], [0.7307601417881054], [0.7692398582118943], [0.8076801890508073], [0.8461599054745962], [0.9038597873178416], [0.9423001181567545], [0.9807798345805434]], "deltas": [[1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0]]}} -{"label": 0, "forward": {"values": [[1.0], [0.9811043703388848], [0.9433903937555547], [0.9056377758027745], [0.8490281695583292], [0.792457204683334], [0.7547045867305537], [0.7547045867305537], [0.792457204683334], [0.8301711812666641], [0.8679237992194444], [0.8679237992194444], [0.8490281695583292], [0.8301711812666641], [0.792457204683334], [0.792457204683334], [0.8113141929749991], [0.8490281695583292], [0.8679237992194444], [0.8867807875111094], [0.8679237992194444], [0.792457204683334], [0.6603810039027784], [0.5283048031222227], [0.4528382085861123], [0.0], [0.5660187797055528], [0.6792379921944435], [0.7547045867305537], [0.792457204683334], [0.792457204683334], [0.792457204683334], [0.8301711812666641], [0.8490281695583292], [0.8679237992194444], [0.8679237992194444], [0.8490281695583292], [0.8113141929749991], [0.7735615750222188], [0.7358475984388887], [0.6980949804861085], [0.6792379921944435], [0.6792379921944435], [0.6980949804861085], [0.7358475984388887], [0.7547045867305537], [0.7358475984388887], [0.6980949804861085], [0.6603810039027784], [0.6603810039027784], [0.6980949804861085], [0.7358475984388887], [0.7358475984388887], [0.6603810039027784], [0.5660187797055528], [0.47169519687777745], [0.47169519687777745], [0.5471617914138878], [0.622628385949998], [0.6792379921944435], [0.6603810039027784], [0.6037713976583331], [0.5660187797055528], [0.5849144093666679], [0.622628385949998], [0.6792379921944435], [0.6980949804861085], [0.7169519687777736], [0.7169519687777736], [0.7358475984388887], [0.7358475984388887], [0.7358475984388887], [0.6980949804861085], [0.622628385949998], [0.5660187797055528], [0.49055218516944243], [0.43394257892499716], [0.3773329726805519], [0.3584759843888868], [0.41508559063333206], [0.5283048031222227], [0.6603810039027784], [0.7169519687777736], [0.6414853742416632], [0.4528382085861123], [0.20754279531666608], [0.07546659453611047], [0.11318057111944055], [0.33961899609722174], [0.622628385949998], [0.792457204683334], [0.8113141929749991], [0.6980949804861085], [0.49055218516944243], [0.30186637814444145], [0.1509331890722208], [0.05660960624444543], [0.037713976583330214], [0.07546659453611047], [0.18868580702500107], [0.33961899609722174], [0.4528382085861123], [0.49055218516944243], [0.4528382085861123], [0.3773329726805519], [0.30186637814444145], [0.30186637814444145], [0.33961899609722174], [0.41508559063333206], [0.4528382085861123], [0.4528382085861123], [0.396228602341667], [0.33961899609722174], [0.3207620078055567], [0.30186637814444145], [0.33961899609722174], [0.3773329726805519], [0.4528382085861123], [0.49055218516944243], [0.5094091734611075], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.2830093898527764], [0.22639978360833113], [0.16979017736388585], [0.11318057111944055], [0.07546659453611047], [0.07546659453611047], [0.13207620078055576], [0.20754279531666608], [0.2830093898527764], [0.3207620078055567], [0.3207620078055567], [0.2641524015611114], [0.18868580702500107], [0.1509331890722208], [0.13207620078055576], [0.16979017736388585], [0.24525677189999617], [0.3207620078055567], [0.3773329726805519], [0.3773329726805519], [0.33961899609722174], [0.30186637814444145], [0.2830093898527764], [0.3207620078055567], [0.396228602341667], [0.49055218516944243], [0.5283048031222227], [0.5283048031222227], [0.4528382085861123], [0.3773329726805519], [0.2830093898527764], [0.24525677189999617], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.33961899609722174], [0.3584759843888868], [0.43394257892499716], [0.5283048031222227], [0.6414853742416632], [0.6980949804861085], [0.7358475984388887], [0.6980949804861085], [0.6792379921944435], [0.622628385949998], [0.5849144093666679], [0.5283048031222227], [0.49055218516944243], [0.47169519687777745], [0.47169519687777745], [0.47169519687777745], [0.4528382085861123], [0.43394257892499716], [0.396228602341667], [0.396228602341667], [0.41508559063333206], [0.47169519687777745], [0.5283048031222227], [0.5849144093666679], [0.6037713976583331], [0.5849144093666679], [0.5471617914138878], [0.5094091734611075], [0.49055218516944243], [0.5283048031222227], [0.622628385949998], [0.7358475984388887], [0.8301711812666641], [0.8867807875111094], [0.8679237992194444], [0.7547045867305537], [0.6414853742416632], [0.5283048031222227], [0.49055218516944243], [0.5660187797055528], [0.6980949804861085], [0.8113141929749991], [0.8301711812666641], [0.792457204683334], [0.6792379921944435], [0.5660187797055528], [0.5283048031222227], [0.5660187797055528], [0.6037713976583331], [0.622628385949998], [0.5660187797055528], [0.47169519687777745], [0.396228602341667], [0.3773329726805519], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.6603810039027784], [0.6792379921944435], [0.6603810039027784], [0.6414853742416632], [0.6414853742416632], [0.6414853742416632], [0.6792379921944435], [0.7358475984388887], [0.792457204683334], [0.8113141929749991], [0.7735615750222188], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0]], "masks": [[1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [0], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [0], [0], [0], [0], [0], [0], [0], [0], [0]], "evals": [[1.0], [0.9811043703388848], [0.9433903937555547], [0.9056377758027745], [0.8490281695583292], [0.792457204683334], [0.7547045867305537], [0.7547045867305537], [0.792457204683334], [0.8301711812666641], [0.8679237992194444], [0.8679237992194444], [0.8490281695583292], [0.8301711812666641], [0.792457204683334], [0.792457204683334], [0.8113141929749991], [0.8490281695583292], [0.8679237992194444], [0.8867807875111094], [0.8679237992194444], [0.792457204683334], [0.6603810039027784], [0.5283048031222227], [0.4528382085861123], [0.0], [0.5660187797055528], [0.6792379921944435], [0.7547045867305537], [0.792457204683334], [0.792457204683334], [0.792457204683334], [0.8301711812666641], [0.8490281695583292], [0.8679237992194444], [0.8679237992194444], [0.8490281695583292], [0.8113141929749991], [0.7735615750222188], [0.7358475984388887], [0.6980949804861085], [0.6792379921944435], [0.6792379921944435], [0.6980949804861085], [0.7358475984388887], [0.7547045867305537], [0.7358475984388887], [0.6980949804861085], [0.6603810039027784], [0.6603810039027784], [0.6980949804861085], [0.7358475984388887], [0.7358475984388887], [0.6603810039027784], [0.5660187797055528], [0.47169519687777745], [0.47169519687777745], [0.5471617914138878], [0.622628385949998], [0.6792379921944435], [0.6603810039027784], [0.6037713976583331], [0.5660187797055528], [0.5849144093666679], [0.622628385949998], [0.6792379921944435], [0.6980949804861085], [0.7169519687777736], [0.7169519687777736], [0.7358475984388887], [0.7358475984388887], [0.7358475984388887], [0.6980949804861085], [0.622628385949998], [0.5660187797055528], [0.49055218516944243], [0.43394257892499716], [0.3773329726805519], [0.3584759843888868], [0.41508559063333206], [0.5283048031222227], [0.6603810039027784], [0.7169519687777736], [0.6414853742416632], [0.4528382085861123], [0.20754279531666608], [0.07546659453611047], [0.11318057111944055], [0.33961899609722174], [0.622628385949998], [0.792457204683334], [0.8113141929749991], [0.6980949804861085], [0.49055218516944243], [0.30186637814444145], [0.1509331890722208], [0.05660960624444543], [0.037713976583330214], [0.07546659453611047], [0.18868580702500107], [0.33961899609722174], [0.4528382085861123], [0.49055218516944243], [0.4528382085861123], [0.3773329726805519], [0.30186637814444145], [0.30186637814444145], [0.33961899609722174], [0.41508559063333206], [0.4528382085861123], [0.4528382085861123], [0.396228602341667], [0.33961899609722174], [0.3207620078055567], [0.30186637814444145], [0.33961899609722174], [0.3773329726805519], [0.4528382085861123], [0.49055218516944243], [0.5094091734611075], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.2830093898527764], [0.22639978360833113], [0.16979017736388585], [0.11318057111944055], [0.07546659453611047], [0.07546659453611047], [0.13207620078055576], [0.20754279531666608], [0.2830093898527764], [0.3207620078055567], [0.3207620078055567], [0.2641524015611114], [0.18868580702500107], [0.1509331890722208], [0.13207620078055576], [0.16979017736388585], [0.24525677189999617], [0.3207620078055567], [0.3773329726805519], [0.3773329726805519], [0.33961899609722174], [0.30186637814444145], [0.2830093898527764], [0.3207620078055567], [0.396228602341667], [0.49055218516944243], [0.5283048031222227], [0.5283048031222227], [0.4528382085861123], [0.3773329726805519], [0.2830093898527764], [0.24525677189999617], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.33961899609722174], [0.3584759843888868], [0.43394257892499716], [0.5283048031222227], [0.6414853742416632], [0.6980949804861085], [0.7358475984388887], [0.6980949804861085], [0.6792379921944435], [0.622628385949998], [0.5849144093666679], [0.5283048031222227], [0.49055218516944243], [0.47169519687777745], [0.47169519687777745], [0.47169519687777745], [0.4528382085861123], [0.43394257892499716], [0.396228602341667], [0.396228602341667], [0.41508559063333206], [0.47169519687777745], [0.5283048031222227], [0.5849144093666679], [0.6037713976583331], [0.5849144093666679], [0.5471617914138878], [0.5094091734611075], [0.49055218516944243], [0.5283048031222227], [0.622628385949998], [0.7358475984388887], [0.8301711812666641], [0.8867807875111094], [0.8679237992194444], [0.7547045867305537], [0.6414853742416632], [0.5283048031222227], [0.49055218516944243], [0.5660187797055528], [0.6980949804861085], [0.8113141929749991], [0.8301711812666641], [0.792457204683334], [0.6792379921944435], [0.5660187797055528], [0.5283048031222227], [0.5660187797055528], [0.6037713976583331], [0.622628385949998], [0.5660187797055528], [0.47169519687777745], [0.396228602341667], [0.3773329726805519], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.6603810039027784], [0.6792379921944435], [0.6603810039027784], [0.6414853742416632], [0.6414853742416632], [0.6414853742416632], [0.6792379921944435], [0.7358475984388887], [0.792457204683334], [0.8113141929749991], [0.7735615750222188], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0]], "eval_masks": [[0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0]], "forwards": [[1.0], [0.9811043703388848], [0.9433903937555547], [0.9056377758027745], [0.8490281695583292], [0.792457204683334], [0.7547045867305537], [0.7547045867305537], [0.792457204683334], [0.8301711812666641], [0.8679237992194444], [0.8679237992194444], [0.8490281695583292], [0.8301711812666641], [0.792457204683334], [0.792457204683334], [0.8113141929749991], [0.8490281695583292], [0.8679237992194444], [0.8867807875111094], [0.8679237992194444], [0.792457204683334], [0.6603810039027784], [0.5283048031222227], [0.4528382085861123], [0.4528382085861123], [0.5660187797055528], [0.6792379921944435], [0.7547045867305537], [0.792457204683334], [0.792457204683334], [0.792457204683334], [0.8301711812666641], [0.8490281695583292], [0.8679237992194444], [0.8679237992194444], [0.8490281695583292], [0.8113141929749991], [0.7735615750222188], [0.7358475984388887], [0.6980949804861085], [0.6792379921944435], [0.6792379921944435], [0.6980949804861085], [0.7358475984388887], [0.7547045867305537], [0.7358475984388887], [0.6980949804861085], [0.6603810039027784], [0.6603810039027784], [0.6980949804861085], [0.7358475984388887], [0.7358475984388887], [0.6603810039027784], [0.5660187797055528], [0.47169519687777745], [0.47169519687777745], [0.5471617914138878], [0.622628385949998], [0.6792379921944435], [0.6603810039027784], [0.6037713976583331], [0.5660187797055528], [0.5849144093666679], [0.622628385949998], [0.6792379921944435], [0.6980949804861085], [0.7169519687777736], [0.7169519687777736], [0.7358475984388887], [0.7358475984388887], [0.7358475984388887], [0.6980949804861085], [0.622628385949998], [0.5660187797055528], [0.49055218516944243], [0.43394257892499716], [0.3773329726805519], [0.3584759843888868], [0.41508559063333206], [0.5283048031222227], [0.6603810039027784], [0.7169519687777736], [0.6414853742416632], [0.4528382085861123], [0.20754279531666608], [0.07546659453611047], [0.11318057111944055], [0.33961899609722174], [0.622628385949998], [0.792457204683334], [0.8113141929749991], [0.6980949804861085], [0.49055218516944243], [0.30186637814444145], [0.1509331890722208], [0.05660960624444543], [0.037713976583330214], [0.07546659453611047], [0.18868580702500107], [0.33961899609722174], [0.4528382085861123], [0.49055218516944243], [0.4528382085861123], [0.3773329726805519], [0.30186637814444145], [0.30186637814444145], [0.33961899609722174], [0.41508559063333206], [0.4528382085861123], [0.4528382085861123], [0.396228602341667], [0.33961899609722174], [0.3207620078055567], [0.30186637814444145], [0.33961899609722174], [0.3773329726805519], [0.4528382085861123], [0.49055218516944243], [0.5094091734611075], [0.5094091734611075], [0.5094091734611075], [0.5094091734611075], [0.5094091734611075], [0.5094091734611075], [0.5094091734611075], [0.5094091734611075], [0.5094091734611075], [0.5094091734611075], [0.5094091734611075], [0.2830093898527764], [0.22639978360833113], [0.16979017736388585], [0.11318057111944055], [0.07546659453611047], [0.07546659453611047], [0.13207620078055576], [0.20754279531666608], [0.2830093898527764], [0.3207620078055567], [0.3207620078055567], [0.2641524015611114], [0.18868580702500107], [0.1509331890722208], [0.13207620078055576], [0.16979017736388585], [0.24525677189999617], [0.3207620078055567], [0.3773329726805519], [0.3773329726805519], [0.33961899609722174], [0.30186637814444145], [0.2830093898527764], [0.3207620078055567], [0.396228602341667], [0.49055218516944243], [0.5283048031222227], [0.5283048031222227], [0.4528382085861123], [0.3773329726805519], [0.2830093898527764], [0.24525677189999617], [0.24525677189999617], [0.24525677189999617], [0.24525677189999617], [0.24525677189999617], [0.24525677189999617], [0.24525677189999617], [0.24525677189999617], [0.24525677189999617], [0.24525677189999617], [0.24525677189999617], [0.33961899609722174], [0.3584759843888868], [0.43394257892499716], [0.5283048031222227], [0.6414853742416632], [0.6980949804861085], [0.7358475984388887], [0.6980949804861085], [0.6792379921944435], [0.622628385949998], [0.5849144093666679], [0.5283048031222227], [0.49055218516944243], [0.47169519687777745], [0.47169519687777745], [0.47169519687777745], [0.4528382085861123], [0.43394257892499716], [0.396228602341667], [0.396228602341667], [0.41508559063333206], [0.47169519687777745], [0.5283048031222227], [0.5849144093666679], [0.6037713976583331], [0.5849144093666679], [0.5471617914138878], [0.5094091734611075], [0.49055218516944243], [0.5283048031222227], [0.622628385949998], [0.7358475984388887], [0.8301711812666641], [0.8867807875111094], [0.8679237992194444], [0.7547045867305537], [0.6414853742416632], [0.5283048031222227], [0.49055218516944243], [0.5660187797055528], [0.6980949804861085], [0.8113141929749991], [0.8301711812666641], [0.792457204683334], [0.6792379921944435], [0.5660187797055528], [0.5283048031222227], [0.5660187797055528], [0.6037713976583331], [0.622628385949998], [0.5660187797055528], [0.47169519687777745], [0.396228602341667], [0.3773329726805519], [0.3773329726805519], [0.3773329726805519], [0.3773329726805519], [0.3773329726805519], [0.3773329726805519], [0.3773329726805519], [0.3773329726805519], [0.3773329726805519], [0.3773329726805519], [0.3773329726805519], [0.6603810039027784], [0.6792379921944435], [0.6603810039027784], [0.6414853742416632], [0.6414853742416632], [0.6414853742416632], [0.6792379921944435], [0.7358475984388887], [0.792457204683334], [0.8113141929749991], [0.7735615750222188], [0.7735615750222188], [0.7735615750222188], [0.7735615750222188], [0.7735615750222188], [0.7735615750222188], [0.7735615750222188], [0.7735615750222188], [0.7735615750222188], [0.7735615750222188]], "deltas": [[1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [2.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [2.0], [3.0], [4.0], [5.0], [6.0], [7.0], [8.0], [9.0], [10.0], [11.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [2.0], [3.0], [4.0], [5.0], [6.0], [7.0], [8.0], [9.0], [10.0], [11.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [2.0], [3.0], [4.0], [5.0], [6.0], [7.0], [8.0], [9.0], [10.0], [11.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [2.0], [3.0], [4.0], [5.0], [6.0], [7.0], [8.0], [9.0], [10.0]]}, "backward": {"values": [[0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.7735615750222188], [0.8113141929749991], [0.792457204683334], [0.7358475984388887], [0.6792379921944435], [0.6414853742416632], [0.6414853742416632], [0.6414853742416632], [0.6603810039027784], [0.6792379921944435], [0.6603810039027784], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.3773329726805519], [0.396228602341667], [0.47169519687777745], [0.5660187797055528], [0.622628385949998], [0.6037713976583331], [0.5660187797055528], [0.5283048031222227], [0.5660187797055528], [0.6792379921944435], [0.792457204683334], [0.8301711812666641], [0.8113141929749991], [0.6980949804861085], [0.5660187797055528], [0.49055218516944243], [0.5283048031222227], [0.6414853742416632], [0.7547045867305537], [0.8679237992194444], [0.8867807875111094], [0.8301711812666641], [0.7358475984388887], [0.622628385949998], [0.5283048031222227], [0.49055218516944243], [0.5094091734611075], [0.5471617914138878], [0.5849144093666679], [0.6037713976583331], [0.5849144093666679], [0.5283048031222227], [0.47169519687777745], [0.41508559063333206], [0.396228602341667], [0.396228602341667], [0.43394257892499716], [0.4528382085861123], [0.47169519687777745], [0.47169519687777745], [0.47169519687777745], [0.49055218516944243], [0.5283048031222227], [0.5849144093666679], [0.622628385949998], [0.6792379921944435], [0.6980949804861085], [0.7358475984388887], [0.6980949804861085], [0.6414853742416632], [0.5283048031222227], [0.43394257892499716], [0.3584759843888868], [0.33961899609722174], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.24525677189999617], [0.2830093898527764], [0.3773329726805519], [0.4528382085861123], [0.5283048031222227], [0.5283048031222227], [0.49055218516944243], [0.396228602341667], [0.3207620078055567], [0.2830093898527764], [0.30186637814444145], [0.33961899609722174], [0.3773329726805519], [0.3773329726805519], [0.3207620078055567], [0.24525677189999617], [0.16979017736388585], [0.13207620078055576], [0.1509331890722208], [0.18868580702500107], [0.2641524015611114], [0.3207620078055567], [0.3207620078055567], [0.2830093898527764], [0.20754279531666608], [0.13207620078055576], [0.07546659453611047], [0.07546659453611047], [0.11318057111944055], [0.16979017736388585], [0.22639978360833113], [0.2830093898527764], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.5094091734611075], [0.49055218516944243], [0.4528382085861123], [0.3773329726805519], [0.33961899609722174], [0.30186637814444145], [0.3207620078055567], [0.33961899609722174], [0.396228602341667], [0.4528382085861123], [0.4528382085861123], [0.41508559063333206], [0.33961899609722174], [0.30186637814444145], [0.30186637814444145], [0.3773329726805519], [0.4528382085861123], [0.49055218516944243], [0.4528382085861123], [0.33961899609722174], [0.18868580702500107], [0.07546659453611047], [0.037713976583330214], [0.05660960624444543], [0.1509331890722208], [0.30186637814444145], [0.49055218516944243], [0.6980949804861085], [0.8113141929749991], [0.792457204683334], [0.622628385949998], [0.33961899609722174], [0.11318057111944055], [0.07546659453611047], [0.20754279531666608], [0.4528382085861123], [0.6414853742416632], [0.7169519687777736], [0.6603810039027784], [0.5283048031222227], [0.41508559063333206], [0.3584759843888868], [0.3773329726805519], [0.43394257892499716], [0.49055218516944243], [0.5660187797055528], [0.622628385949998], [0.6980949804861085], [0.7358475984388887], [0.7358475984388887], [0.7358475984388887], [0.7169519687777736], [0.7169519687777736], [0.6980949804861085], [0.6792379921944435], [0.622628385949998], [0.5849144093666679], [0.5660187797055528], [0.6037713976583331], [0.6603810039027784], [0.6792379921944435], [0.622628385949998], [0.5471617914138878], [0.47169519687777745], [0.47169519687777745], [0.5660187797055528], [0.6603810039027784], [0.7358475984388887], [0.7358475984388887], [0.6980949804861085], [0.6603810039027784], [0.6603810039027784], [0.6980949804861085], [0.7358475984388887], [0.7547045867305537], [0.7358475984388887], [0.6980949804861085], [0.6792379921944435], [0.6792379921944435], [0.6980949804861085], [0.7358475984388887], [0.7735615750222188], [0.8113141929749991], [0.8490281695583292], [0.8679237992194444], [0.8679237992194444], [0.8490281695583292], [0.8301711812666641], [0.792457204683334], [0.792457204683334], [0.792457204683334], [0.7547045867305537], [0.6792379921944435], [0.5660187797055528], [0.0], [0.4528382085861123], [0.5283048031222227], [0.6603810039027784], [0.792457204683334], [0.8679237992194444], [0.8867807875111094], [0.8679237992194444], [0.8490281695583292], [0.8113141929749991], [0.792457204683334], [0.792457204683334], [0.8301711812666641], [0.8490281695583292], [0.8679237992194444], [0.8679237992194444], [0.8301711812666641], [0.792457204683334], [0.7547045867305537], [0.7547045867305537], [0.792457204683334], [0.8490281695583292], [0.9056377758027745], [0.9433903937555547], [0.9811043703388848], [1.0]], "masks": [[0], [0], [0], [0], [0], [0], [0], [0], [0], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [0], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1]], "evals": [[0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.7735615750222188], [0.8113141929749991], [0.792457204683334], [0.7358475984388887], [0.6792379921944435], [0.6414853742416632], [0.6414853742416632], [0.6414853742416632], [0.6603810039027784], [0.6792379921944435], [0.6603810039027784], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.3773329726805519], [0.396228602341667], [0.47169519687777745], [0.5660187797055528], [0.622628385949998], [0.6037713976583331], [0.5660187797055528], [0.5283048031222227], [0.5660187797055528], [0.6792379921944435], [0.792457204683334], [0.8301711812666641], [0.8113141929749991], [0.6980949804861085], [0.5660187797055528], [0.49055218516944243], [0.5283048031222227], [0.6414853742416632], [0.7547045867305537], [0.8679237992194444], [0.8867807875111094], [0.8301711812666641], [0.7358475984388887], [0.622628385949998], [0.5283048031222227], [0.49055218516944243], [0.5094091734611075], [0.5471617914138878], [0.5849144093666679], [0.6037713976583331], [0.5849144093666679], [0.5283048031222227], [0.47169519687777745], [0.41508559063333206], [0.396228602341667], [0.396228602341667], [0.43394257892499716], [0.4528382085861123], [0.47169519687777745], [0.47169519687777745], [0.47169519687777745], [0.49055218516944243], [0.5283048031222227], [0.5849144093666679], [0.622628385949998], [0.6792379921944435], [0.6980949804861085], [0.7358475984388887], [0.6980949804861085], [0.6414853742416632], [0.5283048031222227], [0.43394257892499716], [0.3584759843888868], [0.33961899609722174], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.24525677189999617], [0.2830093898527764], [0.3773329726805519], [0.4528382085861123], [0.5283048031222227], [0.5283048031222227], [0.49055218516944243], [0.396228602341667], [0.3207620078055567], [0.2830093898527764], [0.30186637814444145], [0.33961899609722174], [0.3773329726805519], [0.3773329726805519], [0.3207620078055567], [0.24525677189999617], [0.16979017736388585], [0.13207620078055576], [0.1509331890722208], [0.18868580702500107], [0.2641524015611114], [0.3207620078055567], [0.3207620078055567], [0.2830093898527764], [0.20754279531666608], [0.13207620078055576], [0.07546659453611047], [0.07546659453611047], [0.11318057111944055], [0.16979017736388585], [0.22639978360833113], [0.2830093898527764], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.5094091734611075], [0.49055218516944243], [0.4528382085861123], [0.3773329726805519], [0.33961899609722174], [0.30186637814444145], [0.3207620078055567], [0.33961899609722174], [0.396228602341667], [0.4528382085861123], [0.4528382085861123], [0.41508559063333206], [0.33961899609722174], [0.30186637814444145], [0.30186637814444145], [0.3773329726805519], [0.4528382085861123], [0.49055218516944243], [0.4528382085861123], [0.33961899609722174], [0.18868580702500107], [0.07546659453611047], [0.037713976583330214], [0.05660960624444543], [0.1509331890722208], [0.30186637814444145], [0.49055218516944243], [0.6980949804861085], [0.8113141929749991], [0.792457204683334], [0.622628385949998], [0.33961899609722174], [0.11318057111944055], [0.07546659453611047], [0.20754279531666608], [0.4528382085861123], [0.6414853742416632], [0.7169519687777736], [0.6603810039027784], [0.5283048031222227], [0.41508559063333206], [0.3584759843888868], [0.3773329726805519], [0.43394257892499716], [0.49055218516944243], [0.5660187797055528], [0.622628385949998], [0.6980949804861085], [0.7358475984388887], [0.7358475984388887], [0.7358475984388887], [0.7169519687777736], [0.7169519687777736], [0.6980949804861085], [0.6792379921944435], [0.622628385949998], [0.5849144093666679], [0.5660187797055528], [0.6037713976583331], [0.6603810039027784], [0.6792379921944435], [0.622628385949998], [0.5471617914138878], [0.47169519687777745], [0.47169519687777745], [0.5660187797055528], [0.6603810039027784], [0.7358475984388887], [0.7358475984388887], [0.6980949804861085], [0.6603810039027784], [0.6603810039027784], [0.6980949804861085], [0.7358475984388887], [0.7547045867305537], [0.7358475984388887], [0.6980949804861085], [0.6792379921944435], [0.6792379921944435], [0.6980949804861085], [0.7358475984388887], [0.7735615750222188], [0.8113141929749991], [0.8490281695583292], [0.8679237992194444], [0.8679237992194444], [0.8490281695583292], [0.8301711812666641], [0.792457204683334], [0.792457204683334], [0.792457204683334], [0.7547045867305537], [0.6792379921944435], [0.5660187797055528], [0.0], [0.4528382085861123], [0.5283048031222227], [0.6603810039027784], [0.792457204683334], [0.8679237992194444], [0.8867807875111094], [0.8679237992194444], [0.8490281695583292], [0.8113141929749991], [0.792457204683334], [0.792457204683334], [0.8301711812666641], [0.8490281695583292], [0.8679237992194444], [0.8679237992194444], [0.8301711812666641], [0.792457204683334], [0.7547045867305537], [0.7547045867305537], [0.792457204683334], [0.8490281695583292], [0.9056377758027745], [0.9433903937555547], [0.9811043703388848], [1.0]], "eval_masks": [[0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0]], "forwards": [[0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.7735615750222188], [0.8113141929749991], [0.792457204683334], [0.7358475984388887], [0.6792379921944435], [0.6414853742416632], [0.6414853742416632], [0.6414853742416632], [0.6603810039027784], [0.6792379921944435], [0.6603810039027784], [0.6603810039027784], [0.6603810039027784], [0.6603810039027784], [0.6603810039027784], [0.6603810039027784], [0.6603810039027784], [0.6603810039027784], [0.6603810039027784], [0.6603810039027784], [0.6603810039027784], [0.3773329726805519], [0.396228602341667], [0.47169519687777745], [0.5660187797055528], [0.622628385949998], [0.6037713976583331], [0.5660187797055528], [0.5283048031222227], [0.5660187797055528], [0.6792379921944435], [0.792457204683334], [0.8301711812666641], [0.8113141929749991], [0.6980949804861085], [0.5660187797055528], [0.49055218516944243], [0.5283048031222227], [0.6414853742416632], [0.7547045867305537], [0.8679237992194444], [0.8867807875111094], [0.8301711812666641], [0.7358475984388887], [0.622628385949998], [0.5283048031222227], [0.49055218516944243], [0.5094091734611075], [0.5471617914138878], [0.5849144093666679], [0.6037713976583331], [0.5849144093666679], [0.5283048031222227], [0.47169519687777745], [0.41508559063333206], [0.396228602341667], [0.396228602341667], [0.43394257892499716], [0.4528382085861123], [0.47169519687777745], [0.47169519687777745], [0.47169519687777745], [0.49055218516944243], [0.5283048031222227], [0.5849144093666679], [0.622628385949998], [0.6792379921944435], [0.6980949804861085], [0.7358475984388887], [0.6980949804861085], [0.6414853742416632], [0.5283048031222227], [0.43394257892499716], [0.3584759843888868], [0.33961899609722174], [0.33961899609722174], [0.33961899609722174], [0.33961899609722174], [0.33961899609722174], [0.33961899609722174], [0.33961899609722174], [0.33961899609722174], [0.33961899609722174], [0.33961899609722174], [0.33961899609722174], [0.24525677189999617], [0.2830093898527764], [0.3773329726805519], [0.4528382085861123], [0.5283048031222227], [0.5283048031222227], [0.49055218516944243], [0.396228602341667], [0.3207620078055567], [0.2830093898527764], [0.30186637814444145], [0.33961899609722174], [0.3773329726805519], [0.3773329726805519], [0.3207620078055567], [0.24525677189999617], [0.16979017736388585], [0.13207620078055576], [0.1509331890722208], [0.18868580702500107], [0.2641524015611114], [0.3207620078055567], [0.3207620078055567], [0.2830093898527764], [0.20754279531666608], [0.13207620078055576], [0.07546659453611047], [0.07546659453611047], [0.11318057111944055], [0.16979017736388585], [0.22639978360833113], [0.2830093898527764], [0.2830093898527764], [0.2830093898527764], [0.2830093898527764], [0.2830093898527764], [0.2830093898527764], [0.2830093898527764], [0.2830093898527764], [0.2830093898527764], [0.2830093898527764], [0.2830093898527764], [0.5094091734611075], [0.49055218516944243], [0.4528382085861123], [0.3773329726805519], [0.33961899609722174], [0.30186637814444145], [0.3207620078055567], [0.33961899609722174], [0.396228602341667], [0.4528382085861123], [0.4528382085861123], [0.41508559063333206], [0.33961899609722174], [0.30186637814444145], [0.30186637814444145], [0.3773329726805519], [0.4528382085861123], [0.49055218516944243], [0.4528382085861123], [0.33961899609722174], [0.18868580702500107], [0.07546659453611047], [0.037713976583330214], [0.05660960624444543], [0.1509331890722208], [0.30186637814444145], [0.49055218516944243], [0.6980949804861085], [0.8113141929749991], [0.792457204683334], [0.622628385949998], [0.33961899609722174], [0.11318057111944055], [0.07546659453611047], [0.20754279531666608], [0.4528382085861123], [0.6414853742416632], [0.7169519687777736], [0.6603810039027784], [0.5283048031222227], [0.41508559063333206], [0.3584759843888868], [0.3773329726805519], [0.43394257892499716], [0.49055218516944243], [0.5660187797055528], [0.622628385949998], [0.6980949804861085], [0.7358475984388887], [0.7358475984388887], [0.7358475984388887], [0.7169519687777736], [0.7169519687777736], [0.6980949804861085], [0.6792379921944435], [0.622628385949998], [0.5849144093666679], [0.5660187797055528], [0.6037713976583331], [0.6603810039027784], [0.6792379921944435], [0.622628385949998], [0.5471617914138878], [0.47169519687777745], [0.47169519687777745], [0.5660187797055528], [0.6603810039027784], [0.7358475984388887], [0.7358475984388887], [0.6980949804861085], [0.6603810039027784], [0.6603810039027784], [0.6980949804861085], [0.7358475984388887], [0.7547045867305537], [0.7358475984388887], [0.6980949804861085], [0.6792379921944435], [0.6792379921944435], [0.6980949804861085], [0.7358475984388887], [0.7735615750222188], [0.8113141929749991], [0.8490281695583292], [0.8679237992194444], [0.8679237992194444], [0.8490281695583292], [0.8301711812666641], [0.792457204683334], [0.792457204683334], [0.792457204683334], [0.7547045867305537], [0.6792379921944435], [0.5660187797055528], [0.5660187797055528], [0.4528382085861123], [0.5283048031222227], [0.6603810039027784], [0.792457204683334], [0.8679237992194444], [0.8867807875111094], [0.8679237992194444], [0.8490281695583292], [0.8113141929749991], [0.792457204683334], [0.792457204683334], [0.8301711812666641], [0.8490281695583292], [0.8679237992194444], [0.8679237992194444], [0.8301711812666641], [0.792457204683334], [0.7547045867305537], [0.7547045867305537], [0.792457204683334], [0.8490281695583292], [0.9056377758027745], [0.9433903937555547], [0.9811043703388848], [1.0]], "deltas": [[1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [2.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [2.0], [3.0], [4.0], [5.0], [6.0], [7.0], [8.0], [9.0], [10.0], [11.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [2.0], [3.0], [4.0], [5.0], [6.0], [7.0], [8.0], [9.0], [10.0], [11.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [2.0], [3.0], [4.0], [5.0], [6.0], [7.0], [8.0], [9.0], [10.0], [11.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [2.0], [3.0], [4.0], [5.0], [6.0], [7.0], [8.0], [9.0], [10.0]]}} -{"label": 0, "forward": {"values": [[0.840009830425166], [0.7999918079790285], [0.7399852543622513], [0.7000081920209715], [0.6599901695748343], [0.6400016384041943], [0.6599901695748343], [0.6599901695748343], [0.6599901695748343], [0.6400016384041943], [0.6400016384041943], [0.6599901695748343], [0.6800196608503317], [0.7199967231916115], [0.7800032768083887], [0.8200212992545262], [0.8200212992545262], [0.7999918079790285], [0.7399852543622513], [0.6800196608503317], [0.5999836159580568], [0.5400180224461375], [0.48001146882936024], [0.43999344638322274], [0.43999344638322274], [0.5], [0.5600065536167772], [0.5999836159580568], [0.6400016384041943], [0.6400016384041943], [0.6400016384041943], [0.6599901695748343], [0.7199967231916115], [0.7800032768083887], [0.8200212992545262], [0.8200212992545262], [0.7800032768083887], [0.7000081920209715], [0.6200131072335545], [0.5600065536167772], [0.5400180224461375], [0.5199885311706398], [0.5600065536167772], [0.6200131072335545], [0.6800196608503317], [0.7199967231916115], [0.6800196608503317], [0.6200131072335545], [0.5400180224461375], [0.5400180224461375], [0.5799950847874171], [0.6200131072335545], [0.6599901695748343], [0.6200131072335545], [0.5199885311706398], [0.43999344638322274], [0.420004915212583], [0.43999344638322274], [0.5199885311706398], [0.5400180224461375], [0.5400180224461375], [0.5199885311706398], [0.5], [0.5199885311706398], [0.5400180224461375], [0.5600065536167772], [0.5600065536167772], [0.5600065536167772], [0.5799950847874171], [0.6400016384041943], [0.7000081920209715], [0.7199967231916115], [0.6800196608503317], [0.5799950847874171], [0.48001146882936024], [0.4000163840419432], [0.3599983615958057], [0.3599983615958057], [0.4000163840419432], [0.48001146882936024], [0.5600065536167772], [0.5999836159580568], [0.5600065536167772], [0.43999344638322274], [0.26001474563774885], [0.0799950847874171], [0.019988531170639923], [0.14000163840419436], [0.3799868927664455], [0.6200131072335545], [0.7399852543622513], [0.7000081920209715], [0.5], [0.26001474563774885], [0.0799950847874171], [0.0], [0.019988531170639923], [0.12001310723355457], [0.23998525436225124], [0.3799868927664455], [0.45998197755386255], [0.5], [0.43999344638322274], [0.3199803391496682], [0.21999672319161145], [0.18001966085033183], [0.21999672319161145], [0.29999180797902847], [0.4000163840419432], [0.43999344638322274], [0.43999344638322274], [0.3799868927664455], [0.3199803391496682], [0.26001474563774885], [0.23998525436225124], [0.23998525436225124], [0.2800032768083887], [0.3199803391496682], [0.34000983042516597], [0.34000983042516597], [0.29999180797902847], [0.23998525436225124], [0.18001966085033183], [0.12001310723355457], [0.0799950847874171], [0.06000655361677732], [0.06000655361677732], [0.0799950847874171], [0.12001310723355457], [0.14000163840419436], [0.18001966085033183], [0.18001966085033183], [0.1599901695748341], [0.12001310723355457], [0.09998361595805688], [0.12001310723355457], [0.18001966085033183], [0.26001474563774885], [0.3199803391496682], [0.34000983042516597], [0.2800032768083887], [0.2000081920209716], [0.14000163840419436], [0.12001310723355457], [0.18001966085033183], [0.26001474563774885], [0.34000983042516597], [0.4000163840419432], [0.4000163840419432], [0.3599983615958057], [0.29999180797902847], [0.23998525436225124], [0.23998525436225124], [0.29999180797902847], [0.3799868927664455], [0.45998197755386255], [0.48001146882936024], [0.43999344638322274], [0.3799868927664455], [0.3199803391496682], [0.26001474563774885], [0.23998525436225124], [0.21999672319161145], [0.2000081920209716], [0.18001966085033183], [0.18001966085033183], [0.23998525436225124], [0.29999180797902847], [0.3599983615958057], [0.420004915212583], [0.420004915212583], [0.3799868927664455], [0.34000983042516597], [0.34000983042516597], [0.3599983615958057], [0.420004915212583], [0.5], [0.5999836159580568], [0.6400016384041943], [0.6400016384041943], [0.5999836159580568], [0.5400180224461375], [0.48001146882936024], [0.45998197755386255], [0.5], [0.5199885311706398], [0.5799950847874171], [0.5600065536167772], [0.5], [0.4000163840419432], [0.34000983042516597], [0.3199803391496682], [0.3799868927664455], [0.48001146882936024], [0.5799950847874171], [0.6400016384041943], [0.5999836159580568], [0.5], [0.4000163840419432], [0.3599983615958057], [0.4000163840419432], [0.5199885311706398], [0.6800196608503317], [0.8200212992545262], [0.8799868927664455], [0.840009830425166], [0.7399852543622513], [0.6200131072335545], [0.5400180224461375], [0.5400180224461375], [0.5999836159580568], [0.7000081920209715], [0.7800032768083887], [0.7999918079790285], [0.7399852543622513], [0.6200131072335545], [0.5], [0.45998197755386255], [0.48001146882936024], [0.5799950847874171], [0.6599901695748343], [0.6800196608503317], [0.5799950847874171], [0.45998197755386255], [0.3599983615958057], [0.34000983042516597], [0.45998197755386255], [0.6200131072335545], [0.7600147456377487], [0.7800032768083887], [0.7000081920209715], [0.5600065536167772], [0.420004915212583], [0.3599983615958057], [0.4000163840419432], [0.48001146882936024], [0.5799950847874171], [0.6200131072335545], [0.6200131072335545], [0.5999836159580568], [0.5799950847874171], [0.5799950847874171], [0.6400016384041943], [0.7600147456377487], [0.840009830425166], [0.8599983615958057], [0.7999918079790285], [0.6599901695748343], [0.48001146882936024], [0.4000163840419432], [0.43999344638322274], [0.6200131072335545], [0.8200212992545262], [1.0], [1.0], [0.8599983615958057]], "masks": [[1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1]], "evals": [[0.840009830425166], [0.7999918079790285], [0.7399852543622513], [0.7000081920209715], [0.6599901695748343], [0.6400016384041943], [0.6599901695748343], [0.6599901695748343], [0.6599901695748343], [0.6400016384041943], [0.6400016384041943], [0.6599901695748343], [0.6800196608503317], [0.7199967231916115], [0.7800032768083887], [0.8200212992545262], [0.8200212992545262], [0.7999918079790285], [0.7399852543622513], [0.6800196608503317], [0.5999836159580568], [0.5400180224461375], [0.48001146882936024], [0.43999344638322274], [0.43999344638322274], [0.5], [0.5600065536167772], [0.5999836159580568], [0.6400016384041943], [0.6400016384041943], [0.6400016384041943], [0.6599901695748343], [0.7199967231916115], [0.7800032768083887], [0.8200212992545262], [0.8200212992545262], [0.7800032768083887], [0.7000081920209715], [0.6200131072335545], [0.5600065536167772], [0.5400180224461375], [0.5199885311706398], [0.5600065536167772], [0.6200131072335545], [0.6800196608503317], [0.7199967231916115], [0.6800196608503317], [0.6200131072335545], [0.5400180224461375], [0.5400180224461375], [0.5799950847874171], [0.6200131072335545], [0.6599901695748343], [0.6200131072335545], [0.5199885311706398], [0.43999344638322274], [0.420004915212583], [0.43999344638322274], [0.5199885311706398], [0.5400180224461375], [0.5400180224461375], [0.5199885311706398], [0.5], [0.5199885311706398], [0.5400180224461375], [0.5600065536167772], [0.5600065536167772], [0.5600065536167772], [0.5799950847874171], [0.6400016384041943], [0.7000081920209715], [0.7199967231916115], [0.6800196608503317], [0.5799950847874171], [0.48001146882936024], [0.4000163840419432], [0.3599983615958057], [0.3599983615958057], [0.4000163840419432], [0.48001146882936024], [0.5600065536167772], [0.5999836159580568], [0.5600065536167772], [0.43999344638322274], [0.26001474563774885], [0.0799950847874171], [0.019988531170639923], [0.14000163840419436], [0.3799868927664455], [0.6200131072335545], [0.7399852543622513], [0.7000081920209715], [0.5], [0.26001474563774885], [0.0799950847874171], [0.0], [0.019988531170639923], [0.12001310723355457], [0.23998525436225124], [0.3799868927664455], [0.45998197755386255], [0.5], [0.43999344638322274], [0.3199803391496682], [0.21999672319161145], [0.18001966085033183], [0.21999672319161145], [0.29999180797902847], [0.4000163840419432], [0.43999344638322274], [0.43999344638322274], [0.3799868927664455], [0.3199803391496682], [0.26001474563774885], [0.23998525436225124], [0.23998525436225124], [0.2800032768083887], [0.3199803391496682], [0.34000983042516597], [0.34000983042516597], [0.29999180797902847], [0.23998525436225124], [0.18001966085033183], [0.12001310723355457], [0.0799950847874171], [0.06000655361677732], [0.06000655361677732], [0.0799950847874171], [0.12001310723355457], [0.14000163840419436], [0.18001966085033183], [0.18001966085033183], [0.1599901695748341], [0.12001310723355457], [0.09998361595805688], [0.12001310723355457], [0.18001966085033183], [0.26001474563774885], [0.3199803391496682], [0.34000983042516597], [0.2800032768083887], [0.2000081920209716], [0.14000163840419436], [0.12001310723355457], [0.18001966085033183], [0.26001474563774885], [0.34000983042516597], [0.4000163840419432], [0.4000163840419432], [0.3599983615958057], [0.29999180797902847], [0.23998525436225124], [0.23998525436225124], [0.29999180797902847], [0.3799868927664455], [0.45998197755386255], [0.48001146882936024], [0.43999344638322274], [0.3799868927664455], [0.3199803391496682], [0.26001474563774885], [0.23998525436225124], [0.21999672319161145], [0.2000081920209716], [0.18001966085033183], [0.18001966085033183], [0.23998525436225124], [0.29999180797902847], [0.3599983615958057], [0.420004915212583], [0.420004915212583], [0.3799868927664455], [0.34000983042516597], [0.34000983042516597], [0.3599983615958057], [0.420004915212583], [0.5], [0.5999836159580568], [0.6400016384041943], [0.6400016384041943], [0.5999836159580568], [0.5400180224461375], [0.48001146882936024], [0.45998197755386255], [0.5], [0.5199885311706398], [0.5799950847874171], [0.5600065536167772], [0.5], [0.4000163840419432], [0.34000983042516597], [0.3199803391496682], [0.3799868927664455], [0.48001146882936024], [0.5799950847874171], [0.6400016384041943], [0.5999836159580568], [0.5], [0.4000163840419432], [0.3599983615958057], [0.4000163840419432], [0.5199885311706398], [0.6800196608503317], [0.8200212992545262], [0.8799868927664455], [0.840009830425166], [0.7399852543622513], [0.6200131072335545], [0.5400180224461375], [0.5400180224461375], [0.5999836159580568], [0.7000081920209715], [0.7800032768083887], [0.7999918079790285], [0.7399852543622513], [0.6200131072335545], [0.5], [0.45998197755386255], [0.48001146882936024], [0.5799950847874171], [0.6599901695748343], [0.6800196608503317], [0.5799950847874171], [0.45998197755386255], [0.3599983615958057], [0.34000983042516597], [0.45998197755386255], [0.6200131072335545], [0.7600147456377487], [0.7800032768083887], [0.7000081920209715], [0.5600065536167772], [0.420004915212583], [0.3599983615958057], [0.4000163840419432], [0.48001146882936024], [0.5799950847874171], [0.6200131072335545], [0.6200131072335545], [0.5999836159580568], [0.5799950847874171], [0.5799950847874171], [0.6400016384041943], [0.7600147456377487], [0.840009830425166], [0.8599983615958057], [0.7999918079790285], [0.6599901695748343], [0.48001146882936024], [0.4000163840419432], [0.43999344638322274], [0.6200131072335545], [0.8200212992545262], [1.0], [1.0], [0.8599983615958057]], "eval_masks": [[0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0]], "forwards": [[0.840009830425166], [0.7999918079790285], [0.7399852543622513], [0.7000081920209715], [0.6599901695748343], [0.6400016384041943], [0.6599901695748343], [0.6599901695748343], [0.6599901695748343], [0.6400016384041943], [0.6400016384041943], [0.6599901695748343], [0.6800196608503317], [0.7199967231916115], [0.7800032768083887], [0.8200212992545262], [0.8200212992545262], [0.7999918079790285], [0.7399852543622513], [0.6800196608503317], [0.5999836159580568], [0.5400180224461375], [0.48001146882936024], [0.43999344638322274], [0.43999344638322274], [0.5], [0.5600065536167772], [0.5999836159580568], [0.6400016384041943], [0.6400016384041943], [0.6400016384041943], [0.6599901695748343], [0.7199967231916115], [0.7800032768083887], [0.8200212992545262], [0.8200212992545262], [0.7800032768083887], [0.7000081920209715], [0.6200131072335545], [0.5600065536167772], [0.5400180224461375], [0.5199885311706398], [0.5600065536167772], [0.6200131072335545], [0.6800196608503317], [0.7199967231916115], [0.6800196608503317], [0.6200131072335545], [0.5400180224461375], [0.5400180224461375], [0.5799950847874171], [0.6200131072335545], [0.6599901695748343], [0.6200131072335545], [0.5199885311706398], [0.43999344638322274], [0.420004915212583], [0.43999344638322274], [0.5199885311706398], [0.5400180224461375], [0.5400180224461375], [0.5199885311706398], [0.5], [0.5199885311706398], [0.5400180224461375], [0.5600065536167772], [0.5600065536167772], [0.5600065536167772], [0.5799950847874171], [0.6400016384041943], [0.7000081920209715], [0.7199967231916115], [0.6800196608503317], [0.5799950847874171], [0.48001146882936024], [0.4000163840419432], [0.3599983615958057], [0.3599983615958057], [0.4000163840419432], [0.48001146882936024], [0.5600065536167772], [0.5999836159580568], [0.5600065536167772], [0.43999344638322274], [0.26001474563774885], [0.0799950847874171], [0.019988531170639923], [0.14000163840419436], [0.3799868927664455], [0.6200131072335545], [0.7399852543622513], [0.7000081920209715], [0.5], [0.26001474563774885], [0.0799950847874171], [0.0], [0.019988531170639923], [0.12001310723355457], [0.23998525436225124], [0.3799868927664455], [0.45998197755386255], [0.5], [0.43999344638322274], [0.3199803391496682], [0.21999672319161145], [0.18001966085033183], [0.21999672319161145], [0.29999180797902847], [0.4000163840419432], [0.43999344638322274], [0.43999344638322274], [0.3799868927664455], [0.3199803391496682], [0.26001474563774885], [0.23998525436225124], [0.23998525436225124], [0.2800032768083887], [0.3199803391496682], [0.34000983042516597], [0.34000983042516597], [0.29999180797902847], [0.23998525436225124], [0.18001966085033183], [0.12001310723355457], [0.0799950847874171], [0.06000655361677732], [0.06000655361677732], [0.0799950847874171], [0.12001310723355457], [0.14000163840419436], [0.18001966085033183], [0.18001966085033183], [0.1599901695748341], [0.12001310723355457], [0.09998361595805688], [0.12001310723355457], [0.18001966085033183], [0.26001474563774885], [0.3199803391496682], [0.34000983042516597], [0.2800032768083887], [0.2000081920209716], [0.14000163840419436], [0.12001310723355457], [0.18001966085033183], [0.26001474563774885], [0.34000983042516597], [0.4000163840419432], [0.4000163840419432], [0.3599983615958057], [0.29999180797902847], [0.23998525436225124], [0.23998525436225124], [0.29999180797902847], [0.3799868927664455], [0.45998197755386255], [0.48001146882936024], [0.43999344638322274], [0.3799868927664455], [0.3199803391496682], [0.26001474563774885], [0.23998525436225124], [0.21999672319161145], [0.2000081920209716], [0.18001966085033183], [0.18001966085033183], [0.23998525436225124], [0.29999180797902847], [0.3599983615958057], [0.420004915212583], [0.420004915212583], [0.3799868927664455], [0.34000983042516597], [0.34000983042516597], [0.3599983615958057], [0.420004915212583], [0.5], [0.5999836159580568], [0.6400016384041943], [0.6400016384041943], [0.5999836159580568], [0.5400180224461375], [0.48001146882936024], [0.45998197755386255], [0.5], [0.5199885311706398], [0.5799950847874171], [0.5600065536167772], [0.5], [0.4000163840419432], [0.34000983042516597], [0.3199803391496682], [0.3799868927664455], [0.48001146882936024], [0.5799950847874171], [0.6400016384041943], [0.5999836159580568], [0.5], [0.4000163840419432], [0.3599983615958057], [0.4000163840419432], [0.5199885311706398], [0.6800196608503317], [0.8200212992545262], [0.8799868927664455], [0.840009830425166], [0.7399852543622513], [0.6200131072335545], [0.5400180224461375], [0.5400180224461375], [0.5999836159580568], [0.7000081920209715], [0.7800032768083887], [0.7999918079790285], [0.7399852543622513], [0.6200131072335545], [0.5], [0.45998197755386255], [0.48001146882936024], [0.5799950847874171], [0.6599901695748343], [0.6800196608503317], [0.5799950847874171], [0.45998197755386255], [0.3599983615958057], [0.34000983042516597], [0.45998197755386255], [0.6200131072335545], [0.7600147456377487], [0.7800032768083887], [0.7000081920209715], [0.5600065536167772], [0.420004915212583], [0.3599983615958057], [0.4000163840419432], [0.48001146882936024], [0.5799950847874171], [0.6200131072335545], [0.6200131072335545], [0.5999836159580568], [0.5799950847874171], [0.5799950847874171], [0.6400016384041943], [0.7600147456377487], [0.840009830425166], [0.8599983615958057], [0.7999918079790285], [0.6599901695748343], [0.48001146882936024], [0.4000163840419432], [0.43999344638322274], [0.6200131072335545], [0.8200212992545262], [1.0], [1.0], [0.8599983615958057]], "deltas": [[1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0]]}, "backward": {"values": [[0.8599983615958057], [1.0], [1.0], [0.8200212992545262], [0.6200131072335545], [0.43999344638322274], [0.4000163840419432], [0.48001146882936024], [0.6599901695748343], [0.7999918079790285], [0.8599983615958057], [0.840009830425166], [0.7600147456377487], [0.6400016384041943], [0.5799950847874171], [0.5799950847874171], [0.5999836159580568], [0.6200131072335545], [0.6200131072335545], [0.5799950847874171], [0.48001146882936024], [0.4000163840419432], [0.3599983615958057], [0.420004915212583], [0.5600065536167772], [0.7000081920209715], [0.7800032768083887], [0.7600147456377487], [0.6200131072335545], [0.45998197755386255], [0.34000983042516597], [0.3599983615958057], [0.45998197755386255], [0.5799950847874171], [0.6800196608503317], [0.6599901695748343], [0.5799950847874171], [0.48001146882936024], [0.45998197755386255], [0.5], [0.6200131072335545], [0.7399852543622513], [0.7999918079790285], [0.7800032768083887], [0.7000081920209715], [0.5999836159580568], [0.5400180224461375], [0.5400180224461375], [0.6200131072335545], [0.7399852543622513], [0.840009830425166], [0.8799868927664455], [0.8200212992545262], [0.6800196608503317], [0.5199885311706398], [0.4000163840419432], [0.3599983615958057], [0.4000163840419432], [0.5], [0.5999836159580568], [0.6400016384041943], [0.5799950847874171], [0.48001146882936024], [0.3799868927664455], [0.3199803391496682], [0.34000983042516597], [0.4000163840419432], [0.5], [0.5600065536167772], [0.5799950847874171], [0.5199885311706398], [0.5], [0.45998197755386255], [0.48001146882936024], [0.5400180224461375], [0.5999836159580568], [0.6400016384041943], [0.6400016384041943], [0.5999836159580568], [0.5], [0.420004915212583], [0.3599983615958057], [0.34000983042516597], [0.34000983042516597], [0.3799868927664455], [0.420004915212583], [0.420004915212583], [0.3599983615958057], [0.29999180797902847], [0.23998525436225124], [0.18001966085033183], [0.18001966085033183], [0.2000081920209716], [0.21999672319161145], [0.23998525436225124], [0.26001474563774885], [0.3199803391496682], [0.3799868927664455], [0.43999344638322274], [0.48001146882936024], [0.45998197755386255], [0.3799868927664455], [0.29999180797902847], [0.23998525436225124], [0.23998525436225124], [0.29999180797902847], [0.3599983615958057], [0.4000163840419432], [0.4000163840419432], [0.34000983042516597], [0.26001474563774885], [0.18001966085033183], [0.12001310723355457], [0.14000163840419436], [0.2000081920209716], [0.2800032768083887], [0.34000983042516597], [0.3199803391496682], [0.26001474563774885], [0.18001966085033183], [0.12001310723355457], [0.09998361595805688], [0.12001310723355457], [0.1599901695748341], [0.18001966085033183], [0.18001966085033183], [0.14000163840419436], [0.12001310723355457], [0.0799950847874171], [0.06000655361677732], [0.06000655361677732], [0.0799950847874171], [0.12001310723355457], [0.18001966085033183], [0.23998525436225124], [0.29999180797902847], [0.34000983042516597], [0.34000983042516597], [0.3199803391496682], [0.2800032768083887], [0.23998525436225124], [0.23998525436225124], [0.26001474563774885], [0.3199803391496682], [0.3799868927664455], [0.43999344638322274], [0.43999344638322274], [0.4000163840419432], [0.29999180797902847], [0.21999672319161145], [0.18001966085033183], [0.21999672319161145], [0.3199803391496682], [0.43999344638322274], [0.5], [0.45998197755386255], [0.3799868927664455], [0.23998525436225124], [0.12001310723355457], [0.019988531170639923], [0.0], [0.0799950847874171], [0.26001474563774885], [0.5], [0.7000081920209715], [0.7399852543622513], [0.6200131072335545], [0.3799868927664455], [0.14000163840419436], [0.019988531170639923], [0.0799950847874171], [0.26001474563774885], [0.43999344638322274], [0.5600065536167772], [0.5999836159580568], [0.5600065536167772], [0.48001146882936024], [0.4000163840419432], [0.3599983615958057], [0.3599983615958057], [0.4000163840419432], [0.48001146882936024], [0.5799950847874171], [0.6800196608503317], [0.7199967231916115], [0.7000081920209715], [0.6400016384041943], [0.5799950847874171], [0.5600065536167772], [0.5600065536167772], [0.5600065536167772], [0.5400180224461375], [0.5199885311706398], [0.5], [0.5199885311706398], [0.5400180224461375], [0.5400180224461375], [0.5199885311706398], [0.43999344638322274], [0.420004915212583], [0.43999344638322274], [0.5199885311706398], [0.6200131072335545], [0.6599901695748343], [0.6200131072335545], [0.5799950847874171], [0.5400180224461375], [0.5400180224461375], [0.6200131072335545], [0.6800196608503317], [0.7199967231916115], [0.6800196608503317], [0.6200131072335545], [0.5600065536167772], [0.5199885311706398], [0.5400180224461375], [0.5600065536167772], [0.6200131072335545], [0.7000081920209715], [0.7800032768083887], [0.8200212992545262], [0.8200212992545262], [0.7800032768083887], [0.7199967231916115], [0.6599901695748343], [0.6400016384041943], [0.6400016384041943], [0.6400016384041943], [0.5999836159580568], [0.5600065536167772], [0.5], [0.43999344638322274], [0.43999344638322274], [0.48001146882936024], [0.5400180224461375], [0.5999836159580568], [0.6800196608503317], [0.7399852543622513], [0.7999918079790285], [0.8200212992545262], [0.8200212992545262], [0.7800032768083887], [0.7199967231916115], [0.6800196608503317], [0.6599901695748343], [0.6400016384041943], [0.6400016384041943], [0.6599901695748343], [0.6599901695748343], [0.6599901695748343], [0.6400016384041943], [0.6599901695748343], [0.7000081920209715], [0.7399852543622513], [0.7999918079790285], [0.840009830425166]], "masks": [[1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1]], "evals": [[0.8599983615958057], [1.0], [1.0], [0.8200212992545262], [0.6200131072335545], [0.43999344638322274], [0.4000163840419432], [0.48001146882936024], [0.6599901695748343], [0.7999918079790285], [0.8599983615958057], [0.840009830425166], [0.7600147456377487], [0.6400016384041943], [0.5799950847874171], [0.5799950847874171], [0.5999836159580568], [0.6200131072335545], [0.6200131072335545], [0.5799950847874171], [0.48001146882936024], [0.4000163840419432], [0.3599983615958057], [0.420004915212583], [0.5600065536167772], [0.7000081920209715], [0.7800032768083887], [0.7600147456377487], [0.6200131072335545], [0.45998197755386255], [0.34000983042516597], [0.3599983615958057], [0.45998197755386255], [0.5799950847874171], [0.6800196608503317], [0.6599901695748343], [0.5799950847874171], [0.48001146882936024], [0.45998197755386255], [0.5], [0.6200131072335545], [0.7399852543622513], [0.7999918079790285], [0.7800032768083887], [0.7000081920209715], [0.5999836159580568], [0.5400180224461375], [0.5400180224461375], [0.6200131072335545], [0.7399852543622513], [0.840009830425166], [0.8799868927664455], [0.8200212992545262], [0.6800196608503317], [0.5199885311706398], [0.4000163840419432], [0.3599983615958057], [0.4000163840419432], [0.5], [0.5999836159580568], [0.6400016384041943], [0.5799950847874171], [0.48001146882936024], [0.3799868927664455], [0.3199803391496682], [0.34000983042516597], [0.4000163840419432], [0.5], [0.5600065536167772], [0.5799950847874171], [0.5199885311706398], [0.5], [0.45998197755386255], [0.48001146882936024], [0.5400180224461375], [0.5999836159580568], [0.6400016384041943], [0.6400016384041943], [0.5999836159580568], [0.5], [0.420004915212583], [0.3599983615958057], [0.34000983042516597], [0.34000983042516597], [0.3799868927664455], [0.420004915212583], [0.420004915212583], [0.3599983615958057], [0.29999180797902847], [0.23998525436225124], [0.18001966085033183], [0.18001966085033183], [0.2000081920209716], [0.21999672319161145], [0.23998525436225124], [0.26001474563774885], [0.3199803391496682], [0.3799868927664455], [0.43999344638322274], [0.48001146882936024], [0.45998197755386255], [0.3799868927664455], [0.29999180797902847], [0.23998525436225124], [0.23998525436225124], [0.29999180797902847], [0.3599983615958057], [0.4000163840419432], [0.4000163840419432], [0.34000983042516597], [0.26001474563774885], [0.18001966085033183], [0.12001310723355457], [0.14000163840419436], [0.2000081920209716], [0.2800032768083887], [0.34000983042516597], [0.3199803391496682], [0.26001474563774885], [0.18001966085033183], [0.12001310723355457], [0.09998361595805688], [0.12001310723355457], [0.1599901695748341], [0.18001966085033183], [0.18001966085033183], [0.14000163840419436], [0.12001310723355457], [0.0799950847874171], [0.06000655361677732], [0.06000655361677732], [0.0799950847874171], [0.12001310723355457], [0.18001966085033183], [0.23998525436225124], [0.29999180797902847], [0.34000983042516597], [0.34000983042516597], [0.3199803391496682], [0.2800032768083887], [0.23998525436225124], [0.23998525436225124], [0.26001474563774885], [0.3199803391496682], [0.3799868927664455], [0.43999344638322274], [0.43999344638322274], [0.4000163840419432], [0.29999180797902847], [0.21999672319161145], [0.18001966085033183], [0.21999672319161145], [0.3199803391496682], [0.43999344638322274], [0.5], [0.45998197755386255], [0.3799868927664455], [0.23998525436225124], [0.12001310723355457], [0.019988531170639923], [0.0], [0.0799950847874171], [0.26001474563774885], [0.5], [0.7000081920209715], [0.7399852543622513], [0.6200131072335545], [0.3799868927664455], [0.14000163840419436], [0.019988531170639923], [0.0799950847874171], [0.26001474563774885], [0.43999344638322274], [0.5600065536167772], [0.5999836159580568], [0.5600065536167772], [0.48001146882936024], [0.4000163840419432], [0.3599983615958057], [0.3599983615958057], [0.4000163840419432], [0.48001146882936024], [0.5799950847874171], [0.6800196608503317], [0.7199967231916115], [0.7000081920209715], [0.6400016384041943], [0.5799950847874171], [0.5600065536167772], [0.5600065536167772], [0.5600065536167772], [0.5400180224461375], [0.5199885311706398], [0.5], [0.5199885311706398], [0.5400180224461375], [0.5400180224461375], [0.5199885311706398], [0.43999344638322274], [0.420004915212583], [0.43999344638322274], [0.5199885311706398], [0.6200131072335545], [0.6599901695748343], [0.6200131072335545], [0.5799950847874171], [0.5400180224461375], [0.5400180224461375], [0.6200131072335545], [0.6800196608503317], [0.7199967231916115], [0.6800196608503317], [0.6200131072335545], [0.5600065536167772], [0.5199885311706398], [0.5400180224461375], [0.5600065536167772], [0.6200131072335545], [0.7000081920209715], [0.7800032768083887], [0.8200212992545262], [0.8200212992545262], [0.7800032768083887], [0.7199967231916115], [0.6599901695748343], [0.6400016384041943], [0.6400016384041943], [0.6400016384041943], [0.5999836159580568], [0.5600065536167772], [0.5], [0.43999344638322274], [0.43999344638322274], [0.48001146882936024], [0.5400180224461375], [0.5999836159580568], [0.6800196608503317], [0.7399852543622513], [0.7999918079790285], [0.8200212992545262], [0.8200212992545262], [0.7800032768083887], [0.7199967231916115], [0.6800196608503317], [0.6599901695748343], [0.6400016384041943], [0.6400016384041943], [0.6599901695748343], [0.6599901695748343], [0.6599901695748343], [0.6400016384041943], [0.6599901695748343], [0.7000081920209715], [0.7399852543622513], [0.7999918079790285], [0.840009830425166]], "eval_masks": [[0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0]], "forwards": [[0.8599983615958057], [1.0], [1.0], [0.8200212992545262], [0.6200131072335545], [0.43999344638322274], [0.4000163840419432], [0.48001146882936024], [0.6599901695748343], [0.7999918079790285], [0.8599983615958057], [0.840009830425166], [0.7600147456377487], [0.6400016384041943], [0.5799950847874171], [0.5799950847874171], [0.5999836159580568], [0.6200131072335545], [0.6200131072335545], [0.5799950847874171], [0.48001146882936024], [0.4000163840419432], [0.3599983615958057], [0.420004915212583], [0.5600065536167772], [0.7000081920209715], [0.7800032768083887], [0.7600147456377487], [0.6200131072335545], [0.45998197755386255], [0.34000983042516597], [0.3599983615958057], [0.45998197755386255], [0.5799950847874171], [0.6800196608503317], [0.6599901695748343], [0.5799950847874171], [0.48001146882936024], [0.45998197755386255], [0.5], [0.6200131072335545], [0.7399852543622513], [0.7999918079790285], [0.7800032768083887], [0.7000081920209715], [0.5999836159580568], [0.5400180224461375], [0.5400180224461375], [0.6200131072335545], [0.7399852543622513], [0.840009830425166], [0.8799868927664455], [0.8200212992545262], [0.6800196608503317], [0.5199885311706398], [0.4000163840419432], [0.3599983615958057], [0.4000163840419432], [0.5], [0.5999836159580568], [0.6400016384041943], [0.5799950847874171], [0.48001146882936024], [0.3799868927664455], [0.3199803391496682], [0.34000983042516597], [0.4000163840419432], [0.5], [0.5600065536167772], [0.5799950847874171], [0.5199885311706398], [0.5], [0.45998197755386255], [0.48001146882936024], [0.5400180224461375], [0.5999836159580568], [0.6400016384041943], [0.6400016384041943], [0.5999836159580568], [0.5], [0.420004915212583], [0.3599983615958057], [0.34000983042516597], [0.34000983042516597], [0.3799868927664455], [0.420004915212583], [0.420004915212583], [0.3599983615958057], [0.29999180797902847], [0.23998525436225124], [0.18001966085033183], [0.18001966085033183], [0.2000081920209716], [0.21999672319161145], [0.23998525436225124], [0.26001474563774885], [0.3199803391496682], [0.3799868927664455], [0.43999344638322274], [0.48001146882936024], [0.45998197755386255], [0.3799868927664455], [0.29999180797902847], [0.23998525436225124], [0.23998525436225124], [0.29999180797902847], [0.3599983615958057], [0.4000163840419432], [0.4000163840419432], [0.34000983042516597], [0.26001474563774885], [0.18001966085033183], [0.12001310723355457], [0.14000163840419436], [0.2000081920209716], [0.2800032768083887], [0.34000983042516597], [0.3199803391496682], [0.26001474563774885], [0.18001966085033183], [0.12001310723355457], [0.09998361595805688], [0.12001310723355457], [0.1599901695748341], [0.18001966085033183], [0.18001966085033183], [0.14000163840419436], [0.12001310723355457], [0.0799950847874171], [0.06000655361677732], [0.06000655361677732], [0.0799950847874171], [0.12001310723355457], [0.18001966085033183], [0.23998525436225124], [0.29999180797902847], [0.34000983042516597], [0.34000983042516597], [0.3199803391496682], [0.2800032768083887], [0.23998525436225124], [0.23998525436225124], [0.26001474563774885], [0.3199803391496682], [0.3799868927664455], [0.43999344638322274], [0.43999344638322274], [0.4000163840419432], [0.29999180797902847], [0.21999672319161145], [0.18001966085033183], [0.21999672319161145], [0.3199803391496682], [0.43999344638322274], [0.5], [0.45998197755386255], [0.3799868927664455], [0.23998525436225124], [0.12001310723355457], [0.019988531170639923], [0.0], [0.0799950847874171], [0.26001474563774885], [0.5], [0.7000081920209715], [0.7399852543622513], [0.6200131072335545], [0.3799868927664455], [0.14000163840419436], [0.019988531170639923], [0.0799950847874171], [0.26001474563774885], [0.43999344638322274], [0.5600065536167772], [0.5999836159580568], [0.5600065536167772], [0.48001146882936024], [0.4000163840419432], [0.3599983615958057], [0.3599983615958057], [0.4000163840419432], [0.48001146882936024], [0.5799950847874171], [0.6800196608503317], [0.7199967231916115], [0.7000081920209715], [0.6400016384041943], [0.5799950847874171], [0.5600065536167772], [0.5600065536167772], [0.5600065536167772], [0.5400180224461375], [0.5199885311706398], [0.5], [0.5199885311706398], [0.5400180224461375], [0.5400180224461375], [0.5199885311706398], [0.43999344638322274], [0.420004915212583], [0.43999344638322274], [0.5199885311706398], [0.6200131072335545], [0.6599901695748343], [0.6200131072335545], [0.5799950847874171], [0.5400180224461375], [0.5400180224461375], [0.6200131072335545], [0.6800196608503317], [0.7199967231916115], [0.6800196608503317], [0.6200131072335545], [0.5600065536167772], [0.5199885311706398], [0.5400180224461375], [0.5600065536167772], [0.6200131072335545], [0.7000081920209715], [0.7800032768083887], [0.8200212992545262], [0.8200212992545262], [0.7800032768083887], [0.7199967231916115], [0.6599901695748343], [0.6400016384041943], [0.6400016384041943], [0.6400016384041943], [0.5999836159580568], [0.5600065536167772], [0.5], [0.43999344638322274], [0.43999344638322274], [0.48001146882936024], [0.5400180224461375], [0.5999836159580568], [0.6800196608503317], [0.7399852543622513], [0.7999918079790285], [0.8200212992545262], [0.8200212992545262], [0.7800032768083887], [0.7199967231916115], [0.6800196608503317], [0.6599901695748343], [0.6400016384041943], [0.6400016384041943], [0.6599901695748343], [0.6599901695748343], [0.6599901695748343], [0.6400016384041943], [0.6599901695748343], [0.7000081920209715], [0.7399852543622513], [0.7999918079790285], [0.840009830425166]], "deltas": [[1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0]]}} -{"label": 0, "forward": {"values": [[0.8771917217591262], [0.8596579476861167], [0.8421241736131073], [0.8070206956021846], [0.7543834435182525], [0.7017461914343202], [0.6666786432883012], [0.6842124173613107], [0.7193158953722334], [0.7719172175912619], [0.789486921529175], [0.7719172175912619], [0.7368496694452429], [0.6842124173613107], [0.6491089393503882], [0.6491089393503882], [0.6666786432883012], [0.7017461914343202], [0.7543834435182525], [0.7543834435182525], [0.7368496694452429], [0.6491089393503882], [0.5263006611095142], [0.4035283127335441], [0.33332135671169877], [0.33332135671169877], [0.42106208680655366], [0.5263006611095142], [0.5965076171313596], [0.6491089393503882], [0.6666786432883012], [0.6842124173613107], [0.7017461914343202], [0.7017461914343202], [0.6842124173613107], [0.6666786432883012], [0.6491089393503882], [0.6491089393503882], [0.6491089393503882], [0.6140413912043691], [0.5789379131934463], [0.5614041391204369], [0.5789379131934463], [0.6315751652773786], [0.6842124173613107], [0.6666786432883012], [0.6140413912043691], [0.5438703650474275], [0.5263006611095142], [0.5789379131934463], [0.6666786432883012], [0.7543834435182525], [0.7368496694452429], [0.6491089393503882], [0.5263006611095142], [0.4385958608795631], [0.4385958608795631], [0.5263006611095142], [0.6491089393503882], [0.7193158953722334], [0.7368496694452429], [0.7193158953722334], [0.6842124173613107], [0.6666786432883012], [0.6315751652773786], [0.6315751652773786], [0.6315751652773786], [0.6842124173613107], [0.7719172175912619], [0.8421241736131073], [0.8596579476861167], [0.789486921529175], [0.6666786432883012], [0.5263006611095142], [0.4385958608795631], [0.4035283127335441], [0.42106208680655366], [0.4736993388904858], [0.5438703650474275], [0.6315751652773786], [0.7368496694452429], [0.8070206956021846], [0.7719172175912619], [0.6140413912043691], [0.35089106064961195], [0.10527450416786431], [0.0], [0.1403420523138834], [0.42106208680655366], [0.7368496694452429], [0.9473627479160679], [0.964932451853981], [0.8421241736131073], [0.6315751652773786], [0.4035283127335441], [0.21051307847082495], [0.07017102615694162], [0.01753377407300947], [0.052637252083932155], [0.17544553032480595], [0.35089106064961195], [0.5087668870365047], [0.5965076171313596], [0.5965076171313596], [0.5438703650474275], [0.49123311296349526], [0.4736993388904858], [0.5087668870365047], [0.5438703650474275], [0.5614041391204369], [0.5263006611095142], [0.4561296349525726], [0.38595860879563093], [0.38595860879563093], [0.42106208680655366], [0.49123311296349526], [0.5614041391204369], [0.6315751652773786], [0.6842124173613107], [0.6842124173613107], [0.6315751652773786], [0.5087668870365047], [0.35089106064961195], [0.19297930439781547], [0.07017102615694162], [0.052637252083932155], [0.12280827824087379], [0.2631503305547571], [0.38595860879563093], [0.4736993388904858], [0.49123311296349526], [0.4736993388904858], [0.4035283127335441], [0.33332135671169877], [0.2807200344926703], [0.22808278240873817], [0.22808278240873817], [0.2631503305547571], [0.33332135671169877], [0.38595860879563093], [0.4385958608795631], [0.4561296349525726], [0.4385958608795631], [0.4035283127335441], [0.3684248347226215], [0.35089106064961195], [0.38595860879563093], [0.4385958608795631], [0.4736993388904858], [0.49123311296349526], [0.49123311296349526], [0.4736993388904858], [0.49123311296349526], [0.5263006611095142], [0.5965076171313596], [0.6491089393503882], [0.6491089393503882], [0.6140413912043691], [0.5438703650474275], [0.4736993388904858], [0.4561296349525726], [0.4561296349525726], [0.49123311296349526], [0.5263006611095142], [0.5789379131934463], [0.6491089393503882], [0.7193158953722334], [0.7543834435182525], [0.7543834435182525], [0.7193158953722334], [0.6666786432883012], [0.5965076171313596], [0.5614041391204369], [0.5789379131934463], [0.6491089393503882], [0.7368496694452429], [0.8245544696751941], [0.8596579476861167], [0.8947254958321357], [0.8771917217591262], [0.8596579476861167], [0.8245544696751941], [0.7543834435182525], [0.6842124173613107], [0.6140413912043691], [0.5789379131934463], [0.5789379131934463], [0.5965076171313596], [0.5789379131934463], [0.5438703650474275], [0.5263006611095142], [0.5263006611095142], [0.5789379131934463], [0.6666786432883012], [0.7543834435182525], [0.789486921529175], [0.7719172175912619], [0.7368496694452429], [0.6666786432883012], [0.6315751652773786], [0.6666786432883012], [0.7368496694452429], [0.8245544696751941], [0.9298289738430584], [1.0], [0.9824662259269905], [0.9298289738430584], [0.8070206956021846], [0.7017461914343202], [0.6491089393503882], [0.6666786432883012], [0.7368496694452429], [0.8421241736131073], [0.9122951997700489], [0.8947254958321357], [0.8070206956021846], [0.6842124173613107], [0.5965076171313596], [0.5789379131934463], [0.6140413912043691], [0.6666786432883012], [0.6842124173613107], [0.6491089393503882], [0.5614041391204369], [0.5087668870365047], [0.5263006611095142], [0.5965076171313596], [0.7017461914343202], [0.8070206956021846], [0.8596579476861167], [0.8596579476861167], [0.8245544696751941], [0.7719172175912619], [0.7193158953722334], [0.6842124173613107], [0.6666786432883012], [0.6491089393503882], [0.6666786432883012], [0.6666786432883012], [0.6666786432883012], [0.6842124173613107], [0.7017461914343202], [0.7543834435182525], [0.8245544696751941], [0.8947254958321357], [0.9473627479160679], [0.964932451853981], [0.9473627479160679], [0.9122951997700489], [0.8771917217591262], [0.8771917217591262], [0.9122951997700489], [0.9473627479160679], [0.9824662259269905], [0.9824662259269905], [0.9122951997700489]], "masks": [[1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1]], "evals": [[0.8771917217591262], [0.8596579476861167], [0.8421241736131073], [0.8070206956021846], [0.7543834435182525], [0.7017461914343202], [0.6666786432883012], [0.6842124173613107], [0.7193158953722334], [0.7719172175912619], [0.789486921529175], [0.7719172175912619], [0.7368496694452429], [0.6842124173613107], [0.6491089393503882], [0.6491089393503882], [0.6666786432883012], [0.7017461914343202], [0.7543834435182525], [0.7543834435182525], [0.7368496694452429], [0.6491089393503882], [0.5263006611095142], [0.4035283127335441], [0.33332135671169877], [0.33332135671169877], [0.42106208680655366], [0.5263006611095142], [0.5965076171313596], [0.6491089393503882], [0.6666786432883012], [0.6842124173613107], [0.7017461914343202], [0.7017461914343202], [0.6842124173613107], [0.6666786432883012], [0.6491089393503882], [0.6491089393503882], [0.6491089393503882], [0.6140413912043691], [0.5789379131934463], [0.5614041391204369], [0.5789379131934463], [0.6315751652773786], [0.6842124173613107], [0.6666786432883012], [0.6140413912043691], [0.5438703650474275], [0.5263006611095142], [0.5789379131934463], [0.6666786432883012], [0.7543834435182525], [0.7368496694452429], [0.6491089393503882], [0.5263006611095142], [0.4385958608795631], [0.4385958608795631], [0.5263006611095142], [0.6491089393503882], [0.7193158953722334], [0.7368496694452429], [0.7193158953722334], [0.6842124173613107], [0.6666786432883012], [0.6315751652773786], [0.6315751652773786], [0.6315751652773786], [0.6842124173613107], [0.7719172175912619], [0.8421241736131073], [0.8596579476861167], [0.789486921529175], [0.6666786432883012], [0.5263006611095142], [0.4385958608795631], [0.4035283127335441], [0.42106208680655366], [0.4736993388904858], [0.5438703650474275], [0.6315751652773786], [0.7368496694452429], [0.8070206956021846], [0.7719172175912619], [0.6140413912043691], [0.35089106064961195], [0.10527450416786431], [0.0], [0.1403420523138834], [0.42106208680655366], [0.7368496694452429], [0.9473627479160679], [0.964932451853981], [0.8421241736131073], [0.6315751652773786], [0.4035283127335441], [0.21051307847082495], [0.07017102615694162], [0.01753377407300947], [0.052637252083932155], [0.17544553032480595], [0.35089106064961195], [0.5087668870365047], [0.5965076171313596], [0.5965076171313596], [0.5438703650474275], [0.49123311296349526], [0.4736993388904858], [0.5087668870365047], [0.5438703650474275], [0.5614041391204369], [0.5263006611095142], [0.4561296349525726], [0.38595860879563093], [0.38595860879563093], [0.42106208680655366], [0.49123311296349526], [0.5614041391204369], [0.6315751652773786], [0.6842124173613107], [0.6842124173613107], [0.6315751652773786], [0.5087668870365047], [0.35089106064961195], [0.19297930439781547], [0.07017102615694162], [0.052637252083932155], [0.12280827824087379], [0.2631503305547571], [0.38595860879563093], [0.4736993388904858], [0.49123311296349526], [0.4736993388904858], [0.4035283127335441], [0.33332135671169877], [0.2807200344926703], [0.22808278240873817], [0.22808278240873817], [0.2631503305547571], [0.33332135671169877], [0.38595860879563093], [0.4385958608795631], [0.4561296349525726], [0.4385958608795631], [0.4035283127335441], [0.3684248347226215], [0.35089106064961195], [0.38595860879563093], [0.4385958608795631], [0.4736993388904858], [0.49123311296349526], [0.49123311296349526], [0.4736993388904858], [0.49123311296349526], [0.5263006611095142], [0.5965076171313596], [0.6491089393503882], [0.6491089393503882], [0.6140413912043691], [0.5438703650474275], [0.4736993388904858], [0.4561296349525726], [0.4561296349525726], [0.49123311296349526], [0.5263006611095142], [0.5789379131934463], [0.6491089393503882], [0.7193158953722334], [0.7543834435182525], [0.7543834435182525], [0.7193158953722334], [0.6666786432883012], [0.5965076171313596], [0.5614041391204369], [0.5789379131934463], [0.6491089393503882], [0.7368496694452429], [0.8245544696751941], [0.8596579476861167], [0.8947254958321357], [0.8771917217591262], [0.8596579476861167], [0.8245544696751941], [0.7543834435182525], [0.6842124173613107], [0.6140413912043691], [0.5789379131934463], [0.5789379131934463], [0.5965076171313596], [0.5789379131934463], [0.5438703650474275], [0.5263006611095142], [0.5263006611095142], [0.5789379131934463], [0.6666786432883012], [0.7543834435182525], [0.789486921529175], [0.7719172175912619], [0.7368496694452429], [0.6666786432883012], [0.6315751652773786], [0.6666786432883012], [0.7368496694452429], [0.8245544696751941], [0.9298289738430584], [1.0], [0.9824662259269905], [0.9298289738430584], [0.8070206956021846], [0.7017461914343202], [0.6491089393503882], [0.6666786432883012], [0.7368496694452429], [0.8421241736131073], [0.9122951997700489], [0.8947254958321357], [0.8070206956021846], [0.6842124173613107], [0.5965076171313596], [0.5789379131934463], [0.6140413912043691], [0.6666786432883012], [0.6842124173613107], [0.6491089393503882], [0.5614041391204369], [0.5087668870365047], [0.5263006611095142], [0.5965076171313596], [0.7017461914343202], [0.8070206956021846], [0.8596579476861167], [0.8596579476861167], [0.8245544696751941], [0.7719172175912619], [0.7193158953722334], [0.6842124173613107], [0.6666786432883012], [0.6491089393503882], [0.6666786432883012], [0.6666786432883012], [0.6666786432883012], [0.6842124173613107], [0.7017461914343202], [0.7543834435182525], [0.8245544696751941], [0.8947254958321357], [0.9473627479160679], [0.964932451853981], [0.9473627479160679], [0.9122951997700489], [0.8771917217591262], [0.8771917217591262], [0.9122951997700489], [0.9473627479160679], [0.9824662259269905], [0.9824662259269905], [0.9122951997700489]], "eval_masks": [[0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0]], "forwards": [[0.8771917217591262], [0.8596579476861167], [0.8421241736131073], [0.8070206956021846], [0.7543834435182525], [0.7017461914343202], [0.6666786432883012], [0.6842124173613107], [0.7193158953722334], [0.7719172175912619], [0.789486921529175], [0.7719172175912619], [0.7368496694452429], [0.6842124173613107], [0.6491089393503882], [0.6491089393503882], [0.6666786432883012], [0.7017461914343202], [0.7543834435182525], [0.7543834435182525], [0.7368496694452429], [0.6491089393503882], [0.5263006611095142], [0.4035283127335441], [0.33332135671169877], [0.33332135671169877], [0.42106208680655366], [0.5263006611095142], [0.5965076171313596], [0.6491089393503882], [0.6666786432883012], [0.6842124173613107], [0.7017461914343202], [0.7017461914343202], [0.6842124173613107], [0.6666786432883012], [0.6491089393503882], [0.6491089393503882], [0.6491089393503882], [0.6140413912043691], [0.5789379131934463], [0.5614041391204369], [0.5789379131934463], [0.6315751652773786], [0.6842124173613107], [0.6666786432883012], [0.6140413912043691], [0.5438703650474275], [0.5263006611095142], [0.5789379131934463], [0.6666786432883012], [0.7543834435182525], [0.7368496694452429], [0.6491089393503882], [0.5263006611095142], [0.4385958608795631], [0.4385958608795631], [0.5263006611095142], [0.6491089393503882], [0.7193158953722334], [0.7368496694452429], [0.7193158953722334], [0.6842124173613107], [0.6666786432883012], [0.6315751652773786], [0.6315751652773786], [0.6315751652773786], [0.6842124173613107], [0.7719172175912619], [0.8421241736131073], [0.8596579476861167], [0.789486921529175], [0.6666786432883012], [0.5263006611095142], [0.4385958608795631], [0.4035283127335441], [0.42106208680655366], [0.4736993388904858], [0.5438703650474275], [0.6315751652773786], [0.7368496694452429], [0.8070206956021846], [0.7719172175912619], [0.6140413912043691], [0.35089106064961195], [0.10527450416786431], [0.0], [0.1403420523138834], [0.42106208680655366], [0.7368496694452429], [0.9473627479160679], [0.964932451853981], [0.8421241736131073], [0.6315751652773786], [0.4035283127335441], [0.21051307847082495], [0.07017102615694162], [0.01753377407300947], [0.052637252083932155], [0.17544553032480595], [0.35089106064961195], [0.5087668870365047], [0.5965076171313596], [0.5965076171313596], [0.5438703650474275], [0.49123311296349526], [0.4736993388904858], [0.5087668870365047], [0.5438703650474275], [0.5614041391204369], [0.5263006611095142], [0.4561296349525726], [0.38595860879563093], [0.38595860879563093], [0.42106208680655366], [0.49123311296349526], [0.5614041391204369], [0.6315751652773786], [0.6842124173613107], [0.6842124173613107], [0.6315751652773786], [0.5087668870365047], [0.35089106064961195], [0.19297930439781547], [0.07017102615694162], [0.052637252083932155], [0.12280827824087379], [0.2631503305547571], [0.38595860879563093], [0.4736993388904858], [0.49123311296349526], [0.4736993388904858], [0.4035283127335441], [0.33332135671169877], [0.2807200344926703], [0.22808278240873817], [0.22808278240873817], [0.2631503305547571], [0.33332135671169877], [0.38595860879563093], [0.4385958608795631], [0.4561296349525726], [0.4385958608795631], [0.4035283127335441], [0.3684248347226215], [0.35089106064961195], [0.38595860879563093], [0.4385958608795631], [0.4736993388904858], [0.49123311296349526], [0.49123311296349526], [0.4736993388904858], [0.49123311296349526], [0.5263006611095142], [0.5965076171313596], [0.6491089393503882], [0.6491089393503882], [0.6140413912043691], [0.5438703650474275], [0.4736993388904858], [0.4561296349525726], [0.4561296349525726], [0.49123311296349526], [0.5263006611095142], [0.5789379131934463], [0.6491089393503882], [0.7193158953722334], [0.7543834435182525], [0.7543834435182525], [0.7193158953722334], [0.6666786432883012], [0.5965076171313596], [0.5614041391204369], [0.5789379131934463], [0.6491089393503882], [0.7368496694452429], [0.8245544696751941], [0.8596579476861167], [0.8947254958321357], [0.8771917217591262], [0.8596579476861167], [0.8245544696751941], [0.7543834435182525], [0.6842124173613107], [0.6140413912043691], [0.5789379131934463], [0.5789379131934463], [0.5965076171313596], [0.5789379131934463], [0.5438703650474275], [0.5263006611095142], [0.5263006611095142], [0.5789379131934463], [0.6666786432883012], [0.7543834435182525], [0.789486921529175], [0.7719172175912619], [0.7368496694452429], [0.6666786432883012], [0.6315751652773786], [0.6666786432883012], [0.7368496694452429], [0.8245544696751941], [0.9298289738430584], [1.0], [0.9824662259269905], [0.9298289738430584], [0.8070206956021846], [0.7017461914343202], [0.6491089393503882], [0.6666786432883012], [0.7368496694452429], [0.8421241736131073], [0.9122951997700489], [0.8947254958321357], [0.8070206956021846], [0.6842124173613107], [0.5965076171313596], [0.5789379131934463], [0.6140413912043691], [0.6666786432883012], [0.6842124173613107], [0.6491089393503882], [0.5614041391204369], [0.5087668870365047], [0.5263006611095142], [0.5965076171313596], [0.7017461914343202], [0.8070206956021846], [0.8596579476861167], [0.8596579476861167], [0.8245544696751941], [0.7719172175912619], [0.7193158953722334], [0.6842124173613107], [0.6666786432883012], [0.6491089393503882], [0.6666786432883012], [0.6666786432883012], [0.6666786432883012], [0.6842124173613107], [0.7017461914343202], [0.7543834435182525], [0.8245544696751941], [0.8947254958321357], [0.9473627479160679], [0.964932451853981], [0.9473627479160679], [0.9122951997700489], [0.8771917217591262], [0.8771917217591262], [0.9122951997700489], [0.9473627479160679], [0.9824662259269905], [0.9824662259269905], [0.9122951997700489]], "deltas": [[1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0]]}, "backward": {"values": [[0.9122951997700489], [0.9824662259269905], [0.9824662259269905], [0.9473627479160679], [0.9122951997700489], [0.8771917217591262], [0.8771917217591262], [0.9122951997700489], [0.9473627479160679], [0.964932451853981], [0.9473627479160679], [0.8947254958321357], [0.8245544696751941], [0.7543834435182525], [0.7017461914343202], [0.6842124173613107], [0.6666786432883012], [0.6666786432883012], [0.6666786432883012], [0.6491089393503882], [0.6666786432883012], [0.6842124173613107], [0.7193158953722334], [0.7719172175912619], [0.8245544696751941], [0.8596579476861167], [0.8596579476861167], [0.8070206956021846], [0.7017461914343202], [0.5965076171313596], [0.5263006611095142], [0.5087668870365047], [0.5614041391204369], [0.6491089393503882], [0.6842124173613107], [0.6666786432883012], [0.6140413912043691], [0.5789379131934463], [0.5965076171313596], [0.6842124173613107], [0.8070206956021846], [0.8947254958321357], [0.9122951997700489], [0.8421241736131073], [0.7368496694452429], [0.6666786432883012], [0.6491089393503882], [0.7017461914343202], [0.8070206956021846], [0.9298289738430584], [0.9824662259269905], [1.0], [0.9298289738430584], [0.8245544696751941], [0.7368496694452429], [0.6666786432883012], [0.6315751652773786], [0.6666786432883012], [0.7368496694452429], [0.7719172175912619], [0.789486921529175], [0.7543834435182525], [0.6666786432883012], [0.5789379131934463], [0.5263006611095142], [0.5263006611095142], [0.5438703650474275], [0.5789379131934463], [0.5965076171313596], [0.5789379131934463], [0.5789379131934463], [0.6140413912043691], [0.6842124173613107], [0.7543834435182525], [0.8245544696751941], [0.8596579476861167], [0.8771917217591262], [0.8947254958321357], [0.8596579476861167], [0.8245544696751941], [0.7368496694452429], [0.6491089393503882], [0.5789379131934463], [0.5614041391204369], [0.5965076171313596], [0.6666786432883012], [0.7193158953722334], [0.7543834435182525], [0.7543834435182525], [0.7193158953722334], [0.6491089393503882], [0.5789379131934463], [0.5263006611095142], [0.49123311296349526], [0.4561296349525726], [0.4561296349525726], [0.4736993388904858], [0.5438703650474275], [0.6140413912043691], [0.6491089393503882], [0.6491089393503882], [0.5965076171313596], [0.5263006611095142], [0.49123311296349526], [0.4736993388904858], [0.49123311296349526], [0.49123311296349526], [0.4736993388904858], [0.4385958608795631], [0.38595860879563093], [0.35089106064961195], [0.3684248347226215], [0.4035283127335441], [0.4385958608795631], [0.4561296349525726], [0.4385958608795631], [0.38595860879563093], [0.33332135671169877], [0.2631503305547571], [0.22808278240873817], [0.22808278240873817], [0.2807200344926703], [0.33332135671169877], [0.4035283127335441], [0.4736993388904858], [0.49123311296349526], [0.4736993388904858], [0.38595860879563093], [0.2631503305547571], [0.12280827824087379], [0.052637252083932155], [0.07017102615694162], [0.19297930439781547], [0.35089106064961195], [0.5087668870365047], [0.6315751652773786], [0.6842124173613107], [0.6842124173613107], [0.6315751652773786], [0.5614041391204369], [0.49123311296349526], [0.42106208680655366], [0.38595860879563093], [0.38595860879563093], [0.4561296349525726], [0.5263006611095142], [0.5614041391204369], [0.5438703650474275], [0.5087668870365047], [0.4736993388904858], [0.49123311296349526], [0.5438703650474275], [0.5965076171313596], [0.5965076171313596], [0.5087668870365047], [0.35089106064961195], [0.17544553032480595], [0.052637252083932155], [0.01753377407300947], [0.07017102615694162], [0.21051307847082495], [0.4035283127335441], [0.6315751652773786], [0.8421241736131073], [0.964932451853981], [0.9473627479160679], [0.7368496694452429], [0.42106208680655366], [0.1403420523138834], [0.0], [0.10527450416786431], [0.35089106064961195], [0.6140413912043691], [0.7719172175912619], [0.8070206956021846], [0.7368496694452429], [0.6315751652773786], [0.5438703650474275], [0.4736993388904858], [0.42106208680655366], [0.4035283127335441], [0.4385958608795631], [0.5263006611095142], [0.6666786432883012], [0.789486921529175], [0.8596579476861167], [0.8421241736131073], [0.7719172175912619], [0.6842124173613107], [0.6315751652773786], [0.6315751652773786], [0.6315751652773786], [0.6666786432883012], [0.6842124173613107], [0.7193158953722334], [0.7368496694452429], [0.7193158953722334], [0.6491089393503882], [0.5263006611095142], [0.4385958608795631], [0.4385958608795631], [0.5263006611095142], [0.6491089393503882], [0.7368496694452429], [0.7543834435182525], [0.6666786432883012], [0.5789379131934463], [0.5263006611095142], [0.5438703650474275], [0.6140413912043691], [0.6666786432883012], [0.6842124173613107], [0.6315751652773786], [0.5789379131934463], [0.5614041391204369], [0.5789379131934463], [0.6140413912043691], [0.6491089393503882], [0.6491089393503882], [0.6491089393503882], [0.6666786432883012], [0.6842124173613107], [0.7017461914343202], [0.7017461914343202], [0.6842124173613107], [0.6666786432883012], [0.6491089393503882], [0.5965076171313596], [0.5263006611095142], [0.42106208680655366], [0.33332135671169877], [0.33332135671169877], [0.4035283127335441], [0.5263006611095142], [0.6491089393503882], [0.7368496694452429], [0.7543834435182525], [0.7543834435182525], [0.7017461914343202], [0.6666786432883012], [0.6491089393503882], [0.6491089393503882], [0.6842124173613107], [0.7368496694452429], [0.7719172175912619], [0.789486921529175], [0.7719172175912619], [0.7193158953722334], [0.6842124173613107], [0.6666786432883012], [0.7017461914343202], [0.7543834435182525], [0.8070206956021846], [0.8421241736131073], [0.8596579476861167], [0.8771917217591262]], "masks": [[1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1]], "evals": [[0.9122951997700489], [0.9824662259269905], [0.9824662259269905], [0.9473627479160679], [0.9122951997700489], [0.8771917217591262], [0.8771917217591262], [0.9122951997700489], [0.9473627479160679], [0.964932451853981], [0.9473627479160679], [0.8947254958321357], [0.8245544696751941], [0.7543834435182525], [0.7017461914343202], [0.6842124173613107], [0.6666786432883012], [0.6666786432883012], [0.6666786432883012], [0.6491089393503882], [0.6666786432883012], [0.6842124173613107], [0.7193158953722334], [0.7719172175912619], [0.8245544696751941], [0.8596579476861167], [0.8596579476861167], [0.8070206956021846], [0.7017461914343202], [0.5965076171313596], [0.5263006611095142], [0.5087668870365047], [0.5614041391204369], [0.6491089393503882], [0.6842124173613107], [0.6666786432883012], [0.6140413912043691], [0.5789379131934463], [0.5965076171313596], [0.6842124173613107], [0.8070206956021846], [0.8947254958321357], [0.9122951997700489], [0.8421241736131073], [0.7368496694452429], [0.6666786432883012], [0.6491089393503882], [0.7017461914343202], [0.8070206956021846], [0.9298289738430584], [0.9824662259269905], [1.0], [0.9298289738430584], [0.8245544696751941], [0.7368496694452429], [0.6666786432883012], [0.6315751652773786], [0.6666786432883012], [0.7368496694452429], [0.7719172175912619], [0.789486921529175], [0.7543834435182525], [0.6666786432883012], [0.5789379131934463], [0.5263006611095142], [0.5263006611095142], [0.5438703650474275], [0.5789379131934463], [0.5965076171313596], [0.5789379131934463], [0.5789379131934463], [0.6140413912043691], [0.6842124173613107], [0.7543834435182525], [0.8245544696751941], [0.8596579476861167], [0.8771917217591262], [0.8947254958321357], [0.8596579476861167], [0.8245544696751941], [0.7368496694452429], [0.6491089393503882], [0.5789379131934463], [0.5614041391204369], [0.5965076171313596], [0.6666786432883012], [0.7193158953722334], [0.7543834435182525], [0.7543834435182525], [0.7193158953722334], [0.6491089393503882], [0.5789379131934463], [0.5263006611095142], [0.49123311296349526], [0.4561296349525726], [0.4561296349525726], [0.4736993388904858], [0.5438703650474275], [0.6140413912043691], [0.6491089393503882], [0.6491089393503882], [0.5965076171313596], [0.5263006611095142], [0.49123311296349526], [0.4736993388904858], [0.49123311296349526], [0.49123311296349526], [0.4736993388904858], [0.4385958608795631], [0.38595860879563093], [0.35089106064961195], [0.3684248347226215], [0.4035283127335441], [0.4385958608795631], [0.4561296349525726], [0.4385958608795631], [0.38595860879563093], [0.33332135671169877], [0.2631503305547571], [0.22808278240873817], [0.22808278240873817], [0.2807200344926703], [0.33332135671169877], [0.4035283127335441], [0.4736993388904858], [0.49123311296349526], [0.4736993388904858], [0.38595860879563093], [0.2631503305547571], [0.12280827824087379], [0.052637252083932155], [0.07017102615694162], [0.19297930439781547], [0.35089106064961195], [0.5087668870365047], [0.6315751652773786], [0.6842124173613107], [0.6842124173613107], [0.6315751652773786], [0.5614041391204369], [0.49123311296349526], [0.42106208680655366], [0.38595860879563093], [0.38595860879563093], [0.4561296349525726], [0.5263006611095142], [0.5614041391204369], [0.5438703650474275], [0.5087668870365047], [0.4736993388904858], [0.49123311296349526], [0.5438703650474275], [0.5965076171313596], [0.5965076171313596], [0.5087668870365047], [0.35089106064961195], [0.17544553032480595], [0.052637252083932155], [0.01753377407300947], [0.07017102615694162], [0.21051307847082495], [0.4035283127335441], [0.6315751652773786], [0.8421241736131073], [0.964932451853981], [0.9473627479160679], [0.7368496694452429], [0.42106208680655366], [0.1403420523138834], [0.0], [0.10527450416786431], [0.35089106064961195], [0.6140413912043691], [0.7719172175912619], [0.8070206956021846], [0.7368496694452429], [0.6315751652773786], [0.5438703650474275], [0.4736993388904858], [0.42106208680655366], [0.4035283127335441], [0.4385958608795631], [0.5263006611095142], [0.6666786432883012], [0.789486921529175], [0.8596579476861167], [0.8421241736131073], [0.7719172175912619], [0.6842124173613107], [0.6315751652773786], [0.6315751652773786], [0.6315751652773786], [0.6666786432883012], [0.6842124173613107], [0.7193158953722334], [0.7368496694452429], [0.7193158953722334], [0.6491089393503882], [0.5263006611095142], [0.4385958608795631], [0.4385958608795631], [0.5263006611095142], [0.6491089393503882], [0.7368496694452429], [0.7543834435182525], [0.6666786432883012], [0.5789379131934463], [0.5263006611095142], [0.5438703650474275], [0.6140413912043691], [0.6666786432883012], [0.6842124173613107], [0.6315751652773786], [0.5789379131934463], [0.5614041391204369], [0.5789379131934463], [0.6140413912043691], [0.6491089393503882], [0.6491089393503882], [0.6491089393503882], [0.6666786432883012], [0.6842124173613107], [0.7017461914343202], [0.7017461914343202], [0.6842124173613107], [0.6666786432883012], [0.6491089393503882], [0.5965076171313596], [0.5263006611095142], [0.42106208680655366], [0.33332135671169877], [0.33332135671169877], [0.4035283127335441], [0.5263006611095142], [0.6491089393503882], [0.7368496694452429], [0.7543834435182525], [0.7543834435182525], [0.7017461914343202], [0.6666786432883012], [0.6491089393503882], [0.6491089393503882], [0.6842124173613107], [0.7368496694452429], [0.7719172175912619], [0.789486921529175], [0.7719172175912619], [0.7193158953722334], [0.6842124173613107], [0.6666786432883012], [0.7017461914343202], [0.7543834435182525], [0.8070206956021846], [0.8421241736131073], [0.8596579476861167], [0.8771917217591262]], "eval_masks": [[0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0]], "forwards": [[0.9122951997700489], [0.9824662259269905], [0.9824662259269905], [0.9473627479160679], [0.9122951997700489], [0.8771917217591262], [0.8771917217591262], [0.9122951997700489], [0.9473627479160679], [0.964932451853981], [0.9473627479160679], [0.8947254958321357], [0.8245544696751941], [0.7543834435182525], [0.7017461914343202], [0.6842124173613107], [0.6666786432883012], [0.6666786432883012], [0.6666786432883012], [0.6491089393503882], [0.6666786432883012], [0.6842124173613107], [0.7193158953722334], [0.7719172175912619], [0.8245544696751941], [0.8596579476861167], [0.8596579476861167], [0.8070206956021846], [0.7017461914343202], [0.5965076171313596], [0.5263006611095142], [0.5087668870365047], [0.5614041391204369], [0.6491089393503882], [0.6842124173613107], [0.6666786432883012], [0.6140413912043691], [0.5789379131934463], [0.5965076171313596], [0.6842124173613107], [0.8070206956021846], [0.8947254958321357], [0.9122951997700489], [0.8421241736131073], [0.7368496694452429], [0.6666786432883012], [0.6491089393503882], [0.7017461914343202], [0.8070206956021846], [0.9298289738430584], [0.9824662259269905], [1.0], [0.9298289738430584], [0.8245544696751941], [0.7368496694452429], [0.6666786432883012], [0.6315751652773786], [0.6666786432883012], [0.7368496694452429], [0.7719172175912619], [0.789486921529175], [0.7543834435182525], [0.6666786432883012], [0.5789379131934463], [0.5263006611095142], [0.5263006611095142], [0.5438703650474275], [0.5789379131934463], [0.5965076171313596], [0.5789379131934463], [0.5789379131934463], [0.6140413912043691], [0.6842124173613107], [0.7543834435182525], [0.8245544696751941], [0.8596579476861167], [0.8771917217591262], [0.8947254958321357], [0.8596579476861167], [0.8245544696751941], [0.7368496694452429], [0.6491089393503882], [0.5789379131934463], [0.5614041391204369], [0.5965076171313596], [0.6666786432883012], [0.7193158953722334], [0.7543834435182525], [0.7543834435182525], [0.7193158953722334], [0.6491089393503882], [0.5789379131934463], [0.5263006611095142], [0.49123311296349526], [0.4561296349525726], [0.4561296349525726], [0.4736993388904858], [0.5438703650474275], [0.6140413912043691], [0.6491089393503882], [0.6491089393503882], [0.5965076171313596], [0.5263006611095142], [0.49123311296349526], [0.4736993388904858], [0.49123311296349526], [0.49123311296349526], [0.4736993388904858], [0.4385958608795631], [0.38595860879563093], [0.35089106064961195], [0.3684248347226215], [0.4035283127335441], [0.4385958608795631], [0.4561296349525726], [0.4385958608795631], [0.38595860879563093], [0.33332135671169877], [0.2631503305547571], [0.22808278240873817], [0.22808278240873817], [0.2807200344926703], [0.33332135671169877], [0.4035283127335441], [0.4736993388904858], [0.49123311296349526], [0.4736993388904858], [0.38595860879563093], [0.2631503305547571], [0.12280827824087379], [0.052637252083932155], [0.07017102615694162], [0.19297930439781547], [0.35089106064961195], [0.5087668870365047], [0.6315751652773786], [0.6842124173613107], [0.6842124173613107], [0.6315751652773786], [0.5614041391204369], [0.49123311296349526], [0.42106208680655366], [0.38595860879563093], [0.38595860879563093], [0.4561296349525726], [0.5263006611095142], [0.5614041391204369], [0.5438703650474275], [0.5087668870365047], [0.4736993388904858], [0.49123311296349526], [0.5438703650474275], [0.5965076171313596], [0.5965076171313596], [0.5087668870365047], [0.35089106064961195], [0.17544553032480595], [0.052637252083932155], [0.01753377407300947], [0.07017102615694162], [0.21051307847082495], [0.4035283127335441], [0.6315751652773786], [0.8421241736131073], [0.964932451853981], [0.9473627479160679], [0.7368496694452429], [0.42106208680655366], [0.1403420523138834], [0.0], [0.10527450416786431], [0.35089106064961195], [0.6140413912043691], [0.7719172175912619], [0.8070206956021846], [0.7368496694452429], [0.6315751652773786], [0.5438703650474275], [0.4736993388904858], [0.42106208680655366], [0.4035283127335441], [0.4385958608795631], [0.5263006611095142], [0.6666786432883012], [0.789486921529175], [0.8596579476861167], [0.8421241736131073], [0.7719172175912619], [0.6842124173613107], [0.6315751652773786], [0.6315751652773786], [0.6315751652773786], [0.6666786432883012], [0.6842124173613107], [0.7193158953722334], [0.7368496694452429], [0.7193158953722334], [0.6491089393503882], [0.5263006611095142], [0.4385958608795631], [0.4385958608795631], [0.5263006611095142], [0.6491089393503882], [0.7368496694452429], [0.7543834435182525], [0.6666786432883012], [0.5789379131934463], [0.5263006611095142], [0.5438703650474275], [0.6140413912043691], [0.6666786432883012], [0.6842124173613107], [0.6315751652773786], [0.5789379131934463], [0.5614041391204369], [0.5789379131934463], [0.6140413912043691], [0.6491089393503882], [0.6491089393503882], [0.6491089393503882], [0.6666786432883012], [0.6842124173613107], [0.7017461914343202], [0.7017461914343202], [0.6842124173613107], [0.6666786432883012], [0.6491089393503882], [0.5965076171313596], [0.5263006611095142], [0.42106208680655366], [0.33332135671169877], [0.33332135671169877], [0.4035283127335441], [0.5263006611095142], [0.6491089393503882], [0.7368496694452429], [0.7543834435182525], [0.7543834435182525], [0.7017461914343202], [0.6666786432883012], [0.6491089393503882], [0.6491089393503882], [0.6842124173613107], [0.7368496694452429], [0.7719172175912619], [0.789486921529175], [0.7719172175912619], [0.7193158953722334], [0.6842124173613107], [0.6666786432883012], [0.7017461914343202], [0.7543834435182525], [0.8070206956021846], [0.8421241736131073], [0.8596579476861167], [0.8771917217591262]], "deltas": [[1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0]]}} -{"label": 0, "forward": {"values": [[0.7678466939730837], [0.7500000000000001], [0.7500000000000001], [0.7500000000000001], [0.7500000000000001], [0.7143066120538326], [0.6607299590403745], [0.6071533060269163], [0.5714233469865418], [0.5535766530134582], [0.5893066120538326], [0.6607299590403745], [0.7143066120538326], [0.7678466939730837], [0.8035766530134583], [0.8214233469865418], [0.8035766530134583], [0.7678466939730837], [0.7321533060269164], [0.696423346986542], [0.6428466939730838], [0.5714233469865418], [0.5], [0.46430661205383267], [0.44642334698654185], [0.48215330602691636], [0.5714233469865418], [0.6428466939730838], [0.696423346986542], [0.696423346986542], [0.6428466939730838], [0.6071533060269163], [0.6071533060269163], [0.625], [0.6785766530134582], [0.7321533060269164], [0.7678466939730837], [0.7857299590403746], [0.7678466939730837], [0.7143066120538326], [0.6428466939730838], [0.5714233469865418], [0.5357299590403745], [0.5357299590403745], [0.5893066120538326], [0.6607299590403745], [0.7143066120538326], [0.7143066120538326], [0.6785766530134582], [0.6428466939730838], [0.625], [0.625], [0.625], [0.5893066120538326], [0.5357299590403745], [0.46430661205383267], [0.44642334698654185], [0.48215330602691636], [0.5178832650672909], [0.5357299590403745], [0.5], [0.46430661205383267], [0.4285766530134582], [0.44642334698654185], [0.48215330602691636], [0.5535766530134582], [0.5714233469865418], [0.5714233469865418], [0.5714233469865418], [0.5893066120538326], [0.625], [0.6607299590403745], [0.6607299590403745], [0.625], [0.5714233469865418], [0.5], [0.4285766530134582], [0.37500000000000006], [0.3214233469865419], [0.3214233469865419], [0.3928832650672909], [0.46430661205383267], [0.5357299590403745], [0.5178832650672909], [0.4107299590403745], [0.3035766530134582], [0.2143066120538327], [0.2678832650672908], [0.3928832650672909], [0.5357299590403745], [0.6071533060269163], [0.5535766530134582], [0.4107299590403745], [0.25000000000000006], [0.12500000000000003], [0.07142334698654194], [0.08930661205383265], [0.17857665301345818], [0.3035766530134582], [0.4107299590403745], [0.5], [0.5], [0.4285766530134582], [0.2857299590403745], [0.16072995904037454], [0.08930661205383265], [0.10715330602691638], [0.2143066120538327], [0.3214233469865419], [0.4285766530134582], [0.48215330602691636], [0.48215330602691636], [0.46430661205383267], [0.3928832650672909], [0.3214233469865419], [0.25000000000000006], [0.1964233469865419], [0.17857665301345818], [0.1964233469865419], [0.23215330602691633], [0.25000000000000006], [0.2678832650672908], [0.2678832650672908], [0.25000000000000006], [0.2143066120538327], [0.17857665301345818], [0.12500000000000003], [0.07142334698654194], [0.0357299590403745], [0.017883265067290842], [0.017883265067290842], [0.0357299590403745], [0.0357299590403745], [0.07142334698654194], [0.10715330602691638], [0.17857665301345818], [0.2678832650672908], [0.3393066120538327], [0.35715330602691636], [0.3214233469865419], [0.23215330602691633], [0.12500000000000003], [0.07142334698654194], [0.07142334698654194], [0.12500000000000003], [0.23215330602691633], [0.3214233469865419], [0.3928832650672909], [0.3928832650672909], [0.3393066120538327], [0.2678832650672908], [0.2143066120538327], [0.17857665301345818], [0.2143066120538327], [0.3035766530134582], [0.3928832650672909], [0.46430661205383267], [0.48215330602691636], [0.44642334698654185], [0.37500000000000006], [0.2857299590403745], [0.1964233469865419], [0.10715330602691638], [0.0357299590403745], [0.0], [0.0357299590403745], [0.12500000000000003], [0.25000000000000006], [0.35715330602691636], [0.3928832650672909], [0.35715330602691636], [0.2678832650672908], [0.1964233469865419], [0.17857665301345818], [0.23215330602691633], [0.3393066120538327], [0.48215330602691636], [0.5535766530134582], [0.5714233469865418], [0.5], [0.4107299590403745], [0.3214233469865419], [0.3035766530134582], [0.3393066120538327], [0.4107299590403745], [0.5], [0.5535766530134582], [0.5357299590403745], [0.46430661205383267], [0.35715330602691636], [0.2678832650672908], [0.2678832650672908], [0.3214233469865419], [0.4107299590403745], [0.5], [0.5357299590403745], [0.5], [0.4285766530134582], [0.3928832650672909], [0.3928832650672909], [0.4285766530134582], [0.5178832650672909], [0.5893066120538326], [0.6428466939730838], [0.6607299590403745], [0.6607299590403745], [0.6607299590403745], [0.6428466939730838], [0.6428466939730838], [0.6428466939730838], [0.625], [0.6071533060269163], [0.5893066120538326], [0.5357299590403745], [0.48215330602691636], [0.46430661205383267], [0.5178832650672909], [0.5893066120538326], [0.6785766530134582], [0.7143066120538326], [0.6607299590403745], [0.5357299590403745], [0.3928832650672909], [0.3035766530134582], [0.3214233469865419], [0.46430661205383267], [0.6428466939730838], [0.8214233469865418], [0.8571533060269164], [0.7500000000000001], [0.5535766530134582], [0.37500000000000006], [0.3035766530134582], [0.35715330602691636], [0.5], [0.6071533060269163], [0.6428466939730838], [0.5893066120538326], [0.48215330602691636], [0.3928832650672909], [0.3928832650672909], [0.48215330602691636], [0.625], [0.7500000000000001], [0.8035766530134583], [0.7500000000000001], [0.5893066120538326], [0.37500000000000006], [0.2143066120538327], [0.17857665301345818], [0.3214233469865419], [0.5893066120538326], [0.8571533060269164], [1.0], [0.9285766530134582], [0.696423346986542]], "masks": [[1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1]], "evals": [[0.7678466939730837], [0.7500000000000001], [0.7500000000000001], [0.7500000000000001], [0.7500000000000001], [0.7143066120538326], [0.6607299590403745], [0.6071533060269163], [0.5714233469865418], [0.5535766530134582], [0.5893066120538326], [0.6607299590403745], [0.7143066120538326], [0.7678466939730837], [0.8035766530134583], [0.8214233469865418], [0.8035766530134583], [0.7678466939730837], [0.7321533060269164], [0.696423346986542], [0.6428466939730838], [0.5714233469865418], [0.5], [0.46430661205383267], [0.44642334698654185], [0.48215330602691636], [0.5714233469865418], [0.6428466939730838], [0.696423346986542], [0.696423346986542], [0.6428466939730838], [0.6071533060269163], [0.6071533060269163], [0.625], [0.6785766530134582], [0.7321533060269164], [0.7678466939730837], [0.7857299590403746], [0.7678466939730837], [0.7143066120538326], [0.6428466939730838], [0.5714233469865418], [0.5357299590403745], [0.5357299590403745], [0.5893066120538326], [0.6607299590403745], [0.7143066120538326], [0.7143066120538326], [0.6785766530134582], [0.6428466939730838], [0.625], [0.625], [0.625], [0.5893066120538326], [0.5357299590403745], [0.46430661205383267], [0.44642334698654185], [0.48215330602691636], [0.5178832650672909], [0.5357299590403745], [0.5], [0.46430661205383267], [0.4285766530134582], [0.44642334698654185], [0.48215330602691636], [0.5535766530134582], [0.5714233469865418], [0.5714233469865418], [0.5714233469865418], [0.5893066120538326], [0.625], [0.6607299590403745], [0.6607299590403745], [0.625], [0.5714233469865418], [0.5], [0.4285766530134582], [0.37500000000000006], [0.3214233469865419], [0.3214233469865419], [0.3928832650672909], [0.46430661205383267], [0.5357299590403745], [0.5178832650672909], [0.4107299590403745], [0.3035766530134582], [0.2143066120538327], [0.2678832650672908], [0.3928832650672909], [0.5357299590403745], [0.6071533060269163], [0.5535766530134582], [0.4107299590403745], [0.25000000000000006], [0.12500000000000003], [0.07142334698654194], [0.08930661205383265], [0.17857665301345818], [0.3035766530134582], [0.4107299590403745], [0.5], [0.5], [0.4285766530134582], [0.2857299590403745], [0.16072995904037454], [0.08930661205383265], [0.10715330602691638], [0.2143066120538327], [0.3214233469865419], [0.4285766530134582], [0.48215330602691636], [0.48215330602691636], [0.46430661205383267], [0.3928832650672909], [0.3214233469865419], [0.25000000000000006], [0.1964233469865419], [0.17857665301345818], [0.1964233469865419], [0.23215330602691633], [0.25000000000000006], [0.2678832650672908], [0.2678832650672908], [0.25000000000000006], [0.2143066120538327], [0.17857665301345818], [0.12500000000000003], [0.07142334698654194], [0.0357299590403745], [0.017883265067290842], [0.017883265067290842], [0.0357299590403745], [0.0357299590403745], [0.07142334698654194], [0.10715330602691638], [0.17857665301345818], [0.2678832650672908], [0.3393066120538327], [0.35715330602691636], [0.3214233469865419], [0.23215330602691633], [0.12500000000000003], [0.07142334698654194], [0.07142334698654194], [0.12500000000000003], [0.23215330602691633], [0.3214233469865419], [0.3928832650672909], [0.3928832650672909], [0.3393066120538327], [0.2678832650672908], [0.2143066120538327], [0.17857665301345818], [0.2143066120538327], [0.3035766530134582], [0.3928832650672909], [0.46430661205383267], [0.48215330602691636], [0.44642334698654185], [0.37500000000000006], [0.2857299590403745], [0.1964233469865419], [0.10715330602691638], [0.0357299590403745], [0.0], [0.0357299590403745], [0.12500000000000003], [0.25000000000000006], [0.35715330602691636], [0.3928832650672909], [0.35715330602691636], [0.2678832650672908], [0.1964233469865419], [0.17857665301345818], [0.23215330602691633], [0.3393066120538327], [0.48215330602691636], [0.5535766530134582], [0.5714233469865418], [0.5], [0.4107299590403745], [0.3214233469865419], [0.3035766530134582], [0.3393066120538327], [0.4107299590403745], [0.5], [0.5535766530134582], [0.5357299590403745], [0.46430661205383267], [0.35715330602691636], [0.2678832650672908], [0.2678832650672908], [0.3214233469865419], [0.4107299590403745], [0.5], [0.5357299590403745], [0.5], [0.4285766530134582], [0.3928832650672909], [0.3928832650672909], [0.4285766530134582], [0.5178832650672909], [0.5893066120538326], [0.6428466939730838], [0.6607299590403745], [0.6607299590403745], [0.6607299590403745], [0.6428466939730838], [0.6428466939730838], [0.6428466939730838], [0.625], [0.6071533060269163], [0.5893066120538326], [0.5357299590403745], [0.48215330602691636], [0.46430661205383267], [0.5178832650672909], [0.5893066120538326], [0.6785766530134582], [0.7143066120538326], [0.6607299590403745], [0.5357299590403745], [0.3928832650672909], [0.3035766530134582], [0.3214233469865419], [0.46430661205383267], [0.6428466939730838], [0.8214233469865418], [0.8571533060269164], [0.7500000000000001], [0.5535766530134582], [0.37500000000000006], [0.3035766530134582], [0.35715330602691636], [0.5], [0.6071533060269163], [0.6428466939730838], [0.5893066120538326], [0.48215330602691636], [0.3928832650672909], [0.3928832650672909], [0.48215330602691636], [0.625], [0.7500000000000001], [0.8035766530134583], [0.7500000000000001], [0.5893066120538326], [0.37500000000000006], [0.2143066120538327], [0.17857665301345818], [0.3214233469865419], [0.5893066120538326], [0.8571533060269164], [1.0], [0.9285766530134582], [0.696423346986542]], "eval_masks": [[0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0]], "forwards": [[0.7678466939730837], [0.7500000000000001], [0.7500000000000001], [0.7500000000000001], [0.7500000000000001], [0.7143066120538326], [0.6607299590403745], [0.6071533060269163], [0.5714233469865418], [0.5535766530134582], [0.5893066120538326], [0.6607299590403745], [0.7143066120538326], [0.7678466939730837], [0.8035766530134583], [0.8214233469865418], [0.8035766530134583], [0.7678466939730837], [0.7321533060269164], [0.696423346986542], [0.6428466939730838], [0.5714233469865418], [0.5], [0.46430661205383267], [0.44642334698654185], [0.48215330602691636], [0.5714233469865418], [0.6428466939730838], [0.696423346986542], [0.696423346986542], [0.6428466939730838], [0.6071533060269163], [0.6071533060269163], [0.625], [0.6785766530134582], [0.7321533060269164], [0.7678466939730837], [0.7857299590403746], [0.7678466939730837], [0.7143066120538326], [0.6428466939730838], [0.5714233469865418], [0.5357299590403745], [0.5357299590403745], [0.5893066120538326], [0.6607299590403745], [0.7143066120538326], [0.7143066120538326], [0.6785766530134582], [0.6428466939730838], [0.625], [0.625], [0.625], [0.5893066120538326], [0.5357299590403745], [0.46430661205383267], [0.44642334698654185], [0.48215330602691636], [0.5178832650672909], [0.5357299590403745], [0.5], [0.46430661205383267], [0.4285766530134582], [0.44642334698654185], [0.48215330602691636], [0.5535766530134582], [0.5714233469865418], [0.5714233469865418], [0.5714233469865418], [0.5893066120538326], [0.625], [0.6607299590403745], [0.6607299590403745], [0.625], [0.5714233469865418], [0.5], [0.4285766530134582], [0.37500000000000006], [0.3214233469865419], [0.3214233469865419], [0.3928832650672909], [0.46430661205383267], [0.5357299590403745], [0.5178832650672909], [0.4107299590403745], [0.3035766530134582], [0.2143066120538327], [0.2678832650672908], [0.3928832650672909], [0.5357299590403745], [0.6071533060269163], [0.5535766530134582], [0.4107299590403745], [0.25000000000000006], [0.12500000000000003], [0.07142334698654194], [0.08930661205383265], [0.17857665301345818], [0.3035766530134582], [0.4107299590403745], [0.5], [0.5], [0.4285766530134582], [0.2857299590403745], [0.16072995904037454], [0.08930661205383265], [0.10715330602691638], [0.2143066120538327], [0.3214233469865419], [0.4285766530134582], [0.48215330602691636], [0.48215330602691636], [0.46430661205383267], [0.3928832650672909], [0.3214233469865419], [0.25000000000000006], [0.1964233469865419], [0.17857665301345818], [0.1964233469865419], [0.23215330602691633], [0.25000000000000006], [0.2678832650672908], [0.2678832650672908], [0.25000000000000006], [0.2143066120538327], [0.17857665301345818], [0.12500000000000003], [0.07142334698654194], [0.0357299590403745], [0.017883265067290842], [0.017883265067290842], [0.0357299590403745], [0.0357299590403745], [0.07142334698654194], [0.10715330602691638], [0.17857665301345818], [0.2678832650672908], [0.3393066120538327], [0.35715330602691636], [0.3214233469865419], [0.23215330602691633], [0.12500000000000003], [0.07142334698654194], [0.07142334698654194], [0.12500000000000003], [0.23215330602691633], [0.3214233469865419], [0.3928832650672909], [0.3928832650672909], [0.3393066120538327], [0.2678832650672908], [0.2143066120538327], [0.17857665301345818], [0.2143066120538327], [0.3035766530134582], [0.3928832650672909], [0.46430661205383267], [0.48215330602691636], [0.44642334698654185], [0.37500000000000006], [0.2857299590403745], [0.1964233469865419], [0.10715330602691638], [0.0357299590403745], [0.0], [0.0357299590403745], [0.12500000000000003], [0.25000000000000006], [0.35715330602691636], [0.3928832650672909], [0.35715330602691636], [0.2678832650672908], [0.1964233469865419], [0.17857665301345818], [0.23215330602691633], [0.3393066120538327], [0.48215330602691636], [0.5535766530134582], [0.5714233469865418], [0.5], [0.4107299590403745], [0.3214233469865419], [0.3035766530134582], [0.3393066120538327], [0.4107299590403745], [0.5], [0.5535766530134582], [0.5357299590403745], [0.46430661205383267], [0.35715330602691636], [0.2678832650672908], [0.2678832650672908], [0.3214233469865419], [0.4107299590403745], [0.5], [0.5357299590403745], [0.5], [0.4285766530134582], [0.3928832650672909], [0.3928832650672909], [0.4285766530134582], [0.5178832650672909], [0.5893066120538326], [0.6428466939730838], [0.6607299590403745], [0.6607299590403745], [0.6607299590403745], [0.6428466939730838], [0.6428466939730838], [0.6428466939730838], [0.625], [0.6071533060269163], [0.5893066120538326], [0.5357299590403745], [0.48215330602691636], [0.46430661205383267], [0.5178832650672909], [0.5893066120538326], [0.6785766530134582], [0.7143066120538326], [0.6607299590403745], [0.5357299590403745], [0.3928832650672909], [0.3035766530134582], [0.3214233469865419], [0.46430661205383267], [0.6428466939730838], [0.8214233469865418], [0.8571533060269164], [0.7500000000000001], [0.5535766530134582], [0.37500000000000006], [0.3035766530134582], [0.35715330602691636], [0.5], [0.6071533060269163], [0.6428466939730838], [0.5893066120538326], [0.48215330602691636], [0.3928832650672909], [0.3928832650672909], [0.48215330602691636], [0.625], [0.7500000000000001], [0.8035766530134583], [0.7500000000000001], [0.5893066120538326], [0.37500000000000006], [0.2143066120538327], [0.17857665301345818], [0.3214233469865419], [0.5893066120538326], [0.8571533060269164], [1.0], [0.9285766530134582], [0.696423346986542]], "deltas": [[1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0]]}, "backward": {"values": [[0.696423346986542], [0.9285766530134582], [1.0], [0.8571533060269164], [0.5893066120538326], [0.3214233469865419], [0.17857665301345818], [0.2143066120538327], [0.37500000000000006], [0.5893066120538326], [0.7500000000000001], [0.8035766530134583], [0.7500000000000001], [0.625], [0.48215330602691636], [0.3928832650672909], [0.3928832650672909], [0.48215330602691636], [0.5893066120538326], [0.6428466939730838], [0.6071533060269163], [0.5], [0.35715330602691636], [0.3035766530134582], [0.37500000000000006], [0.5535766530134582], [0.7500000000000001], [0.8571533060269164], [0.8214233469865418], [0.6428466939730838], [0.46430661205383267], [0.3214233469865419], [0.3035766530134582], [0.3928832650672909], [0.5357299590403745], [0.6607299590403745], [0.7143066120538326], [0.6785766530134582], [0.5893066120538326], [0.5178832650672909], [0.46430661205383267], [0.48215330602691636], [0.5357299590403745], [0.5893066120538326], [0.6071533060269163], [0.625], [0.6428466939730838], [0.6428466939730838], [0.6428466939730838], [0.6607299590403745], [0.6607299590403745], [0.6607299590403745], [0.6428466939730838], [0.5893066120538326], [0.5178832650672909], [0.4285766530134582], [0.3928832650672909], [0.3928832650672909], [0.4285766530134582], [0.5], [0.5357299590403745], [0.5], [0.4107299590403745], [0.3214233469865419], [0.2678832650672908], [0.2678832650672908], [0.35715330602691636], [0.46430661205383267], [0.5357299590403745], [0.5535766530134582], [0.5], [0.4107299590403745], [0.3393066120538327], [0.3035766530134582], [0.3214233469865419], [0.4107299590403745], [0.5], [0.5714233469865418], [0.5535766530134582], [0.48215330602691636], [0.3393066120538327], [0.23215330602691633], [0.17857665301345818], [0.1964233469865419], [0.2678832650672908], [0.35715330602691636], [0.3928832650672909], [0.35715330602691636], [0.25000000000000006], [0.12500000000000003], [0.0357299590403745], [0.0], [0.0357299590403745], [0.10715330602691638], [0.1964233469865419], [0.2857299590403745], [0.37500000000000006], [0.44642334698654185], [0.48215330602691636], [0.46430661205383267], [0.3928832650672909], [0.3035766530134582], [0.2143066120538327], [0.17857665301345818], [0.2143066120538327], [0.2678832650672908], [0.3393066120538327], [0.3928832650672909], [0.3928832650672909], [0.3214233469865419], [0.23215330602691633], [0.12500000000000003], [0.07142334698654194], [0.07142334698654194], [0.12500000000000003], [0.23215330602691633], [0.3214233469865419], [0.35715330602691636], [0.3393066120538327], [0.2678832650672908], [0.17857665301345818], [0.10715330602691638], [0.07142334698654194], [0.0357299590403745], [0.0357299590403745], [0.017883265067290842], [0.017883265067290842], [0.0357299590403745], [0.07142334698654194], [0.12500000000000003], [0.17857665301345818], [0.2143066120538327], [0.25000000000000006], [0.2678832650672908], [0.2678832650672908], [0.25000000000000006], [0.23215330602691633], [0.1964233469865419], [0.17857665301345818], [0.1964233469865419], [0.25000000000000006], [0.3214233469865419], [0.3928832650672909], [0.46430661205383267], [0.48215330602691636], [0.48215330602691636], [0.4285766530134582], [0.3214233469865419], [0.2143066120538327], [0.10715330602691638], [0.08930661205383265], [0.16072995904037454], [0.2857299590403745], [0.4285766530134582], [0.5], [0.5], [0.4107299590403745], [0.3035766530134582], [0.17857665301345818], [0.08930661205383265], [0.07142334698654194], [0.12500000000000003], [0.25000000000000006], [0.4107299590403745], [0.5535766530134582], [0.6071533060269163], [0.5357299590403745], [0.3928832650672909], [0.2678832650672908], [0.2143066120538327], [0.3035766530134582], [0.4107299590403745], [0.5178832650672909], [0.5357299590403745], [0.46430661205383267], [0.3928832650672909], [0.3214233469865419], [0.3214233469865419], [0.37500000000000006], [0.4285766530134582], [0.5], [0.5714233469865418], [0.625], [0.6607299590403745], [0.6607299590403745], [0.625], [0.5893066120538326], [0.5714233469865418], [0.5714233469865418], [0.5714233469865418], [0.5535766530134582], [0.48215330602691636], [0.44642334698654185], [0.4285766530134582], [0.46430661205383267], [0.5], [0.5357299590403745], [0.5178832650672909], [0.48215330602691636], [0.44642334698654185], [0.46430661205383267], [0.5357299590403745], [0.5893066120538326], [0.625], [0.625], [0.625], [0.6428466939730838], [0.6785766530134582], [0.7143066120538326], [0.7143066120538326], [0.6607299590403745], [0.5893066120538326], [0.5357299590403745], [0.5357299590403745], [0.5714233469865418], [0.6428466939730838], [0.7143066120538326], [0.7678466939730837], [0.7857299590403746], [0.7678466939730837], [0.7321533060269164], [0.6785766530134582], [0.625], [0.6071533060269163], [0.6071533060269163], [0.6428466939730838], [0.696423346986542], [0.696423346986542], [0.6428466939730838], [0.5714233469865418], [0.48215330602691636], [0.44642334698654185], [0.46430661205383267], [0.5], [0.5714233469865418], [0.6428466939730838], [0.696423346986542], [0.7321533060269164], [0.7678466939730837], [0.8035766530134583], [0.8214233469865418], [0.8035766530134583], [0.7678466939730837], [0.7143066120538326], [0.6607299590403745], [0.5893066120538326], [0.5535766530134582], [0.5714233469865418], [0.6071533060269163], [0.6607299590403745], [0.7143066120538326], [0.7500000000000001], [0.7500000000000001], [0.7500000000000001], [0.7500000000000001], [0.7678466939730837]], "masks": [[1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1]], "evals": [[0.696423346986542], [0.9285766530134582], [1.0], [0.8571533060269164], [0.5893066120538326], [0.3214233469865419], [0.17857665301345818], [0.2143066120538327], [0.37500000000000006], [0.5893066120538326], [0.7500000000000001], [0.8035766530134583], [0.7500000000000001], [0.625], [0.48215330602691636], [0.3928832650672909], [0.3928832650672909], [0.48215330602691636], [0.5893066120538326], [0.6428466939730838], [0.6071533060269163], [0.5], [0.35715330602691636], [0.3035766530134582], [0.37500000000000006], [0.5535766530134582], [0.7500000000000001], [0.8571533060269164], [0.8214233469865418], [0.6428466939730838], [0.46430661205383267], [0.3214233469865419], [0.3035766530134582], [0.3928832650672909], [0.5357299590403745], [0.6607299590403745], [0.7143066120538326], [0.6785766530134582], [0.5893066120538326], [0.5178832650672909], [0.46430661205383267], [0.48215330602691636], [0.5357299590403745], [0.5893066120538326], [0.6071533060269163], [0.625], [0.6428466939730838], [0.6428466939730838], [0.6428466939730838], [0.6607299590403745], [0.6607299590403745], [0.6607299590403745], [0.6428466939730838], [0.5893066120538326], [0.5178832650672909], [0.4285766530134582], [0.3928832650672909], [0.3928832650672909], [0.4285766530134582], [0.5], [0.5357299590403745], [0.5], [0.4107299590403745], [0.3214233469865419], [0.2678832650672908], [0.2678832650672908], [0.35715330602691636], [0.46430661205383267], [0.5357299590403745], [0.5535766530134582], [0.5], [0.4107299590403745], [0.3393066120538327], [0.3035766530134582], [0.3214233469865419], [0.4107299590403745], [0.5], [0.5714233469865418], [0.5535766530134582], [0.48215330602691636], [0.3393066120538327], [0.23215330602691633], [0.17857665301345818], [0.1964233469865419], [0.2678832650672908], [0.35715330602691636], [0.3928832650672909], [0.35715330602691636], [0.25000000000000006], [0.12500000000000003], [0.0357299590403745], [0.0], [0.0357299590403745], [0.10715330602691638], [0.1964233469865419], [0.2857299590403745], [0.37500000000000006], [0.44642334698654185], [0.48215330602691636], [0.46430661205383267], [0.3928832650672909], [0.3035766530134582], [0.2143066120538327], [0.17857665301345818], [0.2143066120538327], [0.2678832650672908], [0.3393066120538327], [0.3928832650672909], [0.3928832650672909], [0.3214233469865419], [0.23215330602691633], [0.12500000000000003], [0.07142334698654194], [0.07142334698654194], [0.12500000000000003], [0.23215330602691633], [0.3214233469865419], [0.35715330602691636], [0.3393066120538327], [0.2678832650672908], [0.17857665301345818], [0.10715330602691638], [0.07142334698654194], [0.0357299590403745], [0.0357299590403745], [0.017883265067290842], [0.017883265067290842], [0.0357299590403745], [0.07142334698654194], [0.12500000000000003], [0.17857665301345818], [0.2143066120538327], [0.25000000000000006], [0.2678832650672908], [0.2678832650672908], [0.25000000000000006], [0.23215330602691633], [0.1964233469865419], [0.17857665301345818], [0.1964233469865419], [0.25000000000000006], [0.3214233469865419], [0.3928832650672909], [0.46430661205383267], [0.48215330602691636], [0.48215330602691636], [0.4285766530134582], [0.3214233469865419], [0.2143066120538327], [0.10715330602691638], [0.08930661205383265], [0.16072995904037454], [0.2857299590403745], [0.4285766530134582], [0.5], [0.5], [0.4107299590403745], [0.3035766530134582], [0.17857665301345818], [0.08930661205383265], [0.07142334698654194], [0.12500000000000003], [0.25000000000000006], [0.4107299590403745], [0.5535766530134582], [0.6071533060269163], [0.5357299590403745], [0.3928832650672909], [0.2678832650672908], [0.2143066120538327], [0.3035766530134582], [0.4107299590403745], [0.5178832650672909], [0.5357299590403745], [0.46430661205383267], [0.3928832650672909], [0.3214233469865419], [0.3214233469865419], [0.37500000000000006], [0.4285766530134582], [0.5], [0.5714233469865418], [0.625], [0.6607299590403745], [0.6607299590403745], [0.625], [0.5893066120538326], [0.5714233469865418], [0.5714233469865418], [0.5714233469865418], [0.5535766530134582], [0.48215330602691636], [0.44642334698654185], [0.4285766530134582], [0.46430661205383267], [0.5], [0.5357299590403745], [0.5178832650672909], [0.48215330602691636], [0.44642334698654185], [0.46430661205383267], [0.5357299590403745], [0.5893066120538326], [0.625], [0.625], [0.625], [0.6428466939730838], [0.6785766530134582], [0.7143066120538326], [0.7143066120538326], [0.6607299590403745], [0.5893066120538326], [0.5357299590403745], [0.5357299590403745], [0.5714233469865418], [0.6428466939730838], [0.7143066120538326], [0.7678466939730837], [0.7857299590403746], [0.7678466939730837], [0.7321533060269164], [0.6785766530134582], [0.625], [0.6071533060269163], [0.6071533060269163], [0.6428466939730838], [0.696423346986542], [0.696423346986542], [0.6428466939730838], [0.5714233469865418], [0.48215330602691636], [0.44642334698654185], [0.46430661205383267], [0.5], [0.5714233469865418], [0.6428466939730838], [0.696423346986542], [0.7321533060269164], [0.7678466939730837], [0.8035766530134583], [0.8214233469865418], [0.8035766530134583], [0.7678466939730837], [0.7143066120538326], [0.6607299590403745], [0.5893066120538326], [0.5535766530134582], [0.5714233469865418], [0.6071533060269163], [0.6607299590403745], [0.7143066120538326], [0.7500000000000001], [0.7500000000000001], [0.7500000000000001], [0.7500000000000001], [0.7678466939730837]], "eval_masks": [[0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0]], "forwards": [[0.696423346986542], [0.9285766530134582], [1.0], [0.8571533060269164], [0.5893066120538326], [0.3214233469865419], [0.17857665301345818], [0.2143066120538327], [0.37500000000000006], [0.5893066120538326], [0.7500000000000001], [0.8035766530134583], [0.7500000000000001], [0.625], [0.48215330602691636], [0.3928832650672909], [0.3928832650672909], [0.48215330602691636], [0.5893066120538326], [0.6428466939730838], [0.6071533060269163], [0.5], [0.35715330602691636], [0.3035766530134582], [0.37500000000000006], [0.5535766530134582], [0.7500000000000001], [0.8571533060269164], [0.8214233469865418], [0.6428466939730838], [0.46430661205383267], [0.3214233469865419], [0.3035766530134582], [0.3928832650672909], [0.5357299590403745], [0.6607299590403745], [0.7143066120538326], [0.6785766530134582], [0.5893066120538326], [0.5178832650672909], [0.46430661205383267], [0.48215330602691636], [0.5357299590403745], [0.5893066120538326], [0.6071533060269163], [0.625], [0.6428466939730838], [0.6428466939730838], [0.6428466939730838], [0.6607299590403745], [0.6607299590403745], [0.6607299590403745], [0.6428466939730838], [0.5893066120538326], [0.5178832650672909], [0.4285766530134582], [0.3928832650672909], [0.3928832650672909], [0.4285766530134582], [0.5], [0.5357299590403745], [0.5], [0.4107299590403745], [0.3214233469865419], [0.2678832650672908], [0.2678832650672908], [0.35715330602691636], [0.46430661205383267], [0.5357299590403745], [0.5535766530134582], [0.5], [0.4107299590403745], [0.3393066120538327], [0.3035766530134582], [0.3214233469865419], [0.4107299590403745], [0.5], [0.5714233469865418], [0.5535766530134582], [0.48215330602691636], [0.3393066120538327], [0.23215330602691633], [0.17857665301345818], [0.1964233469865419], [0.2678832650672908], [0.35715330602691636], [0.3928832650672909], [0.35715330602691636], [0.25000000000000006], [0.12500000000000003], [0.0357299590403745], [0.0], [0.0357299590403745], [0.10715330602691638], [0.1964233469865419], [0.2857299590403745], [0.37500000000000006], [0.44642334698654185], [0.48215330602691636], [0.46430661205383267], [0.3928832650672909], [0.3035766530134582], [0.2143066120538327], [0.17857665301345818], [0.2143066120538327], [0.2678832650672908], [0.3393066120538327], [0.3928832650672909], [0.3928832650672909], [0.3214233469865419], [0.23215330602691633], [0.12500000000000003], [0.07142334698654194], [0.07142334698654194], [0.12500000000000003], [0.23215330602691633], [0.3214233469865419], [0.35715330602691636], [0.3393066120538327], [0.2678832650672908], [0.17857665301345818], [0.10715330602691638], [0.07142334698654194], [0.0357299590403745], [0.0357299590403745], [0.017883265067290842], [0.017883265067290842], [0.0357299590403745], [0.07142334698654194], [0.12500000000000003], [0.17857665301345818], [0.2143066120538327], [0.25000000000000006], [0.2678832650672908], [0.2678832650672908], [0.25000000000000006], [0.23215330602691633], [0.1964233469865419], [0.17857665301345818], [0.1964233469865419], [0.25000000000000006], [0.3214233469865419], [0.3928832650672909], [0.46430661205383267], [0.48215330602691636], [0.48215330602691636], [0.4285766530134582], [0.3214233469865419], [0.2143066120538327], [0.10715330602691638], [0.08930661205383265], [0.16072995904037454], [0.2857299590403745], [0.4285766530134582], [0.5], [0.5], [0.4107299590403745], [0.3035766530134582], [0.17857665301345818], [0.08930661205383265], [0.07142334698654194], [0.12500000000000003], [0.25000000000000006], [0.4107299590403745], [0.5535766530134582], [0.6071533060269163], [0.5357299590403745], [0.3928832650672909], [0.2678832650672908], [0.2143066120538327], [0.3035766530134582], [0.4107299590403745], [0.5178832650672909], [0.5357299590403745], [0.46430661205383267], [0.3928832650672909], [0.3214233469865419], [0.3214233469865419], [0.37500000000000006], [0.4285766530134582], [0.5], [0.5714233469865418], [0.625], [0.6607299590403745], [0.6607299590403745], [0.625], [0.5893066120538326], [0.5714233469865418], [0.5714233469865418], [0.5714233469865418], [0.5535766530134582], [0.48215330602691636], [0.44642334698654185], [0.4285766530134582], [0.46430661205383267], [0.5], [0.5357299590403745], [0.5178832650672909], [0.48215330602691636], [0.44642334698654185], [0.46430661205383267], [0.5357299590403745], [0.5893066120538326], [0.625], [0.625], [0.625], [0.6428466939730838], [0.6785766530134582], [0.7143066120538326], [0.7143066120538326], [0.6607299590403745], [0.5893066120538326], [0.5357299590403745], [0.5357299590403745], [0.5714233469865418], [0.6428466939730838], [0.7143066120538326], [0.7678466939730837], [0.7857299590403746], [0.7678466939730837], [0.7321533060269164], [0.6785766530134582], [0.625], [0.6071533060269163], [0.6071533060269163], [0.6428466939730838], [0.696423346986542], [0.696423346986542], [0.6428466939730838], [0.5714233469865418], [0.48215330602691636], [0.44642334698654185], [0.46430661205383267], [0.5], [0.5714233469865418], [0.6428466939730838], [0.696423346986542], [0.7321533060269164], [0.7678466939730837], [0.8035766530134583], [0.8214233469865418], [0.8035766530134583], [0.7678466939730837], [0.7143066120538326], [0.6607299590403745], [0.5893066120538326], [0.5535766530134582], [0.5714233469865418], [0.6071533060269163], [0.6607299590403745], [0.7143066120538326], [0.7500000000000001], [0.7500000000000001], [0.7500000000000001], [0.7500000000000001], [0.7678466939730837]], "deltas": [[1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0]]}} -{"label": 0, "forward": {"values": [[0.936165577342048], [0.9148583877995642], [0.8935947712418301], [0.8510675381263617], [0.7872331154684096], [0.7233986928104575], [0.6808278867102396], [0.7021350762527233], [0.7872331154684096], [0.8723311546840958], [0.8935947712418301], [0.8510675381263617], [0.7233986928104575], [0.553202614379085], [0.4042701525054467], [0.3404357298474946], [0.38296296296296295], [0.5106318082788671], [0.7021350762527233], [0.8510675381263617], [0.9148583877995642], [0.829760348583878], [0.6595642701525055], [0.4893681917211329], [0.36169934640522877], [0.36169934640522877], [0.44679738562091503], [0.553202614379085], [0.617037037037037], [0.6595642701525055], [0.6595642701525055], [0.6383006535947712], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.5106318082788671], [0.6383006535947712], [0.7233986928104575], [0.7021350762527233], [0.5957298474945534], [0.46810457516339865], [0.38296296296296295], [0.42553376906318086], [0.5318954248366013], [0.6808278867102396], [0.7233986928104575], [0.6595642701525055], [0.5106318082788671], [0.38296296296296295], [0.3404357298474946], [0.42553376906318086], [0.5744662309368193], [0.6808278867102396], [0.7021350762527233], [0.6595642701525055], [0.5957298474945534], [0.5744662309368193], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.2978649237472767], [0.27660130718954246], [0.27660130718954246], [0.2978649237472767], [0.36169934640522877], [0.46810457516339865], [0.6808278867102396], [0.8935947712418301], [0.9786928104575163], [0.8935947712418301], [0.5957298474945534], [0.2553376906318083], [0.021307189542483694], [0.0], [0.21276688453159037], [0.5106318082788671], [0.7659259259259259], [0.936165577342048], [0.9574291938997821], [0.8935947712418301], [0.7659259259259259], [0.553202614379085], [0.3191721132897603], [0.12766884531590414], [0.0], [0.021307189542483694], [0.17023965141612202], [0.3404357298474946], [0.5106318082788671], [0.617037037037037], [0.6595642701525055], [0.6808278867102396], [0.7233986928104575], [0.7233986928104575], [0.7021350762527233], [0.6383006535947712], [0.5106318082788671], [0.4042701525054467], [0.36169934640522877], [0.38296296296296295], [0.46810457516339865], [0.5957298474945534], [0.7021350762527233], [0.8084967320261438], [0.8510675381263617], [0.8510675381263617], [0.7659259259259259], [0.5957298474945534], [0.36169934640522877], [0.17023965141612202], [0.021307189542483694], [0.04257080610021788], [0.1915032679738562], [0.38296296296296295], [0.553202614379085], [0.6383006535947712], [0.6383006535947712], [0.553202614379085], [0.42553376906318086], [0.2978649237472767], [0.1915032679738562], [0.14893246187363832], [0.14893246187363832], [0.1915032679738562], [0.27660130718954246], [0.3404357298474946], [0.38296296296296295], [0.38296296296296295], [0.3404357298474946], [0.3191721132897603], [0.2978649237472767], [0.27660130718954246], [0.2978649237472767], [0.3404357298474946], [0.38296296296296295], [0.42553376906318086], [0.44679738562091503], [0.42553376906318086], [0.42553376906318086], [0.4893681917211329], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.6383006535947712], [0.7872331154684096], [0.9148583877995642], [1.0], [0.9786928104575163], [0.8935947712418301], [0.7233986928104575], [0.5744662309368193], [0.46810457516339865], [0.4893681917211329], [0.617037037037037], [0.7659259259259259], [0.8723311546840958], [0.9148583877995642], [0.9148583877995642], [0.8935947712418301], [0.8723311546840958], [0.829760348583878], [0.7446623093681918], [0.6383006535947712], [0.5318954248366013], [0.42553376906318086], [0.4042701525054467], [0.42553376906318086], [0.4893681917211329], [0.553202614379085], [0.5957298474945534], [0.6383006535947712], [0.7021350762527233], [0.7659259259259259], [0.8084967320261438], [0.8084967320261438], [0.8084967320261438], [0.7659259259259259], [0.7233986928104575], [0.7021350762527233], [0.7021350762527233], [0.7233986928104575], [0.7233986928104575], [0.7446623093681918], [0.7446623093681918], [0.7659259259259259], [0.7659259259259259], [0.7446623093681918], [0.6808278867102396], [0.6383006535947712], [0.6383006535947712], [0.7233986928104575], [0.8510675381263617], [0.9574291938997821], [0.9786928104575163], [0.8935947712418301], [0.7659259259259259], [0.6595642701525055], [0.5957298474945534], [0.5957298474945534], [0.617037037037037], [0.5744662309368193], [0.4893681917211329], [0.4042701525054467], [0.36169934640522877], [0.42553376906318086], [0.553202614379085], [0.6808278867102396], [0.7659259259259259], [0.8084967320261438], [0.7872331154684096], [0.7872331154684096], [0.7659259259259259], [0.7446623093681918], [0.7021350762527233], [0.5957298474945534], [0.5106318082788671], [0.42553376906318086], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.8084967320261438], [0.829760348583878], [0.8084967320261438], [0.7233986928104575], [0.617037037037037], [0.5318954248366013], [0.46810457516339865], [0.44679738562091503]], "masks": [[1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [1], [1], [1], [1], [1], [1], [1], [1]], "evals": [[0.936165577342048], [0.9148583877995642], [0.8935947712418301], [0.8510675381263617], [0.7872331154684096], [0.7233986928104575], [0.6808278867102396], [0.7021350762527233], [0.7872331154684096], [0.8723311546840958], [0.8935947712418301], [0.8510675381263617], [0.7233986928104575], [0.553202614379085], [0.4042701525054467], [0.3404357298474946], [0.38296296296296295], [0.5106318082788671], [0.7021350762527233], [0.8510675381263617], [0.9148583877995642], [0.829760348583878], [0.6595642701525055], [0.4893681917211329], [0.36169934640522877], [0.36169934640522877], [0.44679738562091503], [0.553202614379085], [0.617037037037037], [0.6595642701525055], [0.6595642701525055], [0.6383006535947712], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.5106318082788671], [0.6383006535947712], [0.7233986928104575], [0.7021350762527233], [0.5957298474945534], [0.46810457516339865], [0.38296296296296295], [0.42553376906318086], [0.5318954248366013], [0.6808278867102396], [0.7233986928104575], [0.6595642701525055], [0.5106318082788671], [0.38296296296296295], [0.3404357298474946], [0.42553376906318086], [0.5744662309368193], [0.6808278867102396], [0.7021350762527233], [0.6595642701525055], [0.5957298474945534], [0.5744662309368193], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.2978649237472767], [0.27660130718954246], [0.27660130718954246], [0.2978649237472767], [0.36169934640522877], [0.46810457516339865], [0.6808278867102396], [0.8935947712418301], [0.9786928104575163], [0.8935947712418301], [0.5957298474945534], [0.2553376906318083], [0.021307189542483694], [0.0], [0.21276688453159037], [0.5106318082788671], [0.7659259259259259], [0.936165577342048], [0.9574291938997821], [0.8935947712418301], [0.7659259259259259], [0.553202614379085], [0.3191721132897603], [0.12766884531590414], [0.0], [0.021307189542483694], [0.17023965141612202], [0.3404357298474946], [0.5106318082788671], [0.617037037037037], [0.6595642701525055], [0.6808278867102396], [0.7233986928104575], [0.7233986928104575], [0.7021350762527233], [0.6383006535947712], [0.5106318082788671], [0.4042701525054467], [0.36169934640522877], [0.38296296296296295], [0.46810457516339865], [0.5957298474945534], [0.7021350762527233], [0.8084967320261438], [0.8510675381263617], [0.8510675381263617], [0.7659259259259259], [0.5957298474945534], [0.36169934640522877], [0.17023965141612202], [0.021307189542483694], [0.04257080610021788], [0.1915032679738562], [0.38296296296296295], [0.553202614379085], [0.6383006535947712], [0.6383006535947712], [0.553202614379085], [0.42553376906318086], [0.2978649237472767], [0.1915032679738562], [0.14893246187363832], [0.14893246187363832], [0.1915032679738562], [0.27660130718954246], [0.3404357298474946], [0.38296296296296295], [0.38296296296296295], [0.3404357298474946], [0.3191721132897603], [0.2978649237472767], [0.27660130718954246], [0.2978649237472767], [0.3404357298474946], [0.38296296296296295], [0.42553376906318086], [0.44679738562091503], [0.42553376906318086], [0.42553376906318086], [0.4893681917211329], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.6383006535947712], [0.7872331154684096], [0.9148583877995642], [1.0], [0.9786928104575163], [0.8935947712418301], [0.7233986928104575], [0.5744662309368193], [0.46810457516339865], [0.4893681917211329], [0.617037037037037], [0.7659259259259259], [0.8723311546840958], [0.9148583877995642], [0.9148583877995642], [0.8935947712418301], [0.8723311546840958], [0.829760348583878], [0.7446623093681918], [0.6383006535947712], [0.5318954248366013], [0.42553376906318086], [0.4042701525054467], [0.42553376906318086], [0.4893681917211329], [0.553202614379085], [0.5957298474945534], [0.6383006535947712], [0.7021350762527233], [0.7659259259259259], [0.8084967320261438], [0.8084967320261438], [0.8084967320261438], [0.7659259259259259], [0.7233986928104575], [0.7021350762527233], [0.7021350762527233], [0.7233986928104575], [0.7233986928104575], [0.7446623093681918], [0.7446623093681918], [0.7659259259259259], [0.7659259259259259], [0.7446623093681918], [0.6808278867102396], [0.6383006535947712], [0.6383006535947712], [0.7233986928104575], [0.8510675381263617], [0.9574291938997821], [0.9786928104575163], [0.8935947712418301], [0.7659259259259259], [0.6595642701525055], [0.5957298474945534], [0.5957298474945534], [0.617037037037037], [0.5744662309368193], [0.4893681917211329], [0.4042701525054467], [0.36169934640522877], [0.42553376906318086], [0.553202614379085], [0.6808278867102396], [0.7659259259259259], [0.8084967320261438], [0.7872331154684096], [0.7872331154684096], [0.7659259259259259], [0.7446623093681918], [0.7021350762527233], [0.5957298474945534], [0.5106318082788671], [0.42553376906318086], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.8084967320261438], [0.829760348583878], [0.8084967320261438], [0.7233986928104575], [0.617037037037037], [0.5318954248366013], [0.46810457516339865], [0.44679738562091503]], "eval_masks": [[0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0]], "forwards": [[0.936165577342048], [0.9148583877995642], [0.8935947712418301], [0.8510675381263617], [0.7872331154684096], [0.7233986928104575], [0.6808278867102396], [0.7021350762527233], [0.7872331154684096], [0.8723311546840958], [0.8935947712418301], [0.8510675381263617], [0.7233986928104575], [0.553202614379085], [0.4042701525054467], [0.3404357298474946], [0.38296296296296295], [0.5106318082788671], [0.7021350762527233], [0.8510675381263617], [0.9148583877995642], [0.829760348583878], [0.6595642701525055], [0.4893681917211329], [0.36169934640522877], [0.36169934640522877], [0.44679738562091503], [0.553202614379085], [0.617037037037037], [0.6595642701525055], [0.6595642701525055], [0.6383006535947712], [0.6383006535947712], [0.6383006535947712], [0.6383006535947712], [0.6383006535947712], [0.6383006535947712], [0.6383006535947712], [0.6383006535947712], [0.6383006535947712], [0.6383006535947712], [0.6383006535947712], [0.5106318082788671], [0.6383006535947712], [0.7233986928104575], [0.7021350762527233], [0.5957298474945534], [0.46810457516339865], [0.38296296296296295], [0.42553376906318086], [0.5318954248366013], [0.6808278867102396], [0.7233986928104575], [0.6595642701525055], [0.5106318082788671], [0.38296296296296295], [0.3404357298474946], [0.42553376906318086], [0.5744662309368193], [0.6808278867102396], [0.7021350762527233], [0.6595642701525055], [0.5957298474945534], [0.5744662309368193], [0.5744662309368193], [0.5744662309368193], [0.5744662309368193], [0.5744662309368193], [0.5744662309368193], [0.5744662309368193], [0.5744662309368193], [0.5744662309368193], [0.5744662309368193], [0.5744662309368193], [0.2978649237472767], [0.27660130718954246], [0.27660130718954246], [0.2978649237472767], [0.36169934640522877], [0.46810457516339865], [0.6808278867102396], [0.8935947712418301], [0.9786928104575163], [0.8935947712418301], [0.5957298474945534], [0.2553376906318083], [0.021307189542483694], [0.0], [0.21276688453159037], [0.5106318082788671], [0.7659259259259259], [0.936165577342048], [0.9574291938997821], [0.8935947712418301], [0.7659259259259259], [0.553202614379085], [0.3191721132897603], [0.12766884531590414], [0.0], [0.021307189542483694], [0.17023965141612202], [0.3404357298474946], [0.5106318082788671], [0.617037037037037], [0.6595642701525055], [0.6808278867102396], [0.7233986928104575], [0.7233986928104575], [0.7021350762527233], [0.6383006535947712], [0.5106318082788671], [0.4042701525054467], [0.36169934640522877], [0.38296296296296295], [0.46810457516339865], [0.5957298474945534], [0.7021350762527233], [0.8084967320261438], [0.8510675381263617], [0.8510675381263617], [0.7659259259259259], [0.5957298474945534], [0.36169934640522877], [0.17023965141612202], [0.021307189542483694], [0.04257080610021788], [0.1915032679738562], [0.38296296296296295], [0.553202614379085], [0.6383006535947712], [0.6383006535947712], [0.553202614379085], [0.42553376906318086], [0.2978649237472767], [0.1915032679738562], [0.14893246187363832], [0.14893246187363832], [0.1915032679738562], [0.27660130718954246], [0.3404357298474946], [0.38296296296296295], [0.38296296296296295], [0.3404357298474946], [0.3191721132897603], [0.2978649237472767], [0.27660130718954246], [0.2978649237472767], [0.3404357298474946], [0.38296296296296295], [0.42553376906318086], [0.44679738562091503], [0.42553376906318086], [0.42553376906318086], [0.4893681917211329], [0.4893681917211329], [0.4893681917211329], [0.4893681917211329], [0.4893681917211329], [0.4893681917211329], [0.4893681917211329], [0.4893681917211329], [0.4893681917211329], [0.4893681917211329], [0.4893681917211329], [0.6383006535947712], [0.7872331154684096], [0.9148583877995642], [1.0], [0.9786928104575163], [0.8935947712418301], [0.7233986928104575], [0.5744662309368193], [0.46810457516339865], [0.4893681917211329], [0.617037037037037], [0.7659259259259259], [0.8723311546840958], [0.9148583877995642], [0.9148583877995642], [0.8935947712418301], [0.8723311546840958], [0.829760348583878], [0.7446623093681918], [0.6383006535947712], [0.5318954248366013], [0.42553376906318086], [0.4042701525054467], [0.42553376906318086], [0.4893681917211329], [0.553202614379085], [0.5957298474945534], [0.6383006535947712], [0.7021350762527233], [0.7659259259259259], [0.8084967320261438], [0.8084967320261438], [0.8084967320261438], [0.7659259259259259], [0.7233986928104575], [0.7021350762527233], [0.7021350762527233], [0.7233986928104575], [0.7233986928104575], [0.7446623093681918], [0.7446623093681918], [0.7659259259259259], [0.7659259259259259], [0.7446623093681918], [0.6808278867102396], [0.6383006535947712], [0.6383006535947712], [0.7233986928104575], [0.8510675381263617], [0.9574291938997821], [0.9786928104575163], [0.8935947712418301], [0.7659259259259259], [0.6595642701525055], [0.5957298474945534], [0.5957298474945534], [0.617037037037037], [0.5744662309368193], [0.4893681917211329], [0.4042701525054467], [0.36169934640522877], [0.42553376906318086], [0.553202614379085], [0.6808278867102396], [0.7659259259259259], [0.8084967320261438], [0.7872331154684096], [0.7872331154684096], [0.7659259259259259], [0.7446623093681918], [0.7021350762527233], [0.5957298474945534], [0.5106318082788671], [0.42553376906318086], [0.42553376906318086], [0.42553376906318086], [0.42553376906318086], [0.42553376906318086], [0.42553376906318086], [0.42553376906318086], [0.42553376906318086], [0.42553376906318086], [0.42553376906318086], [0.42553376906318086], [0.8084967320261438], [0.829760348583878], [0.8084967320261438], [0.7233986928104575], [0.617037037037037], [0.5318954248366013], [0.46810457516339865], [0.44679738562091503]], "deltas": [[1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [2.0], [3.0], [4.0], [5.0], [6.0], [7.0], [8.0], [9.0], [10.0], [11.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [2.0], [3.0], [4.0], [5.0], [6.0], [7.0], [8.0], [9.0], [10.0], [11.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [2.0], [3.0], [4.0], [5.0], [6.0], [7.0], [8.0], [9.0], [10.0], [11.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [2.0], [3.0], [4.0], [5.0], [6.0], [7.0], [8.0], [9.0], [10.0], [11.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0]]}, "backward": {"values": [[0.44679738562091503], [0.46810457516339865], [0.5318954248366013], [0.617037037037037], [0.7233986928104575], [0.8084967320261438], [0.829760348583878], [0.8084967320261438], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.42553376906318086], [0.5106318082788671], [0.5957298474945534], [0.7021350762527233], [0.7446623093681918], [0.7659259259259259], [0.7872331154684096], [0.7872331154684096], [0.8084967320261438], [0.7659259259259259], [0.6808278867102396], [0.553202614379085], [0.42553376906318086], [0.36169934640522877], [0.4042701525054467], [0.4893681917211329], [0.5744662309368193], [0.617037037037037], [0.5957298474945534], [0.5957298474945534], [0.6595642701525055], [0.7659259259259259], [0.8935947712418301], [0.9786928104575163], [0.9574291938997821], [0.8510675381263617], [0.7233986928104575], [0.6383006535947712], [0.6383006535947712], [0.6808278867102396], [0.7446623093681918], [0.7659259259259259], [0.7659259259259259], [0.7446623093681918], [0.7446623093681918], [0.7233986928104575], [0.7233986928104575], [0.7021350762527233], [0.7021350762527233], [0.7233986928104575], [0.7659259259259259], [0.8084967320261438], [0.8084967320261438], [0.8084967320261438], [0.7659259259259259], [0.7021350762527233], [0.6383006535947712], [0.5957298474945534], [0.553202614379085], [0.4893681917211329], [0.42553376906318086], [0.4042701525054467], [0.42553376906318086], [0.5318954248366013], [0.6383006535947712], [0.7446623093681918], [0.829760348583878], [0.8723311546840958], [0.8935947712418301], [0.9148583877995642], [0.9148583877995642], [0.8723311546840958], [0.7659259259259259], [0.617037037037037], [0.4893681917211329], [0.46810457516339865], [0.5744662309368193], [0.7233986928104575], [0.8935947712418301], [0.9786928104575163], [1.0], [0.9148583877995642], [0.7872331154684096], [0.6383006535947712], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.4893681917211329], [0.42553376906318086], [0.42553376906318086], [0.44679738562091503], [0.42553376906318086], [0.38296296296296295], [0.3404357298474946], [0.2978649237472767], [0.27660130718954246], [0.2978649237472767], [0.3191721132897603], [0.3404357298474946], [0.38296296296296295], [0.38296296296296295], [0.3404357298474946], [0.27660130718954246], [0.1915032679738562], [0.14893246187363832], [0.14893246187363832], [0.1915032679738562], [0.2978649237472767], [0.42553376906318086], [0.553202614379085], [0.6383006535947712], [0.6383006535947712], [0.553202614379085], [0.38296296296296295], [0.1915032679738562], [0.04257080610021788], [0.021307189542483694], [0.17023965141612202], [0.36169934640522877], [0.5957298474945534], [0.7659259259259259], [0.8510675381263617], [0.8510675381263617], [0.8084967320261438], [0.7021350762527233], [0.5957298474945534], [0.46810457516339865], [0.38296296296296295], [0.36169934640522877], [0.4042701525054467], [0.5106318082788671], [0.6383006535947712], [0.7021350762527233], [0.7233986928104575], [0.7233986928104575], [0.6808278867102396], [0.6595642701525055], [0.617037037037037], [0.5106318082788671], [0.3404357298474946], [0.17023965141612202], [0.021307189542483694], [0.0], [0.12766884531590414], [0.3191721132897603], [0.553202614379085], [0.7659259259259259], [0.8935947712418301], [0.9574291938997821], [0.936165577342048], [0.7659259259259259], [0.5106318082788671], [0.21276688453159037], [0.0], [0.021307189542483694], [0.2553376906318083], [0.5957298474945534], [0.8935947712418301], [0.9786928104575163], [0.8935947712418301], [0.6808278867102396], [0.46810457516339865], [0.36169934640522877], [0.2978649237472767], [0.27660130718954246], [0.27660130718954246], [0.2978649237472767], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.5744662309368193], [0.5957298474945534], [0.6595642701525055], [0.7021350762527233], [0.6808278867102396], [0.5744662309368193], [0.42553376906318086], [0.3404357298474946], [0.38296296296296295], [0.5106318082788671], [0.6595642701525055], [0.7233986928104575], [0.6808278867102396], [0.5318954248366013], [0.42553376906318086], [0.38296296296296295], [0.46810457516339865], [0.5957298474945534], [0.7021350762527233], [0.7233986928104575], [0.6383006535947712], [0.5106318082788671], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.6383006535947712], [0.6595642701525055], [0.6595642701525055], [0.617037037037037], [0.553202614379085], [0.44679738562091503], [0.36169934640522877], [0.36169934640522877], [0.4893681917211329], [0.6595642701525055], [0.829760348583878], [0.9148583877995642], [0.8510675381263617], [0.7021350762527233], [0.5106318082788671], [0.38296296296296295], [0.3404357298474946], [0.4042701525054467], [0.553202614379085], [0.7233986928104575], [0.8510675381263617], [0.8935947712418301], [0.8723311546840958], [0.7872331154684096], [0.7021350762527233], [0.6808278867102396], [0.7233986928104575], [0.7872331154684096], [0.8510675381263617], [0.8935947712418301], [0.9148583877995642], [0.936165577342048]], "masks": [[1], [1], [1], [1], [1], [1], [1], [1], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1]], "evals": [[0.44679738562091503], [0.46810457516339865], [0.5318954248366013], [0.617037037037037], [0.7233986928104575], [0.8084967320261438], [0.829760348583878], [0.8084967320261438], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.42553376906318086], [0.5106318082788671], [0.5957298474945534], [0.7021350762527233], [0.7446623093681918], [0.7659259259259259], [0.7872331154684096], [0.7872331154684096], [0.8084967320261438], [0.7659259259259259], [0.6808278867102396], [0.553202614379085], [0.42553376906318086], [0.36169934640522877], [0.4042701525054467], [0.4893681917211329], [0.5744662309368193], [0.617037037037037], [0.5957298474945534], [0.5957298474945534], [0.6595642701525055], [0.7659259259259259], [0.8935947712418301], [0.9786928104575163], [0.9574291938997821], [0.8510675381263617], [0.7233986928104575], [0.6383006535947712], [0.6383006535947712], [0.6808278867102396], [0.7446623093681918], [0.7659259259259259], [0.7659259259259259], [0.7446623093681918], [0.7446623093681918], [0.7233986928104575], [0.7233986928104575], [0.7021350762527233], [0.7021350762527233], [0.7233986928104575], [0.7659259259259259], [0.8084967320261438], [0.8084967320261438], [0.8084967320261438], [0.7659259259259259], [0.7021350762527233], [0.6383006535947712], [0.5957298474945534], [0.553202614379085], [0.4893681917211329], [0.42553376906318086], [0.4042701525054467], [0.42553376906318086], [0.5318954248366013], [0.6383006535947712], [0.7446623093681918], [0.829760348583878], [0.8723311546840958], [0.8935947712418301], [0.9148583877995642], [0.9148583877995642], [0.8723311546840958], [0.7659259259259259], [0.617037037037037], [0.4893681917211329], [0.46810457516339865], [0.5744662309368193], [0.7233986928104575], [0.8935947712418301], [0.9786928104575163], [1.0], [0.9148583877995642], [0.7872331154684096], [0.6383006535947712], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.4893681917211329], [0.42553376906318086], [0.42553376906318086], [0.44679738562091503], [0.42553376906318086], [0.38296296296296295], [0.3404357298474946], [0.2978649237472767], [0.27660130718954246], [0.2978649237472767], [0.3191721132897603], [0.3404357298474946], [0.38296296296296295], [0.38296296296296295], [0.3404357298474946], [0.27660130718954246], [0.1915032679738562], [0.14893246187363832], [0.14893246187363832], [0.1915032679738562], [0.2978649237472767], [0.42553376906318086], [0.553202614379085], [0.6383006535947712], [0.6383006535947712], [0.553202614379085], [0.38296296296296295], [0.1915032679738562], [0.04257080610021788], [0.021307189542483694], [0.17023965141612202], [0.36169934640522877], [0.5957298474945534], [0.7659259259259259], [0.8510675381263617], [0.8510675381263617], [0.8084967320261438], [0.7021350762527233], [0.5957298474945534], [0.46810457516339865], [0.38296296296296295], [0.36169934640522877], [0.4042701525054467], [0.5106318082788671], [0.6383006535947712], [0.7021350762527233], [0.7233986928104575], [0.7233986928104575], [0.6808278867102396], [0.6595642701525055], [0.617037037037037], [0.5106318082788671], [0.3404357298474946], [0.17023965141612202], [0.021307189542483694], [0.0], [0.12766884531590414], [0.3191721132897603], [0.553202614379085], [0.7659259259259259], [0.8935947712418301], [0.9574291938997821], [0.936165577342048], [0.7659259259259259], [0.5106318082788671], [0.21276688453159037], [0.0], [0.021307189542483694], [0.2553376906318083], [0.5957298474945534], [0.8935947712418301], [0.9786928104575163], [0.8935947712418301], [0.6808278867102396], [0.46810457516339865], [0.36169934640522877], [0.2978649237472767], [0.27660130718954246], [0.27660130718954246], [0.2978649237472767], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.5744662309368193], [0.5957298474945534], [0.6595642701525055], [0.7021350762527233], [0.6808278867102396], [0.5744662309368193], [0.42553376906318086], [0.3404357298474946], [0.38296296296296295], [0.5106318082788671], [0.6595642701525055], [0.7233986928104575], [0.6808278867102396], [0.5318954248366013], [0.42553376906318086], [0.38296296296296295], [0.46810457516339865], [0.5957298474945534], [0.7021350762527233], [0.7233986928104575], [0.6383006535947712], [0.5106318082788671], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.6383006535947712], [0.6595642701525055], [0.6595642701525055], [0.617037037037037], [0.553202614379085], [0.44679738562091503], [0.36169934640522877], [0.36169934640522877], [0.4893681917211329], [0.6595642701525055], [0.829760348583878], [0.9148583877995642], [0.8510675381263617], [0.7021350762527233], [0.5106318082788671], [0.38296296296296295], [0.3404357298474946], [0.4042701525054467], [0.553202614379085], [0.7233986928104575], [0.8510675381263617], [0.8935947712418301], [0.8723311546840958], [0.7872331154684096], [0.7021350762527233], [0.6808278867102396], [0.7233986928104575], [0.7872331154684096], [0.8510675381263617], [0.8935947712418301], [0.9148583877995642], [0.936165577342048]], "eval_masks": [[0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0]], "forwards": [[0.44679738562091503], [0.46810457516339865], [0.5318954248366013], [0.617037037037037], [0.7233986928104575], [0.8084967320261438], [0.829760348583878], [0.8084967320261438], [0.8084967320261438], [0.8084967320261438], [0.8084967320261438], [0.8084967320261438], [0.8084967320261438], [0.8084967320261438], [0.8084967320261438], [0.8084967320261438], [0.8084967320261438], [0.8084967320261438], [0.42553376906318086], [0.5106318082788671], [0.5957298474945534], [0.7021350762527233], [0.7446623093681918], [0.7659259259259259], [0.7872331154684096], [0.7872331154684096], [0.8084967320261438], [0.7659259259259259], [0.6808278867102396], [0.553202614379085], [0.42553376906318086], [0.36169934640522877], [0.4042701525054467], [0.4893681917211329], [0.5744662309368193], [0.617037037037037], [0.5957298474945534], [0.5957298474945534], [0.6595642701525055], [0.7659259259259259], [0.8935947712418301], [0.9786928104575163], [0.9574291938997821], [0.8510675381263617], [0.7233986928104575], [0.6383006535947712], [0.6383006535947712], [0.6808278867102396], [0.7446623093681918], [0.7659259259259259], [0.7659259259259259], [0.7446623093681918], [0.7446623093681918], [0.7233986928104575], [0.7233986928104575], [0.7021350762527233], [0.7021350762527233], [0.7233986928104575], [0.7659259259259259], [0.8084967320261438], [0.8084967320261438], [0.8084967320261438], [0.7659259259259259], [0.7021350762527233], [0.6383006535947712], [0.5957298474945534], [0.553202614379085], [0.4893681917211329], [0.42553376906318086], [0.4042701525054467], [0.42553376906318086], [0.5318954248366013], [0.6383006535947712], [0.7446623093681918], [0.829760348583878], [0.8723311546840958], [0.8935947712418301], [0.9148583877995642], [0.9148583877995642], [0.8723311546840958], [0.7659259259259259], [0.617037037037037], [0.4893681917211329], [0.46810457516339865], [0.5744662309368193], [0.7233986928104575], [0.8935947712418301], [0.9786928104575163], [1.0], [0.9148583877995642], [0.7872331154684096], [0.6383006535947712], [0.6383006535947712], [0.6383006535947712], [0.6383006535947712], [0.6383006535947712], [0.6383006535947712], [0.6383006535947712], [0.6383006535947712], [0.6383006535947712], [0.6383006535947712], [0.6383006535947712], [0.4893681917211329], [0.42553376906318086], [0.42553376906318086], [0.44679738562091503], [0.42553376906318086], [0.38296296296296295], [0.3404357298474946], [0.2978649237472767], [0.27660130718954246], [0.2978649237472767], [0.3191721132897603], [0.3404357298474946], [0.38296296296296295], [0.38296296296296295], [0.3404357298474946], [0.27660130718954246], [0.1915032679738562], [0.14893246187363832], [0.14893246187363832], [0.1915032679738562], [0.2978649237472767], [0.42553376906318086], [0.553202614379085], [0.6383006535947712], [0.6383006535947712], [0.553202614379085], [0.38296296296296295], [0.1915032679738562], [0.04257080610021788], [0.021307189542483694], [0.17023965141612202], [0.36169934640522877], [0.5957298474945534], [0.7659259259259259], [0.8510675381263617], [0.8510675381263617], [0.8084967320261438], [0.7021350762527233], [0.5957298474945534], [0.46810457516339865], [0.38296296296296295], [0.36169934640522877], [0.4042701525054467], [0.5106318082788671], [0.6383006535947712], [0.7021350762527233], [0.7233986928104575], [0.7233986928104575], [0.6808278867102396], [0.6595642701525055], [0.617037037037037], [0.5106318082788671], [0.3404357298474946], [0.17023965141612202], [0.021307189542483694], [0.0], [0.12766884531590414], [0.3191721132897603], [0.553202614379085], [0.7659259259259259], [0.8935947712418301], [0.9574291938997821], [0.936165577342048], [0.7659259259259259], [0.5106318082788671], [0.21276688453159037], [0.0], [0.021307189542483694], [0.2553376906318083], [0.5957298474945534], [0.8935947712418301], [0.9786928104575163], [0.8935947712418301], [0.6808278867102396], [0.46810457516339865], [0.36169934640522877], [0.2978649237472767], [0.27660130718954246], [0.27660130718954246], [0.2978649237472767], [0.2978649237472767], [0.2978649237472767], [0.2978649237472767], [0.2978649237472767], [0.2978649237472767], [0.2978649237472767], [0.2978649237472767], [0.2978649237472767], [0.2978649237472767], [0.2978649237472767], [0.5744662309368193], [0.5957298474945534], [0.6595642701525055], [0.7021350762527233], [0.6808278867102396], [0.5744662309368193], [0.42553376906318086], [0.3404357298474946], [0.38296296296296295], [0.5106318082788671], [0.6595642701525055], [0.7233986928104575], [0.6808278867102396], [0.5318954248366013], [0.42553376906318086], [0.38296296296296295], [0.46810457516339865], [0.5957298474945534], [0.7021350762527233], [0.7233986928104575], [0.6383006535947712], [0.5106318082788671], [0.5106318082788671], [0.5106318082788671], [0.5106318082788671], [0.5106318082788671], [0.5106318082788671], [0.5106318082788671], [0.5106318082788671], [0.5106318082788671], [0.5106318082788671], [0.5106318082788671], [0.6383006535947712], [0.6595642701525055], [0.6595642701525055], [0.617037037037037], [0.553202614379085], [0.44679738562091503], [0.36169934640522877], [0.36169934640522877], [0.4893681917211329], [0.6595642701525055], [0.829760348583878], [0.9148583877995642], [0.8510675381263617], [0.7021350762527233], [0.5106318082788671], [0.38296296296296295], [0.3404357298474946], [0.4042701525054467], [0.553202614379085], [0.7233986928104575], [0.8510675381263617], [0.8935947712418301], [0.8723311546840958], [0.7872331154684096], [0.7021350762527233], [0.6808278867102396], [0.7233986928104575], [0.7872331154684096], [0.8510675381263617], [0.8935947712418301], [0.9148583877995642], [0.936165577342048]], "deltas": [[1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [2.0], [3.0], [4.0], [5.0], [6.0], [7.0], [8.0], [9.0], [10.0], [11.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [2.0], [3.0], [4.0], [5.0], [6.0], [7.0], [8.0], [9.0], [10.0], [11.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [2.0], [3.0], [4.0], [5.0], [6.0], [7.0], [8.0], [9.0], [10.0], [11.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [2.0], [3.0], [4.0], [5.0], [6.0], [7.0], [8.0], [9.0], [10.0], [11.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0]]}} -{"label": 0, "forward": {"values": [[1.0], [0.9824662259269905], [0.9824662259269905], [1.0], [0.9824662259269905], [0.9298289738430583], [0.8420882437482036], [0.7719172175912618], [0.7368496694452429], [0.7543834435182523], [0.8070206956021845], [0.8771917217591261], [0.9298289738430583], [0.9473627479160679], [0.9298289738430583], [0.8947254958321357], [0.8596579476861166], [0.8596579476861166], [0.8771917217591261], [0.9122951997700488], [0.9473627479160679], [0.9473627479160679], [0.8771917217591261], [0.789486921529175], [0.7017461914343202], [0.6666786432883012], [0.6842124173613107], [0.7368496694452429], [0.789486921529175], [0.8070206956021845], [0.7719172175912618], [0.7017461914343202], [0.6315751652773786], [0.6315751652773786], [0.6666786432883012], [0.7368496694452429], [0.8420882437482036], [0.9122951997700488], [0.9473627479160679], [0.9122951997700488], [0.8420882437482036], [0.7368496694452429], [0.6315751652773786], [0.5965076171313596], [0.6140413912043691], [0.6842124173613107], [0.7368496694452429], [0.7719172175912618], [0.789486921529175], [0.7719172175912618], [0.7368496694452429], [0.7017461914343202], [0.6666786432883012], [0.6315751652773786], [0.5789379131934463], [0.5438703650474274], [0.5438703650474274], [0.5614041391204369], [0.5965076171313596], [0.5965076171313596], [0.5614041391204369], [0.5087668870365047], [0.5263006611095142], [0.5789379131934463], [0.6666786432883012], [0.7368496694452429], [0.7543834435182523], [0.7192799655073296], [0.6666786432883012], [0.6315751652773786], [0.6491089393503879], [0.7017461914343202], [0.789486921529175], [0.8596579476861166], [0.8596579476861166], [0.789486921529175], [0.6315751652773786], [0.4561296349525726], [0.29825380856567973], [0.24561655648174757], [0.31578758263868917], [0.5087668870365047], [0.7192799655073296], [0.8420882437482036], [0.824554469675194], [0.7017461914343202], [0.5263006611095142], [0.4561296349525726], [0.4561296349525726], [0.5438703650474274], [0.6140413912043691], [0.6491089393503879], [0.6140413912043691], [0.5263006611095142], [0.4561296349525726], [0.3859586087956309], [0.35089106064961195], [0.35089106064961195], [0.42106208680655355], [0.5263006611095142], [0.6315751652773786], [0.6666786432883012], [0.6315751652773786], [0.5263006611095142], [0.3859586087956309], [0.31578758263868917], [0.29825380856567973], [0.35089106064961195], [0.42106208680655355], [0.5263006611095142], [0.6315751652773786], [0.7017461914343202], [0.7368496694452429], [0.7017461914343202], [0.6140413912043691], [0.4912331129634952], [0.36842483472262144], [0.3333213567116987], [0.3333213567116987], [0.3859586087956309], [0.43859586087956304], [0.4912331129634952], [0.5263006611095142], [0.5263006611095142], [0.5087668870365047], [0.43859586087956304], [0.35089106064961195], [0.2806841046277666], [0.21051307847082487], [0.17544553032480595], [0.17544553032480595], [0.1929793043978154], [0.21051307847082487], [0.24561655648174757], [0.29825380856567973], [0.3859586087956309], [0.4736993388904857], [0.5263006611095142], [0.5263006611095142], [0.4561296349525726], [0.35089106064961195], [0.24561655648174757], [0.21051307847082487], [0.1929793043978154], [0.24561655648174757], [0.29825380856567973], [0.36842483472262144], [0.42106208680655355], [0.4561296349525726], [0.4736993388904857], [0.4561296349525726], [0.42106208680655355], [0.4034923828686404], [0.4034923828686404], [0.4561296349525726], [0.5263006611095142], [0.5789379131934463], [0.6140413912043691], [0.5965076171313596], [0.5263006611095142], [0.42106208680655355], [0.29825380856567973], [0.1929793043978154], [0.14034205231388325], [0.14034205231388325], [0.21051307847082487], [0.35089106064961195], [0.4736993388904857], [0.5614041391204369], [0.5438703650474274], [0.42106208680655355], [0.2806841046277666], [0.17544553032480595], [0.17544553032480595], [0.2806841046277666], [0.43859586087956304], [0.5789379131934463], [0.6315751652773786], [0.5789379131934463], [0.4736993388904857], [0.36842483472262144], [0.29825380856567973], [0.31578758263868917], [0.3859586087956309], [0.5087668870365047], [0.5965076171313596], [0.6315751652773786], [0.5789379131934463], [0.4912331129634952], [0.3859586087956309], [0.35089106064961195], [0.3859586087956309], [0.4561296349525726], [0.5263006611095142], [0.5614041391204369], [0.5263006611095142], [0.4736993388904857], [0.4561296349525726], [0.4912331129634952], [0.5614041391204369], [0.6315751652773786], [0.6315751652773786], [0.6140413912043691], [0.5789379131934463], [0.5614041391204369], [0.5965076171313596], [0.6666786432883012], [0.7368496694452429], [0.7719172175912618], [0.7719172175912618], [0.7017461914343202], [0.5965076171313596], [0.4912331129634952], [0.4034923828686404], [0.36842483472262144], [0.42106208680655355], [0.5438703650474274], [0.7017461914343202], [0.8070206956021845], [0.8070206956021845], [0.6666786432883012], [0.4736993388904857], [0.29825380856567973], [0.24561655648174757], [0.3333213567116987], [0.5438703650474274], [0.7543834435182523], [0.8596579476861166], [0.8070206956021845], [0.5965076171313596], [0.35089106064961195], [0.17544553032480595], [0.17544553032480595], [0.3333213567116987], [0.5438703650474274], [0.7017461914343202], [0.7192799655073296], [0.5965076171313596], [0.3859586087956309], [0.2280827824087381], [0.17544553032480595], [0.26315033055475706], [0.42106208680655355], [0.5614041391204369], [0.6491089393503879], [0.5965076171313596], [0.42106208680655355], [0.1929793043978154], [0.01753377407300947], [0.0], [0.1578758263868927], [0.4561296349525726], [0.7543834435182523], [0.9122951997700488], [0.8596579476861166], [0.6140413912043691]], "masks": [[1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1]], "evals": [[1.0], [0.9824662259269905], [0.9824662259269905], [1.0], [0.9824662259269905], [0.9298289738430583], [0.8420882437482036], [0.7719172175912618], [0.7368496694452429], [0.7543834435182523], [0.8070206956021845], [0.8771917217591261], [0.9298289738430583], [0.9473627479160679], [0.9298289738430583], [0.8947254958321357], [0.8596579476861166], [0.8596579476861166], [0.8771917217591261], [0.9122951997700488], [0.9473627479160679], [0.9473627479160679], [0.8771917217591261], [0.789486921529175], [0.7017461914343202], [0.6666786432883012], [0.6842124173613107], [0.7368496694452429], [0.789486921529175], [0.8070206956021845], [0.7719172175912618], [0.7017461914343202], [0.6315751652773786], [0.6315751652773786], [0.6666786432883012], [0.7368496694452429], [0.8420882437482036], [0.9122951997700488], [0.9473627479160679], [0.9122951997700488], [0.8420882437482036], [0.7368496694452429], [0.6315751652773786], [0.5965076171313596], [0.6140413912043691], [0.6842124173613107], [0.7368496694452429], [0.7719172175912618], [0.789486921529175], [0.7719172175912618], [0.7368496694452429], [0.7017461914343202], [0.6666786432883012], [0.6315751652773786], [0.5789379131934463], [0.5438703650474274], [0.5438703650474274], [0.5614041391204369], [0.5965076171313596], [0.5965076171313596], [0.5614041391204369], [0.5087668870365047], [0.5263006611095142], [0.5789379131934463], [0.6666786432883012], [0.7368496694452429], [0.7543834435182523], [0.7192799655073296], [0.6666786432883012], [0.6315751652773786], [0.6491089393503879], [0.7017461914343202], [0.789486921529175], [0.8596579476861166], [0.8596579476861166], [0.789486921529175], [0.6315751652773786], [0.4561296349525726], [0.29825380856567973], [0.24561655648174757], [0.31578758263868917], [0.5087668870365047], [0.7192799655073296], [0.8420882437482036], [0.824554469675194], [0.7017461914343202], [0.5263006611095142], [0.4561296349525726], [0.4561296349525726], [0.5438703650474274], [0.6140413912043691], [0.6491089393503879], [0.6140413912043691], [0.5263006611095142], [0.4561296349525726], [0.3859586087956309], [0.35089106064961195], [0.35089106064961195], [0.42106208680655355], [0.5263006611095142], [0.6315751652773786], [0.6666786432883012], [0.6315751652773786], [0.5263006611095142], [0.3859586087956309], [0.31578758263868917], [0.29825380856567973], [0.35089106064961195], [0.42106208680655355], [0.5263006611095142], [0.6315751652773786], [0.7017461914343202], [0.7368496694452429], [0.7017461914343202], [0.6140413912043691], [0.4912331129634952], [0.36842483472262144], [0.3333213567116987], [0.3333213567116987], [0.3859586087956309], [0.43859586087956304], [0.4912331129634952], [0.5263006611095142], [0.5263006611095142], [0.5087668870365047], [0.43859586087956304], [0.35089106064961195], [0.2806841046277666], [0.21051307847082487], [0.17544553032480595], [0.17544553032480595], [0.1929793043978154], [0.21051307847082487], [0.24561655648174757], [0.29825380856567973], [0.3859586087956309], [0.4736993388904857], [0.5263006611095142], [0.5263006611095142], [0.4561296349525726], [0.35089106064961195], [0.24561655648174757], [0.21051307847082487], [0.1929793043978154], [0.24561655648174757], [0.29825380856567973], [0.36842483472262144], [0.42106208680655355], [0.4561296349525726], [0.4736993388904857], [0.4561296349525726], [0.42106208680655355], [0.4034923828686404], [0.4034923828686404], [0.4561296349525726], [0.5263006611095142], [0.5789379131934463], [0.6140413912043691], [0.5965076171313596], [0.5263006611095142], [0.42106208680655355], [0.29825380856567973], [0.1929793043978154], [0.14034205231388325], [0.14034205231388325], [0.21051307847082487], [0.35089106064961195], [0.4736993388904857], [0.5614041391204369], [0.5438703650474274], [0.42106208680655355], [0.2806841046277666], [0.17544553032480595], [0.17544553032480595], [0.2806841046277666], [0.43859586087956304], [0.5789379131934463], [0.6315751652773786], [0.5789379131934463], [0.4736993388904857], [0.36842483472262144], [0.29825380856567973], [0.31578758263868917], [0.3859586087956309], [0.5087668870365047], [0.5965076171313596], [0.6315751652773786], [0.5789379131934463], [0.4912331129634952], [0.3859586087956309], [0.35089106064961195], [0.3859586087956309], [0.4561296349525726], [0.5263006611095142], [0.5614041391204369], [0.5263006611095142], [0.4736993388904857], [0.4561296349525726], [0.4912331129634952], [0.5614041391204369], [0.6315751652773786], [0.6315751652773786], [0.6140413912043691], [0.5789379131934463], [0.5614041391204369], [0.5965076171313596], [0.6666786432883012], [0.7368496694452429], [0.7719172175912618], [0.7719172175912618], [0.7017461914343202], [0.5965076171313596], [0.4912331129634952], [0.4034923828686404], [0.36842483472262144], [0.42106208680655355], [0.5438703650474274], [0.7017461914343202], [0.8070206956021845], [0.8070206956021845], [0.6666786432883012], [0.4736993388904857], [0.29825380856567973], [0.24561655648174757], [0.3333213567116987], [0.5438703650474274], [0.7543834435182523], [0.8596579476861166], [0.8070206956021845], [0.5965076171313596], [0.35089106064961195], [0.17544553032480595], [0.17544553032480595], [0.3333213567116987], [0.5438703650474274], [0.7017461914343202], [0.7192799655073296], [0.5965076171313596], [0.3859586087956309], [0.2280827824087381], [0.17544553032480595], [0.26315033055475706], [0.42106208680655355], [0.5614041391204369], [0.6491089393503879], [0.5965076171313596], [0.42106208680655355], [0.1929793043978154], [0.01753377407300947], [0.0], [0.1578758263868927], [0.4561296349525726], [0.7543834435182523], [0.9122951997700488], [0.8596579476861166], [0.6140413912043691]], "eval_masks": [[0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0]], "forwards": [[1.0], [0.9824662259269905], [0.9824662259269905], [1.0], [0.9824662259269905], [0.9298289738430583], [0.8420882437482036], [0.7719172175912618], [0.7368496694452429], [0.7543834435182523], [0.8070206956021845], [0.8771917217591261], [0.9298289738430583], [0.9473627479160679], [0.9298289738430583], [0.8947254958321357], [0.8596579476861166], [0.8596579476861166], [0.8771917217591261], [0.9122951997700488], [0.9473627479160679], [0.9473627479160679], [0.8771917217591261], [0.789486921529175], [0.7017461914343202], [0.6666786432883012], [0.6842124173613107], [0.7368496694452429], [0.789486921529175], [0.8070206956021845], [0.7719172175912618], [0.7017461914343202], [0.6315751652773786], [0.6315751652773786], [0.6666786432883012], [0.7368496694452429], [0.8420882437482036], [0.9122951997700488], [0.9473627479160679], [0.9122951997700488], [0.8420882437482036], [0.7368496694452429], [0.6315751652773786], [0.5965076171313596], [0.6140413912043691], [0.6842124173613107], [0.7368496694452429], [0.7719172175912618], [0.789486921529175], [0.7719172175912618], [0.7368496694452429], [0.7017461914343202], [0.6666786432883012], [0.6315751652773786], [0.5789379131934463], [0.5438703650474274], [0.5438703650474274], [0.5614041391204369], [0.5965076171313596], [0.5965076171313596], [0.5614041391204369], [0.5087668870365047], [0.5263006611095142], [0.5789379131934463], [0.6666786432883012], [0.7368496694452429], [0.7543834435182523], [0.7192799655073296], [0.6666786432883012], [0.6315751652773786], [0.6491089393503879], [0.7017461914343202], [0.789486921529175], [0.8596579476861166], [0.8596579476861166], [0.789486921529175], [0.6315751652773786], [0.4561296349525726], [0.29825380856567973], [0.24561655648174757], [0.31578758263868917], [0.5087668870365047], [0.7192799655073296], [0.8420882437482036], [0.824554469675194], [0.7017461914343202], [0.5263006611095142], [0.4561296349525726], [0.4561296349525726], [0.5438703650474274], [0.6140413912043691], [0.6491089393503879], [0.6140413912043691], [0.5263006611095142], [0.4561296349525726], [0.3859586087956309], [0.35089106064961195], [0.35089106064961195], [0.42106208680655355], [0.5263006611095142], [0.6315751652773786], [0.6666786432883012], [0.6315751652773786], [0.5263006611095142], [0.3859586087956309], [0.31578758263868917], [0.29825380856567973], [0.35089106064961195], [0.42106208680655355], [0.5263006611095142], [0.6315751652773786], [0.7017461914343202], [0.7368496694452429], [0.7017461914343202], [0.6140413912043691], [0.4912331129634952], [0.36842483472262144], [0.3333213567116987], [0.3333213567116987], [0.3859586087956309], [0.43859586087956304], [0.4912331129634952], [0.5263006611095142], [0.5263006611095142], [0.5087668870365047], [0.43859586087956304], [0.35089106064961195], [0.2806841046277666], [0.21051307847082487], [0.17544553032480595], [0.17544553032480595], [0.1929793043978154], [0.21051307847082487], [0.24561655648174757], [0.29825380856567973], [0.3859586087956309], [0.4736993388904857], [0.5263006611095142], [0.5263006611095142], [0.4561296349525726], [0.35089106064961195], [0.24561655648174757], [0.21051307847082487], [0.1929793043978154], [0.24561655648174757], [0.29825380856567973], [0.36842483472262144], [0.42106208680655355], [0.4561296349525726], [0.4736993388904857], [0.4561296349525726], [0.42106208680655355], [0.4034923828686404], [0.4034923828686404], [0.4561296349525726], [0.5263006611095142], [0.5789379131934463], [0.6140413912043691], [0.5965076171313596], [0.5263006611095142], [0.42106208680655355], [0.29825380856567973], [0.1929793043978154], [0.14034205231388325], [0.14034205231388325], [0.21051307847082487], [0.35089106064961195], [0.4736993388904857], [0.5614041391204369], [0.5438703650474274], [0.42106208680655355], [0.2806841046277666], [0.17544553032480595], [0.17544553032480595], [0.2806841046277666], [0.43859586087956304], [0.5789379131934463], [0.6315751652773786], [0.5789379131934463], [0.4736993388904857], [0.36842483472262144], [0.29825380856567973], [0.31578758263868917], [0.3859586087956309], [0.5087668870365047], [0.5965076171313596], [0.6315751652773786], [0.5789379131934463], [0.4912331129634952], [0.3859586087956309], [0.35089106064961195], [0.3859586087956309], [0.4561296349525726], [0.5263006611095142], [0.5614041391204369], [0.5263006611095142], [0.4736993388904857], [0.4561296349525726], [0.4912331129634952], [0.5614041391204369], [0.6315751652773786], [0.6315751652773786], [0.6140413912043691], [0.5789379131934463], [0.5614041391204369], [0.5965076171313596], [0.6666786432883012], [0.7368496694452429], [0.7719172175912618], [0.7719172175912618], [0.7017461914343202], [0.5965076171313596], [0.4912331129634952], [0.4034923828686404], [0.36842483472262144], [0.42106208680655355], [0.5438703650474274], [0.7017461914343202], [0.8070206956021845], [0.8070206956021845], [0.6666786432883012], [0.4736993388904857], [0.29825380856567973], [0.24561655648174757], [0.3333213567116987], [0.5438703650474274], [0.7543834435182523], [0.8596579476861166], [0.8070206956021845], [0.5965076171313596], [0.35089106064961195], [0.17544553032480595], [0.17544553032480595], [0.3333213567116987], [0.5438703650474274], [0.7017461914343202], [0.7192799655073296], [0.5965076171313596], [0.3859586087956309], [0.2280827824087381], [0.17544553032480595], [0.26315033055475706], [0.42106208680655355], [0.5614041391204369], [0.6491089393503879], [0.5965076171313596], [0.42106208680655355], [0.1929793043978154], [0.01753377407300947], [0.0], [0.1578758263868927], [0.4561296349525726], [0.7543834435182523], [0.9122951997700488], [0.8596579476861166], [0.6140413912043691]], "deltas": [[1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0]]}, "backward": {"values": [[0.6140413912043691], [0.8596579476861166], [0.9122951997700488], [0.7543834435182523], [0.4561296349525726], [0.1578758263868927], [0.0], [0.01753377407300947], [0.1929793043978154], [0.42106208680655355], [0.5965076171313596], [0.6491089393503879], [0.5614041391204369], [0.42106208680655355], [0.26315033055475706], [0.17544553032480595], [0.2280827824087381], [0.3859586087956309], [0.5965076171313596], [0.7192799655073296], [0.7017461914343202], [0.5438703650474274], [0.3333213567116987], [0.17544553032480595], [0.17544553032480595], [0.35089106064961195], [0.5965076171313596], [0.8070206956021845], [0.8596579476861166], [0.7543834435182523], [0.5438703650474274], [0.3333213567116987], [0.24561655648174757], [0.29825380856567973], [0.4736993388904857], [0.6666786432883012], [0.8070206956021845], [0.8070206956021845], [0.7017461914343202], [0.5438703650474274], [0.42106208680655355], [0.36842483472262144], [0.4034923828686404], [0.4912331129634952], [0.5965076171313596], [0.7017461914343202], [0.7719172175912618], [0.7719172175912618], [0.7368496694452429], [0.6666786432883012], [0.5965076171313596], [0.5614041391204369], [0.5789379131934463], [0.6140413912043691], [0.6315751652773786], [0.6315751652773786], [0.5614041391204369], [0.4912331129634952], [0.4561296349525726], [0.4736993388904857], [0.5263006611095142], [0.5614041391204369], [0.5263006611095142], [0.4561296349525726], [0.3859586087956309], [0.35089106064961195], [0.3859586087956309], [0.4912331129634952], [0.5789379131934463], [0.6315751652773786], [0.5965076171313596], [0.5087668870365047], [0.3859586087956309], [0.31578758263868917], [0.29825380856567973], [0.36842483472262144], [0.4736993388904857], [0.5789379131934463], [0.6315751652773786], [0.5789379131934463], [0.43859586087956304], [0.2806841046277666], [0.17544553032480595], [0.17544553032480595], [0.2806841046277666], [0.42106208680655355], [0.5438703650474274], [0.5614041391204369], [0.4736993388904857], [0.35089106064961195], [0.21051307847082487], [0.14034205231388325], [0.14034205231388325], [0.1929793043978154], [0.29825380856567973], [0.42106208680655355], [0.5263006611095142], [0.5965076171313596], [0.6140413912043691], [0.5789379131934463], [0.5263006611095142], [0.4561296349525726], [0.4034923828686404], [0.4034923828686404], [0.42106208680655355], [0.4561296349525726], [0.4736993388904857], [0.4561296349525726], [0.42106208680655355], [0.36842483472262144], [0.29825380856567973], [0.24561655648174757], [0.1929793043978154], [0.21051307847082487], [0.24561655648174757], [0.35089106064961195], [0.4561296349525726], [0.5263006611095142], [0.5263006611095142], [0.4736993388904857], [0.3859586087956309], [0.29825380856567973], [0.24561655648174757], [0.21051307847082487], [0.1929793043978154], [0.17544553032480595], [0.17544553032480595], [0.21051307847082487], [0.2806841046277666], [0.35089106064961195], [0.43859586087956304], [0.5087668870365047], [0.5263006611095142], [0.5263006611095142], [0.4912331129634952], [0.43859586087956304], [0.3859586087956309], [0.3333213567116987], [0.3333213567116987], [0.36842483472262144], [0.4912331129634952], [0.6140413912043691], [0.7017461914343202], [0.7368496694452429], [0.7017461914343202], [0.6315751652773786], [0.5263006611095142], [0.42106208680655355], [0.35089106064961195], [0.29825380856567973], [0.31578758263868917], [0.3859586087956309], [0.5263006611095142], [0.6315751652773786], [0.6666786432883012], [0.6315751652773786], [0.5263006611095142], [0.42106208680655355], [0.35089106064961195], [0.35089106064961195], [0.3859586087956309], [0.4561296349525726], [0.5263006611095142], [0.6140413912043691], [0.6491089393503879], [0.6140413912043691], [0.5438703650474274], [0.4561296349525726], [0.4561296349525726], [0.5263006611095142], [0.7017461914343202], [0.824554469675194], [0.8420882437482036], [0.7192799655073296], [0.5087668870365047], [0.31578758263868917], [0.24561655648174757], [0.29825380856567973], [0.4561296349525726], [0.6315751652773786], [0.789486921529175], [0.8596579476861166], [0.8596579476861166], [0.789486921529175], [0.7017461914343202], [0.6491089393503879], [0.6315751652773786], [0.6666786432883012], [0.7192799655073296], [0.7543834435182523], [0.7368496694452429], [0.6666786432883012], [0.5789379131934463], [0.5263006611095142], [0.5087668870365047], [0.5614041391204369], [0.5965076171313596], [0.5965076171313596], [0.5614041391204369], [0.5438703650474274], [0.5438703650474274], [0.5789379131934463], [0.6315751652773786], [0.6666786432883012], [0.7017461914343202], [0.7368496694452429], [0.7719172175912618], [0.789486921529175], [0.7719172175912618], [0.7368496694452429], [0.6842124173613107], [0.6140413912043691], [0.5965076171313596], [0.6315751652773786], [0.7368496694452429], [0.8420882437482036], [0.9122951997700488], [0.9473627479160679], [0.9122951997700488], [0.8420882437482036], [0.7368496694452429], [0.6666786432883012], [0.6315751652773786], [0.6315751652773786], [0.7017461914343202], [0.7719172175912618], [0.8070206956021845], [0.789486921529175], [0.7368496694452429], [0.6842124173613107], [0.6666786432883012], [0.7017461914343202], [0.789486921529175], [0.8771917217591261], [0.9473627479160679], [0.9473627479160679], [0.9122951997700488], [0.8771917217591261], [0.8596579476861166], [0.8596579476861166], [0.8947254958321357], [0.9298289738430583], [0.9473627479160679], [0.9298289738430583], [0.8771917217591261], [0.8070206956021845], [0.7543834435182523], [0.7368496694452429], [0.7719172175912618], [0.8420882437482036], [0.9298289738430583], [0.9824662259269905], [1.0], [0.9824662259269905], [0.9824662259269905], [1.0]], "masks": [[1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1]], "evals": [[0.6140413912043691], [0.8596579476861166], [0.9122951997700488], [0.7543834435182523], [0.4561296349525726], [0.1578758263868927], [0.0], [0.01753377407300947], [0.1929793043978154], [0.42106208680655355], [0.5965076171313596], [0.6491089393503879], [0.5614041391204369], [0.42106208680655355], [0.26315033055475706], [0.17544553032480595], [0.2280827824087381], [0.3859586087956309], [0.5965076171313596], [0.7192799655073296], [0.7017461914343202], [0.5438703650474274], [0.3333213567116987], [0.17544553032480595], [0.17544553032480595], [0.35089106064961195], [0.5965076171313596], [0.8070206956021845], [0.8596579476861166], [0.7543834435182523], [0.5438703650474274], [0.3333213567116987], [0.24561655648174757], [0.29825380856567973], [0.4736993388904857], [0.6666786432883012], [0.8070206956021845], [0.8070206956021845], [0.7017461914343202], [0.5438703650474274], [0.42106208680655355], [0.36842483472262144], [0.4034923828686404], [0.4912331129634952], [0.5965076171313596], [0.7017461914343202], [0.7719172175912618], [0.7719172175912618], [0.7368496694452429], [0.6666786432883012], [0.5965076171313596], [0.5614041391204369], [0.5789379131934463], [0.6140413912043691], [0.6315751652773786], [0.6315751652773786], [0.5614041391204369], [0.4912331129634952], [0.4561296349525726], [0.4736993388904857], [0.5263006611095142], [0.5614041391204369], [0.5263006611095142], [0.4561296349525726], [0.3859586087956309], [0.35089106064961195], [0.3859586087956309], [0.4912331129634952], [0.5789379131934463], [0.6315751652773786], [0.5965076171313596], [0.5087668870365047], [0.3859586087956309], [0.31578758263868917], [0.29825380856567973], [0.36842483472262144], [0.4736993388904857], [0.5789379131934463], [0.6315751652773786], [0.5789379131934463], [0.43859586087956304], [0.2806841046277666], [0.17544553032480595], [0.17544553032480595], [0.2806841046277666], [0.42106208680655355], [0.5438703650474274], [0.5614041391204369], [0.4736993388904857], [0.35089106064961195], [0.21051307847082487], [0.14034205231388325], [0.14034205231388325], [0.1929793043978154], [0.29825380856567973], [0.42106208680655355], [0.5263006611095142], [0.5965076171313596], [0.6140413912043691], [0.5789379131934463], [0.5263006611095142], [0.4561296349525726], [0.4034923828686404], [0.4034923828686404], [0.42106208680655355], [0.4561296349525726], [0.4736993388904857], [0.4561296349525726], [0.42106208680655355], [0.36842483472262144], [0.29825380856567973], [0.24561655648174757], [0.1929793043978154], [0.21051307847082487], [0.24561655648174757], [0.35089106064961195], [0.4561296349525726], [0.5263006611095142], [0.5263006611095142], [0.4736993388904857], [0.3859586087956309], [0.29825380856567973], [0.24561655648174757], [0.21051307847082487], [0.1929793043978154], [0.17544553032480595], [0.17544553032480595], [0.21051307847082487], [0.2806841046277666], [0.35089106064961195], [0.43859586087956304], [0.5087668870365047], [0.5263006611095142], [0.5263006611095142], [0.4912331129634952], [0.43859586087956304], [0.3859586087956309], [0.3333213567116987], [0.3333213567116987], [0.36842483472262144], [0.4912331129634952], [0.6140413912043691], [0.7017461914343202], [0.7368496694452429], [0.7017461914343202], [0.6315751652773786], [0.5263006611095142], [0.42106208680655355], [0.35089106064961195], [0.29825380856567973], [0.31578758263868917], [0.3859586087956309], [0.5263006611095142], [0.6315751652773786], [0.6666786432883012], [0.6315751652773786], [0.5263006611095142], [0.42106208680655355], [0.35089106064961195], [0.35089106064961195], [0.3859586087956309], [0.4561296349525726], [0.5263006611095142], [0.6140413912043691], [0.6491089393503879], [0.6140413912043691], [0.5438703650474274], [0.4561296349525726], [0.4561296349525726], [0.5263006611095142], [0.7017461914343202], [0.824554469675194], [0.8420882437482036], [0.7192799655073296], [0.5087668870365047], [0.31578758263868917], [0.24561655648174757], [0.29825380856567973], [0.4561296349525726], [0.6315751652773786], [0.789486921529175], [0.8596579476861166], [0.8596579476861166], [0.789486921529175], [0.7017461914343202], [0.6491089393503879], [0.6315751652773786], [0.6666786432883012], [0.7192799655073296], [0.7543834435182523], [0.7368496694452429], [0.6666786432883012], [0.5789379131934463], [0.5263006611095142], [0.5087668870365047], [0.5614041391204369], [0.5965076171313596], [0.5965076171313596], [0.5614041391204369], [0.5438703650474274], [0.5438703650474274], [0.5789379131934463], [0.6315751652773786], [0.6666786432883012], [0.7017461914343202], [0.7368496694452429], [0.7719172175912618], [0.789486921529175], [0.7719172175912618], [0.7368496694452429], [0.6842124173613107], [0.6140413912043691], [0.5965076171313596], [0.6315751652773786], [0.7368496694452429], [0.8420882437482036], [0.9122951997700488], [0.9473627479160679], [0.9122951997700488], [0.8420882437482036], [0.7368496694452429], [0.6666786432883012], [0.6315751652773786], [0.6315751652773786], [0.7017461914343202], [0.7719172175912618], [0.8070206956021845], [0.789486921529175], [0.7368496694452429], [0.6842124173613107], [0.6666786432883012], [0.7017461914343202], [0.789486921529175], [0.8771917217591261], [0.9473627479160679], [0.9473627479160679], [0.9122951997700488], [0.8771917217591261], [0.8596579476861166], [0.8596579476861166], [0.8947254958321357], [0.9298289738430583], [0.9473627479160679], [0.9298289738430583], [0.8771917217591261], [0.8070206956021845], [0.7543834435182523], [0.7368496694452429], [0.7719172175912618], [0.8420882437482036], [0.9298289738430583], [0.9824662259269905], [1.0], [0.9824662259269905], [0.9824662259269905], [1.0]], "eval_masks": [[0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0]], "forwards": [[0.6140413912043691], [0.8596579476861166], [0.9122951997700488], [0.7543834435182523], [0.4561296349525726], [0.1578758263868927], [0.0], [0.01753377407300947], [0.1929793043978154], [0.42106208680655355], [0.5965076171313596], [0.6491089393503879], [0.5614041391204369], [0.42106208680655355], [0.26315033055475706], [0.17544553032480595], [0.2280827824087381], [0.3859586087956309], [0.5965076171313596], [0.7192799655073296], [0.7017461914343202], [0.5438703650474274], [0.3333213567116987], [0.17544553032480595], [0.17544553032480595], [0.35089106064961195], [0.5965076171313596], [0.8070206956021845], [0.8596579476861166], [0.7543834435182523], [0.5438703650474274], [0.3333213567116987], [0.24561655648174757], [0.29825380856567973], [0.4736993388904857], [0.6666786432883012], [0.8070206956021845], [0.8070206956021845], [0.7017461914343202], [0.5438703650474274], [0.42106208680655355], [0.36842483472262144], [0.4034923828686404], [0.4912331129634952], [0.5965076171313596], [0.7017461914343202], [0.7719172175912618], [0.7719172175912618], [0.7368496694452429], [0.6666786432883012], [0.5965076171313596], [0.5614041391204369], [0.5789379131934463], [0.6140413912043691], [0.6315751652773786], [0.6315751652773786], [0.5614041391204369], [0.4912331129634952], [0.4561296349525726], [0.4736993388904857], [0.5263006611095142], [0.5614041391204369], [0.5263006611095142], [0.4561296349525726], [0.3859586087956309], [0.35089106064961195], [0.3859586087956309], [0.4912331129634952], [0.5789379131934463], [0.6315751652773786], [0.5965076171313596], [0.5087668870365047], [0.3859586087956309], [0.31578758263868917], [0.29825380856567973], [0.36842483472262144], [0.4736993388904857], [0.5789379131934463], [0.6315751652773786], [0.5789379131934463], [0.43859586087956304], [0.2806841046277666], [0.17544553032480595], [0.17544553032480595], [0.2806841046277666], [0.42106208680655355], [0.5438703650474274], [0.5614041391204369], [0.4736993388904857], [0.35089106064961195], [0.21051307847082487], [0.14034205231388325], [0.14034205231388325], [0.1929793043978154], [0.29825380856567973], [0.42106208680655355], [0.5263006611095142], [0.5965076171313596], [0.6140413912043691], [0.5789379131934463], [0.5263006611095142], [0.4561296349525726], [0.4034923828686404], [0.4034923828686404], [0.42106208680655355], [0.4561296349525726], [0.4736993388904857], [0.4561296349525726], [0.42106208680655355], [0.36842483472262144], [0.29825380856567973], [0.24561655648174757], [0.1929793043978154], [0.21051307847082487], [0.24561655648174757], [0.35089106064961195], [0.4561296349525726], [0.5263006611095142], [0.5263006611095142], [0.4736993388904857], [0.3859586087956309], [0.29825380856567973], [0.24561655648174757], [0.21051307847082487], [0.1929793043978154], [0.17544553032480595], [0.17544553032480595], [0.21051307847082487], [0.2806841046277666], [0.35089106064961195], [0.43859586087956304], [0.5087668870365047], [0.5263006611095142], [0.5263006611095142], [0.4912331129634952], [0.43859586087956304], [0.3859586087956309], [0.3333213567116987], [0.3333213567116987], [0.36842483472262144], [0.4912331129634952], [0.6140413912043691], [0.7017461914343202], [0.7368496694452429], [0.7017461914343202], [0.6315751652773786], [0.5263006611095142], [0.42106208680655355], [0.35089106064961195], [0.29825380856567973], [0.31578758263868917], [0.3859586087956309], [0.5263006611095142], [0.6315751652773786], [0.6666786432883012], [0.6315751652773786], [0.5263006611095142], [0.42106208680655355], [0.35089106064961195], [0.35089106064961195], [0.3859586087956309], [0.4561296349525726], [0.5263006611095142], [0.6140413912043691], [0.6491089393503879], [0.6140413912043691], [0.5438703650474274], [0.4561296349525726], [0.4561296349525726], [0.5263006611095142], [0.7017461914343202], [0.824554469675194], [0.8420882437482036], [0.7192799655073296], [0.5087668870365047], [0.31578758263868917], [0.24561655648174757], [0.29825380856567973], [0.4561296349525726], [0.6315751652773786], [0.789486921529175], [0.8596579476861166], [0.8596579476861166], [0.789486921529175], [0.7017461914343202], [0.6491089393503879], [0.6315751652773786], [0.6666786432883012], [0.7192799655073296], [0.7543834435182523], [0.7368496694452429], [0.6666786432883012], [0.5789379131934463], [0.5263006611095142], [0.5087668870365047], [0.5614041391204369], [0.5965076171313596], [0.5965076171313596], [0.5614041391204369], [0.5438703650474274], [0.5438703650474274], [0.5789379131934463], [0.6315751652773786], [0.6666786432883012], [0.7017461914343202], [0.7368496694452429], [0.7719172175912618], [0.789486921529175], [0.7719172175912618], [0.7368496694452429], [0.6842124173613107], [0.6140413912043691], [0.5965076171313596], [0.6315751652773786], [0.7368496694452429], [0.8420882437482036], [0.9122951997700488], [0.9473627479160679], [0.9122951997700488], [0.8420882437482036], [0.7368496694452429], [0.6666786432883012], [0.6315751652773786], [0.6315751652773786], [0.7017461914343202], [0.7719172175912618], [0.8070206956021845], [0.789486921529175], [0.7368496694452429], [0.6842124173613107], [0.6666786432883012], [0.7017461914343202], [0.789486921529175], [0.8771917217591261], [0.9473627479160679], [0.9473627479160679], [0.9122951997700488], [0.8771917217591261], [0.8596579476861166], [0.8596579476861166], [0.8947254958321357], [0.9298289738430583], [0.9473627479160679], [0.9298289738430583], [0.8771917217591261], [0.8070206956021845], [0.7543834435182523], [0.7368496694452429], [0.7719172175912618], [0.8420882437482036], [0.9298289738430583], [0.9824662259269905], [1.0], [0.9824662259269905], [0.9824662259269905], [1.0]], "deltas": [[1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0]]}} -{"label": 0, "forward": {"values": [[0.794121190218046], [0.7646669076014938], [0.7058788097819539], [0.6470304782556318], [0.6176364293458619], [0.588242380436092], [0.6176364293458619], [0.676484760872184], [0.7058788097819539], [0.7352728586917238], [0.7352728586917238], [0.7058788097819539], [0.676484760872184], [0.6470304782556318], [0.6470304782556318], [0.676484760872184], [0.7058788097819539], [0.7352728586917238], [0.7058788097819539], [0.676484760872184], [0.6176364293458619], [0.5293940489097699], [0.47060595109023], [0.41175761956390794], [0.41175761956390794], [0.44115166847367787], [0.4999999999999999], [0.5588483315263221], [0.588242380436092], [0.6176364293458619], [0.6470304782556318], [0.7058788097819539], [0.7352728586917238], [0.7646669076014938], [0.7646669076014938], [0.7352728586917238], [0.6470304782556318], [0.588242380436092], [0.5293940489097699], [0.4999999999999999], [0.47060595109023], [0.47060595109023], [0.5293940489097699], [0.6176364293458619], [0.7058788097819539], [0.7058788097819539], [0.6470304782556318], [0.5588483315263221], [0.47060595109023], [0.4999999999999999], [0.5588483315263221], [0.6470304782556318], [0.676484760872184], [0.6470304782556318], [0.5588483315263221], [0.47060595109023], [0.47060595109023], [0.4999999999999999], [0.5588483315263221], [0.6176364293458619], [0.6176364293458619], [0.6176364293458619], [0.6176364293458619], [0.6176364293458619], [0.588242380436092], [0.588242380436092], [0.588242380436092], [0.6176364293458619], [0.7058788097819539], [0.794121190218046], [0.8529092880375858], [0.794121190218046], [0.6470304782556318], [0.47060595109023], [0.35296952174436813], [0.29412119021804595], [0.3235152391278159], [0.44115166847367787], [0.588242380436092], [0.7058788097819539], [0.794121190218046], [0.794121190218046], [0.7058788097819539], [0.47060595109023], [0.20587880978195394], [0.02939404890976988], [0.0], [0.14709071196241416], [0.47060595109023], [0.794121190218046], [1.0], [0.9705457173834477], [0.794121190218046], [0.5293940489097699], [0.29412119021804595], [0.14709071196241416], [0.08824238043609203], [0.11763642934586191], [0.20587880978195394], [0.3235152391278159], [0.41175761956390794], [0.4999999999999999], [0.5293940489097699], [0.5293940489097699], [0.47060595109023], [0.44115166847367787], [0.44115166847367787], [0.44115166847367787], [0.4999999999999999], [0.4999999999999999], [0.47060595109023], [0.44115166847367787], [0.38236357065413806], [0.3235152391278159], [0.35296952174436813], [0.38236357065413806], [0.47060595109023], [0.5293940489097699], [0.5588483315263221], [0.5588483315263221], [0.4999999999999999], [0.41175761956390794], [0.3235152391278159], [0.20587880978195394], [0.14709071196241416], [0.11763642934586191], [0.14709071196241416], [0.23527285869172387], [0.3235152391278159], [0.44115166847367787], [0.47060595109023], [0.47060595109023], [0.38236357065413806], [0.29412119021804595], [0.23527285869172387], [0.20587880978195394], [0.23527285869172387], [0.29412119021804595], [0.35296952174436813], [0.38236357065413806], [0.41175761956390794], [0.38236357065413806], [0.35296952174436813], [0.35296952174436813], [0.35296952174436813], [0.38236357065413806], [0.41175761956390794], [0.44115166847367787], [0.41175761956390794], [0.38236357065413806], [0.38236357065413806], [0.38236357065413806], [0.44115166847367787], [0.5293940489097699], [0.588242380436092], [0.6470304782556318], [0.6176364293458619], [0.5588483315263221], [0.44115166847367787], [0.41175761956390794], [0.38236357065413806], [0.41175761956390794], [0.47060595109023], [0.4999999999999999], [0.5293940489097699], [0.5293940489097699], [0.5293940489097699], [0.5293940489097699], [0.5293940489097699], [0.5293940489097699], [0.5293940489097699], [0.5293940489097699], [0.5293940489097699], [0.5293940489097699], [0.5588483315263221], [0.5293940489097699], [0.588242380436092], [0.6470304782556318], [0.7058788097819539], [0.7646669076014938], [0.794121190218046], [0.7646669076014938], [0.676484760872184], [0.5588483315263221], [0.4999999999999999], [0.44115166847367787], [0.47060595109023], [0.47060595109023], [0.47060595109023], [0.47060595109023], [0.44115166847367787], [0.44115166847367787], [0.4999999999999999], [0.5588483315263221], [0.676484760872184], [0.7058788097819539], [0.676484760872184], [0.588242380436092], [0.4999999999999999], [0.47060595109023], [0.4999999999999999], [0.588242380436092], [0.7352728586917238], [0.8529092880375858], [0.882363570654138], [0.8235152391278159], [0.7352728586917238], [0.6176364293458619], [0.5588483315263221], [0.5588483315263221], [0.6176364293458619], [0.7646669076014938], [0.8529092880375858], [0.911757619563908], [0.882363570654138], [0.7352728586917238], [0.588242380436092], [0.47060595109023], [0.47060595109023], [0.5293940489097699], [0.6470304782556318], [0.7058788097819539], [0.6470304782556318], [0.5293940489097699], [0.41175761956390794], [0.38236357065413806], [0.38236357065413806], [0.5293940489097699], [0.6470304782556318], [0.7646669076014938], [0.7646669076014938], [0.7352728586917238], [0.6176364293458619], [0.5293940489097699], [0.44115166847367787], [0.44115166847367787], [0.47060595109023], [0.5293940489097699], [0.588242380436092], [0.588242380436092], [0.588242380436092], [0.588242380436092], [0.588242380436092], [0.6470304782556318], [0.7352728586917238], [0.794121190218046], [0.8529092880375858], [0.8529092880375858], [0.794121190218046], [0.7058788097819539], [0.6470304782556318], [0.6470304782556318], [0.7058788097819539], [0.7352728586917238], [0.7646669076014938], [0.7352728586917238]], "masks": [[1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1]], "evals": [[0.794121190218046], [0.7646669076014938], [0.7058788097819539], [0.6470304782556318], [0.6176364293458619], [0.588242380436092], [0.6176364293458619], [0.676484760872184], [0.7058788097819539], [0.7352728586917238], [0.7352728586917238], [0.7058788097819539], [0.676484760872184], [0.6470304782556318], [0.6470304782556318], [0.676484760872184], [0.7058788097819539], [0.7352728586917238], [0.7058788097819539], [0.676484760872184], [0.6176364293458619], [0.5293940489097699], [0.47060595109023], [0.41175761956390794], [0.41175761956390794], [0.44115166847367787], [0.4999999999999999], [0.5588483315263221], [0.588242380436092], [0.6176364293458619], [0.6470304782556318], [0.7058788097819539], [0.7352728586917238], [0.7646669076014938], [0.7646669076014938], [0.7352728586917238], [0.6470304782556318], [0.588242380436092], [0.5293940489097699], [0.4999999999999999], [0.47060595109023], [0.47060595109023], [0.5293940489097699], [0.6176364293458619], [0.7058788097819539], [0.7058788097819539], [0.6470304782556318], [0.5588483315263221], [0.47060595109023], [0.4999999999999999], [0.5588483315263221], [0.6470304782556318], [0.676484760872184], [0.6470304782556318], [0.5588483315263221], [0.47060595109023], [0.47060595109023], [0.4999999999999999], [0.5588483315263221], [0.6176364293458619], [0.6176364293458619], [0.6176364293458619], [0.6176364293458619], [0.6176364293458619], [0.588242380436092], [0.588242380436092], [0.588242380436092], [0.6176364293458619], [0.7058788097819539], [0.794121190218046], [0.8529092880375858], [0.794121190218046], [0.6470304782556318], [0.47060595109023], [0.35296952174436813], [0.29412119021804595], [0.3235152391278159], [0.44115166847367787], [0.588242380436092], [0.7058788097819539], [0.794121190218046], [0.794121190218046], [0.7058788097819539], [0.47060595109023], [0.20587880978195394], [0.02939404890976988], [0.0], [0.14709071196241416], [0.47060595109023], [0.794121190218046], [1.0], [0.9705457173834477], [0.794121190218046], [0.5293940489097699], [0.29412119021804595], [0.14709071196241416], [0.08824238043609203], [0.11763642934586191], [0.20587880978195394], [0.3235152391278159], [0.41175761956390794], [0.4999999999999999], [0.5293940489097699], [0.5293940489097699], [0.47060595109023], [0.44115166847367787], [0.44115166847367787], [0.44115166847367787], [0.4999999999999999], [0.4999999999999999], [0.47060595109023], [0.44115166847367787], [0.38236357065413806], [0.3235152391278159], [0.35296952174436813], [0.38236357065413806], [0.47060595109023], [0.5293940489097699], [0.5588483315263221], [0.5588483315263221], [0.4999999999999999], [0.41175761956390794], [0.3235152391278159], [0.20587880978195394], [0.14709071196241416], [0.11763642934586191], [0.14709071196241416], [0.23527285869172387], [0.3235152391278159], [0.44115166847367787], [0.47060595109023], [0.47060595109023], [0.38236357065413806], [0.29412119021804595], [0.23527285869172387], [0.20587880978195394], [0.23527285869172387], [0.29412119021804595], [0.35296952174436813], [0.38236357065413806], [0.41175761956390794], [0.38236357065413806], [0.35296952174436813], [0.35296952174436813], [0.35296952174436813], [0.38236357065413806], [0.41175761956390794], [0.44115166847367787], [0.41175761956390794], [0.38236357065413806], [0.38236357065413806], [0.38236357065413806], [0.44115166847367787], [0.5293940489097699], [0.588242380436092], [0.6470304782556318], [0.6176364293458619], [0.5588483315263221], [0.44115166847367787], [0.41175761956390794], [0.38236357065413806], [0.41175761956390794], [0.47060595109023], [0.4999999999999999], [0.5293940489097699], [0.5293940489097699], [0.5293940489097699], [0.5293940489097699], [0.5293940489097699], [0.5293940489097699], [0.5293940489097699], [0.5293940489097699], [0.5293940489097699], [0.5293940489097699], [0.5588483315263221], [0.5293940489097699], [0.588242380436092], [0.6470304782556318], [0.7058788097819539], [0.7646669076014938], [0.794121190218046], [0.7646669076014938], [0.676484760872184], [0.5588483315263221], [0.4999999999999999], [0.44115166847367787], [0.47060595109023], [0.47060595109023], [0.47060595109023], [0.47060595109023], [0.44115166847367787], [0.44115166847367787], [0.4999999999999999], [0.5588483315263221], [0.676484760872184], [0.7058788097819539], [0.676484760872184], [0.588242380436092], [0.4999999999999999], [0.47060595109023], [0.4999999999999999], [0.588242380436092], [0.7352728586917238], [0.8529092880375858], [0.882363570654138], [0.8235152391278159], [0.7352728586917238], [0.6176364293458619], [0.5588483315263221], [0.5588483315263221], [0.6176364293458619], [0.7646669076014938], [0.8529092880375858], [0.911757619563908], [0.882363570654138], [0.7352728586917238], [0.588242380436092], [0.47060595109023], [0.47060595109023], [0.5293940489097699], [0.6470304782556318], [0.7058788097819539], [0.6470304782556318], [0.5293940489097699], [0.41175761956390794], [0.38236357065413806], [0.38236357065413806], [0.5293940489097699], [0.6470304782556318], [0.7646669076014938], [0.7646669076014938], [0.7352728586917238], [0.6176364293458619], [0.5293940489097699], [0.44115166847367787], [0.44115166847367787], [0.47060595109023], [0.5293940489097699], [0.588242380436092], [0.588242380436092], [0.588242380436092], [0.588242380436092], [0.588242380436092], [0.6470304782556318], [0.7352728586917238], [0.794121190218046], [0.8529092880375858], [0.8529092880375858], [0.794121190218046], [0.7058788097819539], [0.6470304782556318], [0.6470304782556318], [0.7058788097819539], [0.7352728586917238], [0.7646669076014938], [0.7352728586917238]], "eval_masks": [[0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0]], "forwards": [[0.794121190218046], [0.7646669076014938], [0.7058788097819539], [0.6470304782556318], [0.6176364293458619], [0.588242380436092], [0.6176364293458619], [0.676484760872184], [0.7058788097819539], [0.7352728586917238], [0.7352728586917238], [0.7058788097819539], [0.676484760872184], [0.6470304782556318], [0.6470304782556318], [0.676484760872184], [0.7058788097819539], [0.7352728586917238], [0.7058788097819539], [0.676484760872184], [0.6176364293458619], [0.5293940489097699], [0.47060595109023], [0.41175761956390794], [0.41175761956390794], [0.44115166847367787], [0.4999999999999999], [0.5588483315263221], [0.588242380436092], [0.6176364293458619], [0.6470304782556318], [0.7058788097819539], [0.7352728586917238], [0.7646669076014938], [0.7646669076014938], [0.7352728586917238], [0.6470304782556318], [0.588242380436092], [0.5293940489097699], [0.4999999999999999], [0.47060595109023], [0.47060595109023], [0.5293940489097699], [0.6176364293458619], [0.7058788097819539], [0.7058788097819539], [0.6470304782556318], [0.5588483315263221], [0.47060595109023], [0.4999999999999999], [0.5588483315263221], [0.6470304782556318], [0.676484760872184], [0.6470304782556318], [0.5588483315263221], [0.47060595109023], [0.47060595109023], [0.4999999999999999], [0.5588483315263221], [0.6176364293458619], [0.6176364293458619], [0.6176364293458619], [0.6176364293458619], [0.6176364293458619], [0.588242380436092], [0.588242380436092], [0.588242380436092], [0.6176364293458619], [0.7058788097819539], [0.794121190218046], [0.8529092880375858], [0.794121190218046], [0.6470304782556318], [0.47060595109023], [0.35296952174436813], [0.29412119021804595], [0.3235152391278159], [0.44115166847367787], [0.588242380436092], [0.7058788097819539], [0.794121190218046], [0.794121190218046], [0.7058788097819539], [0.47060595109023], [0.20587880978195394], [0.02939404890976988], [0.0], [0.14709071196241416], [0.47060595109023], [0.794121190218046], [1.0], [0.9705457173834477], [0.794121190218046], [0.5293940489097699], [0.29412119021804595], [0.14709071196241416], [0.08824238043609203], [0.11763642934586191], [0.20587880978195394], [0.3235152391278159], [0.41175761956390794], [0.4999999999999999], [0.5293940489097699], [0.5293940489097699], [0.47060595109023], [0.44115166847367787], [0.44115166847367787], [0.44115166847367787], [0.4999999999999999], [0.4999999999999999], [0.47060595109023], [0.44115166847367787], [0.38236357065413806], [0.3235152391278159], [0.35296952174436813], [0.38236357065413806], [0.47060595109023], [0.5293940489097699], [0.5588483315263221], [0.5588483315263221], [0.4999999999999999], [0.41175761956390794], [0.3235152391278159], [0.20587880978195394], [0.14709071196241416], [0.11763642934586191], [0.14709071196241416], [0.23527285869172387], [0.3235152391278159], [0.44115166847367787], [0.47060595109023], [0.47060595109023], [0.38236357065413806], [0.29412119021804595], [0.23527285869172387], [0.20587880978195394], [0.23527285869172387], [0.29412119021804595], [0.35296952174436813], [0.38236357065413806], [0.41175761956390794], [0.38236357065413806], [0.35296952174436813], [0.35296952174436813], [0.35296952174436813], [0.38236357065413806], [0.41175761956390794], [0.44115166847367787], [0.41175761956390794], [0.38236357065413806], [0.38236357065413806], [0.38236357065413806], [0.44115166847367787], [0.5293940489097699], [0.588242380436092], [0.6470304782556318], [0.6176364293458619], [0.5588483315263221], [0.44115166847367787], [0.41175761956390794], [0.38236357065413806], [0.41175761956390794], [0.47060595109023], [0.4999999999999999], [0.5293940489097699], [0.5293940489097699], [0.5293940489097699], [0.5293940489097699], [0.5293940489097699], [0.5293940489097699], [0.5293940489097699], [0.5293940489097699], [0.5293940489097699], [0.5293940489097699], [0.5588483315263221], [0.5293940489097699], [0.588242380436092], [0.6470304782556318], [0.7058788097819539], [0.7646669076014938], [0.794121190218046], [0.7646669076014938], [0.676484760872184], [0.5588483315263221], [0.4999999999999999], [0.44115166847367787], [0.47060595109023], [0.47060595109023], [0.47060595109023], [0.47060595109023], [0.44115166847367787], [0.44115166847367787], [0.4999999999999999], [0.5588483315263221], [0.676484760872184], [0.7058788097819539], [0.676484760872184], [0.588242380436092], [0.4999999999999999], [0.47060595109023], [0.4999999999999999], [0.588242380436092], [0.7352728586917238], [0.8529092880375858], [0.882363570654138], [0.8235152391278159], [0.7352728586917238], [0.6176364293458619], [0.5588483315263221], [0.5588483315263221], [0.6176364293458619], [0.7646669076014938], [0.8529092880375858], [0.911757619563908], [0.882363570654138], [0.7352728586917238], [0.588242380436092], [0.47060595109023], [0.47060595109023], [0.5293940489097699], [0.6470304782556318], [0.7058788097819539], [0.6470304782556318], [0.5293940489097699], [0.41175761956390794], [0.38236357065413806], [0.38236357065413806], [0.5293940489097699], [0.6470304782556318], [0.7646669076014938], [0.7646669076014938], [0.7352728586917238], [0.6176364293458619], [0.5293940489097699], [0.44115166847367787], [0.44115166847367787], [0.47060595109023], [0.5293940489097699], [0.588242380436092], [0.588242380436092], [0.588242380436092], [0.588242380436092], [0.588242380436092], [0.6470304782556318], [0.7352728586917238], [0.794121190218046], [0.8529092880375858], [0.8529092880375858], [0.794121190218046], [0.7058788097819539], [0.6470304782556318], [0.6470304782556318], [0.7058788097819539], [0.7352728586917238], [0.7646669076014938], [0.7352728586917238]], "deltas": [[1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0]]}, "backward": {"values": [[0.7352728586917238], [0.7646669076014938], [0.7352728586917238], [0.7058788097819539], [0.6470304782556318], [0.6470304782556318], [0.7058788097819539], [0.794121190218046], [0.8529092880375858], [0.8529092880375858], [0.794121190218046], [0.7352728586917238], [0.6470304782556318], [0.588242380436092], [0.588242380436092], [0.588242380436092], [0.588242380436092], [0.588242380436092], [0.5293940489097699], [0.47060595109023], [0.44115166847367787], [0.44115166847367787], [0.5293940489097699], [0.6176364293458619], [0.7352728586917238], [0.7646669076014938], [0.7646669076014938], [0.6470304782556318], [0.5293940489097699], [0.38236357065413806], [0.38236357065413806], [0.41175761956390794], [0.5293940489097699], [0.6470304782556318], [0.7058788097819539], [0.6470304782556318], [0.5293940489097699], [0.47060595109023], [0.47060595109023], [0.588242380436092], [0.7352728586917238], [0.882363570654138], [0.911757619563908], [0.8529092880375858], [0.7646669076014938], [0.6176364293458619], [0.5588483315263221], [0.5588483315263221], [0.6176364293458619], [0.7352728586917238], [0.8235152391278159], [0.882363570654138], [0.8529092880375858], [0.7352728586917238], [0.588242380436092], [0.4999999999999999], [0.47060595109023], [0.4999999999999999], [0.588242380436092], [0.676484760872184], [0.7058788097819539], [0.676484760872184], [0.5588483315263221], [0.4999999999999999], [0.44115166847367787], [0.44115166847367787], [0.47060595109023], [0.47060595109023], [0.47060595109023], [0.47060595109023], [0.44115166847367787], [0.4999999999999999], [0.5588483315263221], [0.676484760872184], [0.7646669076014938], [0.794121190218046], [0.7646669076014938], [0.7058788097819539], [0.6470304782556318], [0.588242380436092], [0.5293940489097699], [0.5588483315263221], [0.5293940489097699], [0.5293940489097699], [0.5293940489097699], [0.5293940489097699], [0.5293940489097699], [0.5293940489097699], [0.5293940489097699], [0.5293940489097699], [0.5293940489097699], [0.5293940489097699], [0.4999999999999999], [0.47060595109023], [0.41175761956390794], [0.38236357065413806], [0.41175761956390794], [0.44115166847367787], [0.5588483315263221], [0.6176364293458619], [0.6470304782556318], [0.588242380436092], [0.5293940489097699], [0.44115166847367787], [0.38236357065413806], [0.38236357065413806], [0.38236357065413806], [0.41175761956390794], [0.44115166847367787], [0.41175761956390794], [0.38236357065413806], [0.35296952174436813], [0.35296952174436813], [0.35296952174436813], [0.38236357065413806], [0.41175761956390794], [0.38236357065413806], [0.35296952174436813], [0.29412119021804595], [0.23527285869172387], [0.20587880978195394], [0.23527285869172387], [0.29412119021804595], [0.38236357065413806], [0.47060595109023], [0.47060595109023], [0.44115166847367787], [0.3235152391278159], [0.23527285869172387], [0.14709071196241416], [0.11763642934586191], [0.14709071196241416], [0.20587880978195394], [0.3235152391278159], [0.41175761956390794], [0.4999999999999999], [0.5588483315263221], [0.5588483315263221], [0.5293940489097699], [0.47060595109023], [0.38236357065413806], [0.35296952174436813], [0.3235152391278159], [0.38236357065413806], [0.44115166847367787], [0.47060595109023], [0.4999999999999999], [0.4999999999999999], [0.44115166847367787], [0.44115166847367787], [0.44115166847367787], [0.47060595109023], [0.5293940489097699], [0.5293940489097699], [0.4999999999999999], [0.41175761956390794], [0.3235152391278159], [0.20587880978195394], [0.11763642934586191], [0.08824238043609203], [0.14709071196241416], [0.29412119021804595], [0.5293940489097699], [0.794121190218046], [0.9705457173834477], [1.0], [0.794121190218046], [0.47060595109023], [0.14709071196241416], [0.0], [0.02939404890976988], [0.20587880978195394], [0.47060595109023], [0.7058788097819539], [0.794121190218046], [0.794121190218046], [0.7058788097819539], [0.588242380436092], [0.44115166847367787], [0.3235152391278159], [0.29412119021804595], [0.35296952174436813], [0.47060595109023], [0.6470304782556318], [0.794121190218046], [0.8529092880375858], [0.794121190218046], [0.7058788097819539], [0.6176364293458619], [0.588242380436092], [0.588242380436092], [0.588242380436092], [0.6176364293458619], [0.6176364293458619], [0.6176364293458619], [0.6176364293458619], [0.6176364293458619], [0.5588483315263221], [0.4999999999999999], [0.47060595109023], [0.47060595109023], [0.5588483315263221], [0.6470304782556318], [0.676484760872184], [0.6470304782556318], [0.5588483315263221], [0.4999999999999999], [0.47060595109023], [0.5588483315263221], [0.6470304782556318], [0.7058788097819539], [0.7058788097819539], [0.6176364293458619], [0.5293940489097699], [0.47060595109023], [0.47060595109023], [0.4999999999999999], [0.5293940489097699], [0.588242380436092], [0.6470304782556318], [0.7352728586917238], [0.7646669076014938], [0.7646669076014938], [0.7352728586917238], [0.7058788097819539], [0.6470304782556318], [0.6176364293458619], [0.588242380436092], [0.5588483315263221], [0.4999999999999999], [0.44115166847367787], [0.41175761956390794], [0.41175761956390794], [0.47060595109023], [0.5293940489097699], [0.6176364293458619], [0.676484760872184], [0.7058788097819539], [0.7352728586917238], [0.7058788097819539], [0.676484760872184], [0.6470304782556318], [0.6470304782556318], [0.676484760872184], [0.7058788097819539], [0.7352728586917238], [0.7352728586917238], [0.7058788097819539], [0.676484760872184], [0.6176364293458619], [0.588242380436092], [0.6176364293458619], [0.6470304782556318], [0.7058788097819539], [0.7646669076014938], [0.794121190218046]], "masks": [[1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1]], "evals": [[0.7352728586917238], [0.7646669076014938], [0.7352728586917238], [0.7058788097819539], [0.6470304782556318], [0.6470304782556318], [0.7058788097819539], [0.794121190218046], [0.8529092880375858], [0.8529092880375858], [0.794121190218046], [0.7352728586917238], [0.6470304782556318], [0.588242380436092], [0.588242380436092], [0.588242380436092], [0.588242380436092], [0.588242380436092], [0.5293940489097699], [0.47060595109023], [0.44115166847367787], [0.44115166847367787], [0.5293940489097699], [0.6176364293458619], [0.7352728586917238], [0.7646669076014938], [0.7646669076014938], [0.6470304782556318], [0.5293940489097699], [0.38236357065413806], [0.38236357065413806], [0.41175761956390794], [0.5293940489097699], [0.6470304782556318], [0.7058788097819539], [0.6470304782556318], [0.5293940489097699], [0.47060595109023], [0.47060595109023], [0.588242380436092], [0.7352728586917238], [0.882363570654138], [0.911757619563908], [0.8529092880375858], [0.7646669076014938], [0.6176364293458619], [0.5588483315263221], [0.5588483315263221], [0.6176364293458619], [0.7352728586917238], [0.8235152391278159], [0.882363570654138], [0.8529092880375858], [0.7352728586917238], [0.588242380436092], [0.4999999999999999], [0.47060595109023], [0.4999999999999999], [0.588242380436092], [0.676484760872184], [0.7058788097819539], [0.676484760872184], [0.5588483315263221], [0.4999999999999999], [0.44115166847367787], [0.44115166847367787], [0.47060595109023], [0.47060595109023], [0.47060595109023], [0.47060595109023], [0.44115166847367787], [0.4999999999999999], [0.5588483315263221], [0.676484760872184], [0.7646669076014938], [0.794121190218046], [0.7646669076014938], [0.7058788097819539], [0.6470304782556318], [0.588242380436092], [0.5293940489097699], [0.5588483315263221], [0.5293940489097699], [0.5293940489097699], [0.5293940489097699], [0.5293940489097699], [0.5293940489097699], [0.5293940489097699], [0.5293940489097699], [0.5293940489097699], [0.5293940489097699], [0.5293940489097699], [0.4999999999999999], [0.47060595109023], [0.41175761956390794], [0.38236357065413806], [0.41175761956390794], [0.44115166847367787], [0.5588483315263221], [0.6176364293458619], [0.6470304782556318], [0.588242380436092], [0.5293940489097699], [0.44115166847367787], [0.38236357065413806], [0.38236357065413806], [0.38236357065413806], [0.41175761956390794], [0.44115166847367787], [0.41175761956390794], [0.38236357065413806], [0.35296952174436813], [0.35296952174436813], [0.35296952174436813], [0.38236357065413806], [0.41175761956390794], [0.38236357065413806], [0.35296952174436813], [0.29412119021804595], [0.23527285869172387], [0.20587880978195394], [0.23527285869172387], [0.29412119021804595], [0.38236357065413806], [0.47060595109023], [0.47060595109023], [0.44115166847367787], [0.3235152391278159], [0.23527285869172387], [0.14709071196241416], [0.11763642934586191], [0.14709071196241416], [0.20587880978195394], [0.3235152391278159], [0.41175761956390794], [0.4999999999999999], [0.5588483315263221], [0.5588483315263221], [0.5293940489097699], [0.47060595109023], [0.38236357065413806], [0.35296952174436813], [0.3235152391278159], [0.38236357065413806], [0.44115166847367787], [0.47060595109023], [0.4999999999999999], [0.4999999999999999], [0.44115166847367787], [0.44115166847367787], [0.44115166847367787], [0.47060595109023], [0.5293940489097699], [0.5293940489097699], [0.4999999999999999], [0.41175761956390794], [0.3235152391278159], [0.20587880978195394], [0.11763642934586191], [0.08824238043609203], [0.14709071196241416], [0.29412119021804595], [0.5293940489097699], [0.794121190218046], [0.9705457173834477], [1.0], [0.794121190218046], [0.47060595109023], [0.14709071196241416], [0.0], [0.02939404890976988], [0.20587880978195394], [0.47060595109023], [0.7058788097819539], [0.794121190218046], [0.794121190218046], [0.7058788097819539], [0.588242380436092], [0.44115166847367787], [0.3235152391278159], [0.29412119021804595], [0.35296952174436813], [0.47060595109023], [0.6470304782556318], [0.794121190218046], [0.8529092880375858], [0.794121190218046], [0.7058788097819539], [0.6176364293458619], [0.588242380436092], [0.588242380436092], [0.588242380436092], [0.6176364293458619], [0.6176364293458619], [0.6176364293458619], [0.6176364293458619], [0.6176364293458619], [0.5588483315263221], [0.4999999999999999], [0.47060595109023], [0.47060595109023], [0.5588483315263221], [0.6470304782556318], [0.676484760872184], [0.6470304782556318], [0.5588483315263221], [0.4999999999999999], [0.47060595109023], [0.5588483315263221], [0.6470304782556318], [0.7058788097819539], [0.7058788097819539], [0.6176364293458619], [0.5293940489097699], [0.47060595109023], [0.47060595109023], [0.4999999999999999], [0.5293940489097699], [0.588242380436092], [0.6470304782556318], [0.7352728586917238], [0.7646669076014938], [0.7646669076014938], [0.7352728586917238], [0.7058788097819539], [0.6470304782556318], [0.6176364293458619], [0.588242380436092], [0.5588483315263221], [0.4999999999999999], [0.44115166847367787], [0.41175761956390794], [0.41175761956390794], [0.47060595109023], [0.5293940489097699], [0.6176364293458619], [0.676484760872184], [0.7058788097819539], [0.7352728586917238], [0.7058788097819539], [0.676484760872184], [0.6470304782556318], [0.6470304782556318], [0.676484760872184], [0.7058788097819539], [0.7352728586917238], [0.7352728586917238], [0.7058788097819539], [0.676484760872184], [0.6176364293458619], [0.588242380436092], [0.6176364293458619], [0.6470304782556318], [0.7058788097819539], [0.7646669076014938], [0.794121190218046]], "eval_masks": [[0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0]], "forwards": [[0.7352728586917238], [0.7646669076014938], [0.7352728586917238], [0.7058788097819539], [0.6470304782556318], [0.6470304782556318], [0.7058788097819539], [0.794121190218046], [0.8529092880375858], [0.8529092880375858], [0.794121190218046], [0.7352728586917238], [0.6470304782556318], [0.588242380436092], [0.588242380436092], [0.588242380436092], [0.588242380436092], [0.588242380436092], [0.5293940489097699], [0.47060595109023], [0.44115166847367787], [0.44115166847367787], [0.5293940489097699], [0.6176364293458619], [0.7352728586917238], [0.7646669076014938], [0.7646669076014938], [0.6470304782556318], [0.5293940489097699], [0.38236357065413806], [0.38236357065413806], [0.41175761956390794], [0.5293940489097699], [0.6470304782556318], [0.7058788097819539], [0.6470304782556318], [0.5293940489097699], [0.47060595109023], [0.47060595109023], [0.588242380436092], [0.7352728586917238], [0.882363570654138], [0.911757619563908], [0.8529092880375858], [0.7646669076014938], [0.6176364293458619], [0.5588483315263221], [0.5588483315263221], [0.6176364293458619], [0.7352728586917238], [0.8235152391278159], [0.882363570654138], [0.8529092880375858], [0.7352728586917238], [0.588242380436092], [0.4999999999999999], [0.47060595109023], [0.4999999999999999], [0.588242380436092], [0.676484760872184], [0.7058788097819539], [0.676484760872184], [0.5588483315263221], [0.4999999999999999], [0.44115166847367787], [0.44115166847367787], [0.47060595109023], [0.47060595109023], [0.47060595109023], [0.47060595109023], [0.44115166847367787], [0.4999999999999999], [0.5588483315263221], [0.676484760872184], [0.7646669076014938], [0.794121190218046], [0.7646669076014938], [0.7058788097819539], [0.6470304782556318], [0.588242380436092], [0.5293940489097699], [0.5588483315263221], [0.5293940489097699], [0.5293940489097699], [0.5293940489097699], [0.5293940489097699], [0.5293940489097699], [0.5293940489097699], [0.5293940489097699], [0.5293940489097699], [0.5293940489097699], [0.5293940489097699], [0.4999999999999999], [0.47060595109023], [0.41175761956390794], [0.38236357065413806], [0.41175761956390794], [0.44115166847367787], [0.5588483315263221], [0.6176364293458619], [0.6470304782556318], [0.588242380436092], [0.5293940489097699], [0.44115166847367787], [0.38236357065413806], [0.38236357065413806], [0.38236357065413806], [0.41175761956390794], [0.44115166847367787], [0.41175761956390794], [0.38236357065413806], [0.35296952174436813], [0.35296952174436813], [0.35296952174436813], [0.38236357065413806], [0.41175761956390794], [0.38236357065413806], [0.35296952174436813], [0.29412119021804595], [0.23527285869172387], [0.20587880978195394], [0.23527285869172387], [0.29412119021804595], [0.38236357065413806], [0.47060595109023], [0.47060595109023], [0.44115166847367787], [0.3235152391278159], [0.23527285869172387], [0.14709071196241416], [0.11763642934586191], [0.14709071196241416], [0.20587880978195394], [0.3235152391278159], [0.41175761956390794], [0.4999999999999999], [0.5588483315263221], [0.5588483315263221], [0.5293940489097699], [0.47060595109023], [0.38236357065413806], [0.35296952174436813], [0.3235152391278159], [0.38236357065413806], [0.44115166847367787], [0.47060595109023], [0.4999999999999999], [0.4999999999999999], [0.44115166847367787], [0.44115166847367787], [0.44115166847367787], [0.47060595109023], [0.5293940489097699], [0.5293940489097699], [0.4999999999999999], [0.41175761956390794], [0.3235152391278159], [0.20587880978195394], [0.11763642934586191], [0.08824238043609203], [0.14709071196241416], [0.29412119021804595], [0.5293940489097699], [0.794121190218046], [0.9705457173834477], [1.0], [0.794121190218046], [0.47060595109023], [0.14709071196241416], [0.0], [0.02939404890976988], [0.20587880978195394], [0.47060595109023], [0.7058788097819539], [0.794121190218046], [0.794121190218046], [0.7058788097819539], [0.588242380436092], [0.44115166847367787], [0.3235152391278159], [0.29412119021804595], [0.35296952174436813], [0.47060595109023], [0.6470304782556318], [0.794121190218046], [0.8529092880375858], [0.794121190218046], [0.7058788097819539], [0.6176364293458619], [0.588242380436092], [0.588242380436092], [0.588242380436092], [0.6176364293458619], [0.6176364293458619], [0.6176364293458619], [0.6176364293458619], [0.6176364293458619], [0.5588483315263221], [0.4999999999999999], [0.47060595109023], [0.47060595109023], [0.5588483315263221], [0.6470304782556318], [0.676484760872184], [0.6470304782556318], [0.5588483315263221], [0.4999999999999999], [0.47060595109023], [0.5588483315263221], [0.6470304782556318], [0.7058788097819539], [0.7058788097819539], [0.6176364293458619], [0.5293940489097699], [0.47060595109023], [0.47060595109023], [0.4999999999999999], [0.5293940489097699], [0.588242380436092], [0.6470304782556318], [0.7352728586917238], [0.7646669076014938], [0.7646669076014938], [0.7352728586917238], [0.7058788097819539], [0.6470304782556318], [0.6176364293458619], [0.588242380436092], [0.5588483315263221], [0.4999999999999999], [0.44115166847367787], [0.41175761956390794], [0.41175761956390794], [0.47060595109023], [0.5293940489097699], [0.6176364293458619], [0.676484760872184], [0.7058788097819539], [0.7352728586917238], [0.7058788097819539], [0.676484760872184], [0.6470304782556318], [0.6470304782556318], [0.676484760872184], [0.7058788097819539], [0.7352728586917238], [0.7352728586917238], [0.7058788097819539], [0.676484760872184], [0.6176364293458619], [0.588242380436092], [0.6176364293458619], [0.6470304782556318], [0.7058788097819539], [0.7646669076014938], [0.794121190218046]], "deltas": [[1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0]]}} -{"label": 0, "forward": {"values": [[0.7222095801570145], [0.6944476049607464], [0.6666287404710434], [0.6666287404710434], [0.6666287404710434], [0.6666287404710434], [0.6388667652747754], [0.5832859255888042], [0.5277619751962681], [0.5000000000000001], [0.5277619751962681], [0.5832859255888042], [0.6388667652747754], [0.6944476049607464], [0.7499715553532825], [0.8055523950392537], [0.8055523950392537], [0.7777335305495505], [0.7222095801570145], [0.6388667652747754], [0.5555239503925362], [0.472181135510297], [0.44441916031402895], [0.44441916031402895], [0.44441916031402895], [0.5000000000000001], [0.5555239503925362], [0.6111047900785073], [0.6388667652747754], [0.6111047900785073], [0.5555239503925362], [0.5555239503925362], [0.5555239503925362], [0.6111047900785073], [0.6666287404710434], [0.7499715553532825], [0.7777335305495505], [0.7499715553532825], [0.6944476049607464], [0.6111047900785073], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.5277619751962681], [0.6111047900785073], [0.6388667652747754], [0.6111047900785073], [0.5277619751962681], [0.44441916031402895], [0.3888952099214928], [0.4166571851177609], [0.472181135510297], [0.5000000000000001], [0.5000000000000001], [0.472181135510297], [0.44441916031402895], [0.44441916031402895], [0.472181135510297], [0.5000000000000001], [0.5000000000000001], [0.5000000000000001], [0.5277619751962681], [0.5832859255888042], [0.6388667652747754], [0.6944476049607464], [0.6666287404710434], [0.5832859255888042], [0.472181135510297], [0.4166571851177609], [0.3610763454317898], [0.3888952099214928], [0.3888952099214928], [0.4166571851177609], [0.44441916031402895], [0.472181135510297], [0.44441916031402895], [0.3888952099214928], [0.27773353054955063], [0.16662874047104337], [0.13886676527477534], [0.24997155535328253], [0.472181135510297], [0.6388667652747754], [0.6944476049607464], [0.6111047900785073], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.4166571851177609], [0.27773353054955063], [0.13886676527477534], [0.11110479007850729], [0.19444760496074645], [0.27773353054955063], [0.4166571851177609], [0.472181135510297], [0.5000000000000001], [0.472181135510297], [0.4166571851177609], [0.3610763454317898], [0.30555239503925363], [0.24997155535328253], [0.24997155535328253], [0.24997155535328253], [0.24997155535328253], [0.24997155535328253], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.027761975196268038], [0.08328592558880421], [0.11110479007850729], [0.13886676527477534], [0.13886676527477534], [0.16662874047104337], [0.24997155535328253], [0.30555239503925363], [0.3333143702355217], [0.30555239503925363], [0.2222095801570145], [0.11110479007850729], [0.05552395039253617], [0.08328592558880421], [0.16662874047104337], [0.30555239503925363], [0.3888952099214928], [0.4166571851177609], [0.3888952099214928], [0.30555239503925363], [0.24997155535328253], [0.16662874047104337], [0.16662874047104337], [0.24997155535328253], [0.3333143702355217], [0.4166571851177609], [0.5000000000000001], [0.472181135510297], [0.4166571851177609], [0.3610763454317898], [0.27773353054955063], [0.19444760496074645], [0.11110479007850729], [0.027761975196268038], [0.0], [0.0], [0.05552395039253617], [0.16662874047104337], [0.27773353054955063], [0.3610763454317898], [0.3610763454317898], [0.30555239503925363], [0.24997155535328253], [0.2222095801570145], [0.24997155535328253], [0.30555239503925363], [0.3888952099214928], [0.472181135510297], [0.5277619751962681], [0.5000000000000001], [0.4166571851177609], [0.3610763454317898], [0.3333143702355217], [0.3333143702355217], [0.4166571851177609], [0.5277619751962681], [0.6111047900785073], [0.5832859255888042], [0.472181135510297], [0.30555239503925363], [0.2222095801570145], [0.2222095801570145], [0.30555239503925363], [0.4166571851177609], [0.5000000000000001], [0.5277619751962681], [0.472181135510297], [0.3888952099214928], [0.30555239503925363], [0.30555239503925363], [0.3610763454317898], [0.5000000000000001], [0.6388667652747754], [0.7499715553532825], [0.7777335305495505], [0.6944476049607464], [0.5555239503925362], [0.5000000000000001], [0.472181135510297], [0.5277619751962681], [0.6388667652747754], [0.7222095801570145], [0.7222095801570145], [0.6666287404710434], [0.5555239503925362], [0.472181135510297], [0.44441916031402895], [0.472181135510297], [0.5555239503925362], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.6944476049607464], [0.5277619751962681], [0.3333143702355217], [0.2222095801570145], [0.2222095801570145], [0.3333143702355217], [0.44441916031402895], [0.5000000000000001], [0.44441916031402895], [0.3610763454317898], [0.30555239503925363], [0.30555239503925363], [0.4166571851177609], [0.6111047900785073], [0.7499715553532825], [0.8333143702355217], [0.7777335305495505], [0.5832859255888042], [0.3610763454317898], [0.16662874047104337], [0.11110479007850729], [0.24997155535328253], [0.5277619751962681], [0.8333143702355217], [1.0], [0.9444191603140288], [0.6944476049607464]], "masks": [[1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1]], "evals": [[0.7222095801570145], [0.6944476049607464], [0.6666287404710434], [0.6666287404710434], [0.6666287404710434], [0.6666287404710434], [0.6388667652747754], [0.5832859255888042], [0.5277619751962681], [0.5000000000000001], [0.5277619751962681], [0.5832859255888042], [0.6388667652747754], [0.6944476049607464], [0.7499715553532825], [0.8055523950392537], [0.8055523950392537], [0.7777335305495505], [0.7222095801570145], [0.6388667652747754], [0.5555239503925362], [0.472181135510297], [0.44441916031402895], [0.44441916031402895], [0.44441916031402895], [0.5000000000000001], [0.5555239503925362], [0.6111047900785073], [0.6388667652747754], [0.6111047900785073], [0.5555239503925362], [0.5555239503925362], [0.5555239503925362], [0.6111047900785073], [0.6666287404710434], [0.7499715553532825], [0.7777335305495505], [0.7499715553532825], [0.6944476049607464], [0.6111047900785073], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.5277619751962681], [0.6111047900785073], [0.6388667652747754], [0.6111047900785073], [0.5277619751962681], [0.44441916031402895], [0.3888952099214928], [0.4166571851177609], [0.472181135510297], [0.5000000000000001], [0.5000000000000001], [0.472181135510297], [0.44441916031402895], [0.44441916031402895], [0.472181135510297], [0.5000000000000001], [0.5000000000000001], [0.5000000000000001], [0.5277619751962681], [0.5832859255888042], [0.6388667652747754], [0.6944476049607464], [0.6666287404710434], [0.5832859255888042], [0.472181135510297], [0.4166571851177609], [0.3610763454317898], [0.3888952099214928], [0.3888952099214928], [0.4166571851177609], [0.44441916031402895], [0.472181135510297], [0.44441916031402895], [0.3888952099214928], [0.27773353054955063], [0.16662874047104337], [0.13886676527477534], [0.24997155535328253], [0.472181135510297], [0.6388667652747754], [0.6944476049607464], [0.6111047900785073], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.4166571851177609], [0.27773353054955063], [0.13886676527477534], [0.11110479007850729], [0.19444760496074645], [0.27773353054955063], [0.4166571851177609], [0.472181135510297], [0.5000000000000001], [0.472181135510297], [0.4166571851177609], [0.3610763454317898], [0.30555239503925363], [0.24997155535328253], [0.24997155535328253], [0.24997155535328253], [0.24997155535328253], [0.24997155535328253], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.027761975196268038], [0.08328592558880421], [0.11110479007850729], [0.13886676527477534], [0.13886676527477534], [0.16662874047104337], [0.24997155535328253], [0.30555239503925363], [0.3333143702355217], [0.30555239503925363], [0.2222095801570145], [0.11110479007850729], [0.05552395039253617], [0.08328592558880421], [0.16662874047104337], [0.30555239503925363], [0.3888952099214928], [0.4166571851177609], [0.3888952099214928], [0.30555239503925363], [0.24997155535328253], [0.16662874047104337], [0.16662874047104337], [0.24997155535328253], [0.3333143702355217], [0.4166571851177609], [0.5000000000000001], [0.472181135510297], [0.4166571851177609], [0.3610763454317898], [0.27773353054955063], [0.19444760496074645], [0.11110479007850729], [0.027761975196268038], [0.0], [0.0], [0.05552395039253617], [0.16662874047104337], [0.27773353054955063], [0.3610763454317898], [0.3610763454317898], [0.30555239503925363], [0.24997155535328253], [0.2222095801570145], [0.24997155535328253], [0.30555239503925363], [0.3888952099214928], [0.472181135510297], [0.5277619751962681], [0.5000000000000001], [0.4166571851177609], [0.3610763454317898], [0.3333143702355217], [0.3333143702355217], [0.4166571851177609], [0.5277619751962681], [0.6111047900785073], [0.5832859255888042], [0.472181135510297], [0.30555239503925363], [0.2222095801570145], [0.2222095801570145], [0.30555239503925363], [0.4166571851177609], [0.5000000000000001], [0.5277619751962681], [0.472181135510297], [0.3888952099214928], [0.30555239503925363], [0.30555239503925363], [0.3610763454317898], [0.5000000000000001], [0.6388667652747754], [0.7499715553532825], [0.7777335305495505], [0.6944476049607464], [0.5555239503925362], [0.5000000000000001], [0.472181135510297], [0.5277619751962681], [0.6388667652747754], [0.7222095801570145], [0.7222095801570145], [0.6666287404710434], [0.5555239503925362], [0.472181135510297], [0.44441916031402895], [0.472181135510297], [0.5555239503925362], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.6944476049607464], [0.5277619751962681], [0.3333143702355217], [0.2222095801570145], [0.2222095801570145], [0.3333143702355217], [0.44441916031402895], [0.5000000000000001], [0.44441916031402895], [0.3610763454317898], [0.30555239503925363], [0.30555239503925363], [0.4166571851177609], [0.6111047900785073], [0.7499715553532825], [0.8333143702355217], [0.7777335305495505], [0.5832859255888042], [0.3610763454317898], [0.16662874047104337], [0.11110479007850729], [0.24997155535328253], [0.5277619751962681], [0.8333143702355217], [1.0], [0.9444191603140288], [0.6944476049607464]], "eval_masks": [[0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0]], "forwards": [[0.7222095801570145], [0.6944476049607464], [0.6666287404710434], [0.6666287404710434], [0.6666287404710434], [0.6666287404710434], [0.6388667652747754], [0.5832859255888042], [0.5277619751962681], [0.5000000000000001], [0.5277619751962681], [0.5832859255888042], [0.6388667652747754], [0.6944476049607464], [0.7499715553532825], [0.8055523950392537], [0.8055523950392537], [0.7777335305495505], [0.7222095801570145], [0.6388667652747754], [0.5555239503925362], [0.472181135510297], [0.44441916031402895], [0.44441916031402895], [0.44441916031402895], [0.5000000000000001], [0.5555239503925362], [0.6111047900785073], [0.6388667652747754], [0.6111047900785073], [0.5555239503925362], [0.5555239503925362], [0.5555239503925362], [0.6111047900785073], [0.6666287404710434], [0.7499715553532825], [0.7777335305495505], [0.7499715553532825], [0.6944476049607464], [0.6111047900785073], [0.6111047900785073], [0.6111047900785073], [0.6111047900785073], [0.6111047900785073], [0.6111047900785073], [0.6111047900785073], [0.6111047900785073], [0.6111047900785073], [0.6111047900785073], [0.6111047900785073], [0.5277619751962681], [0.6111047900785073], [0.6388667652747754], [0.6111047900785073], [0.5277619751962681], [0.44441916031402895], [0.3888952099214928], [0.4166571851177609], [0.472181135510297], [0.5000000000000001], [0.5000000000000001], [0.472181135510297], [0.44441916031402895], [0.44441916031402895], [0.472181135510297], [0.5000000000000001], [0.5000000000000001], [0.5000000000000001], [0.5277619751962681], [0.5832859255888042], [0.6388667652747754], [0.6944476049607464], [0.6666287404710434], [0.5832859255888042], [0.472181135510297], [0.4166571851177609], [0.3610763454317898], [0.3888952099214928], [0.3888952099214928], [0.4166571851177609], [0.44441916031402895], [0.472181135510297], [0.44441916031402895], [0.3888952099214928], [0.27773353054955063], [0.16662874047104337], [0.13886676527477534], [0.24997155535328253], [0.472181135510297], [0.6388667652747754], [0.6944476049607464], [0.6111047900785073], [0.6111047900785073], [0.6111047900785073], [0.6111047900785073], [0.6111047900785073], [0.6111047900785073], [0.6111047900785073], [0.6111047900785073], [0.6111047900785073], [0.6111047900785073], [0.6111047900785073], [0.4166571851177609], [0.27773353054955063], [0.13886676527477534], [0.11110479007850729], [0.19444760496074645], [0.27773353054955063], [0.4166571851177609], [0.472181135510297], [0.5000000000000001], [0.472181135510297], [0.4166571851177609], [0.3610763454317898], [0.30555239503925363], [0.24997155535328253], [0.24997155535328253], [0.24997155535328253], [0.24997155535328253], [0.24997155535328253], [0.24997155535328253], [0.24997155535328253], [0.24997155535328253], [0.24997155535328253], [0.24997155535328253], [0.24997155535328253], [0.24997155535328253], [0.24997155535328253], [0.24997155535328253], [0.24997155535328253], [0.027761975196268038], [0.08328592558880421], [0.11110479007850729], [0.13886676527477534], [0.13886676527477534], [0.16662874047104337], [0.24997155535328253], [0.30555239503925363], [0.3333143702355217], [0.30555239503925363], [0.2222095801570145], [0.11110479007850729], [0.05552395039253617], [0.08328592558880421], [0.16662874047104337], [0.30555239503925363], [0.3888952099214928], [0.4166571851177609], [0.3888952099214928], [0.30555239503925363], [0.24997155535328253], [0.16662874047104337], [0.16662874047104337], [0.24997155535328253], [0.3333143702355217], [0.4166571851177609], [0.5000000000000001], [0.472181135510297], [0.4166571851177609], [0.3610763454317898], [0.27773353054955063], [0.19444760496074645], [0.11110479007850729], [0.027761975196268038], [0.0], [0.0], [0.05552395039253617], [0.16662874047104337], [0.27773353054955063], [0.3610763454317898], [0.3610763454317898], [0.30555239503925363], [0.24997155535328253], [0.2222095801570145], [0.24997155535328253], [0.30555239503925363], [0.3888952099214928], [0.472181135510297], [0.5277619751962681], [0.5000000000000001], [0.4166571851177609], [0.3610763454317898], [0.3333143702355217], [0.3333143702355217], [0.4166571851177609], [0.5277619751962681], [0.6111047900785073], [0.5832859255888042], [0.472181135510297], [0.30555239503925363], [0.2222095801570145], [0.2222095801570145], [0.30555239503925363], [0.4166571851177609], [0.5000000000000001], [0.5277619751962681], [0.472181135510297], [0.3888952099214928], [0.30555239503925363], [0.30555239503925363], [0.3610763454317898], [0.5000000000000001], [0.6388667652747754], [0.7499715553532825], [0.7777335305495505], [0.6944476049607464], [0.5555239503925362], [0.5000000000000001], [0.472181135510297], [0.5277619751962681], [0.6388667652747754], [0.7222095801570145], [0.7222095801570145], [0.6666287404710434], [0.5555239503925362], [0.472181135510297], [0.44441916031402895], [0.472181135510297], [0.5555239503925362], [0.5555239503925362], [0.5555239503925362], [0.5555239503925362], [0.5555239503925362], [0.5555239503925362], [0.5555239503925362], [0.5555239503925362], [0.5555239503925362], [0.5555239503925362], [0.5555239503925362], [0.6944476049607464], [0.5277619751962681], [0.3333143702355217], [0.2222095801570145], [0.2222095801570145], [0.3333143702355217], [0.44441916031402895], [0.5000000000000001], [0.44441916031402895], [0.3610763454317898], [0.30555239503925363], [0.30555239503925363], [0.4166571851177609], [0.6111047900785073], [0.7499715553532825], [0.8333143702355217], [0.7777335305495505], [0.5832859255888042], [0.3610763454317898], [0.16662874047104337], [0.11110479007850729], [0.24997155535328253], [0.5277619751962681], [0.8333143702355217], [1.0], [0.9444191603140288], [0.6944476049607464]], "deltas": [[1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [2.0], [3.0], [4.0], [5.0], [6.0], [7.0], [8.0], [9.0], [10.0], [11.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [2.0], [3.0], [4.0], [5.0], [6.0], [7.0], [8.0], [9.0], [10.0], [11.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [2.0], [3.0], [4.0], [5.0], [6.0], [7.0], [8.0], [9.0], [10.0], [11.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [2.0], [3.0], [4.0], [5.0], [6.0], [7.0], [8.0], [9.0], [10.0], [11.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0]]}, "backward": {"values": [[0.6944476049607464], [0.9444191603140288], [1.0], [0.8333143702355217], [0.5277619751962681], [0.24997155535328253], [0.11110479007850729], [0.16662874047104337], [0.3610763454317898], [0.5832859255888042], [0.7777335305495505], [0.8333143702355217], [0.7499715553532825], [0.6111047900785073], [0.4166571851177609], [0.30555239503925363], [0.30555239503925363], [0.3610763454317898], [0.44441916031402895], [0.5000000000000001], [0.44441916031402895], [0.3333143702355217], [0.2222095801570145], [0.2222095801570145], [0.3333143702355217], [0.5277619751962681], [0.6944476049607464], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.5555239503925362], [0.472181135510297], [0.44441916031402895], [0.472181135510297], [0.5555239503925362], [0.6666287404710434], [0.7222095801570145], [0.7222095801570145], [0.6388667652747754], [0.5277619751962681], [0.472181135510297], [0.5000000000000001], [0.5555239503925362], [0.6944476049607464], [0.7777335305495505], [0.7499715553532825], [0.6388667652747754], [0.5000000000000001], [0.3610763454317898], [0.30555239503925363], [0.30555239503925363], [0.3888952099214928], [0.472181135510297], [0.5277619751962681], [0.5000000000000001], [0.4166571851177609], [0.30555239503925363], [0.2222095801570145], [0.2222095801570145], [0.30555239503925363], [0.472181135510297], [0.5832859255888042], [0.6111047900785073], [0.5277619751962681], [0.4166571851177609], [0.3333143702355217], [0.3333143702355217], [0.3610763454317898], [0.4166571851177609], [0.5000000000000001], [0.5277619751962681], [0.472181135510297], [0.3888952099214928], [0.30555239503925363], [0.24997155535328253], [0.2222095801570145], [0.24997155535328253], [0.30555239503925363], [0.3610763454317898], [0.3610763454317898], [0.27773353054955063], [0.16662874047104337], [0.05552395039253617], [0.0], [0.0], [0.027761975196268038], [0.11110479007850729], [0.19444760496074645], [0.27773353054955063], [0.3610763454317898], [0.4166571851177609], [0.472181135510297], [0.5000000000000001], [0.4166571851177609], [0.3333143702355217], [0.24997155535328253], [0.16662874047104337], [0.16662874047104337], [0.24997155535328253], [0.30555239503925363], [0.3888952099214928], [0.4166571851177609], [0.3888952099214928], [0.30555239503925363], [0.16662874047104337], [0.08328592558880421], [0.05552395039253617], [0.11110479007850729], [0.2222095801570145], [0.30555239503925363], [0.3333143702355217], [0.30555239503925363], [0.24997155535328253], [0.16662874047104337], [0.13886676527477534], [0.13886676527477534], [0.11110479007850729], [0.08328592558880421], [0.027761975196268038], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.24997155535328253], [0.24997155535328253], [0.24997155535328253], [0.24997155535328253], [0.24997155535328253], [0.30555239503925363], [0.3610763454317898], [0.4166571851177609], [0.472181135510297], [0.5000000000000001], [0.472181135510297], [0.4166571851177609], [0.27773353054955063], [0.19444760496074645], [0.11110479007850729], [0.13886676527477534], [0.27773353054955063], [0.4166571851177609], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.6111047900785073], [0.6944476049607464], [0.6388667652747754], [0.472181135510297], [0.24997155535328253], [0.13886676527477534], [0.16662874047104337], [0.27773353054955063], [0.3888952099214928], [0.44441916031402895], [0.472181135510297], [0.44441916031402895], [0.4166571851177609], [0.3888952099214928], [0.3888952099214928], [0.3610763454317898], [0.4166571851177609], [0.472181135510297], [0.5832859255888042], [0.6666287404710434], [0.6944476049607464], [0.6388667652747754], [0.5832859255888042], [0.5277619751962681], [0.5000000000000001], [0.5000000000000001], [0.5000000000000001], [0.472181135510297], [0.44441916031402895], [0.44441916031402895], [0.472181135510297], [0.5000000000000001], [0.5000000000000001], [0.472181135510297], [0.4166571851177609], [0.3888952099214928], [0.44441916031402895], [0.5277619751962681], [0.6111047900785073], [0.6388667652747754], [0.6111047900785073], [0.5277619751962681], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.6111047900785073], [0.6944476049607464], [0.7499715553532825], [0.7777335305495505], [0.7499715553532825], [0.6666287404710434], [0.6111047900785073], [0.5555239503925362], [0.5555239503925362], [0.5555239503925362], [0.6111047900785073], [0.6388667652747754], [0.6111047900785073], [0.5555239503925362], [0.5000000000000001], [0.44441916031402895], [0.44441916031402895], [0.44441916031402895], [0.472181135510297], [0.5555239503925362], [0.6388667652747754], [0.7222095801570145], [0.7777335305495505], [0.8055523950392537], [0.8055523950392537], [0.7499715553532825], [0.6944476049607464], [0.6388667652747754], [0.5832859255888042], [0.5277619751962681], [0.5000000000000001], [0.5277619751962681], [0.5832859255888042], [0.6388667652747754], [0.6666287404710434], [0.6666287404710434], [0.6666287404710434], [0.6666287404710434], [0.6944476049607464], [0.7222095801570145]], "masks": [[1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1]], "evals": [[0.6944476049607464], [0.9444191603140288], [1.0], [0.8333143702355217], [0.5277619751962681], [0.24997155535328253], [0.11110479007850729], [0.16662874047104337], [0.3610763454317898], [0.5832859255888042], [0.7777335305495505], [0.8333143702355217], [0.7499715553532825], [0.6111047900785073], [0.4166571851177609], [0.30555239503925363], [0.30555239503925363], [0.3610763454317898], [0.44441916031402895], [0.5000000000000001], [0.44441916031402895], [0.3333143702355217], [0.2222095801570145], [0.2222095801570145], [0.3333143702355217], [0.5277619751962681], [0.6944476049607464], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.5555239503925362], [0.472181135510297], [0.44441916031402895], [0.472181135510297], [0.5555239503925362], [0.6666287404710434], [0.7222095801570145], [0.7222095801570145], [0.6388667652747754], [0.5277619751962681], [0.472181135510297], [0.5000000000000001], [0.5555239503925362], [0.6944476049607464], [0.7777335305495505], [0.7499715553532825], [0.6388667652747754], [0.5000000000000001], [0.3610763454317898], [0.30555239503925363], [0.30555239503925363], [0.3888952099214928], [0.472181135510297], [0.5277619751962681], [0.5000000000000001], [0.4166571851177609], [0.30555239503925363], [0.2222095801570145], [0.2222095801570145], [0.30555239503925363], [0.472181135510297], [0.5832859255888042], [0.6111047900785073], [0.5277619751962681], [0.4166571851177609], [0.3333143702355217], [0.3333143702355217], [0.3610763454317898], [0.4166571851177609], [0.5000000000000001], [0.5277619751962681], [0.472181135510297], [0.3888952099214928], [0.30555239503925363], [0.24997155535328253], [0.2222095801570145], [0.24997155535328253], [0.30555239503925363], [0.3610763454317898], [0.3610763454317898], [0.27773353054955063], [0.16662874047104337], [0.05552395039253617], [0.0], [0.0], [0.027761975196268038], [0.11110479007850729], [0.19444760496074645], [0.27773353054955063], [0.3610763454317898], [0.4166571851177609], [0.472181135510297], [0.5000000000000001], [0.4166571851177609], [0.3333143702355217], [0.24997155535328253], [0.16662874047104337], [0.16662874047104337], [0.24997155535328253], [0.30555239503925363], [0.3888952099214928], [0.4166571851177609], [0.3888952099214928], [0.30555239503925363], [0.16662874047104337], [0.08328592558880421], [0.05552395039253617], [0.11110479007850729], [0.2222095801570145], [0.30555239503925363], [0.3333143702355217], [0.30555239503925363], [0.24997155535328253], [0.16662874047104337], [0.13886676527477534], [0.13886676527477534], [0.11110479007850729], [0.08328592558880421], [0.027761975196268038], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.24997155535328253], [0.24997155535328253], [0.24997155535328253], [0.24997155535328253], [0.24997155535328253], [0.30555239503925363], [0.3610763454317898], [0.4166571851177609], [0.472181135510297], [0.5000000000000001], [0.472181135510297], [0.4166571851177609], [0.27773353054955063], [0.19444760496074645], [0.11110479007850729], [0.13886676527477534], [0.27773353054955063], [0.4166571851177609], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.6111047900785073], [0.6944476049607464], [0.6388667652747754], [0.472181135510297], [0.24997155535328253], [0.13886676527477534], [0.16662874047104337], [0.27773353054955063], [0.3888952099214928], [0.44441916031402895], [0.472181135510297], [0.44441916031402895], [0.4166571851177609], [0.3888952099214928], [0.3888952099214928], [0.3610763454317898], [0.4166571851177609], [0.472181135510297], [0.5832859255888042], [0.6666287404710434], [0.6944476049607464], [0.6388667652747754], [0.5832859255888042], [0.5277619751962681], [0.5000000000000001], [0.5000000000000001], [0.5000000000000001], [0.472181135510297], [0.44441916031402895], [0.44441916031402895], [0.472181135510297], [0.5000000000000001], [0.5000000000000001], [0.472181135510297], [0.4166571851177609], [0.3888952099214928], [0.44441916031402895], [0.5277619751962681], [0.6111047900785073], [0.6388667652747754], [0.6111047900785073], [0.5277619751962681], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.6111047900785073], [0.6944476049607464], [0.7499715553532825], [0.7777335305495505], [0.7499715553532825], [0.6666287404710434], [0.6111047900785073], [0.5555239503925362], [0.5555239503925362], [0.5555239503925362], [0.6111047900785073], [0.6388667652747754], [0.6111047900785073], [0.5555239503925362], [0.5000000000000001], [0.44441916031402895], [0.44441916031402895], [0.44441916031402895], [0.472181135510297], [0.5555239503925362], [0.6388667652747754], [0.7222095801570145], [0.7777335305495505], [0.8055523950392537], [0.8055523950392537], [0.7499715553532825], [0.6944476049607464], [0.6388667652747754], [0.5832859255888042], [0.5277619751962681], [0.5000000000000001], [0.5277619751962681], [0.5832859255888042], [0.6388667652747754], [0.6666287404710434], [0.6666287404710434], [0.6666287404710434], [0.6666287404710434], [0.6944476049607464], [0.7222095801570145]], "eval_masks": [[0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0]], "forwards": [[0.6944476049607464], [0.9444191603140288], [1.0], [0.8333143702355217], [0.5277619751962681], [0.24997155535328253], [0.11110479007850729], [0.16662874047104337], [0.3610763454317898], [0.5832859255888042], [0.7777335305495505], [0.8333143702355217], [0.7499715553532825], [0.6111047900785073], [0.4166571851177609], [0.30555239503925363], [0.30555239503925363], [0.3610763454317898], [0.44441916031402895], [0.5000000000000001], [0.44441916031402895], [0.3333143702355217], [0.2222095801570145], [0.2222095801570145], [0.3333143702355217], [0.5277619751962681], [0.6944476049607464], [0.6944476049607464], [0.6944476049607464], [0.6944476049607464], [0.6944476049607464], [0.6944476049607464], [0.6944476049607464], [0.6944476049607464], [0.6944476049607464], [0.6944476049607464], [0.6944476049607464], [0.5555239503925362], [0.472181135510297], [0.44441916031402895], [0.472181135510297], [0.5555239503925362], [0.6666287404710434], [0.7222095801570145], [0.7222095801570145], [0.6388667652747754], [0.5277619751962681], [0.472181135510297], [0.5000000000000001], [0.5555239503925362], [0.6944476049607464], [0.7777335305495505], [0.7499715553532825], [0.6388667652747754], [0.5000000000000001], [0.3610763454317898], [0.30555239503925363], [0.30555239503925363], [0.3888952099214928], [0.472181135510297], [0.5277619751962681], [0.5000000000000001], [0.4166571851177609], [0.30555239503925363], [0.2222095801570145], [0.2222095801570145], [0.30555239503925363], [0.472181135510297], [0.5832859255888042], [0.6111047900785073], [0.5277619751962681], [0.4166571851177609], [0.3333143702355217], [0.3333143702355217], [0.3610763454317898], [0.4166571851177609], [0.5000000000000001], [0.5277619751962681], [0.472181135510297], [0.3888952099214928], [0.30555239503925363], [0.24997155535328253], [0.2222095801570145], [0.24997155535328253], [0.30555239503925363], [0.3610763454317898], [0.3610763454317898], [0.27773353054955063], [0.16662874047104337], [0.05552395039253617], [0.0], [0.0], [0.027761975196268038], [0.11110479007850729], [0.19444760496074645], [0.27773353054955063], [0.3610763454317898], [0.4166571851177609], [0.472181135510297], [0.5000000000000001], [0.4166571851177609], [0.3333143702355217], [0.24997155535328253], [0.16662874047104337], [0.16662874047104337], [0.24997155535328253], [0.30555239503925363], [0.3888952099214928], [0.4166571851177609], [0.3888952099214928], [0.30555239503925363], [0.16662874047104337], [0.08328592558880421], [0.05552395039253617], [0.11110479007850729], [0.2222095801570145], [0.30555239503925363], [0.3333143702355217], [0.30555239503925363], [0.24997155535328253], [0.16662874047104337], [0.13886676527477534], [0.13886676527477534], [0.11110479007850729], [0.08328592558880421], [0.027761975196268038], [0.027761975196268038], [0.027761975196268038], [0.027761975196268038], [0.027761975196268038], [0.027761975196268038], [0.027761975196268038], [0.027761975196268038], [0.027761975196268038], [0.027761975196268038], [0.027761975196268038], [0.24997155535328253], [0.24997155535328253], [0.24997155535328253], [0.24997155535328253], [0.24997155535328253], [0.30555239503925363], [0.3610763454317898], [0.4166571851177609], [0.472181135510297], [0.5000000000000001], [0.472181135510297], [0.4166571851177609], [0.27773353054955063], [0.19444760496074645], [0.11110479007850729], [0.13886676527477534], [0.27773353054955063], [0.4166571851177609], [0.4166571851177609], [0.4166571851177609], [0.4166571851177609], [0.4166571851177609], [0.4166571851177609], [0.4166571851177609], [0.4166571851177609], [0.4166571851177609], [0.4166571851177609], [0.4166571851177609], [0.6111047900785073], [0.6944476049607464], [0.6388667652747754], [0.472181135510297], [0.24997155535328253], [0.13886676527477534], [0.16662874047104337], [0.27773353054955063], [0.3888952099214928], [0.44441916031402895], [0.472181135510297], [0.44441916031402895], [0.4166571851177609], [0.3888952099214928], [0.3888952099214928], [0.3610763454317898], [0.4166571851177609], [0.472181135510297], [0.5832859255888042], [0.6666287404710434], [0.6944476049607464], [0.6388667652747754], [0.5832859255888042], [0.5277619751962681], [0.5000000000000001], [0.5000000000000001], [0.5000000000000001], [0.472181135510297], [0.44441916031402895], [0.44441916031402895], [0.472181135510297], [0.5000000000000001], [0.5000000000000001], [0.472181135510297], [0.4166571851177609], [0.3888952099214928], [0.44441916031402895], [0.5277619751962681], [0.6111047900785073], [0.6388667652747754], [0.6111047900785073], [0.5277619751962681], [0.5277619751962681], [0.5277619751962681], [0.5277619751962681], [0.5277619751962681], [0.5277619751962681], [0.5277619751962681], [0.5277619751962681], [0.5277619751962681], [0.5277619751962681], [0.5277619751962681], [0.6111047900785073], [0.6944476049607464], [0.7499715553532825], [0.7777335305495505], [0.7499715553532825], [0.6666287404710434], [0.6111047900785073], [0.5555239503925362], [0.5555239503925362], [0.5555239503925362], [0.6111047900785073], [0.6388667652747754], [0.6111047900785073], [0.5555239503925362], [0.5000000000000001], [0.44441916031402895], [0.44441916031402895], [0.44441916031402895], [0.472181135510297], [0.5555239503925362], [0.6388667652747754], [0.7222095801570145], [0.7777335305495505], [0.8055523950392537], [0.8055523950392537], [0.7499715553532825], [0.6944476049607464], [0.6388667652747754], [0.5832859255888042], [0.5277619751962681], [0.5000000000000001], [0.5277619751962681], [0.5832859255888042], [0.6388667652747754], [0.6666287404710434], [0.6666287404710434], [0.6666287404710434], [0.6666287404710434], [0.6944476049607464], [0.7222095801570145]], "deltas": [[1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [2.0], [3.0], [4.0], [5.0], [6.0], [7.0], [8.0], [9.0], [10.0], [11.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [2.0], [3.0], [4.0], [5.0], [6.0], [7.0], [8.0], [9.0], [10.0], [11.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [2.0], [3.0], [4.0], [5.0], [6.0], [7.0], [8.0], [9.0], [10.0], [11.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [2.0], [3.0], [4.0], [5.0], [6.0], [7.0], [8.0], [9.0], [10.0], [11.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0]]}} -{"label": 0, "forward": {"values": [[0.819674332717811], [0.7869061608192044], [0.8032902467685077], [0.8032902467685077], [0.7869061608192044], [0.7541044149739802], [0.7213362430753736], [0.7049185831794528], [0.7213362430753736], [0.7377203290246769], [0.7213362430753736], [0.639348665435622], [0.5245929158972638], [0.36068490851099544], [0.21312741312741312], [0.13117340943427902], [0.14755749538358234], [0.2786973308712439], [0.47540708410273635], [0.6885344972301495], [0.819674332717811], [0.8524760785630351], [0.770522074869901], [0.639348665435622], [0.5245929158972638], [0.47540708410273635], [0.49182474399865705], [0.5410105757931845], [0.5901628336410946], [0.6229645794863187], [0.6065804935370154], [0.5737787476917913], [0.5410105757931845], [0.5245929158972638], [0.5245929158972638], [0.5410105757931845], [0.5573946617424879], [0.5410105757931845], [0.49182474399865705], [0.4262548262548263], [0.37706899446029885], [0.3934530804096022], [0.4426389122041296], [0.49182474399865705], [0.5082088299479603], [0.47540708410273635], [0.4098371663589055], [0.34426724861507474], [0.31149907671646804], [0.34426724861507474], [0.4098371663589055], [0.4426389122041296], [0.45902299815343295], [0.37706899446029885], [0.2950814168205473], [0.22951149907671645], [0.22951149907671645], [0.2786973308712439], [0.34426724861507474], [0.37706899446029885], [0.37706899446029885], [0.37706899446029885], [0.4098371663589055], [0.49182474399865705], [0.5737787476917913], [0.6065804935370154], [0.5901628336410946], [0.5082088299479603], [0.4098371663589055], [0.37706899446029885], [0.37706899446029885], [0.4426389122041296], [0.5082088299479603], [0.5410105757931845], [0.5245929158972638], [0.4426389122041296], [0.2950814168205473], [0.11475574953835822], [0.0], [0.03280174584522412], [0.24592915897263723], [0.5737787476917913], [0.8688601645123385], [1.0], [0.918045996306866], [0.6885344972301495], [0.4426389122041296], [0.24592915897263723], [0.180325667282189], [0.180325667282189], [0.2786973308712439], [0.4098371663589055], [0.6229645794863187], [0.819674332717811], [0.918045996306866], [0.8852778244082592], [0.6885344972301495], [0.4426389122041296], [0.24592915897263723], [0.180325667282189], [0.22951149907671645], [0.32788316266577133], [0.4098371663589055], [0.45902299815343295], [0.5082088299479603], [0.5573946617424879], [0.6229645794863187], [0.6721504112808461], [0.6721504112808461], [0.6065804935370154], [0.5082088299479603], [0.4426389122041296], [0.4426389122041296], [0.49182474399865705], [0.5245929158972638], [0.5573946617424879], [0.5737787476917913], [0.6065804935370154], [0.6557663253315428], [0.6885344972301495], [0.6721504112808461], [0.5737787476917913], [0.4262548262548263], [0.2950814168205473], [0.24592915897263723], [0.2786973308712439], [0.3934530804096022], [0.5245929158972638], [0.6229645794863187], [0.639348665435622], [0.5737787476917913], [0.47540708410273635], [0.34426724861507474], [0.2623132449219406], [0.21312741312741312], [0.22951149907671645], [0.2623132449219406], [0.31149907671646804], [0.36068490851099544], [0.37706899446029885], [0.36068490851099544], [0.31149907671646804], [0.2623132449219406], [0.21312741312741312], [0.180325667282189], [0.180325667282189], [0.22951149907671645], [0.2786973308712439], [0.34426724861507474], [0.3934530804096022], [0.3934530804096022], [0.36068490851099544], [0.32788316266577133], [0.32788316266577133], [0.3934530804096022], [0.49182474399865705], [0.5901628336410946], [0.6557663253315428], [0.6229645794863187], [0.5410105757931845], [0.4098371663589055], [0.31149907671646804], [0.2950814168205473], [0.36068490851099544], [0.5245929158972638], [0.7213362430753736], [0.9016619103575626], [1.0], [0.9836159140506967], [0.8688601645123385], [0.7049185831794528], [0.5573946617424879], [0.5082088299479603], [0.5737787476917913], [0.7213362430753736], [0.8524760785630351], [0.918045996306866], [0.9016619103575626], [0.8360919926137318], [0.7869061608192044], [0.7869061608192044], [0.819674332717811], [0.8360919926137318], [0.770522074869901], [0.639348665435622], [0.49182474399865705], [0.37706899446029885], [0.36068490851099544], [0.45902299815343295], [0.6065804935370154], [0.770522074869901], [0.8524760785630351], [0.8524760785630351], [0.8032902467685077], [0.7377203290246769], [0.7213362430753736], [0.7541044149739802], [0.8032902467685077], [0.8524760785630351], [0.8360919926137318], [0.7541044149739802], [0.5901628336410946], [0.45902299815343295], [0.3934530804096022], [0.4426389122041296], [0.5573946617424879], [0.6885344972301495], [0.7541044149739802], [0.7213362430753736], [0.6065804935370154], [0.49182474399865705], [0.47540708410273635], [0.5573946617424879], [0.6885344972301495], [0.819674332717811], [0.8688601645123385], [0.819674332717811], [0.7377203290246769], [0.639348665435622], [0.5737787476917913], [0.5410105757931845], [0.49182474399865705], [0.4426389122041296], [0.4262548262548263], [0.4262548262548263], [0.47540708410273635], [0.5573946617424879], [0.639348665435622], [0.6885344972301495], [0.6885344972301495], [0.6721504112808461], [0.6557663253315428], [0.6229645794863187], [0.6065804935370154], [0.5737787476917913], [0.5245929158972638], [0.47540708410273635], [0.4098371663589055], [0.36068490851099544], [0.34426724861507474], [0.32788316266577133], [0.31149907671646804], [0.31149907671646804], [0.32788316266577133], [0.36068490851099544], [0.4262548262548263], [0.49182474399865705], [0.5737787476917913], [0.6065804935370154], [0.6065804935370154], [0.5410105757931845], [0.47540708410273635], [0.4426389122041296], [0.4426389122041296], [0.47540708410273635], [0.49182474399865705]], "masks": [[1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1]], "evals": [[0.819674332717811], [0.7869061608192044], [0.8032902467685077], [0.8032902467685077], [0.7869061608192044], [0.7541044149739802], [0.7213362430753736], [0.7049185831794528], [0.7213362430753736], [0.7377203290246769], [0.7213362430753736], [0.639348665435622], [0.5245929158972638], [0.36068490851099544], [0.21312741312741312], [0.13117340943427902], [0.14755749538358234], [0.2786973308712439], [0.47540708410273635], [0.6885344972301495], [0.819674332717811], [0.8524760785630351], [0.770522074869901], [0.639348665435622], [0.5245929158972638], [0.47540708410273635], [0.49182474399865705], [0.5410105757931845], [0.5901628336410946], [0.6229645794863187], [0.6065804935370154], [0.5737787476917913], [0.5410105757931845], [0.5245929158972638], [0.5245929158972638], [0.5410105757931845], [0.5573946617424879], [0.5410105757931845], [0.49182474399865705], [0.4262548262548263], [0.37706899446029885], [0.3934530804096022], [0.4426389122041296], [0.49182474399865705], [0.5082088299479603], [0.47540708410273635], [0.4098371663589055], [0.34426724861507474], [0.31149907671646804], [0.34426724861507474], [0.4098371663589055], [0.4426389122041296], [0.45902299815343295], [0.37706899446029885], [0.2950814168205473], [0.22951149907671645], [0.22951149907671645], [0.2786973308712439], [0.34426724861507474], [0.37706899446029885], [0.37706899446029885], [0.37706899446029885], [0.4098371663589055], [0.49182474399865705], [0.5737787476917913], [0.6065804935370154], [0.5901628336410946], [0.5082088299479603], [0.4098371663589055], [0.37706899446029885], [0.37706899446029885], [0.4426389122041296], [0.5082088299479603], [0.5410105757931845], [0.5245929158972638], [0.4426389122041296], [0.2950814168205473], [0.11475574953835822], [0.0], [0.03280174584522412], [0.24592915897263723], [0.5737787476917913], [0.8688601645123385], [1.0], [0.918045996306866], [0.6885344972301495], [0.4426389122041296], [0.24592915897263723], [0.180325667282189], [0.180325667282189], [0.2786973308712439], [0.4098371663589055], [0.6229645794863187], [0.819674332717811], [0.918045996306866], [0.8852778244082592], [0.6885344972301495], [0.4426389122041296], [0.24592915897263723], [0.180325667282189], [0.22951149907671645], [0.32788316266577133], [0.4098371663589055], [0.45902299815343295], [0.5082088299479603], [0.5573946617424879], [0.6229645794863187], [0.6721504112808461], [0.6721504112808461], [0.6065804935370154], [0.5082088299479603], [0.4426389122041296], [0.4426389122041296], [0.49182474399865705], [0.5245929158972638], [0.5573946617424879], [0.5737787476917913], [0.6065804935370154], [0.6557663253315428], [0.6885344972301495], [0.6721504112808461], [0.5737787476917913], [0.4262548262548263], [0.2950814168205473], [0.24592915897263723], [0.2786973308712439], [0.3934530804096022], [0.5245929158972638], [0.6229645794863187], [0.639348665435622], [0.5737787476917913], [0.47540708410273635], [0.34426724861507474], [0.2623132449219406], [0.21312741312741312], [0.22951149907671645], [0.2623132449219406], [0.31149907671646804], [0.36068490851099544], [0.37706899446029885], [0.36068490851099544], [0.31149907671646804], [0.2623132449219406], [0.21312741312741312], [0.180325667282189], [0.180325667282189], [0.22951149907671645], [0.2786973308712439], [0.34426724861507474], [0.3934530804096022], [0.3934530804096022], [0.36068490851099544], [0.32788316266577133], [0.32788316266577133], [0.3934530804096022], [0.49182474399865705], [0.5901628336410946], [0.6557663253315428], [0.6229645794863187], [0.5410105757931845], [0.4098371663589055], [0.31149907671646804], [0.2950814168205473], [0.36068490851099544], [0.5245929158972638], [0.7213362430753736], [0.9016619103575626], [1.0], [0.9836159140506967], [0.8688601645123385], [0.7049185831794528], [0.5573946617424879], [0.5082088299479603], [0.5737787476917913], [0.7213362430753736], [0.8524760785630351], [0.918045996306866], [0.9016619103575626], [0.8360919926137318], [0.7869061608192044], [0.7869061608192044], [0.819674332717811], [0.8360919926137318], [0.770522074869901], [0.639348665435622], [0.49182474399865705], [0.37706899446029885], [0.36068490851099544], [0.45902299815343295], [0.6065804935370154], [0.770522074869901], [0.8524760785630351], [0.8524760785630351], [0.8032902467685077], [0.7377203290246769], [0.7213362430753736], [0.7541044149739802], [0.8032902467685077], [0.8524760785630351], [0.8360919926137318], [0.7541044149739802], [0.5901628336410946], [0.45902299815343295], [0.3934530804096022], [0.4426389122041296], [0.5573946617424879], [0.6885344972301495], [0.7541044149739802], [0.7213362430753736], [0.6065804935370154], [0.49182474399865705], [0.47540708410273635], [0.5573946617424879], [0.6885344972301495], [0.819674332717811], [0.8688601645123385], [0.819674332717811], [0.7377203290246769], [0.639348665435622], [0.5737787476917913], [0.5410105757931845], [0.49182474399865705], [0.4426389122041296], [0.4262548262548263], [0.4262548262548263], [0.47540708410273635], [0.5573946617424879], [0.639348665435622], [0.6885344972301495], [0.6885344972301495], [0.6721504112808461], [0.6557663253315428], [0.6229645794863187], [0.6065804935370154], [0.5737787476917913], [0.5245929158972638], [0.47540708410273635], [0.4098371663589055], [0.36068490851099544], [0.34426724861507474], [0.32788316266577133], [0.31149907671646804], [0.31149907671646804], [0.32788316266577133], [0.36068490851099544], [0.4262548262548263], [0.49182474399865705], [0.5737787476917913], [0.6065804935370154], [0.6065804935370154], [0.5410105757931845], [0.47540708410273635], [0.4426389122041296], [0.4426389122041296], [0.47540708410273635], [0.49182474399865705]], "eval_masks": [[0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0]], "forwards": [[0.819674332717811], [0.7869061608192044], [0.8032902467685077], [0.8032902467685077], [0.7869061608192044], [0.7541044149739802], [0.7213362430753736], [0.7049185831794528], [0.7213362430753736], [0.7377203290246769], [0.7213362430753736], [0.639348665435622], [0.5245929158972638], [0.36068490851099544], [0.21312741312741312], [0.13117340943427902], [0.14755749538358234], [0.2786973308712439], [0.47540708410273635], [0.6885344972301495], [0.819674332717811], [0.8524760785630351], [0.770522074869901], [0.639348665435622], [0.5245929158972638], [0.47540708410273635], [0.49182474399865705], [0.5410105757931845], [0.5901628336410946], [0.6229645794863187], [0.6065804935370154], [0.5737787476917913], [0.5410105757931845], [0.5245929158972638], [0.5245929158972638], [0.5410105757931845], [0.5573946617424879], [0.5410105757931845], [0.49182474399865705], [0.4262548262548263], [0.37706899446029885], [0.3934530804096022], [0.4426389122041296], [0.49182474399865705], [0.5082088299479603], [0.47540708410273635], [0.4098371663589055], [0.34426724861507474], [0.31149907671646804], [0.34426724861507474], [0.4098371663589055], [0.4426389122041296], [0.45902299815343295], [0.37706899446029885], [0.2950814168205473], [0.22951149907671645], [0.22951149907671645], [0.2786973308712439], [0.34426724861507474], [0.37706899446029885], [0.37706899446029885], [0.37706899446029885], [0.4098371663589055], [0.49182474399865705], [0.5737787476917913], [0.6065804935370154], [0.5901628336410946], [0.5082088299479603], [0.4098371663589055], [0.37706899446029885], [0.37706899446029885], [0.4426389122041296], [0.5082088299479603], [0.5410105757931845], [0.5245929158972638], [0.4426389122041296], [0.2950814168205473], [0.11475574953835822], [0.0], [0.03280174584522412], [0.24592915897263723], [0.5737787476917913], [0.8688601645123385], [1.0], [0.918045996306866], [0.6885344972301495], [0.4426389122041296], [0.24592915897263723], [0.180325667282189], [0.180325667282189], [0.2786973308712439], [0.4098371663589055], [0.6229645794863187], [0.819674332717811], [0.918045996306866], [0.8852778244082592], [0.6885344972301495], [0.4426389122041296], [0.24592915897263723], [0.180325667282189], [0.22951149907671645], [0.32788316266577133], [0.4098371663589055], [0.45902299815343295], [0.5082088299479603], [0.5573946617424879], [0.6229645794863187], [0.6721504112808461], [0.6721504112808461], [0.6065804935370154], [0.5082088299479603], [0.4426389122041296], [0.4426389122041296], [0.49182474399865705], [0.5245929158972638], [0.5573946617424879], [0.5737787476917913], [0.6065804935370154], [0.6557663253315428], [0.6885344972301495], [0.6721504112808461], [0.5737787476917913], [0.4262548262548263], [0.2950814168205473], [0.24592915897263723], [0.2786973308712439], [0.3934530804096022], [0.5245929158972638], [0.6229645794863187], [0.639348665435622], [0.5737787476917913], [0.47540708410273635], [0.34426724861507474], [0.2623132449219406], [0.21312741312741312], [0.22951149907671645], [0.2623132449219406], [0.31149907671646804], [0.36068490851099544], [0.37706899446029885], [0.36068490851099544], [0.31149907671646804], [0.2623132449219406], [0.21312741312741312], [0.180325667282189], [0.180325667282189], [0.22951149907671645], [0.2786973308712439], [0.34426724861507474], [0.3934530804096022], [0.3934530804096022], [0.36068490851099544], [0.32788316266577133], [0.32788316266577133], [0.3934530804096022], [0.49182474399865705], [0.5901628336410946], [0.6557663253315428], [0.6229645794863187], [0.5410105757931845], [0.4098371663589055], [0.31149907671646804], [0.2950814168205473], [0.36068490851099544], [0.5245929158972638], [0.7213362430753736], [0.9016619103575626], [1.0], [0.9836159140506967], [0.8688601645123385], [0.7049185831794528], [0.5573946617424879], [0.5082088299479603], [0.5737787476917913], [0.7213362430753736], [0.8524760785630351], [0.918045996306866], [0.9016619103575626], [0.8360919926137318], [0.7869061608192044], [0.7869061608192044], [0.819674332717811], [0.8360919926137318], [0.770522074869901], [0.639348665435622], [0.49182474399865705], [0.37706899446029885], [0.36068490851099544], [0.45902299815343295], [0.6065804935370154], [0.770522074869901], [0.8524760785630351], [0.8524760785630351], [0.8032902467685077], [0.7377203290246769], [0.7213362430753736], [0.7541044149739802], [0.8032902467685077], [0.8524760785630351], [0.8360919926137318], [0.7541044149739802], [0.5901628336410946], [0.45902299815343295], [0.3934530804096022], [0.4426389122041296], [0.5573946617424879], [0.6885344972301495], [0.7541044149739802], [0.7213362430753736], [0.6065804935370154], [0.49182474399865705], [0.47540708410273635], [0.5573946617424879], [0.6885344972301495], [0.819674332717811], [0.8688601645123385], [0.819674332717811], [0.7377203290246769], [0.639348665435622], [0.5737787476917913], [0.5410105757931845], [0.49182474399865705], [0.4426389122041296], [0.4262548262548263], [0.4262548262548263], [0.47540708410273635], [0.5573946617424879], [0.639348665435622], [0.6885344972301495], [0.6885344972301495], [0.6721504112808461], [0.6557663253315428], [0.6229645794863187], [0.6065804935370154], [0.5737787476917913], [0.5245929158972638], [0.47540708410273635], [0.4098371663589055], [0.36068490851099544], [0.34426724861507474], [0.32788316266577133], [0.31149907671646804], [0.31149907671646804], [0.32788316266577133], [0.36068490851099544], [0.4262548262548263], [0.49182474399865705], [0.5737787476917913], [0.6065804935370154], [0.6065804935370154], [0.5410105757931845], [0.47540708410273635], [0.4426389122041296], [0.4426389122041296], [0.47540708410273635], [0.49182474399865705]], "deltas": [[1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0]]}, "backward": {"values": [[0.49182474399865705], [0.47540708410273635], [0.4426389122041296], [0.4426389122041296], [0.47540708410273635], [0.5410105757931845], [0.6065804935370154], [0.6065804935370154], [0.5737787476917913], [0.49182474399865705], [0.4262548262548263], [0.36068490851099544], [0.32788316266577133], [0.31149907671646804], [0.31149907671646804], [0.32788316266577133], [0.34426724861507474], [0.36068490851099544], [0.4098371663589055], [0.47540708410273635], [0.5245929158972638], [0.5737787476917913], [0.6065804935370154], [0.6229645794863187], [0.6557663253315428], [0.6721504112808461], [0.6885344972301495], [0.6885344972301495], [0.639348665435622], [0.5573946617424879], [0.47540708410273635], [0.4262548262548263], [0.4262548262548263], [0.4426389122041296], [0.49182474399865705], [0.5410105757931845], [0.5737787476917913], [0.639348665435622], [0.7377203290246769], [0.819674332717811], [0.8688601645123385], [0.819674332717811], [0.6885344972301495], [0.5573946617424879], [0.47540708410273635], [0.49182474399865705], [0.6065804935370154], [0.7213362430753736], [0.7541044149739802], [0.6885344972301495], [0.5573946617424879], [0.4426389122041296], [0.3934530804096022], [0.45902299815343295], [0.5901628336410946], [0.7541044149739802], [0.8360919926137318], [0.8524760785630351], [0.8032902467685077], [0.7541044149739802], [0.7213362430753736], [0.7377203290246769], [0.8032902467685077], [0.8524760785630351], [0.8524760785630351], [0.770522074869901], [0.6065804935370154], [0.45902299815343295], [0.36068490851099544], [0.37706899446029885], [0.49182474399865705], [0.639348665435622], [0.770522074869901], [0.8360919926137318], [0.819674332717811], [0.7869061608192044], [0.7869061608192044], [0.8360919926137318], [0.9016619103575626], [0.918045996306866], [0.8524760785630351], [0.7213362430753736], [0.5737787476917913], [0.5082088299479603], [0.5573946617424879], [0.7049185831794528], [0.8688601645123385], [0.9836159140506967], [1.0], [0.9016619103575626], [0.7213362430753736], [0.5245929158972638], [0.36068490851099544], [0.2950814168205473], [0.31149907671646804], [0.4098371663589055], [0.5410105757931845], [0.6229645794863187], [0.6557663253315428], [0.5901628336410946], [0.49182474399865705], [0.3934530804096022], [0.32788316266577133], [0.32788316266577133], [0.36068490851099544], [0.3934530804096022], [0.3934530804096022], [0.34426724861507474], [0.2786973308712439], [0.22951149907671645], [0.180325667282189], [0.180325667282189], [0.21312741312741312], [0.2623132449219406], [0.31149907671646804], [0.36068490851099544], [0.37706899446029885], [0.36068490851099544], [0.31149907671646804], [0.2623132449219406], [0.22951149907671645], [0.21312741312741312], [0.2623132449219406], [0.34426724861507474], [0.47540708410273635], [0.5737787476917913], [0.639348665435622], [0.6229645794863187], [0.5245929158972638], [0.3934530804096022], [0.2786973308712439], [0.24592915897263723], [0.2950814168205473], [0.4262548262548263], [0.5737787476917913], [0.6721504112808461], [0.6885344972301495], [0.6557663253315428], [0.6065804935370154], [0.5737787476917913], [0.5573946617424879], [0.5245929158972638], [0.49182474399865705], [0.4426389122041296], [0.4426389122041296], [0.5082088299479603], [0.6065804935370154], [0.6721504112808461], [0.6721504112808461], [0.6229645794863187], [0.5573946617424879], [0.5082088299479603], [0.45902299815343295], [0.4098371663589055], [0.32788316266577133], [0.22951149907671645], [0.180325667282189], [0.24592915897263723], [0.4426389122041296], [0.6885344972301495], [0.8852778244082592], [0.918045996306866], [0.819674332717811], [0.6229645794863187], [0.4098371663589055], [0.2786973308712439], [0.180325667282189], [0.180325667282189], [0.24592915897263723], [0.4426389122041296], [0.6885344972301495], [0.918045996306866], [1.0], [0.8688601645123385], [0.5737787476917913], [0.24592915897263723], [0.03280174584522412], [0.0], [0.11475574953835822], [0.2950814168205473], [0.4426389122041296], [0.5245929158972638], [0.5410105757931845], [0.5082088299479603], [0.4426389122041296], [0.37706899446029885], [0.37706899446029885], [0.4098371663589055], [0.5082088299479603], [0.5901628336410946], [0.6065804935370154], [0.5737787476917913], [0.49182474399865705], [0.4098371663589055], [0.37706899446029885], [0.37706899446029885], [0.37706899446029885], [0.34426724861507474], [0.2786973308712439], [0.22951149907671645], [0.22951149907671645], [0.2950814168205473], [0.37706899446029885], [0.45902299815343295], [0.4426389122041296], [0.4098371663589055], [0.34426724861507474], [0.31149907671646804], [0.34426724861507474], [0.4098371663589055], [0.47540708410273635], [0.5082088299479603], [0.49182474399865705], [0.4426389122041296], [0.3934530804096022], [0.37706899446029885], [0.4262548262548263], [0.49182474399865705], [0.5410105757931845], [0.5573946617424879], [0.5410105757931845], [0.5245929158972638], [0.5245929158972638], [0.5410105757931845], [0.5737787476917913], [0.6065804935370154], [0.6229645794863187], [0.5901628336410946], [0.5410105757931845], [0.49182474399865705], [0.47540708410273635], [0.5245929158972638], [0.639348665435622], [0.770522074869901], [0.8524760785630351], [0.819674332717811], [0.6885344972301495], [0.47540708410273635], [0.2786973308712439], [0.14755749538358234], [0.13117340943427902], [0.21312741312741312], [0.36068490851099544], [0.5245929158972638], [0.639348665435622], [0.7213362430753736], [0.7377203290246769], [0.7213362430753736], [0.7049185831794528], [0.7213362430753736], [0.7541044149739802], [0.7869061608192044], [0.8032902467685077], [0.8032902467685077], [0.7869061608192044], [0.819674332717811]], "masks": [[1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1]], "evals": [[0.49182474399865705], [0.47540708410273635], [0.4426389122041296], [0.4426389122041296], [0.47540708410273635], [0.5410105757931845], [0.6065804935370154], [0.6065804935370154], [0.5737787476917913], [0.49182474399865705], [0.4262548262548263], [0.36068490851099544], [0.32788316266577133], [0.31149907671646804], [0.31149907671646804], [0.32788316266577133], [0.34426724861507474], [0.36068490851099544], [0.4098371663589055], [0.47540708410273635], [0.5245929158972638], [0.5737787476917913], [0.6065804935370154], [0.6229645794863187], [0.6557663253315428], [0.6721504112808461], [0.6885344972301495], [0.6885344972301495], [0.639348665435622], [0.5573946617424879], [0.47540708410273635], [0.4262548262548263], [0.4262548262548263], [0.4426389122041296], [0.49182474399865705], [0.5410105757931845], [0.5737787476917913], [0.639348665435622], [0.7377203290246769], [0.819674332717811], [0.8688601645123385], [0.819674332717811], [0.6885344972301495], [0.5573946617424879], [0.47540708410273635], [0.49182474399865705], [0.6065804935370154], [0.7213362430753736], [0.7541044149739802], [0.6885344972301495], [0.5573946617424879], [0.4426389122041296], [0.3934530804096022], [0.45902299815343295], [0.5901628336410946], [0.7541044149739802], [0.8360919926137318], [0.8524760785630351], [0.8032902467685077], [0.7541044149739802], [0.7213362430753736], [0.7377203290246769], [0.8032902467685077], [0.8524760785630351], [0.8524760785630351], [0.770522074869901], [0.6065804935370154], [0.45902299815343295], [0.36068490851099544], [0.37706899446029885], [0.49182474399865705], [0.639348665435622], [0.770522074869901], [0.8360919926137318], [0.819674332717811], [0.7869061608192044], [0.7869061608192044], [0.8360919926137318], [0.9016619103575626], [0.918045996306866], [0.8524760785630351], [0.7213362430753736], [0.5737787476917913], [0.5082088299479603], [0.5573946617424879], [0.7049185831794528], [0.8688601645123385], [0.9836159140506967], [1.0], [0.9016619103575626], [0.7213362430753736], [0.5245929158972638], [0.36068490851099544], [0.2950814168205473], [0.31149907671646804], [0.4098371663589055], [0.5410105757931845], [0.6229645794863187], [0.6557663253315428], [0.5901628336410946], [0.49182474399865705], [0.3934530804096022], [0.32788316266577133], [0.32788316266577133], [0.36068490851099544], [0.3934530804096022], [0.3934530804096022], [0.34426724861507474], [0.2786973308712439], [0.22951149907671645], [0.180325667282189], [0.180325667282189], [0.21312741312741312], [0.2623132449219406], [0.31149907671646804], [0.36068490851099544], [0.37706899446029885], [0.36068490851099544], [0.31149907671646804], [0.2623132449219406], [0.22951149907671645], [0.21312741312741312], [0.2623132449219406], [0.34426724861507474], [0.47540708410273635], [0.5737787476917913], [0.639348665435622], [0.6229645794863187], [0.5245929158972638], [0.3934530804096022], [0.2786973308712439], [0.24592915897263723], [0.2950814168205473], [0.4262548262548263], [0.5737787476917913], [0.6721504112808461], [0.6885344972301495], [0.6557663253315428], [0.6065804935370154], [0.5737787476917913], [0.5573946617424879], [0.5245929158972638], [0.49182474399865705], [0.4426389122041296], [0.4426389122041296], [0.5082088299479603], [0.6065804935370154], [0.6721504112808461], [0.6721504112808461], [0.6229645794863187], [0.5573946617424879], [0.5082088299479603], [0.45902299815343295], [0.4098371663589055], [0.32788316266577133], [0.22951149907671645], [0.180325667282189], [0.24592915897263723], [0.4426389122041296], [0.6885344972301495], [0.8852778244082592], [0.918045996306866], [0.819674332717811], [0.6229645794863187], [0.4098371663589055], [0.2786973308712439], [0.180325667282189], [0.180325667282189], [0.24592915897263723], [0.4426389122041296], [0.6885344972301495], [0.918045996306866], [1.0], [0.8688601645123385], [0.5737787476917913], [0.24592915897263723], [0.03280174584522412], [0.0], [0.11475574953835822], [0.2950814168205473], [0.4426389122041296], [0.5245929158972638], [0.5410105757931845], [0.5082088299479603], [0.4426389122041296], [0.37706899446029885], [0.37706899446029885], [0.4098371663589055], [0.5082088299479603], [0.5901628336410946], [0.6065804935370154], [0.5737787476917913], [0.49182474399865705], [0.4098371663589055], [0.37706899446029885], [0.37706899446029885], [0.37706899446029885], [0.34426724861507474], [0.2786973308712439], [0.22951149907671645], [0.22951149907671645], [0.2950814168205473], [0.37706899446029885], [0.45902299815343295], [0.4426389122041296], [0.4098371663589055], [0.34426724861507474], [0.31149907671646804], [0.34426724861507474], [0.4098371663589055], [0.47540708410273635], [0.5082088299479603], [0.49182474399865705], [0.4426389122041296], [0.3934530804096022], [0.37706899446029885], [0.4262548262548263], [0.49182474399865705], [0.5410105757931845], [0.5573946617424879], [0.5410105757931845], [0.5245929158972638], [0.5245929158972638], [0.5410105757931845], [0.5737787476917913], [0.6065804935370154], [0.6229645794863187], [0.5901628336410946], [0.5410105757931845], [0.49182474399865705], [0.47540708410273635], [0.5245929158972638], [0.639348665435622], [0.770522074869901], [0.8524760785630351], [0.819674332717811], [0.6885344972301495], [0.47540708410273635], [0.2786973308712439], [0.14755749538358234], [0.13117340943427902], [0.21312741312741312], [0.36068490851099544], [0.5245929158972638], [0.639348665435622], [0.7213362430753736], [0.7377203290246769], [0.7213362430753736], [0.7049185831794528], [0.7213362430753736], [0.7541044149739802], [0.7869061608192044], [0.8032902467685077], [0.8032902467685077], [0.7869061608192044], [0.819674332717811]], "eval_masks": [[0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0]], "forwards": [[0.49182474399865705], [0.47540708410273635], [0.4426389122041296], [0.4426389122041296], [0.47540708410273635], [0.5410105757931845], [0.6065804935370154], [0.6065804935370154], [0.5737787476917913], [0.49182474399865705], [0.4262548262548263], [0.36068490851099544], [0.32788316266577133], [0.31149907671646804], [0.31149907671646804], [0.32788316266577133], [0.34426724861507474], [0.36068490851099544], [0.4098371663589055], [0.47540708410273635], [0.5245929158972638], [0.5737787476917913], [0.6065804935370154], [0.6229645794863187], [0.6557663253315428], [0.6721504112808461], [0.6885344972301495], [0.6885344972301495], [0.639348665435622], [0.5573946617424879], [0.47540708410273635], [0.4262548262548263], [0.4262548262548263], [0.4426389122041296], [0.49182474399865705], [0.5410105757931845], [0.5737787476917913], [0.639348665435622], [0.7377203290246769], [0.819674332717811], [0.8688601645123385], [0.819674332717811], [0.6885344972301495], [0.5573946617424879], [0.47540708410273635], [0.49182474399865705], [0.6065804935370154], [0.7213362430753736], [0.7541044149739802], [0.6885344972301495], [0.5573946617424879], [0.4426389122041296], [0.3934530804096022], [0.45902299815343295], [0.5901628336410946], [0.7541044149739802], [0.8360919926137318], [0.8524760785630351], [0.8032902467685077], [0.7541044149739802], [0.7213362430753736], [0.7377203290246769], [0.8032902467685077], [0.8524760785630351], [0.8524760785630351], [0.770522074869901], [0.6065804935370154], [0.45902299815343295], [0.36068490851099544], [0.37706899446029885], [0.49182474399865705], [0.639348665435622], [0.770522074869901], [0.8360919926137318], [0.819674332717811], [0.7869061608192044], [0.7869061608192044], [0.8360919926137318], [0.9016619103575626], [0.918045996306866], [0.8524760785630351], [0.7213362430753736], [0.5737787476917913], [0.5082088299479603], [0.5573946617424879], [0.7049185831794528], [0.8688601645123385], [0.9836159140506967], [1.0], [0.9016619103575626], [0.7213362430753736], [0.5245929158972638], [0.36068490851099544], [0.2950814168205473], [0.31149907671646804], [0.4098371663589055], [0.5410105757931845], [0.6229645794863187], [0.6557663253315428], [0.5901628336410946], [0.49182474399865705], [0.3934530804096022], [0.32788316266577133], [0.32788316266577133], [0.36068490851099544], [0.3934530804096022], [0.3934530804096022], [0.34426724861507474], [0.2786973308712439], [0.22951149907671645], [0.180325667282189], [0.180325667282189], [0.21312741312741312], [0.2623132449219406], [0.31149907671646804], [0.36068490851099544], [0.37706899446029885], [0.36068490851099544], [0.31149907671646804], [0.2623132449219406], [0.22951149907671645], [0.21312741312741312], [0.2623132449219406], [0.34426724861507474], [0.47540708410273635], [0.5737787476917913], [0.639348665435622], [0.6229645794863187], [0.5245929158972638], [0.3934530804096022], [0.2786973308712439], [0.24592915897263723], [0.2950814168205473], [0.4262548262548263], [0.5737787476917913], [0.6721504112808461], [0.6885344972301495], [0.6557663253315428], [0.6065804935370154], [0.5737787476917913], [0.5573946617424879], [0.5245929158972638], [0.49182474399865705], [0.4426389122041296], [0.4426389122041296], [0.5082088299479603], [0.6065804935370154], [0.6721504112808461], [0.6721504112808461], [0.6229645794863187], [0.5573946617424879], [0.5082088299479603], [0.45902299815343295], [0.4098371663589055], [0.32788316266577133], [0.22951149907671645], [0.180325667282189], [0.24592915897263723], [0.4426389122041296], [0.6885344972301495], [0.8852778244082592], [0.918045996306866], [0.819674332717811], [0.6229645794863187], [0.4098371663589055], [0.2786973308712439], [0.180325667282189], [0.180325667282189], [0.24592915897263723], [0.4426389122041296], [0.6885344972301495], [0.918045996306866], [1.0], [0.8688601645123385], [0.5737787476917913], [0.24592915897263723], [0.03280174584522412], [0.0], [0.11475574953835822], [0.2950814168205473], [0.4426389122041296], [0.5245929158972638], [0.5410105757931845], [0.5082088299479603], [0.4426389122041296], [0.37706899446029885], [0.37706899446029885], [0.4098371663589055], [0.5082088299479603], [0.5901628336410946], [0.6065804935370154], [0.5737787476917913], [0.49182474399865705], [0.4098371663589055], [0.37706899446029885], [0.37706899446029885], [0.37706899446029885], [0.34426724861507474], [0.2786973308712439], [0.22951149907671645], [0.22951149907671645], [0.2950814168205473], [0.37706899446029885], [0.45902299815343295], [0.4426389122041296], [0.4098371663589055], [0.34426724861507474], [0.31149907671646804], [0.34426724861507474], [0.4098371663589055], [0.47540708410273635], [0.5082088299479603], [0.49182474399865705], [0.4426389122041296], [0.3934530804096022], [0.37706899446029885], [0.4262548262548263], [0.49182474399865705], [0.5410105757931845], [0.5573946617424879], [0.5410105757931845], [0.5245929158972638], [0.5245929158972638], [0.5410105757931845], [0.5737787476917913], [0.6065804935370154], [0.6229645794863187], [0.5901628336410946], [0.5410105757931845], [0.49182474399865705], [0.47540708410273635], [0.5245929158972638], [0.639348665435622], [0.770522074869901], [0.8524760785630351], [0.819674332717811], [0.6885344972301495], [0.47540708410273635], [0.2786973308712439], [0.14755749538358234], [0.13117340943427902], [0.21312741312741312], [0.36068490851099544], [0.5245929158972638], [0.639348665435622], [0.7213362430753736], [0.7377203290246769], [0.7213362430753736], [0.7049185831794528], [0.7213362430753736], [0.7541044149739802], [0.7869061608192044], [0.8032902467685077], [0.8032902467685077], [0.7869061608192044], [0.819674332717811]], "deltas": [[1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0]]}} -{"label": 0, "forward": {"values": [[0.9305666173626125], [0.8750142223233588], [0.8750142223233588], [0.8888952099214928], [0.8888952099214928], [0.8611332347252247], [0.8194618272841052], [0.7777904198429856], [0.75], [0.7639094322448516], [0.8194618272841052], [0.8611332347252247], [0.8888952099214928], [0.8611332347252247], [0.8055808396859712], [0.75], [0.708357037205598], [0.722238024803732], [0.7916714074411196], [0.8888952099214928], [0.972238024803732], [1.0], [0.9444476049607465], [0.8472238024803732], [0.7361190124018661], [0.6666856297644784], [0.6388952099214928], [0.6527761975196269], [0.6805666173626125], [0.6944476049607464], [0.6666856297644784], [0.6111332347252247], [0.5694618272841052], [0.5555523950392536], [0.5833428148822393], [0.6388952099214928], [0.722238024803732], [0.7916714074411196], [0.8333428148822392], [0.8194618272841052], [0.7916714074411196], [0.7361190124018661], [0.6805666173626125], [0.6388952099214928], [0.5972238024803733], [0.5833428148822393], [0.5833428148822393], [0.5833428148822393], [0.6250142223233587], [0.6527761975196269], [0.6666856297644784], [0.6527761975196269], [0.5972238024803733], [0.5139094322448515], [0.43056661736261237], [0.4027761975196269], [0.41668562976447837], [0.48611901240186606], [0.5277904198429856], [0.5416714074411195], [0.5139094322448515], [0.5000000000000001], [0.5139094322448515], [0.5972238024803733], [0.722238024803732], [0.7916714074411196], [0.7777904198429856], [0.708357037205598], [0.5972238024803733], [0.5139094322448515], [0.5139094322448515], [0.5972238024803733], [0.7361190124018661], [0.8611332347252247], [0.9028046421663444], [0.8194618272841052], [0.5972238024803733], [0.3194618272841052], [0.08334281488223916], [0.0], [0.13889520992149285], [0.41668562976447837], [0.7361190124018661], [0.9444476049607465], [0.958357037205598], [0.8194618272841052], [0.5972238024803733], [0.41668562976447837], [0.3333428148822392], [0.3333428148822392], [0.4027761975196269], [0.5000000000000001], [0.5694618272841052], [0.6250142223233587], [0.6111332347252247], [0.5555523950392536], [0.5000000000000001], [0.4444476049607465], [0.4444476049607465], [0.48611901240186606], [0.5416714074411195], [0.5694618272841052], [0.5555523950392536], [0.48611901240186606], [0.43056661736261237], [0.41668562976447837], [0.43056661736261237], [0.4444476049607465], [0.47223802480373195], [0.5139094322448515], [0.5694618272841052], [0.6527761975196269], [0.7361190124018661], [0.75], [0.6944476049607464], [0.6111332347252247], [0.5277904198429856], [0.5139094322448515], [0.5416714074411195], [0.5833428148822393], [0.5833428148822393], [0.5694618272841052], [0.5277904198429856], [0.5000000000000001], [0.45835703720559795], [0.4444476049607465], [0.43056661736261237], [0.41668562976447837], [0.41668562976447837], [0.4027761975196269], [0.3888952099214928], [0.3611332347252248], [0.3472238024803732], [0.3611332347252248], [0.43056661736261237], [0.5277904198429856], [0.5972238024803733], [0.6250142223233587], [0.5972238024803733], [0.5416714074411195], [0.48611901240186606], [0.4444476049607465], [0.41668562976447837], [0.4027761975196269], [0.3750142223233588], [0.3611332347252248], [0.3750142223233588], [0.41668562976447837], [0.5000000000000001], [0.5833428148822393], [0.6250142223233587], [0.6250142223233587], [0.5972238024803733], [0.5694618272841052], [0.5694618272841052], [0.6111332347252247], [0.6527761975196269], [0.6666856297644784], [0.6250142223233587], [0.5416714074411195], [0.43056661736261237], [0.3333428148822392], [0.27779041984298564], [0.29167140744111963], [0.3750142223233588], [0.5000000000000001], [0.6388952099214928], [0.722238024803732], [0.722238024803732], [0.6388952099214928], [0.5000000000000001], [0.3750142223233588], [0.3194618272841052], [0.3472238024803732], [0.4444476049607465], [0.5694618272841052], [0.6527761975196269], [0.6666856297644784], [0.5972238024803733], [0.5277904198429856], [0.45835703720559795], [0.4444476049607465], [0.47223802480373195], [0.5555523950392536], [0.6388952099214928], [0.6944476049607464], [0.708357037205598], [0.6944476049607464], [0.6527761975196269], [0.6388952099214928], [0.6527761975196269], [0.6805666173626125], [0.708357037205598], [0.6944476049607464], [0.6527761975196269], [0.6111332347252247], [0.6250142223233587], [0.6944476049607464], [0.7777904198429856], [0.8472238024803732], [0.8472238024803732], [0.7777904198429856], [0.6944476049607464], [0.6250142223233587], [0.6250142223233587], [0.6805666173626125], [0.75], [0.8055808396859712], [0.7916714074411196], [0.75], [0.6666856297644784], [0.6250142223233587], [0.5833428148822393], [0.5694618272841052], [0.5972238024803733], [0.6388952099214928], [0.708357037205598], [0.7777904198429856], [0.8194618272841052], [0.7916714074411196], [0.708357037205598], [0.5833428148822393], [0.5000000000000001], [0.47223802480373195], [0.5139094322448515], [0.6250142223233587], [0.7361190124018661], [0.7777904198429856], [0.7361190124018661], [0.5972238024803733], [0.4444476049607465], [0.3472238024803732], [0.3611332347252248], [0.45835703720559795], [0.5972238024803733], [0.708357037205598], [0.722238024803732], [0.6527761975196269], [0.5277904198429856], [0.43056661736261237], [0.4027761975196269], [0.43056661736261237], [0.5000000000000001], [0.5555523950392536], [0.5833428148822393], [0.5555523950392536], [0.45835703720559795], [0.3333428148822392], [0.23611901240186603], [0.222238024803732], [0.3333428148822392], [0.5277904198429856], [0.7361190124018661], [0.8750142223233588], [0.8750142223233588], [0.7361190124018661]], "masks": [[1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1]], "evals": [[0.9305666173626125], [0.8750142223233588], [0.8750142223233588], [0.8888952099214928], [0.8888952099214928], [0.8611332347252247], [0.8194618272841052], [0.7777904198429856], [0.75], [0.7639094322448516], [0.8194618272841052], [0.8611332347252247], [0.8888952099214928], [0.8611332347252247], [0.8055808396859712], [0.75], [0.708357037205598], [0.722238024803732], [0.7916714074411196], [0.8888952099214928], [0.972238024803732], [1.0], [0.9444476049607465], [0.8472238024803732], [0.7361190124018661], [0.6666856297644784], [0.6388952099214928], [0.6527761975196269], [0.6805666173626125], [0.6944476049607464], [0.6666856297644784], [0.6111332347252247], [0.5694618272841052], [0.5555523950392536], [0.5833428148822393], [0.6388952099214928], [0.722238024803732], [0.7916714074411196], [0.8333428148822392], [0.8194618272841052], [0.7916714074411196], [0.7361190124018661], [0.6805666173626125], [0.6388952099214928], [0.5972238024803733], [0.5833428148822393], [0.5833428148822393], [0.5833428148822393], [0.6250142223233587], [0.6527761975196269], [0.6666856297644784], [0.6527761975196269], [0.5972238024803733], [0.5139094322448515], [0.43056661736261237], [0.4027761975196269], [0.41668562976447837], [0.48611901240186606], [0.5277904198429856], [0.5416714074411195], [0.5139094322448515], [0.5000000000000001], [0.5139094322448515], [0.5972238024803733], [0.722238024803732], [0.7916714074411196], [0.7777904198429856], [0.708357037205598], [0.5972238024803733], [0.5139094322448515], [0.5139094322448515], [0.5972238024803733], [0.7361190124018661], [0.8611332347252247], [0.9028046421663444], [0.8194618272841052], [0.5972238024803733], [0.3194618272841052], [0.08334281488223916], [0.0], [0.13889520992149285], [0.41668562976447837], [0.7361190124018661], [0.9444476049607465], [0.958357037205598], [0.8194618272841052], [0.5972238024803733], [0.41668562976447837], [0.3333428148822392], [0.3333428148822392], [0.4027761975196269], [0.5000000000000001], [0.5694618272841052], [0.6250142223233587], [0.6111332347252247], [0.5555523950392536], [0.5000000000000001], [0.4444476049607465], [0.4444476049607465], [0.48611901240186606], [0.5416714074411195], [0.5694618272841052], [0.5555523950392536], [0.48611901240186606], [0.43056661736261237], [0.41668562976447837], [0.43056661736261237], [0.4444476049607465], [0.47223802480373195], [0.5139094322448515], [0.5694618272841052], [0.6527761975196269], [0.7361190124018661], [0.75], [0.6944476049607464], [0.6111332347252247], [0.5277904198429856], [0.5139094322448515], [0.5416714074411195], [0.5833428148822393], [0.5833428148822393], [0.5694618272841052], [0.5277904198429856], [0.5000000000000001], [0.45835703720559795], [0.4444476049607465], [0.43056661736261237], [0.41668562976447837], [0.41668562976447837], [0.4027761975196269], [0.3888952099214928], [0.3611332347252248], [0.3472238024803732], [0.3611332347252248], [0.43056661736261237], [0.5277904198429856], [0.5972238024803733], [0.6250142223233587], [0.5972238024803733], [0.5416714074411195], [0.48611901240186606], [0.4444476049607465], [0.41668562976447837], [0.4027761975196269], [0.3750142223233588], [0.3611332347252248], [0.3750142223233588], [0.41668562976447837], [0.5000000000000001], [0.5833428148822393], [0.6250142223233587], [0.6250142223233587], [0.5972238024803733], [0.5694618272841052], [0.5694618272841052], [0.6111332347252247], [0.6527761975196269], [0.6666856297644784], [0.6250142223233587], [0.5416714074411195], [0.43056661736261237], [0.3333428148822392], [0.27779041984298564], [0.29167140744111963], [0.3750142223233588], [0.5000000000000001], [0.6388952099214928], [0.722238024803732], [0.722238024803732], [0.6388952099214928], [0.5000000000000001], [0.3750142223233588], [0.3194618272841052], [0.3472238024803732], [0.4444476049607465], [0.5694618272841052], [0.6527761975196269], [0.6666856297644784], [0.5972238024803733], [0.5277904198429856], [0.45835703720559795], [0.4444476049607465], [0.47223802480373195], [0.5555523950392536], [0.6388952099214928], [0.6944476049607464], [0.708357037205598], [0.6944476049607464], [0.6527761975196269], [0.6388952099214928], [0.6527761975196269], [0.6805666173626125], [0.708357037205598], [0.6944476049607464], [0.6527761975196269], [0.6111332347252247], [0.6250142223233587], [0.6944476049607464], [0.7777904198429856], [0.8472238024803732], [0.8472238024803732], [0.7777904198429856], [0.6944476049607464], [0.6250142223233587], [0.6250142223233587], [0.6805666173626125], [0.75], [0.8055808396859712], [0.7916714074411196], [0.75], [0.6666856297644784], [0.6250142223233587], [0.5833428148822393], [0.5694618272841052], [0.5972238024803733], [0.6388952099214928], [0.708357037205598], [0.7777904198429856], [0.8194618272841052], [0.7916714074411196], [0.708357037205598], [0.5833428148822393], [0.5000000000000001], [0.47223802480373195], [0.5139094322448515], [0.6250142223233587], [0.7361190124018661], [0.7777904198429856], [0.7361190124018661], [0.5972238024803733], [0.4444476049607465], [0.3472238024803732], [0.3611332347252248], [0.45835703720559795], [0.5972238024803733], [0.708357037205598], [0.722238024803732], [0.6527761975196269], [0.5277904198429856], [0.43056661736261237], [0.4027761975196269], [0.43056661736261237], [0.5000000000000001], [0.5555523950392536], [0.5833428148822393], [0.5555523950392536], [0.45835703720559795], [0.3333428148822392], [0.23611901240186603], [0.222238024803732], [0.3333428148822392], [0.5277904198429856], [0.7361190124018661], [0.8750142223233588], [0.8750142223233588], [0.7361190124018661]], "eval_masks": [[0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0]], "forwards": [[0.9305666173626125], [0.8750142223233588], [0.8750142223233588], [0.8888952099214928], [0.8888952099214928], [0.8611332347252247], [0.8194618272841052], [0.7777904198429856], [0.75], [0.7639094322448516], [0.8194618272841052], [0.8611332347252247], [0.8888952099214928], [0.8611332347252247], [0.8055808396859712], [0.75], [0.708357037205598], [0.722238024803732], [0.7916714074411196], [0.8888952099214928], [0.972238024803732], [1.0], [0.9444476049607465], [0.8472238024803732], [0.7361190124018661], [0.6666856297644784], [0.6388952099214928], [0.6527761975196269], [0.6805666173626125], [0.6944476049607464], [0.6666856297644784], [0.6111332347252247], [0.5694618272841052], [0.5555523950392536], [0.5833428148822393], [0.6388952099214928], [0.722238024803732], [0.7916714074411196], [0.8333428148822392], [0.8194618272841052], [0.7916714074411196], [0.7361190124018661], [0.6805666173626125], [0.6388952099214928], [0.5972238024803733], [0.5833428148822393], [0.5833428148822393], [0.5833428148822393], [0.6250142223233587], [0.6527761975196269], [0.6666856297644784], [0.6527761975196269], [0.5972238024803733], [0.5139094322448515], [0.43056661736261237], [0.4027761975196269], [0.41668562976447837], [0.48611901240186606], [0.5277904198429856], [0.5416714074411195], [0.5139094322448515], [0.5000000000000001], [0.5139094322448515], [0.5972238024803733], [0.722238024803732], [0.7916714074411196], [0.7777904198429856], [0.708357037205598], [0.5972238024803733], [0.5139094322448515], [0.5139094322448515], [0.5972238024803733], [0.7361190124018661], [0.8611332347252247], [0.9028046421663444], [0.8194618272841052], [0.5972238024803733], [0.3194618272841052], [0.08334281488223916], [0.0], [0.13889520992149285], [0.41668562976447837], [0.7361190124018661], [0.9444476049607465], [0.958357037205598], [0.8194618272841052], [0.5972238024803733], [0.41668562976447837], [0.3333428148822392], [0.3333428148822392], [0.4027761975196269], [0.5000000000000001], [0.5694618272841052], [0.6250142223233587], [0.6111332347252247], [0.5555523950392536], [0.5000000000000001], [0.4444476049607465], [0.4444476049607465], [0.48611901240186606], [0.5416714074411195], [0.5694618272841052], [0.5555523950392536], [0.48611901240186606], [0.43056661736261237], [0.41668562976447837], [0.43056661736261237], [0.4444476049607465], [0.47223802480373195], [0.5139094322448515], [0.5694618272841052], [0.6527761975196269], [0.7361190124018661], [0.75], [0.6944476049607464], [0.6111332347252247], [0.5277904198429856], [0.5139094322448515], [0.5416714074411195], [0.5833428148822393], [0.5833428148822393], [0.5694618272841052], [0.5277904198429856], [0.5000000000000001], [0.45835703720559795], [0.4444476049607465], [0.43056661736261237], [0.41668562976447837], [0.41668562976447837], [0.4027761975196269], [0.3888952099214928], [0.3611332347252248], [0.3472238024803732], [0.3611332347252248], [0.43056661736261237], [0.5277904198429856], [0.5972238024803733], [0.6250142223233587], [0.5972238024803733], [0.5416714074411195], [0.48611901240186606], [0.4444476049607465], [0.41668562976447837], [0.4027761975196269], [0.3750142223233588], [0.3611332347252248], [0.3750142223233588], [0.41668562976447837], [0.5000000000000001], [0.5833428148822393], [0.6250142223233587], [0.6250142223233587], [0.5972238024803733], [0.5694618272841052], [0.5694618272841052], [0.6111332347252247], [0.6527761975196269], [0.6666856297644784], [0.6250142223233587], [0.5416714074411195], [0.43056661736261237], [0.3333428148822392], [0.27779041984298564], [0.29167140744111963], [0.3750142223233588], [0.5000000000000001], [0.6388952099214928], [0.722238024803732], [0.722238024803732], [0.6388952099214928], [0.5000000000000001], [0.3750142223233588], [0.3194618272841052], [0.3472238024803732], [0.4444476049607465], [0.5694618272841052], [0.6527761975196269], [0.6666856297644784], [0.5972238024803733], [0.5277904198429856], [0.45835703720559795], [0.4444476049607465], [0.47223802480373195], [0.5555523950392536], [0.6388952099214928], [0.6944476049607464], [0.708357037205598], [0.6944476049607464], [0.6527761975196269], [0.6388952099214928], [0.6527761975196269], [0.6805666173626125], [0.708357037205598], [0.6944476049607464], [0.6527761975196269], [0.6111332347252247], [0.6250142223233587], [0.6944476049607464], [0.7777904198429856], [0.8472238024803732], [0.8472238024803732], [0.7777904198429856], [0.6944476049607464], [0.6250142223233587], [0.6250142223233587], [0.6805666173626125], [0.75], [0.8055808396859712], [0.7916714074411196], [0.75], [0.6666856297644784], [0.6250142223233587], [0.5833428148822393], [0.5694618272841052], [0.5972238024803733], [0.6388952099214928], [0.708357037205598], [0.7777904198429856], [0.8194618272841052], [0.7916714074411196], [0.708357037205598], [0.5833428148822393], [0.5000000000000001], [0.47223802480373195], [0.5139094322448515], [0.6250142223233587], [0.7361190124018661], [0.7777904198429856], [0.7361190124018661], [0.5972238024803733], [0.4444476049607465], [0.3472238024803732], [0.3611332347252248], [0.45835703720559795], [0.5972238024803733], [0.708357037205598], [0.722238024803732], [0.6527761975196269], [0.5277904198429856], [0.43056661736261237], [0.4027761975196269], [0.43056661736261237], [0.5000000000000001], [0.5555523950392536], [0.5833428148822393], [0.5555523950392536], [0.45835703720559795], [0.3333428148822392], [0.23611901240186603], [0.222238024803732], [0.3333428148822392], [0.5277904198429856], [0.7361190124018661], [0.8750142223233588], [0.8750142223233588], [0.7361190124018661]], "deltas": [[1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0]]}, "backward": {"values": [[0.7361190124018661], [0.8750142223233588], [0.8750142223233588], [0.7361190124018661], [0.5277904198429856], [0.3333428148822392], [0.222238024803732], [0.23611901240186603], [0.3333428148822392], [0.45835703720559795], [0.5555523950392536], [0.5833428148822393], [0.5555523950392536], [0.5000000000000001], [0.43056661736261237], [0.4027761975196269], [0.43056661736261237], [0.5277904198429856], [0.6527761975196269], [0.722238024803732], [0.708357037205598], [0.5972238024803733], [0.45835703720559795], [0.3611332347252248], [0.3472238024803732], [0.4444476049607465], [0.5972238024803733], [0.7361190124018661], [0.7777904198429856], [0.7361190124018661], [0.6250142223233587], [0.5139094322448515], [0.47223802480373195], [0.5000000000000001], [0.5833428148822393], [0.708357037205598], [0.7916714074411196], [0.8194618272841052], [0.7777904198429856], [0.708357037205598], [0.6388952099214928], [0.5972238024803733], [0.5694618272841052], [0.5833428148822393], [0.6250142223233587], [0.6666856297644784], [0.75], [0.7916714074411196], [0.8055808396859712], [0.75], [0.6805666173626125], [0.6250142223233587], [0.6250142223233587], [0.6944476049607464], [0.7777904198429856], [0.8472238024803732], [0.8472238024803732], [0.7777904198429856], [0.6944476049607464], [0.6250142223233587], [0.6111332347252247], [0.6527761975196269], [0.6944476049607464], [0.708357037205598], [0.6805666173626125], [0.6527761975196269], [0.6388952099214928], [0.6527761975196269], [0.6944476049607464], [0.708357037205598], [0.6944476049607464], [0.6388952099214928], [0.5555523950392536], [0.47223802480373195], [0.4444476049607465], [0.45835703720559795], [0.5277904198429856], [0.5972238024803733], [0.6666856297644784], [0.6527761975196269], [0.5694618272841052], [0.4444476049607465], [0.3472238024803732], [0.3194618272841052], [0.3750142223233588], [0.5000000000000001], [0.6388952099214928], [0.722238024803732], [0.722238024803732], [0.6388952099214928], [0.5000000000000001], [0.3750142223233588], [0.29167140744111963], [0.27779041984298564], [0.3333428148822392], [0.43056661736261237], [0.5416714074411195], [0.6250142223233587], [0.6666856297644784], [0.6527761975196269], [0.6111332347252247], [0.5694618272841052], [0.5694618272841052], [0.5972238024803733], [0.6250142223233587], [0.6250142223233587], [0.5833428148822393], [0.5000000000000001], [0.41668562976447837], [0.3750142223233588], [0.3611332347252248], [0.3750142223233588], [0.4027761975196269], [0.41668562976447837], [0.4444476049607465], [0.48611901240186606], [0.5416714074411195], [0.5972238024803733], [0.6250142223233587], [0.5972238024803733], [0.5277904198429856], [0.43056661736261237], [0.3611332347252248], [0.3472238024803732], [0.3611332347252248], [0.3888952099214928], [0.4027761975196269], [0.41668562976447837], [0.41668562976447837], [0.43056661736261237], [0.4444476049607465], [0.45835703720559795], [0.5000000000000001], [0.5277904198429856], [0.5694618272841052], [0.5833428148822393], [0.5833428148822393], [0.5416714074411195], [0.5139094322448515], [0.5277904198429856], [0.6111332347252247], [0.6944476049607464], [0.75], [0.7361190124018661], [0.6527761975196269], [0.5694618272841052], [0.5139094322448515], [0.47223802480373195], [0.4444476049607465], [0.43056661736261237], [0.41668562976447837], [0.43056661736261237], [0.48611901240186606], [0.5555523950392536], [0.5694618272841052], [0.5416714074411195], [0.48611901240186606], [0.4444476049607465], [0.4444476049607465], [0.5000000000000001], [0.5555523950392536], [0.6111332347252247], [0.6250142223233587], [0.5694618272841052], [0.5000000000000001], [0.4027761975196269], [0.3333428148822392], [0.3333428148822392], [0.41668562976447837], [0.5972238024803733], [0.8194618272841052], [0.958357037205598], [0.9444476049607465], [0.7361190124018661], [0.41668562976447837], [0.13889520992149285], [0.0], [0.08334281488223916], [0.3194618272841052], [0.5972238024803733], [0.8194618272841052], [0.9028046421663444], [0.8611332347252247], [0.7361190124018661], [0.5972238024803733], [0.5139094322448515], [0.5139094322448515], [0.5972238024803733], [0.708357037205598], [0.7777904198429856], [0.7916714074411196], [0.722238024803732], [0.5972238024803733], [0.5139094322448515], [0.5000000000000001], [0.5139094322448515], [0.5416714074411195], [0.5277904198429856], [0.48611901240186606], [0.41668562976447837], [0.4027761975196269], [0.43056661736261237], [0.5139094322448515], [0.5972238024803733], [0.6527761975196269], [0.6666856297644784], [0.6527761975196269], [0.6250142223233587], [0.5833428148822393], [0.5833428148822393], [0.5833428148822393], [0.5972238024803733], [0.6388952099214928], [0.6805666173626125], [0.7361190124018661], [0.7916714074411196], [0.8194618272841052], [0.8333428148822392], [0.7916714074411196], [0.722238024803732], [0.6388952099214928], [0.5833428148822393], [0.5555523950392536], [0.5694618272841052], [0.6111332347252247], [0.6666856297644784], [0.6944476049607464], [0.6805666173626125], [0.6527761975196269], [0.6388952099214928], [0.6666856297644784], [0.7361190124018661], [0.8472238024803732], [0.9444476049607465], [1.0], [0.972238024803732], [0.8888952099214928], [0.7916714074411196], [0.722238024803732], [0.708357037205598], [0.75], [0.8055808396859712], [0.8611332347252247], [0.8888952099214928], [0.8611332347252247], [0.8194618272841052], [0.7639094322448516], [0.75], [0.7777904198429856], [0.8194618272841052], [0.8611332347252247], [0.8888952099214928], [0.8888952099214928], [0.8750142223233588], [0.8750142223233588], [0.9305666173626125]], "masks": [[1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1]], "evals": [[0.7361190124018661], [0.8750142223233588], [0.8750142223233588], [0.7361190124018661], [0.5277904198429856], [0.3333428148822392], [0.222238024803732], [0.23611901240186603], [0.3333428148822392], [0.45835703720559795], [0.5555523950392536], [0.5833428148822393], [0.5555523950392536], [0.5000000000000001], [0.43056661736261237], [0.4027761975196269], [0.43056661736261237], [0.5277904198429856], [0.6527761975196269], [0.722238024803732], [0.708357037205598], [0.5972238024803733], [0.45835703720559795], [0.3611332347252248], [0.3472238024803732], [0.4444476049607465], [0.5972238024803733], [0.7361190124018661], [0.7777904198429856], [0.7361190124018661], [0.6250142223233587], [0.5139094322448515], [0.47223802480373195], [0.5000000000000001], [0.5833428148822393], [0.708357037205598], [0.7916714074411196], [0.8194618272841052], [0.7777904198429856], [0.708357037205598], [0.6388952099214928], [0.5972238024803733], [0.5694618272841052], [0.5833428148822393], [0.6250142223233587], [0.6666856297644784], [0.75], [0.7916714074411196], [0.8055808396859712], [0.75], [0.6805666173626125], [0.6250142223233587], [0.6250142223233587], [0.6944476049607464], [0.7777904198429856], [0.8472238024803732], [0.8472238024803732], [0.7777904198429856], [0.6944476049607464], [0.6250142223233587], [0.6111332347252247], [0.6527761975196269], [0.6944476049607464], [0.708357037205598], [0.6805666173626125], [0.6527761975196269], [0.6388952099214928], [0.6527761975196269], [0.6944476049607464], [0.708357037205598], [0.6944476049607464], [0.6388952099214928], [0.5555523950392536], [0.47223802480373195], [0.4444476049607465], [0.45835703720559795], [0.5277904198429856], [0.5972238024803733], [0.6666856297644784], [0.6527761975196269], [0.5694618272841052], [0.4444476049607465], [0.3472238024803732], [0.3194618272841052], [0.3750142223233588], [0.5000000000000001], [0.6388952099214928], [0.722238024803732], [0.722238024803732], [0.6388952099214928], [0.5000000000000001], [0.3750142223233588], [0.29167140744111963], [0.27779041984298564], [0.3333428148822392], [0.43056661736261237], [0.5416714074411195], [0.6250142223233587], [0.6666856297644784], [0.6527761975196269], [0.6111332347252247], [0.5694618272841052], [0.5694618272841052], [0.5972238024803733], [0.6250142223233587], [0.6250142223233587], [0.5833428148822393], [0.5000000000000001], [0.41668562976447837], [0.3750142223233588], [0.3611332347252248], [0.3750142223233588], [0.4027761975196269], [0.41668562976447837], [0.4444476049607465], [0.48611901240186606], [0.5416714074411195], [0.5972238024803733], [0.6250142223233587], [0.5972238024803733], [0.5277904198429856], [0.43056661736261237], [0.3611332347252248], [0.3472238024803732], [0.3611332347252248], [0.3888952099214928], [0.4027761975196269], [0.41668562976447837], [0.41668562976447837], [0.43056661736261237], [0.4444476049607465], [0.45835703720559795], [0.5000000000000001], [0.5277904198429856], [0.5694618272841052], [0.5833428148822393], [0.5833428148822393], [0.5416714074411195], [0.5139094322448515], [0.5277904198429856], [0.6111332347252247], [0.6944476049607464], [0.75], [0.7361190124018661], [0.6527761975196269], [0.5694618272841052], [0.5139094322448515], [0.47223802480373195], [0.4444476049607465], [0.43056661736261237], [0.41668562976447837], [0.43056661736261237], [0.48611901240186606], [0.5555523950392536], [0.5694618272841052], [0.5416714074411195], [0.48611901240186606], [0.4444476049607465], [0.4444476049607465], [0.5000000000000001], [0.5555523950392536], [0.6111332347252247], [0.6250142223233587], [0.5694618272841052], [0.5000000000000001], [0.4027761975196269], [0.3333428148822392], [0.3333428148822392], [0.41668562976447837], [0.5972238024803733], [0.8194618272841052], [0.958357037205598], [0.9444476049607465], [0.7361190124018661], [0.41668562976447837], [0.13889520992149285], [0.0], [0.08334281488223916], [0.3194618272841052], [0.5972238024803733], [0.8194618272841052], [0.9028046421663444], [0.8611332347252247], [0.7361190124018661], [0.5972238024803733], [0.5139094322448515], [0.5139094322448515], [0.5972238024803733], [0.708357037205598], [0.7777904198429856], [0.7916714074411196], [0.722238024803732], [0.5972238024803733], [0.5139094322448515], [0.5000000000000001], [0.5139094322448515], [0.5416714074411195], [0.5277904198429856], [0.48611901240186606], [0.41668562976447837], [0.4027761975196269], [0.43056661736261237], [0.5139094322448515], [0.5972238024803733], [0.6527761975196269], [0.6666856297644784], [0.6527761975196269], [0.6250142223233587], [0.5833428148822393], [0.5833428148822393], [0.5833428148822393], [0.5972238024803733], [0.6388952099214928], [0.6805666173626125], [0.7361190124018661], [0.7916714074411196], [0.8194618272841052], [0.8333428148822392], [0.7916714074411196], [0.722238024803732], [0.6388952099214928], [0.5833428148822393], [0.5555523950392536], [0.5694618272841052], [0.6111332347252247], [0.6666856297644784], [0.6944476049607464], [0.6805666173626125], [0.6527761975196269], [0.6388952099214928], [0.6666856297644784], [0.7361190124018661], [0.8472238024803732], [0.9444476049607465], [1.0], [0.972238024803732], [0.8888952099214928], [0.7916714074411196], [0.722238024803732], [0.708357037205598], [0.75], [0.8055808396859712], [0.8611332347252247], [0.8888952099214928], [0.8611332347252247], [0.8194618272841052], [0.7639094322448516], [0.75], [0.7777904198429856], [0.8194618272841052], [0.8611332347252247], [0.8888952099214928], [0.8888952099214928], [0.8750142223233588], [0.8750142223233588], [0.9305666173626125]], "eval_masks": [[0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0]], "forwards": [[0.7361190124018661], [0.8750142223233588], [0.8750142223233588], [0.7361190124018661], [0.5277904198429856], [0.3333428148822392], [0.222238024803732], [0.23611901240186603], [0.3333428148822392], [0.45835703720559795], [0.5555523950392536], [0.5833428148822393], [0.5555523950392536], [0.5000000000000001], [0.43056661736261237], [0.4027761975196269], [0.43056661736261237], [0.5277904198429856], [0.6527761975196269], [0.722238024803732], [0.708357037205598], [0.5972238024803733], [0.45835703720559795], [0.3611332347252248], [0.3472238024803732], [0.4444476049607465], [0.5972238024803733], [0.7361190124018661], [0.7777904198429856], [0.7361190124018661], [0.6250142223233587], [0.5139094322448515], [0.47223802480373195], [0.5000000000000001], [0.5833428148822393], [0.708357037205598], [0.7916714074411196], [0.8194618272841052], [0.7777904198429856], [0.708357037205598], [0.6388952099214928], [0.5972238024803733], [0.5694618272841052], [0.5833428148822393], [0.6250142223233587], [0.6666856297644784], [0.75], [0.7916714074411196], [0.8055808396859712], [0.75], [0.6805666173626125], [0.6250142223233587], [0.6250142223233587], [0.6944476049607464], [0.7777904198429856], [0.8472238024803732], [0.8472238024803732], [0.7777904198429856], [0.6944476049607464], [0.6250142223233587], [0.6111332347252247], [0.6527761975196269], [0.6944476049607464], [0.708357037205598], [0.6805666173626125], [0.6527761975196269], [0.6388952099214928], [0.6527761975196269], [0.6944476049607464], [0.708357037205598], [0.6944476049607464], [0.6388952099214928], [0.5555523950392536], [0.47223802480373195], [0.4444476049607465], [0.45835703720559795], [0.5277904198429856], [0.5972238024803733], [0.6666856297644784], [0.6527761975196269], [0.5694618272841052], [0.4444476049607465], [0.3472238024803732], [0.3194618272841052], [0.3750142223233588], [0.5000000000000001], [0.6388952099214928], [0.722238024803732], [0.722238024803732], [0.6388952099214928], [0.5000000000000001], [0.3750142223233588], [0.29167140744111963], [0.27779041984298564], [0.3333428148822392], [0.43056661736261237], [0.5416714074411195], [0.6250142223233587], [0.6666856297644784], [0.6527761975196269], [0.6111332347252247], [0.5694618272841052], [0.5694618272841052], [0.5972238024803733], [0.6250142223233587], [0.6250142223233587], [0.5833428148822393], [0.5000000000000001], [0.41668562976447837], [0.3750142223233588], [0.3611332347252248], [0.3750142223233588], [0.4027761975196269], [0.41668562976447837], [0.4444476049607465], [0.48611901240186606], [0.5416714074411195], [0.5972238024803733], [0.6250142223233587], [0.5972238024803733], [0.5277904198429856], [0.43056661736261237], [0.3611332347252248], [0.3472238024803732], [0.3611332347252248], [0.3888952099214928], [0.4027761975196269], [0.41668562976447837], [0.41668562976447837], [0.43056661736261237], [0.4444476049607465], [0.45835703720559795], [0.5000000000000001], [0.5277904198429856], [0.5694618272841052], [0.5833428148822393], [0.5833428148822393], [0.5416714074411195], [0.5139094322448515], [0.5277904198429856], [0.6111332347252247], [0.6944476049607464], [0.75], [0.7361190124018661], [0.6527761975196269], [0.5694618272841052], [0.5139094322448515], [0.47223802480373195], [0.4444476049607465], [0.43056661736261237], [0.41668562976447837], [0.43056661736261237], [0.48611901240186606], [0.5555523950392536], [0.5694618272841052], [0.5416714074411195], [0.48611901240186606], [0.4444476049607465], [0.4444476049607465], [0.5000000000000001], [0.5555523950392536], [0.6111332347252247], [0.6250142223233587], [0.5694618272841052], [0.5000000000000001], [0.4027761975196269], [0.3333428148822392], [0.3333428148822392], [0.41668562976447837], [0.5972238024803733], [0.8194618272841052], [0.958357037205598], [0.9444476049607465], [0.7361190124018661], [0.41668562976447837], [0.13889520992149285], [0.0], [0.08334281488223916], [0.3194618272841052], [0.5972238024803733], [0.8194618272841052], [0.9028046421663444], [0.8611332347252247], [0.7361190124018661], [0.5972238024803733], [0.5139094322448515], [0.5139094322448515], [0.5972238024803733], [0.708357037205598], [0.7777904198429856], [0.7916714074411196], [0.722238024803732], [0.5972238024803733], [0.5139094322448515], [0.5000000000000001], [0.5139094322448515], [0.5416714074411195], [0.5277904198429856], [0.48611901240186606], [0.41668562976447837], [0.4027761975196269], [0.43056661736261237], [0.5139094322448515], [0.5972238024803733], [0.6527761975196269], [0.6666856297644784], [0.6527761975196269], [0.6250142223233587], [0.5833428148822393], [0.5833428148822393], [0.5833428148822393], [0.5972238024803733], [0.6388952099214928], [0.6805666173626125], [0.7361190124018661], [0.7916714074411196], [0.8194618272841052], [0.8333428148822392], [0.7916714074411196], [0.722238024803732], [0.6388952099214928], [0.5833428148822393], [0.5555523950392536], [0.5694618272841052], [0.6111332347252247], [0.6666856297644784], [0.6944476049607464], [0.6805666173626125], [0.6527761975196269], [0.6388952099214928], [0.6666856297644784], [0.7361190124018661], [0.8472238024803732], [0.9444476049607465], [1.0], [0.972238024803732], [0.8888952099214928], [0.7916714074411196], [0.722238024803732], [0.708357037205598], [0.75], [0.8055808396859712], [0.8611332347252247], [0.8888952099214928], [0.8611332347252247], [0.8194618272841052], [0.7639094322448516], [0.75], [0.7777904198429856], [0.8194618272841052], [0.8611332347252247], [0.8888952099214928], [0.8888952099214928], [0.8750142223233588], [0.8750142223233588], [0.9305666173626125]], "deltas": [[1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0]]}} -{"label": 0, "forward": {"values": [[0.8662022614514827], [0.8169060805353641], [0.7957770854967117], [0.7887388946578978], [0.7887388946578978], [0.7887388946578978], [0.7887388946578978], [0.7887388946578978], [0.7746480904580593], [0.753519095419407], [0.7183137187031268], [0.6760557286258221], [0.6267595477097035], [0.570425175954771], [0.5140908041998385], [0.4647946232837199], [0.45070381908388146], [0.48592361832237224], [0.570425175954771], [0.6760557286258221], [0.753519095419407], [0.781700703819084], [0.753519095419407], [0.6831083419868468], [0.6126831660320757], [0.570425175954771], [0.5563487942771432], [0.570425175954771], [0.5915541709934234], [0.6126831660320757], [0.6197213568708896], [0.6267595477097035], [0.6338121610707281], [0.6338121610707281], [0.640850351909542], [0.6619793469481944], [0.6971847236644745], [0.7324045229029653], [0.753519095419407], [0.753519095419407], [0.7253519095419407], [0.6760557286258221], [0.6197213568708896], [0.5774633667935849], [0.5633869851159571], [0.5633869851159571], [0.570425175954771], [0.5774633667935849], [0.5845159801546095], [0.5845159801546095], [0.5845159801546095], [0.570425175954771], [0.5492961809161186], [0.5140908041998385], [0.4788710049613477], [0.45775643244490605], [0.45070381908388146], [0.4647946232837199], [0.4718328141225338], [0.45775643244490605], [0.43662743740625365], [0.42253663320641516], [0.4436656282450675], [0.5140908041998385], [0.6056449751932619], [0.6690175377870082], [0.6760557286258221], [0.6197213568708896], [0.5281671858774662], [0.45775643244490605], [0.43662743740625365], [0.48592361832237224], [0.5774633667935849], [0.6690175377870082], [0.7042229145032884], [0.647888542748356], [0.4718328141225338], [0.23944271374177917], [0.04225799007730471], [0.0], [0.15494115610938045], [0.4718328141225338], [0.7957770854967117], [1.0], [0.9929618091611861], [0.823944271374178], [0.5985923618322373], [0.43662743740625365], [0.36620226145148266], [0.38029306565132115], [0.42958924656743974], [0.4788710049613477], [0.5281671858774662], [0.5845159801546095], [0.6267595477097035], [0.6267595477097035], [0.5633869851159571], [0.4718328141225338], [0.4084602515287874], [0.4084602515287874], [0.4647946232837199], [0.5352197992384908], [0.5563487942771432], [0.5140908041998385], [0.4436656282450675], [0.3943694473289489], [0.387331256490135], [0.41549844236760125], [0.43662743740625365], [0.45070381908388146], [0.45775643244490605], [0.48592361832237224], [0.5352197992384908], [0.5774633667935849], [0.5915541709934234], [0.5633869851159571], [0.5070526133610246], [0.45775643244490605], [0.4436656282450675], [0.45775643244490605], [0.4718328141225338], [0.4718328141225338], [0.4647946232837199], [0.4436656282450675], [0.42958924656743974], [0.42958924656743974], [0.42958924656743974], [0.42958924656743974], [0.42958924656743974], [0.42253663320641516], [0.4084602515287874], [0.4014076381677628], [0.4014076381677628], [0.4084602515287874], [0.42253663320641516], [0.45070381908388146], [0.4718328141225338], [0.4788710049613477], [0.4718328141225338], [0.45775643244490605], [0.43662743740625365], [0.41549844236760125], [0.3943694473289489], [0.37324045229029656], [0.3450732664128303], [0.33099688473520256], [0.3380350755740164], [0.387331256490135], [0.45775643244490605], [0.5070526133610246], [0.5281671858774662], [0.5070526133610246], [0.4718328141225338], [0.45070381908388146], [0.45775643244490605], [0.4929618091611861], [0.5281671858774662], [0.5492961809161186], [0.5422579900773047], [0.5000000000000001], [0.45070381908388146], [0.3943694473289489], [0.3591640706126688], [0.36620226145148266], [0.41549844236760125], [0.4929618091611861], [0.5915541709934234], [0.6619793469481944], [0.6760557286258221], [0.6338121610707281], [0.5352197992384908], [0.43662743740625365], [0.387331256490135], [0.41549844236760125], [0.5070526133610246], [0.5985923618322373], [0.6549411561093804], [0.640850351909542], [0.5985923618322373], [0.5633869851159571], [0.5633869851159571], [0.6056449751932619], [0.647888542748356], [0.6619793469481944], [0.6338121610707281], [0.5774633667935849], [0.5211289950386524], [0.4718328141225338], [0.45775643244490605], [0.4718328141225338], [0.5140908041998385], [0.5563487942771432], [0.5774633667935849], [0.5633869851159571], [0.5211289950386524], [0.48592361832237224], [0.4929618091611861], [0.5563487942771432], [0.6338121610707281], [0.6901465328256606], [0.6831083419868468], [0.6197213568708896], [0.5492961809161186], [0.5281671858774662], [0.5633869851159571], [0.640850351909542], [0.6901465328256606], [0.6760557286258221], [0.5985923618322373], [0.5000000000000001], [0.45070381908388146], [0.4647946232837199], [0.5281671858774662], [0.6056449751932619], [0.647888542748356], [0.647888542748356], [0.6197213568708896], [0.5915541709934234], [0.5774633667935849], [0.5633869851159571], [0.5492961809161186], [0.5352197992384908], [0.5070526133610246], [0.48592361832237224], [0.4929618091611861], [0.5211289950386524], [0.570425175954771], [0.6126831660320757], [0.6338121610707281], [0.6056449751932619], [0.5422579900773047], [0.48592361832237224], [0.45775643244490605], [0.48592361832237224], [0.5211289950386524], [0.5422579900773047], [0.5140908041998385], [0.45775643244490605], [0.4014076381677628], [0.38029306565132115], [0.3943694473289489], [0.42253663320641516], [0.4436656282450675], [0.45070381908388146], [0.4436656282450675], [0.42958924656743974], [0.4084602515287874], [0.3943694473289489], [0.387331256490135], [0.387331256490135], [0.3943694473289489], [0.41549844236760125], [0.4436656282450675], [0.4647946232837199], [0.4718328141225338], [0.45775643244490605]], "masks": [[1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1]], "evals": [[0.8662022614514827], [0.8169060805353641], [0.7957770854967117], [0.7887388946578978], [0.7887388946578978], [0.7887388946578978], [0.7887388946578978], [0.7887388946578978], [0.7746480904580593], [0.753519095419407], [0.7183137187031268], [0.6760557286258221], [0.6267595477097035], [0.570425175954771], [0.5140908041998385], [0.4647946232837199], [0.45070381908388146], [0.48592361832237224], [0.570425175954771], [0.6760557286258221], [0.753519095419407], [0.781700703819084], [0.753519095419407], [0.6831083419868468], [0.6126831660320757], [0.570425175954771], [0.5563487942771432], [0.570425175954771], [0.5915541709934234], [0.6126831660320757], [0.6197213568708896], [0.6267595477097035], [0.6338121610707281], [0.6338121610707281], [0.640850351909542], [0.6619793469481944], [0.6971847236644745], [0.7324045229029653], [0.753519095419407], [0.753519095419407], [0.7253519095419407], [0.6760557286258221], [0.6197213568708896], [0.5774633667935849], [0.5633869851159571], [0.5633869851159571], [0.570425175954771], [0.5774633667935849], [0.5845159801546095], [0.5845159801546095], [0.5845159801546095], [0.570425175954771], [0.5492961809161186], [0.5140908041998385], [0.4788710049613477], [0.45775643244490605], [0.45070381908388146], [0.4647946232837199], [0.4718328141225338], [0.45775643244490605], [0.43662743740625365], [0.42253663320641516], [0.4436656282450675], [0.5140908041998385], [0.6056449751932619], [0.6690175377870082], [0.6760557286258221], [0.6197213568708896], [0.5281671858774662], [0.45775643244490605], [0.43662743740625365], [0.48592361832237224], [0.5774633667935849], [0.6690175377870082], [0.7042229145032884], [0.647888542748356], [0.4718328141225338], [0.23944271374177917], [0.04225799007730471], [0.0], [0.15494115610938045], [0.4718328141225338], [0.7957770854967117], [1.0], [0.9929618091611861], [0.823944271374178], [0.5985923618322373], [0.43662743740625365], [0.36620226145148266], [0.38029306565132115], [0.42958924656743974], [0.4788710049613477], [0.5281671858774662], [0.5845159801546095], [0.6267595477097035], [0.6267595477097035], [0.5633869851159571], [0.4718328141225338], [0.4084602515287874], [0.4084602515287874], [0.4647946232837199], [0.5352197992384908], [0.5563487942771432], [0.5140908041998385], [0.4436656282450675], [0.3943694473289489], [0.387331256490135], [0.41549844236760125], [0.43662743740625365], [0.45070381908388146], [0.45775643244490605], [0.48592361832237224], [0.5352197992384908], [0.5774633667935849], [0.5915541709934234], [0.5633869851159571], [0.5070526133610246], [0.45775643244490605], [0.4436656282450675], [0.45775643244490605], [0.4718328141225338], [0.4718328141225338], [0.4647946232837199], [0.4436656282450675], [0.42958924656743974], [0.42958924656743974], [0.42958924656743974], [0.42958924656743974], [0.42958924656743974], [0.42253663320641516], [0.4084602515287874], [0.4014076381677628], [0.4014076381677628], [0.4084602515287874], [0.42253663320641516], [0.45070381908388146], [0.4718328141225338], [0.4788710049613477], [0.4718328141225338], [0.45775643244490605], [0.43662743740625365], [0.41549844236760125], [0.3943694473289489], [0.37324045229029656], [0.3450732664128303], [0.33099688473520256], [0.3380350755740164], [0.387331256490135], [0.45775643244490605], [0.5070526133610246], [0.5281671858774662], [0.5070526133610246], [0.4718328141225338], [0.45070381908388146], [0.45775643244490605], [0.4929618091611861], [0.5281671858774662], [0.5492961809161186], [0.5422579900773047], [0.5000000000000001], [0.45070381908388146], [0.3943694473289489], [0.3591640706126688], [0.36620226145148266], [0.41549844236760125], [0.4929618091611861], [0.5915541709934234], [0.6619793469481944], [0.6760557286258221], [0.6338121610707281], [0.5352197992384908], [0.43662743740625365], [0.387331256490135], [0.41549844236760125], [0.5070526133610246], [0.5985923618322373], [0.6549411561093804], [0.640850351909542], [0.5985923618322373], [0.5633869851159571], [0.5633869851159571], [0.6056449751932619], [0.647888542748356], [0.6619793469481944], [0.6338121610707281], [0.5774633667935849], [0.5211289950386524], [0.4718328141225338], [0.45775643244490605], [0.4718328141225338], [0.5140908041998385], [0.5563487942771432], [0.5774633667935849], [0.5633869851159571], [0.5211289950386524], [0.48592361832237224], [0.4929618091611861], [0.5563487942771432], [0.6338121610707281], [0.6901465328256606], [0.6831083419868468], [0.6197213568708896], [0.5492961809161186], [0.5281671858774662], [0.5633869851159571], [0.640850351909542], [0.6901465328256606], [0.6760557286258221], [0.5985923618322373], [0.5000000000000001], [0.45070381908388146], [0.4647946232837199], [0.5281671858774662], [0.6056449751932619], [0.647888542748356], [0.647888542748356], [0.6197213568708896], [0.5915541709934234], [0.5774633667935849], [0.5633869851159571], [0.5492961809161186], [0.5352197992384908], [0.5070526133610246], [0.48592361832237224], [0.4929618091611861], [0.5211289950386524], [0.570425175954771], [0.6126831660320757], [0.6338121610707281], [0.6056449751932619], [0.5422579900773047], [0.48592361832237224], [0.45775643244490605], [0.48592361832237224], [0.5211289950386524], [0.5422579900773047], [0.5140908041998385], [0.45775643244490605], [0.4014076381677628], [0.38029306565132115], [0.3943694473289489], [0.42253663320641516], [0.4436656282450675], [0.45070381908388146], [0.4436656282450675], [0.42958924656743974], [0.4084602515287874], [0.3943694473289489], [0.387331256490135], [0.387331256490135], [0.3943694473289489], [0.41549844236760125], [0.4436656282450675], [0.4647946232837199], [0.4718328141225338], [0.45775643244490605]], "eval_masks": [[0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0]], "forwards": [[0.8662022614514827], [0.8169060805353641], [0.7957770854967117], [0.7887388946578978], [0.7887388946578978], [0.7887388946578978], [0.7887388946578978], [0.7887388946578978], [0.7746480904580593], [0.753519095419407], [0.7183137187031268], [0.6760557286258221], [0.6267595477097035], [0.570425175954771], [0.5140908041998385], [0.4647946232837199], [0.45070381908388146], [0.48592361832237224], [0.570425175954771], [0.6760557286258221], [0.753519095419407], [0.781700703819084], [0.753519095419407], [0.6831083419868468], [0.6126831660320757], [0.570425175954771], [0.5563487942771432], [0.570425175954771], [0.5915541709934234], [0.6126831660320757], [0.6197213568708896], [0.6267595477097035], [0.6338121610707281], [0.6338121610707281], [0.640850351909542], [0.6619793469481944], [0.6971847236644745], [0.7324045229029653], [0.753519095419407], [0.753519095419407], [0.7253519095419407], [0.6760557286258221], [0.6197213568708896], [0.5774633667935849], [0.5633869851159571], [0.5633869851159571], [0.570425175954771], [0.5774633667935849], [0.5845159801546095], [0.5845159801546095], [0.5845159801546095], [0.570425175954771], [0.5492961809161186], [0.5140908041998385], [0.4788710049613477], [0.45775643244490605], [0.45070381908388146], [0.4647946232837199], [0.4718328141225338], [0.45775643244490605], [0.43662743740625365], [0.42253663320641516], [0.4436656282450675], [0.5140908041998385], [0.6056449751932619], [0.6690175377870082], [0.6760557286258221], [0.6197213568708896], [0.5281671858774662], [0.45775643244490605], [0.43662743740625365], [0.48592361832237224], [0.5774633667935849], [0.6690175377870082], [0.7042229145032884], [0.647888542748356], [0.4718328141225338], [0.23944271374177917], [0.04225799007730471], [0.0], [0.15494115610938045], [0.4718328141225338], [0.7957770854967117], [1.0], [0.9929618091611861], [0.823944271374178], [0.5985923618322373], [0.43662743740625365], [0.36620226145148266], [0.38029306565132115], [0.42958924656743974], [0.4788710049613477], [0.5281671858774662], [0.5845159801546095], [0.6267595477097035], [0.6267595477097035], [0.5633869851159571], [0.4718328141225338], [0.4084602515287874], [0.4084602515287874], [0.4647946232837199], [0.5352197992384908], [0.5563487942771432], [0.5140908041998385], [0.4436656282450675], [0.3943694473289489], [0.387331256490135], [0.41549844236760125], [0.43662743740625365], [0.45070381908388146], [0.45775643244490605], [0.48592361832237224], [0.5352197992384908], [0.5774633667935849], [0.5915541709934234], [0.5633869851159571], [0.5070526133610246], [0.45775643244490605], [0.4436656282450675], [0.45775643244490605], [0.4718328141225338], [0.4718328141225338], [0.4647946232837199], [0.4436656282450675], [0.42958924656743974], [0.42958924656743974], [0.42958924656743974], [0.42958924656743974], [0.42958924656743974], [0.42253663320641516], [0.4084602515287874], [0.4014076381677628], [0.4014076381677628], [0.4084602515287874], [0.42253663320641516], [0.45070381908388146], [0.4718328141225338], [0.4788710049613477], [0.4718328141225338], [0.45775643244490605], [0.43662743740625365], [0.41549844236760125], [0.3943694473289489], [0.37324045229029656], [0.3450732664128303], [0.33099688473520256], [0.3380350755740164], [0.387331256490135], [0.45775643244490605], [0.5070526133610246], [0.5281671858774662], [0.5070526133610246], [0.4718328141225338], [0.45070381908388146], [0.45775643244490605], [0.4929618091611861], [0.5281671858774662], [0.5492961809161186], [0.5422579900773047], [0.5000000000000001], [0.45070381908388146], [0.3943694473289489], [0.3591640706126688], [0.36620226145148266], [0.41549844236760125], [0.4929618091611861], [0.5915541709934234], [0.6619793469481944], [0.6760557286258221], [0.6338121610707281], [0.5352197992384908], [0.43662743740625365], [0.387331256490135], [0.41549844236760125], [0.5070526133610246], [0.5985923618322373], [0.6549411561093804], [0.640850351909542], [0.5985923618322373], [0.5633869851159571], [0.5633869851159571], [0.6056449751932619], [0.647888542748356], [0.6619793469481944], [0.6338121610707281], [0.5774633667935849], [0.5211289950386524], [0.4718328141225338], [0.45775643244490605], [0.4718328141225338], [0.5140908041998385], [0.5563487942771432], [0.5774633667935849], [0.5633869851159571], [0.5211289950386524], [0.48592361832237224], [0.4929618091611861], [0.5563487942771432], [0.6338121610707281], [0.6901465328256606], [0.6831083419868468], [0.6197213568708896], [0.5492961809161186], [0.5281671858774662], [0.5633869851159571], [0.640850351909542], [0.6901465328256606], [0.6760557286258221], [0.5985923618322373], [0.5000000000000001], [0.45070381908388146], [0.4647946232837199], [0.5281671858774662], [0.6056449751932619], [0.647888542748356], [0.647888542748356], [0.6197213568708896], [0.5915541709934234], [0.5774633667935849], [0.5633869851159571], [0.5492961809161186], [0.5352197992384908], [0.5070526133610246], [0.48592361832237224], [0.4929618091611861], [0.5211289950386524], [0.570425175954771], [0.6126831660320757], [0.6338121610707281], [0.6056449751932619], [0.5422579900773047], [0.48592361832237224], [0.45775643244490605], [0.48592361832237224], [0.5211289950386524], [0.5422579900773047], [0.5140908041998385], [0.45775643244490605], [0.4014076381677628], [0.38029306565132115], [0.3943694473289489], [0.42253663320641516], [0.4436656282450675], [0.45070381908388146], [0.4436656282450675], [0.42958924656743974], [0.4084602515287874], [0.3943694473289489], [0.387331256490135], [0.387331256490135], [0.3943694473289489], [0.41549844236760125], [0.4436656282450675], [0.4647946232837199], [0.4718328141225338], [0.45775643244490605]], "deltas": [[1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0]]}, "backward": {"values": [[0.45775643244490605], [0.4718328141225338], [0.4647946232837199], [0.4436656282450675], [0.41549844236760125], [0.3943694473289489], [0.387331256490135], [0.387331256490135], [0.3943694473289489], [0.4084602515287874], [0.42958924656743974], [0.4436656282450675], [0.45070381908388146], [0.4436656282450675], [0.42253663320641516], [0.3943694473289489], [0.38029306565132115], [0.4014076381677628], [0.45775643244490605], [0.5140908041998385], [0.5422579900773047], [0.5211289950386524], [0.48592361832237224], [0.45775643244490605], [0.48592361832237224], [0.5422579900773047], [0.6056449751932619], [0.6338121610707281], [0.6126831660320757], [0.570425175954771], [0.5211289950386524], [0.4929618091611861], [0.48592361832237224], [0.5070526133610246], [0.5352197992384908], [0.5492961809161186], [0.5633869851159571], [0.5774633667935849], [0.5915541709934234], [0.6197213568708896], [0.647888542748356], [0.647888542748356], [0.6056449751932619], [0.5281671858774662], [0.4647946232837199], [0.45070381908388146], [0.5000000000000001], [0.5985923618322373], [0.6760557286258221], [0.6901465328256606], [0.640850351909542], [0.5633869851159571], [0.5281671858774662], [0.5492961809161186], [0.6197213568708896], [0.6831083419868468], [0.6901465328256606], [0.6338121610707281], [0.5563487942771432], [0.4929618091611861], [0.48592361832237224], [0.5211289950386524], [0.5633869851159571], [0.5774633667935849], [0.5563487942771432], [0.5140908041998385], [0.4718328141225338], [0.45775643244490605], [0.4718328141225338], [0.5211289950386524], [0.5774633667935849], [0.6338121610707281], [0.6619793469481944], [0.647888542748356], [0.6056449751932619], [0.5633869851159571], [0.5633869851159571], [0.5985923618322373], [0.640850351909542], [0.6549411561093804], [0.5985923618322373], [0.5070526133610246], [0.41549844236760125], [0.387331256490135], [0.43662743740625365], [0.5352197992384908], [0.6338121610707281], [0.6760557286258221], [0.6619793469481944], [0.5915541709934234], [0.4929618091611861], [0.41549844236760125], [0.36620226145148266], [0.3591640706126688], [0.3943694473289489], [0.45070381908388146], [0.5000000000000001], [0.5422579900773047], [0.5492961809161186], [0.5281671858774662], [0.4929618091611861], [0.45775643244490605], [0.45070381908388146], [0.4718328141225338], [0.5070526133610246], [0.5281671858774662], [0.5070526133610246], [0.45775643244490605], [0.387331256490135], [0.3380350755740164], [0.33099688473520256], [0.3450732664128303], [0.37324045229029656], [0.3943694473289489], [0.41549844236760125], [0.43662743740625365], [0.45775643244490605], [0.4718328141225338], [0.4788710049613477], [0.4718328141225338], [0.45070381908388146], [0.42253663320641516], [0.4084602515287874], [0.4014076381677628], [0.4014076381677628], [0.4084602515287874], [0.42253663320641516], [0.42958924656743974], [0.42958924656743974], [0.42958924656743974], [0.42958924656743974], [0.42958924656743974], [0.4436656282450675], [0.4647946232837199], [0.4718328141225338], [0.4718328141225338], [0.45775643244490605], [0.4436656282450675], [0.45775643244490605], [0.5070526133610246], [0.5633869851159571], [0.5915541709934234], [0.5774633667935849], [0.5352197992384908], [0.48592361832237224], [0.45775643244490605], [0.45070381908388146], [0.43662743740625365], [0.41549844236760125], [0.387331256490135], [0.3943694473289489], [0.4436656282450675], [0.5140908041998385], [0.5563487942771432], [0.5352197992384908], [0.4647946232837199], [0.4084602515287874], [0.4084602515287874], [0.4718328141225338], [0.5633869851159571], [0.6267595477097035], [0.6267595477097035], [0.5845159801546095], [0.5281671858774662], [0.4788710049613477], [0.42958924656743974], [0.38029306565132115], [0.36620226145148266], [0.43662743740625365], [0.5985923618322373], [0.823944271374178], [0.9929618091611861], [1.0], [0.7957770854967117], [0.4718328141225338], [0.15494115610938045], [0.0], [0.04225799007730471], [0.23944271374177917], [0.4718328141225338], [0.647888542748356], [0.7042229145032884], [0.6690175377870082], [0.5774633667935849], [0.48592361832237224], [0.43662743740625365], [0.45775643244490605], [0.5281671858774662], [0.6197213568708896], [0.6760557286258221], [0.6690175377870082], [0.6056449751932619], [0.5140908041998385], [0.4436656282450675], [0.42253663320641516], [0.43662743740625365], [0.45775643244490605], [0.4718328141225338], [0.4647946232837199], [0.45070381908388146], [0.45775643244490605], [0.4788710049613477], [0.5140908041998385], [0.5492961809161186], [0.570425175954771], [0.5845159801546095], [0.5845159801546095], [0.5845159801546095], [0.5774633667935849], [0.570425175954771], [0.5633869851159571], [0.5633869851159571], [0.5774633667935849], [0.6197213568708896], [0.6760557286258221], [0.7253519095419407], [0.753519095419407], [0.753519095419407], [0.7324045229029653], [0.6971847236644745], [0.6619793469481944], [0.640850351909542], [0.6338121610707281], [0.6338121610707281], [0.6267595477097035], [0.6197213568708896], [0.6126831660320757], [0.5915541709934234], [0.570425175954771], [0.5563487942771432], [0.570425175954771], [0.6126831660320757], [0.6831083419868468], [0.753519095419407], [0.781700703819084], [0.753519095419407], [0.6760557286258221], [0.570425175954771], [0.48592361832237224], [0.45070381908388146], [0.4647946232837199], [0.5140908041998385], [0.570425175954771], [0.6267595477097035], [0.6760557286258221], [0.7183137187031268], [0.753519095419407], [0.7746480904580593], [0.7887388946578978], [0.7887388946578978], [0.7887388946578978], [0.7887388946578978], [0.7887388946578978], [0.7957770854967117], [0.8169060805353641], [0.8662022614514827]], "masks": [[1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1]], "evals": [[0.45775643244490605], [0.4718328141225338], [0.4647946232837199], [0.4436656282450675], [0.41549844236760125], [0.3943694473289489], [0.387331256490135], [0.387331256490135], [0.3943694473289489], [0.4084602515287874], [0.42958924656743974], [0.4436656282450675], [0.45070381908388146], [0.4436656282450675], [0.42253663320641516], [0.3943694473289489], [0.38029306565132115], [0.4014076381677628], [0.45775643244490605], [0.5140908041998385], [0.5422579900773047], [0.5211289950386524], [0.48592361832237224], [0.45775643244490605], [0.48592361832237224], [0.5422579900773047], [0.6056449751932619], [0.6338121610707281], [0.6126831660320757], [0.570425175954771], [0.5211289950386524], [0.4929618091611861], [0.48592361832237224], [0.5070526133610246], [0.5352197992384908], [0.5492961809161186], [0.5633869851159571], [0.5774633667935849], [0.5915541709934234], [0.6197213568708896], [0.647888542748356], [0.647888542748356], [0.6056449751932619], [0.5281671858774662], [0.4647946232837199], [0.45070381908388146], [0.5000000000000001], [0.5985923618322373], [0.6760557286258221], [0.6901465328256606], [0.640850351909542], [0.5633869851159571], [0.5281671858774662], [0.5492961809161186], [0.6197213568708896], [0.6831083419868468], [0.6901465328256606], [0.6338121610707281], [0.5563487942771432], [0.4929618091611861], [0.48592361832237224], [0.5211289950386524], [0.5633869851159571], [0.5774633667935849], [0.5563487942771432], [0.5140908041998385], [0.4718328141225338], [0.45775643244490605], [0.4718328141225338], [0.5211289950386524], [0.5774633667935849], [0.6338121610707281], [0.6619793469481944], [0.647888542748356], [0.6056449751932619], [0.5633869851159571], [0.5633869851159571], [0.5985923618322373], [0.640850351909542], [0.6549411561093804], [0.5985923618322373], [0.5070526133610246], [0.41549844236760125], [0.387331256490135], [0.43662743740625365], [0.5352197992384908], [0.6338121610707281], [0.6760557286258221], [0.6619793469481944], [0.5915541709934234], [0.4929618091611861], [0.41549844236760125], [0.36620226145148266], [0.3591640706126688], [0.3943694473289489], [0.45070381908388146], [0.5000000000000001], [0.5422579900773047], [0.5492961809161186], [0.5281671858774662], [0.4929618091611861], [0.45775643244490605], [0.45070381908388146], [0.4718328141225338], [0.5070526133610246], [0.5281671858774662], [0.5070526133610246], [0.45775643244490605], [0.387331256490135], [0.3380350755740164], [0.33099688473520256], [0.3450732664128303], [0.37324045229029656], [0.3943694473289489], [0.41549844236760125], [0.43662743740625365], [0.45775643244490605], [0.4718328141225338], [0.4788710049613477], [0.4718328141225338], [0.45070381908388146], [0.42253663320641516], [0.4084602515287874], [0.4014076381677628], [0.4014076381677628], [0.4084602515287874], [0.42253663320641516], [0.42958924656743974], [0.42958924656743974], [0.42958924656743974], [0.42958924656743974], [0.42958924656743974], [0.4436656282450675], [0.4647946232837199], [0.4718328141225338], [0.4718328141225338], [0.45775643244490605], [0.4436656282450675], [0.45775643244490605], [0.5070526133610246], [0.5633869851159571], [0.5915541709934234], [0.5774633667935849], [0.5352197992384908], [0.48592361832237224], [0.45775643244490605], [0.45070381908388146], [0.43662743740625365], [0.41549844236760125], [0.387331256490135], [0.3943694473289489], [0.4436656282450675], [0.5140908041998385], [0.5563487942771432], [0.5352197992384908], [0.4647946232837199], [0.4084602515287874], [0.4084602515287874], [0.4718328141225338], [0.5633869851159571], [0.6267595477097035], [0.6267595477097035], [0.5845159801546095], [0.5281671858774662], [0.4788710049613477], [0.42958924656743974], [0.38029306565132115], [0.36620226145148266], [0.43662743740625365], [0.5985923618322373], [0.823944271374178], [0.9929618091611861], [1.0], [0.7957770854967117], [0.4718328141225338], [0.15494115610938045], [0.0], [0.04225799007730471], [0.23944271374177917], [0.4718328141225338], [0.647888542748356], [0.7042229145032884], [0.6690175377870082], [0.5774633667935849], [0.48592361832237224], [0.43662743740625365], [0.45775643244490605], [0.5281671858774662], [0.6197213568708896], [0.6760557286258221], [0.6690175377870082], [0.6056449751932619], [0.5140908041998385], [0.4436656282450675], [0.42253663320641516], [0.43662743740625365], [0.45775643244490605], [0.4718328141225338], [0.4647946232837199], [0.45070381908388146], [0.45775643244490605], [0.4788710049613477], [0.5140908041998385], [0.5492961809161186], [0.570425175954771], [0.5845159801546095], [0.5845159801546095], [0.5845159801546095], [0.5774633667935849], [0.570425175954771], [0.5633869851159571], [0.5633869851159571], [0.5774633667935849], [0.6197213568708896], [0.6760557286258221], [0.7253519095419407], [0.753519095419407], [0.753519095419407], [0.7324045229029653], [0.6971847236644745], [0.6619793469481944], [0.640850351909542], [0.6338121610707281], [0.6338121610707281], [0.6267595477097035], [0.6197213568708896], [0.6126831660320757], [0.5915541709934234], [0.570425175954771], [0.5563487942771432], [0.570425175954771], [0.6126831660320757], [0.6831083419868468], [0.753519095419407], [0.781700703819084], [0.753519095419407], [0.6760557286258221], [0.570425175954771], [0.48592361832237224], [0.45070381908388146], [0.4647946232837199], [0.5140908041998385], [0.570425175954771], [0.6267595477097035], [0.6760557286258221], [0.7183137187031268], [0.753519095419407], [0.7746480904580593], [0.7887388946578978], [0.7887388946578978], [0.7887388946578978], [0.7887388946578978], [0.7887388946578978], [0.7957770854967117], [0.8169060805353641], [0.8662022614514827]], "eval_masks": [[0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0]], "forwards": [[0.45775643244490605], [0.4718328141225338], [0.4647946232837199], [0.4436656282450675], [0.41549844236760125], [0.3943694473289489], [0.387331256490135], [0.387331256490135], [0.3943694473289489], [0.4084602515287874], [0.42958924656743974], [0.4436656282450675], [0.45070381908388146], [0.4436656282450675], [0.42253663320641516], [0.3943694473289489], [0.38029306565132115], [0.4014076381677628], [0.45775643244490605], [0.5140908041998385], [0.5422579900773047], [0.5211289950386524], [0.48592361832237224], [0.45775643244490605], [0.48592361832237224], [0.5422579900773047], [0.6056449751932619], [0.6338121610707281], [0.6126831660320757], [0.570425175954771], [0.5211289950386524], [0.4929618091611861], [0.48592361832237224], [0.5070526133610246], [0.5352197992384908], [0.5492961809161186], [0.5633869851159571], [0.5774633667935849], [0.5915541709934234], [0.6197213568708896], [0.647888542748356], [0.647888542748356], [0.6056449751932619], [0.5281671858774662], [0.4647946232837199], [0.45070381908388146], [0.5000000000000001], [0.5985923618322373], [0.6760557286258221], [0.6901465328256606], [0.640850351909542], [0.5633869851159571], [0.5281671858774662], [0.5492961809161186], [0.6197213568708896], [0.6831083419868468], [0.6901465328256606], [0.6338121610707281], [0.5563487942771432], [0.4929618091611861], [0.48592361832237224], [0.5211289950386524], [0.5633869851159571], [0.5774633667935849], [0.5563487942771432], [0.5140908041998385], [0.4718328141225338], [0.45775643244490605], [0.4718328141225338], [0.5211289950386524], [0.5774633667935849], [0.6338121610707281], [0.6619793469481944], [0.647888542748356], [0.6056449751932619], [0.5633869851159571], [0.5633869851159571], [0.5985923618322373], [0.640850351909542], [0.6549411561093804], [0.5985923618322373], [0.5070526133610246], [0.41549844236760125], [0.387331256490135], [0.43662743740625365], [0.5352197992384908], [0.6338121610707281], [0.6760557286258221], [0.6619793469481944], [0.5915541709934234], [0.4929618091611861], [0.41549844236760125], [0.36620226145148266], [0.3591640706126688], [0.3943694473289489], [0.45070381908388146], [0.5000000000000001], [0.5422579900773047], [0.5492961809161186], [0.5281671858774662], [0.4929618091611861], [0.45775643244490605], [0.45070381908388146], [0.4718328141225338], [0.5070526133610246], [0.5281671858774662], [0.5070526133610246], [0.45775643244490605], [0.387331256490135], [0.3380350755740164], [0.33099688473520256], [0.3450732664128303], [0.37324045229029656], [0.3943694473289489], [0.41549844236760125], [0.43662743740625365], [0.45775643244490605], [0.4718328141225338], [0.4788710049613477], [0.4718328141225338], [0.45070381908388146], [0.42253663320641516], [0.4084602515287874], [0.4014076381677628], [0.4014076381677628], [0.4084602515287874], [0.42253663320641516], [0.42958924656743974], [0.42958924656743974], [0.42958924656743974], [0.42958924656743974], [0.42958924656743974], [0.4436656282450675], [0.4647946232837199], [0.4718328141225338], [0.4718328141225338], [0.45775643244490605], [0.4436656282450675], [0.45775643244490605], [0.5070526133610246], [0.5633869851159571], [0.5915541709934234], [0.5774633667935849], [0.5352197992384908], [0.48592361832237224], [0.45775643244490605], [0.45070381908388146], [0.43662743740625365], [0.41549844236760125], [0.387331256490135], [0.3943694473289489], [0.4436656282450675], [0.5140908041998385], [0.5563487942771432], [0.5352197992384908], [0.4647946232837199], [0.4084602515287874], [0.4084602515287874], [0.4718328141225338], [0.5633869851159571], [0.6267595477097035], [0.6267595477097035], [0.5845159801546095], [0.5281671858774662], [0.4788710049613477], [0.42958924656743974], [0.38029306565132115], [0.36620226145148266], [0.43662743740625365], [0.5985923618322373], [0.823944271374178], [0.9929618091611861], [1.0], [0.7957770854967117], [0.4718328141225338], [0.15494115610938045], [0.0], [0.04225799007730471], [0.23944271374177917], [0.4718328141225338], [0.647888542748356], [0.7042229145032884], [0.6690175377870082], [0.5774633667935849], [0.48592361832237224], [0.43662743740625365], [0.45775643244490605], [0.5281671858774662], [0.6197213568708896], [0.6760557286258221], [0.6690175377870082], [0.6056449751932619], [0.5140908041998385], [0.4436656282450675], [0.42253663320641516], [0.43662743740625365], [0.45775643244490605], [0.4718328141225338], [0.4647946232837199], [0.45070381908388146], [0.45775643244490605], [0.4788710049613477], [0.5140908041998385], [0.5492961809161186], [0.570425175954771], [0.5845159801546095], [0.5845159801546095], [0.5845159801546095], [0.5774633667935849], [0.570425175954771], [0.5633869851159571], [0.5633869851159571], [0.5774633667935849], [0.6197213568708896], [0.6760557286258221], [0.7253519095419407], [0.753519095419407], [0.753519095419407], [0.7324045229029653], [0.6971847236644745], [0.6619793469481944], [0.640850351909542], [0.6338121610707281], [0.6338121610707281], [0.6267595477097035], [0.6197213568708896], [0.6126831660320757], [0.5915541709934234], [0.570425175954771], [0.5563487942771432], [0.570425175954771], [0.6126831660320757], [0.6831083419868468], [0.753519095419407], [0.781700703819084], [0.753519095419407], [0.6760557286258221], [0.570425175954771], [0.48592361832237224], [0.45070381908388146], [0.4647946232837199], [0.5140908041998385], [0.570425175954771], [0.6267595477097035], [0.6760557286258221], [0.7183137187031268], [0.753519095419407], [0.7746480904580593], [0.7887388946578978], [0.7887388946578978], [0.7887388946578978], [0.7887388946578978], [0.7887388946578978], [0.7957770854967117], [0.8169060805353641], [0.8662022614514827]], "deltas": [[1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0]]}} -{"label": 0, "forward": {"values": [[0.8378258703713953], [0.8378258703713953], [0.8918470138927326], [0.8918470138927326], [0.864836442132064], [0.7837493773177616], [0.6486411689821222], [0.5675541041678198], [0.5405435324071513], [0.5945646759284885], [0.6756517407427908], [0.756738805557093], [0.756738805557093], [0.7297282337964245], [0.6756517407427908], [0.6216305972214535], [0.6216305972214535], [0.6756517407427908], [0.756738805557093], [0.864836442132064], [0.9189129351856977], [0.9189129351856977], [0.8918470138927326], [0.7837493773177616], [0.7027176620357559], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.6486411689821222], [0.756738805557093], [0.8378258703713953], [0.8378258703713953], [0.7837493773177616], [0.7027176620357559], [0.6216305972214535], [0.5945646759284885], [0.5675541041678198], [0.5945646759284885], [0.5945646759284885], [0.6216305972214535], [0.6216305972214535], [0.6216305972214535], [0.6216305972214535], [0.6486411689821222], [0.6486411689821222], [0.6486411689821222], [0.5945646759284885], [0.5135329606464826], [0.4594564675928489], [0.43244589583218024], [0.48646703935351754], [0.5675541041678198], [0.5945646759284885], [0.5675541041678198], [0.5135329606464826], [0.48646703935351754], [0.5405435324071513], [0.5945646759284885], [0.6756517407427908], [0.7027176620357559], [0.6756517407427908], [0.5945646759284885], [0.5405435324071513], [0.5135329606464826], [0.5675541041678198], [0.6756517407427908], [0.756738805557093], [0.8108152986107268], [0.7837493773177616], [0.6486411689821222], [0.43244589583218024], [0.24326119444290703], [0.18918470138927332], [0.24326119444290703], [0.43244589583218024], [0.6756517407427908], [0.8108152986107268], [0.8108152986107268], [0.7297282337964245], [0.5945646759284885], [0.48646703935351754], [0.4594564675928489], [0.48646703935351754], [0.5675541041678198], [0.5945646759284885], [0.5945646759284885], [0.5945646759284885], [0.5675541041678198], [0.5135329606464826], [0.4594564675928489], [0.4594564675928489], [0.48646703935351754], [0.5675541041678198], [0.6486411689821222], [0.7027176620357559], [0.6486411689821222], [0.5405435324071513], [0.43244589583218024], [0.3783694027785465], [0.4053799745392152], [0.4594564675928489], [0.5135329606464826], [0.5945646759284885], [0.6756517407427908], [0.756738805557093], [0.8108152986107268], [0.8378258703713953], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.6216305972214535], [0.5675541041678198], [0.5405435324071513], [0.48646703935351754], [0.43244589583218024], [0.4053799745392152], [0.4053799745392152], [0.3783694027785465], [0.3783694027785465], [0.4053799745392152], [0.4594564675928489], [0.5135329606464826], [0.5675541041678198], [0.5945646759284885], [0.5945646759284885], [0.5405435324071513], [0.4594564675928489], [0.3783694027785465], [0.3243482592572093], [0.29728233796424425], [0.29728233796424425], [0.3243482592572093], [0.3783694027785465], [0.4594564675928489], [0.5135329606464826], [0.5405435324071513], [0.5135329606464826], [0.4594564675928489], [0.43244589583218024], [0.43244589583218024], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.18918470138927332], [0.2702717662035756], [0.43244589583218024], [0.5675541041678198], [0.5945646759284885], [0.5675541041678198], [0.43244589583218024], [0.29728233796424425], [0.2161952731499419], [0.24326119444290703], [0.3783694027785465], [0.5135329606464826], [0.6216305972214535], [0.6216305972214535], [0.5135329606464826], [0.43244589583218024], [0.3243482592572093], [0.3243482592572093], [0.3783694027785465], [0.48646703935351754], [0.5945646759284885], [0.6486411689821222], [0.6486411689821222], [0.5945646759284885], [0.5135329606464826], [0.4594564675928489], [0.4594564675928489], [0.5135329606464826], [0.5675541041678198], [0.5945646759284885], [0.5945646759284885], [0.5675541041678198], [0.5675541041678198], [0.5945646759284885], [0.6216305972214535], [0.7027176620357559], [0.7027176620357559], [0.6756517407427908], [0.5945646759284885], [0.5405435324071513], [0.5135329606464826], [0.5135329606464826], [0.5945646759284885], [0.6486411689821222], [0.7027176620357559], [0.7027176620357559], [0.6756517407427908], [0.5945646759284885], [0.5135329606464826], [0.4594564675928489], [0.4594564675928489], [0.48646703935351754], [0.5945646759284885], [0.7027176620357559], [0.756738805557093], [0.7297282337964245], [0.5945646759284885], [0.4053799745392152], [0.2702717662035756], [0.2702717662035756], [0.3783694027785465], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.7297282337964245], [0.7027176620357559], [0.5135329606464826], [0.29728233796424425], [0.13516355786793602], [0.10809763657497101], [0.18918470138927332], [0.3783694027785465], [0.5405435324071513], [0.5945646759284885], [0.5135329606464826], [0.3243482592572093], [0.10809763657497101], [0.0], [0.05407649305363371], [0.3243482592572093], [0.6486411689821222], [0.8918470138927326], [1.0], [0.8918470138927326], [0.6216305972214535]], "masks": [[1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1]], "evals": [[0.8378258703713953], [0.8378258703713953], [0.8918470138927326], [0.8918470138927326], [0.864836442132064], [0.7837493773177616], [0.6486411689821222], [0.5675541041678198], [0.5405435324071513], [0.5945646759284885], [0.6756517407427908], [0.756738805557093], [0.756738805557093], [0.7297282337964245], [0.6756517407427908], [0.6216305972214535], [0.6216305972214535], [0.6756517407427908], [0.756738805557093], [0.864836442132064], [0.9189129351856977], [0.9189129351856977], [0.8918470138927326], [0.7837493773177616], [0.7027176620357559], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.6486411689821222], [0.756738805557093], [0.8378258703713953], [0.8378258703713953], [0.7837493773177616], [0.7027176620357559], [0.6216305972214535], [0.5945646759284885], [0.5675541041678198], [0.5945646759284885], [0.5945646759284885], [0.6216305972214535], [0.6216305972214535], [0.6216305972214535], [0.6216305972214535], [0.6486411689821222], [0.6486411689821222], [0.6486411689821222], [0.5945646759284885], [0.5135329606464826], [0.4594564675928489], [0.43244589583218024], [0.48646703935351754], [0.5675541041678198], [0.5945646759284885], [0.5675541041678198], [0.5135329606464826], [0.48646703935351754], [0.5405435324071513], [0.5945646759284885], [0.6756517407427908], [0.7027176620357559], [0.6756517407427908], [0.5945646759284885], [0.5405435324071513], [0.5135329606464826], [0.5675541041678198], [0.6756517407427908], [0.756738805557093], [0.8108152986107268], [0.7837493773177616], [0.6486411689821222], [0.43244589583218024], [0.24326119444290703], [0.18918470138927332], [0.24326119444290703], [0.43244589583218024], [0.6756517407427908], [0.8108152986107268], [0.8108152986107268], [0.7297282337964245], [0.5945646759284885], [0.48646703935351754], [0.4594564675928489], [0.48646703935351754], [0.5675541041678198], [0.5945646759284885], [0.5945646759284885], [0.5945646759284885], [0.5675541041678198], [0.5135329606464826], [0.4594564675928489], [0.4594564675928489], [0.48646703935351754], [0.5675541041678198], [0.6486411689821222], [0.7027176620357559], [0.6486411689821222], [0.5405435324071513], [0.43244589583218024], [0.3783694027785465], [0.4053799745392152], [0.4594564675928489], [0.5135329606464826], [0.5945646759284885], [0.6756517407427908], [0.756738805557093], [0.8108152986107268], [0.8378258703713953], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.6216305972214535], [0.5675541041678198], [0.5405435324071513], [0.48646703935351754], [0.43244589583218024], [0.4053799745392152], [0.4053799745392152], [0.3783694027785465], [0.3783694027785465], [0.4053799745392152], [0.4594564675928489], [0.5135329606464826], [0.5675541041678198], [0.5945646759284885], [0.5945646759284885], [0.5405435324071513], [0.4594564675928489], [0.3783694027785465], [0.3243482592572093], [0.29728233796424425], [0.29728233796424425], [0.3243482592572093], [0.3783694027785465], [0.4594564675928489], [0.5135329606464826], [0.5405435324071513], [0.5135329606464826], [0.4594564675928489], [0.43244589583218024], [0.43244589583218024], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.18918470138927332], [0.2702717662035756], [0.43244589583218024], [0.5675541041678198], [0.5945646759284885], [0.5675541041678198], [0.43244589583218024], [0.29728233796424425], [0.2161952731499419], [0.24326119444290703], [0.3783694027785465], [0.5135329606464826], [0.6216305972214535], [0.6216305972214535], [0.5135329606464826], [0.43244589583218024], [0.3243482592572093], [0.3243482592572093], [0.3783694027785465], [0.48646703935351754], [0.5945646759284885], [0.6486411689821222], [0.6486411689821222], [0.5945646759284885], [0.5135329606464826], [0.4594564675928489], [0.4594564675928489], [0.5135329606464826], [0.5675541041678198], [0.5945646759284885], [0.5945646759284885], [0.5675541041678198], [0.5675541041678198], [0.5945646759284885], [0.6216305972214535], [0.7027176620357559], [0.7027176620357559], [0.6756517407427908], [0.5945646759284885], [0.5405435324071513], [0.5135329606464826], [0.5135329606464826], [0.5945646759284885], [0.6486411689821222], [0.7027176620357559], [0.7027176620357559], [0.6756517407427908], [0.5945646759284885], [0.5135329606464826], [0.4594564675928489], [0.4594564675928489], [0.48646703935351754], [0.5945646759284885], [0.7027176620357559], [0.756738805557093], [0.7297282337964245], [0.5945646759284885], [0.4053799745392152], [0.2702717662035756], [0.2702717662035756], [0.3783694027785465], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.7297282337964245], [0.7027176620357559], [0.5135329606464826], [0.29728233796424425], [0.13516355786793602], [0.10809763657497101], [0.18918470138927332], [0.3783694027785465], [0.5405435324071513], [0.5945646759284885], [0.5135329606464826], [0.3243482592572093], [0.10809763657497101], [0.0], [0.05407649305363371], [0.3243482592572093], [0.6486411689821222], [0.8918470138927326], [1.0], [0.8918470138927326], [0.6216305972214535]], "eval_masks": [[0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0]], "forwards": [[0.8378258703713953], [0.8378258703713953], [0.8918470138927326], [0.8918470138927326], [0.864836442132064], [0.7837493773177616], [0.6486411689821222], [0.5675541041678198], [0.5405435324071513], [0.5945646759284885], [0.6756517407427908], [0.756738805557093], [0.756738805557093], [0.7297282337964245], [0.6756517407427908], [0.6216305972214535], [0.6216305972214535], [0.6756517407427908], [0.756738805557093], [0.864836442132064], [0.9189129351856977], [0.9189129351856977], [0.8918470138927326], [0.7837493773177616], [0.7027176620357559], [0.7027176620357559], [0.7027176620357559], [0.7027176620357559], [0.7027176620357559], [0.7027176620357559], [0.7027176620357559], [0.7027176620357559], [0.7027176620357559], [0.7027176620357559], [0.7027176620357559], [0.6486411689821222], [0.756738805557093], [0.8378258703713953], [0.8378258703713953], [0.7837493773177616], [0.7027176620357559], [0.6216305972214535], [0.5945646759284885], [0.5675541041678198], [0.5945646759284885], [0.5945646759284885], [0.6216305972214535], [0.6216305972214535], [0.6216305972214535], [0.6216305972214535], [0.6486411689821222], [0.6486411689821222], [0.6486411689821222], [0.5945646759284885], [0.5135329606464826], [0.4594564675928489], [0.43244589583218024], [0.48646703935351754], [0.5675541041678198], [0.5945646759284885], [0.5675541041678198], [0.5135329606464826], [0.48646703935351754], [0.5405435324071513], [0.5945646759284885], [0.6756517407427908], [0.7027176620357559], [0.6756517407427908], [0.5945646759284885], [0.5405435324071513], [0.5135329606464826], [0.5675541041678198], [0.6756517407427908], [0.756738805557093], [0.8108152986107268], [0.7837493773177616], [0.6486411689821222], [0.43244589583218024], [0.24326119444290703], [0.18918470138927332], [0.24326119444290703], [0.43244589583218024], [0.6756517407427908], [0.8108152986107268], [0.8108152986107268], [0.7297282337964245], [0.5945646759284885], [0.48646703935351754], [0.4594564675928489], [0.48646703935351754], [0.5675541041678198], [0.5945646759284885], [0.5945646759284885], [0.5945646759284885], [0.5675541041678198], [0.5135329606464826], [0.4594564675928489], [0.4594564675928489], [0.48646703935351754], [0.5675541041678198], [0.6486411689821222], [0.7027176620357559], [0.6486411689821222], [0.5405435324071513], [0.43244589583218024], [0.3783694027785465], [0.4053799745392152], [0.4594564675928489], [0.5135329606464826], [0.5945646759284885], [0.6756517407427908], [0.756738805557093], [0.8108152986107268], [0.8378258703713953], [0.8378258703713953], [0.8378258703713953], [0.8378258703713953], [0.8378258703713953], [0.8378258703713953], [0.8378258703713953], [0.8378258703713953], [0.8378258703713953], [0.8378258703713953], [0.8378258703713953], [0.6216305972214535], [0.5675541041678198], [0.5405435324071513], [0.48646703935351754], [0.43244589583218024], [0.4053799745392152], [0.4053799745392152], [0.3783694027785465], [0.3783694027785465], [0.4053799745392152], [0.4594564675928489], [0.5135329606464826], [0.5675541041678198], [0.5945646759284885], [0.5945646759284885], [0.5405435324071513], [0.4594564675928489], [0.3783694027785465], [0.3243482592572093], [0.29728233796424425], [0.29728233796424425], [0.3243482592572093], [0.3783694027785465], [0.4594564675928489], [0.5135329606464826], [0.5405435324071513], [0.5135329606464826], [0.4594564675928489], [0.43244589583218024], [0.43244589583218024], [0.43244589583218024], [0.43244589583218024], [0.43244589583218024], [0.43244589583218024], [0.43244589583218024], [0.43244589583218024], [0.43244589583218024], [0.43244589583218024], [0.43244589583218024], [0.43244589583218024], [0.18918470138927332], [0.2702717662035756], [0.43244589583218024], [0.5675541041678198], [0.5945646759284885], [0.5675541041678198], [0.43244589583218024], [0.29728233796424425], [0.2161952731499419], [0.24326119444290703], [0.3783694027785465], [0.5135329606464826], [0.6216305972214535], [0.6216305972214535], [0.5135329606464826], [0.43244589583218024], [0.3243482592572093], [0.3243482592572093], [0.3783694027785465], [0.48646703935351754], [0.5945646759284885], [0.6486411689821222], [0.6486411689821222], [0.5945646759284885], [0.5135329606464826], [0.4594564675928489], [0.4594564675928489], [0.5135329606464826], [0.5675541041678198], [0.5945646759284885], [0.5945646759284885], [0.5675541041678198], [0.5675541041678198], [0.5945646759284885], [0.6216305972214535], [0.7027176620357559], [0.7027176620357559], [0.6756517407427908], [0.5945646759284885], [0.5405435324071513], [0.5135329606464826], [0.5135329606464826], [0.5945646759284885], [0.6486411689821222], [0.7027176620357559], [0.7027176620357559], [0.6756517407427908], [0.5945646759284885], [0.5135329606464826], [0.4594564675928489], [0.4594564675928489], [0.48646703935351754], [0.5945646759284885], [0.7027176620357559], [0.756738805557093], [0.7297282337964245], [0.5945646759284885], [0.4053799745392152], [0.2702717662035756], [0.2702717662035756], [0.3783694027785465], [0.3783694027785465], [0.3783694027785465], [0.3783694027785465], [0.3783694027785465], [0.3783694027785465], [0.3783694027785465], [0.3783694027785465], [0.3783694027785465], [0.3783694027785465], [0.3783694027785465], [0.7297282337964245], [0.7027176620357559], [0.5135329606464826], [0.29728233796424425], [0.13516355786793602], [0.10809763657497101], [0.18918470138927332], [0.3783694027785465], [0.5405435324071513], [0.5945646759284885], [0.5135329606464826], [0.3243482592572093], [0.10809763657497101], [0.0], [0.05407649305363371], [0.3243482592572093], [0.6486411689821222], [0.8918470138927326], [1.0], [0.8918470138927326], [0.6216305972214535]], "deltas": [[1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [2.0], [3.0], [4.0], [5.0], [6.0], [7.0], [8.0], [9.0], [10.0], [11.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [2.0], [3.0], [4.0], [5.0], [6.0], [7.0], [8.0], [9.0], [10.0], [11.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [2.0], [3.0], [4.0], [5.0], [6.0], [7.0], [8.0], [9.0], [10.0], [11.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [2.0], [3.0], [4.0], [5.0], [6.0], [7.0], [8.0], [9.0], [10.0], [11.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0]]}, "backward": {"values": [[0.6216305972214535], [0.8918470138927326], [1.0], [0.8918470138927326], [0.6486411689821222], [0.3243482592572093], [0.05407649305363371], [0.0], [0.10809763657497101], [0.3243482592572093], [0.5135329606464826], [0.5945646759284885], [0.5405435324071513], [0.3783694027785465], [0.18918470138927332], [0.10809763657497101], [0.13516355786793602], [0.29728233796424425], [0.5135329606464826], [0.7027176620357559], [0.7297282337964245], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.3783694027785465], [0.2702717662035756], [0.2702717662035756], [0.4053799745392152], [0.5945646759284885], [0.7297282337964245], [0.756738805557093], [0.7027176620357559], [0.5945646759284885], [0.48646703935351754], [0.4594564675928489], [0.4594564675928489], [0.5135329606464826], [0.5945646759284885], [0.6756517407427908], [0.7027176620357559], [0.7027176620357559], [0.6486411689821222], [0.5945646759284885], [0.5135329606464826], [0.5135329606464826], [0.5405435324071513], [0.5945646759284885], [0.6756517407427908], [0.7027176620357559], [0.7027176620357559], [0.6216305972214535], [0.5945646759284885], [0.5675541041678198], [0.5675541041678198], [0.5945646759284885], [0.5945646759284885], [0.5675541041678198], [0.5135329606464826], [0.4594564675928489], [0.4594564675928489], [0.5135329606464826], [0.5945646759284885], [0.6486411689821222], [0.6486411689821222], [0.5945646759284885], [0.48646703935351754], [0.3783694027785465], [0.3243482592572093], [0.3243482592572093], [0.43244589583218024], [0.5135329606464826], [0.6216305972214535], [0.6216305972214535], [0.5135329606464826], [0.3783694027785465], [0.24326119444290703], [0.2161952731499419], [0.29728233796424425], [0.43244589583218024], [0.5675541041678198], [0.5945646759284885], [0.5675541041678198], [0.43244589583218024], [0.2702717662035756], [0.18918470138927332], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.43244589583218024], [0.43244589583218024], [0.4594564675928489], [0.5135329606464826], [0.5405435324071513], [0.5135329606464826], [0.4594564675928489], [0.3783694027785465], [0.3243482592572093], [0.29728233796424425], [0.29728233796424425], [0.3243482592572093], [0.3783694027785465], [0.4594564675928489], [0.5405435324071513], [0.5945646759284885], [0.5945646759284885], [0.5675541041678198], [0.5135329606464826], [0.4594564675928489], [0.4053799745392152], [0.3783694027785465], [0.3783694027785465], [0.4053799745392152], [0.4053799745392152], [0.43244589583218024], [0.48646703935351754], [0.5405435324071513], [0.5675541041678198], [0.6216305972214535], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.8378258703713953], [0.8108152986107268], [0.756738805557093], [0.6756517407427908], [0.5945646759284885], [0.5135329606464826], [0.4594564675928489], [0.4053799745392152], [0.3783694027785465], [0.43244589583218024], [0.5405435324071513], [0.6486411689821222], [0.7027176620357559], [0.6486411689821222], [0.5675541041678198], [0.48646703935351754], [0.4594564675928489], [0.4594564675928489], [0.5135329606464826], [0.5675541041678198], [0.5945646759284885], [0.5945646759284885], [0.5945646759284885], [0.5675541041678198], [0.48646703935351754], [0.4594564675928489], [0.48646703935351754], [0.5945646759284885], [0.7297282337964245], [0.8108152986107268], [0.8108152986107268], [0.6756517407427908], [0.43244589583218024], [0.24326119444290703], [0.18918470138927332], [0.24326119444290703], [0.43244589583218024], [0.6486411689821222], [0.7837493773177616], [0.8108152986107268], [0.756738805557093], [0.6756517407427908], [0.5675541041678198], [0.5135329606464826], [0.5405435324071513], [0.5945646759284885], [0.6756517407427908], [0.7027176620357559], [0.6756517407427908], [0.5945646759284885], [0.5405435324071513], [0.48646703935351754], [0.5135329606464826], [0.5675541041678198], [0.5945646759284885], [0.5675541041678198], [0.48646703935351754], [0.43244589583218024], [0.4594564675928489], [0.5135329606464826], [0.5945646759284885], [0.6486411689821222], [0.6486411689821222], [0.6486411689821222], [0.6216305972214535], [0.6216305972214535], [0.6216305972214535], [0.6216305972214535], [0.5945646759284885], [0.5945646759284885], [0.5675541041678198], [0.5945646759284885], [0.6216305972214535], [0.7027176620357559], [0.7837493773177616], [0.8378258703713953], [0.8378258703713953], [0.756738805557093], [0.6486411689821222], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.7027176620357559], [0.7837493773177616], [0.8918470138927326], [0.9189129351856977], [0.9189129351856977], [0.864836442132064], [0.756738805557093], [0.6756517407427908], [0.6216305972214535], [0.6216305972214535], [0.6756517407427908], [0.7297282337964245], [0.756738805557093], [0.756738805557093], [0.6756517407427908], [0.5945646759284885], [0.5405435324071513], [0.5675541041678198], [0.6486411689821222], [0.7837493773177616], [0.864836442132064], [0.8918470138927326], [0.8918470138927326], [0.8378258703713953], [0.8378258703713953]], "masks": [[1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1]], "evals": [[0.6216305972214535], [0.8918470138927326], [1.0], [0.8918470138927326], [0.6486411689821222], [0.3243482592572093], [0.05407649305363371], [0.0], [0.10809763657497101], [0.3243482592572093], [0.5135329606464826], [0.5945646759284885], [0.5405435324071513], [0.3783694027785465], [0.18918470138927332], [0.10809763657497101], [0.13516355786793602], [0.29728233796424425], [0.5135329606464826], [0.7027176620357559], [0.7297282337964245], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.3783694027785465], [0.2702717662035756], [0.2702717662035756], [0.4053799745392152], [0.5945646759284885], [0.7297282337964245], [0.756738805557093], [0.7027176620357559], [0.5945646759284885], [0.48646703935351754], [0.4594564675928489], [0.4594564675928489], [0.5135329606464826], [0.5945646759284885], [0.6756517407427908], [0.7027176620357559], [0.7027176620357559], [0.6486411689821222], [0.5945646759284885], [0.5135329606464826], [0.5135329606464826], [0.5405435324071513], [0.5945646759284885], [0.6756517407427908], [0.7027176620357559], [0.7027176620357559], [0.6216305972214535], [0.5945646759284885], [0.5675541041678198], [0.5675541041678198], [0.5945646759284885], [0.5945646759284885], [0.5675541041678198], [0.5135329606464826], [0.4594564675928489], [0.4594564675928489], [0.5135329606464826], [0.5945646759284885], [0.6486411689821222], [0.6486411689821222], [0.5945646759284885], [0.48646703935351754], [0.3783694027785465], [0.3243482592572093], [0.3243482592572093], [0.43244589583218024], [0.5135329606464826], [0.6216305972214535], [0.6216305972214535], [0.5135329606464826], [0.3783694027785465], [0.24326119444290703], [0.2161952731499419], [0.29728233796424425], [0.43244589583218024], [0.5675541041678198], [0.5945646759284885], [0.5675541041678198], [0.43244589583218024], [0.2702717662035756], [0.18918470138927332], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.43244589583218024], [0.43244589583218024], [0.4594564675928489], [0.5135329606464826], [0.5405435324071513], [0.5135329606464826], [0.4594564675928489], [0.3783694027785465], [0.3243482592572093], [0.29728233796424425], [0.29728233796424425], [0.3243482592572093], [0.3783694027785465], [0.4594564675928489], [0.5405435324071513], [0.5945646759284885], [0.5945646759284885], [0.5675541041678198], [0.5135329606464826], [0.4594564675928489], [0.4053799745392152], [0.3783694027785465], [0.3783694027785465], [0.4053799745392152], [0.4053799745392152], [0.43244589583218024], [0.48646703935351754], [0.5405435324071513], [0.5675541041678198], [0.6216305972214535], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.8378258703713953], [0.8108152986107268], [0.756738805557093], [0.6756517407427908], [0.5945646759284885], [0.5135329606464826], [0.4594564675928489], [0.4053799745392152], [0.3783694027785465], [0.43244589583218024], [0.5405435324071513], [0.6486411689821222], [0.7027176620357559], [0.6486411689821222], [0.5675541041678198], [0.48646703935351754], [0.4594564675928489], [0.4594564675928489], [0.5135329606464826], [0.5675541041678198], [0.5945646759284885], [0.5945646759284885], [0.5945646759284885], [0.5675541041678198], [0.48646703935351754], [0.4594564675928489], [0.48646703935351754], [0.5945646759284885], [0.7297282337964245], [0.8108152986107268], [0.8108152986107268], [0.6756517407427908], [0.43244589583218024], [0.24326119444290703], [0.18918470138927332], [0.24326119444290703], [0.43244589583218024], [0.6486411689821222], [0.7837493773177616], [0.8108152986107268], [0.756738805557093], [0.6756517407427908], [0.5675541041678198], [0.5135329606464826], [0.5405435324071513], [0.5945646759284885], [0.6756517407427908], [0.7027176620357559], [0.6756517407427908], [0.5945646759284885], [0.5405435324071513], [0.48646703935351754], [0.5135329606464826], [0.5675541041678198], [0.5945646759284885], [0.5675541041678198], [0.48646703935351754], [0.43244589583218024], [0.4594564675928489], [0.5135329606464826], [0.5945646759284885], [0.6486411689821222], [0.6486411689821222], [0.6486411689821222], [0.6216305972214535], [0.6216305972214535], [0.6216305972214535], [0.6216305972214535], [0.5945646759284885], [0.5945646759284885], [0.5675541041678198], [0.5945646759284885], [0.6216305972214535], [0.7027176620357559], [0.7837493773177616], [0.8378258703713953], [0.8378258703713953], [0.756738805557093], [0.6486411689821222], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.7027176620357559], [0.7837493773177616], [0.8918470138927326], [0.9189129351856977], [0.9189129351856977], [0.864836442132064], [0.756738805557093], [0.6756517407427908], [0.6216305972214535], [0.6216305972214535], [0.6756517407427908], [0.7297282337964245], [0.756738805557093], [0.756738805557093], [0.6756517407427908], [0.5945646759284885], [0.5405435324071513], [0.5675541041678198], [0.6486411689821222], [0.7837493773177616], [0.864836442132064], [0.8918470138927326], [0.8918470138927326], [0.8378258703713953], [0.8378258703713953]], "eval_masks": [[0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0]], "forwards": [[0.6216305972214535], [0.8918470138927326], [1.0], [0.8918470138927326], [0.6486411689821222], [0.3243482592572093], [0.05407649305363371], [0.0], [0.10809763657497101], [0.3243482592572093], [0.5135329606464826], [0.5945646759284885], [0.5405435324071513], [0.3783694027785465], [0.18918470138927332], [0.10809763657497101], [0.13516355786793602], [0.29728233796424425], [0.5135329606464826], [0.7027176620357559], [0.7297282337964245], [0.7297282337964245], [0.7297282337964245], [0.7297282337964245], [0.7297282337964245], [0.7297282337964245], [0.7297282337964245], [0.7297282337964245], [0.7297282337964245], [0.7297282337964245], [0.7297282337964245], [0.3783694027785465], [0.2702717662035756], [0.2702717662035756], [0.4053799745392152], [0.5945646759284885], [0.7297282337964245], [0.756738805557093], [0.7027176620357559], [0.5945646759284885], [0.48646703935351754], [0.4594564675928489], [0.4594564675928489], [0.5135329606464826], [0.5945646759284885], [0.6756517407427908], [0.7027176620357559], [0.7027176620357559], [0.6486411689821222], [0.5945646759284885], [0.5135329606464826], [0.5135329606464826], [0.5405435324071513], [0.5945646759284885], [0.6756517407427908], [0.7027176620357559], [0.7027176620357559], [0.6216305972214535], [0.5945646759284885], [0.5675541041678198], [0.5675541041678198], [0.5945646759284885], [0.5945646759284885], [0.5675541041678198], [0.5135329606464826], [0.4594564675928489], [0.4594564675928489], [0.5135329606464826], [0.5945646759284885], [0.6486411689821222], [0.6486411689821222], [0.5945646759284885], [0.48646703935351754], [0.3783694027785465], [0.3243482592572093], [0.3243482592572093], [0.43244589583218024], [0.5135329606464826], [0.6216305972214535], [0.6216305972214535], [0.5135329606464826], [0.3783694027785465], [0.24326119444290703], [0.2161952731499419], [0.29728233796424425], [0.43244589583218024], [0.5675541041678198], [0.5945646759284885], [0.5675541041678198], [0.43244589583218024], [0.2702717662035756], [0.18918470138927332], [0.18918470138927332], [0.18918470138927332], [0.18918470138927332], [0.18918470138927332], [0.18918470138927332], [0.18918470138927332], [0.18918470138927332], [0.18918470138927332], [0.18918470138927332], [0.18918470138927332], [0.43244589583218024], [0.43244589583218024], [0.4594564675928489], [0.5135329606464826], [0.5405435324071513], [0.5135329606464826], [0.4594564675928489], [0.3783694027785465], [0.3243482592572093], [0.29728233796424425], [0.29728233796424425], [0.3243482592572093], [0.3783694027785465], [0.4594564675928489], [0.5405435324071513], [0.5945646759284885], [0.5945646759284885], [0.5675541041678198], [0.5135329606464826], [0.4594564675928489], [0.4053799745392152], [0.3783694027785465], [0.3783694027785465], [0.4053799745392152], [0.4053799745392152], [0.43244589583218024], [0.48646703935351754], [0.5405435324071513], [0.5675541041678198], [0.6216305972214535], [0.6216305972214535], [0.6216305972214535], [0.6216305972214535], [0.6216305972214535], [0.6216305972214535], [0.6216305972214535], [0.6216305972214535], [0.6216305972214535], [0.6216305972214535], [0.6216305972214535], [0.8378258703713953], [0.8108152986107268], [0.756738805557093], [0.6756517407427908], [0.5945646759284885], [0.5135329606464826], [0.4594564675928489], [0.4053799745392152], [0.3783694027785465], [0.43244589583218024], [0.5405435324071513], [0.6486411689821222], [0.7027176620357559], [0.6486411689821222], [0.5675541041678198], [0.48646703935351754], [0.4594564675928489], [0.4594564675928489], [0.5135329606464826], [0.5675541041678198], [0.5945646759284885], [0.5945646759284885], [0.5945646759284885], [0.5675541041678198], [0.48646703935351754], [0.4594564675928489], [0.48646703935351754], [0.5945646759284885], [0.7297282337964245], [0.8108152986107268], [0.8108152986107268], [0.6756517407427908], [0.43244589583218024], [0.24326119444290703], [0.18918470138927332], [0.24326119444290703], [0.43244589583218024], [0.6486411689821222], [0.7837493773177616], [0.8108152986107268], [0.756738805557093], [0.6756517407427908], [0.5675541041678198], [0.5135329606464826], [0.5405435324071513], [0.5945646759284885], [0.6756517407427908], [0.7027176620357559], [0.6756517407427908], [0.5945646759284885], [0.5405435324071513], [0.48646703935351754], [0.5135329606464826], [0.5675541041678198], [0.5945646759284885], [0.5675541041678198], [0.48646703935351754], [0.43244589583218024], [0.4594564675928489], [0.5135329606464826], [0.5945646759284885], [0.6486411689821222], [0.6486411689821222], [0.6486411689821222], [0.6216305972214535], [0.6216305972214535], [0.6216305972214535], [0.6216305972214535], [0.5945646759284885], [0.5945646759284885], [0.5675541041678198], [0.5945646759284885], [0.6216305972214535], [0.7027176620357559], [0.7837493773177616], [0.8378258703713953], [0.8378258703713953], [0.756738805557093], [0.6486411689821222], [0.6486411689821222], [0.6486411689821222], [0.6486411689821222], [0.6486411689821222], [0.6486411689821222], [0.6486411689821222], [0.6486411689821222], [0.6486411689821222], [0.6486411689821222], [0.6486411689821222], [0.7027176620357559], [0.7837493773177616], [0.8918470138927326], [0.9189129351856977], [0.9189129351856977], [0.864836442132064], [0.756738805557093], [0.6756517407427908], [0.6216305972214535], [0.6216305972214535], [0.6756517407427908], [0.7297282337964245], [0.756738805557093], [0.756738805557093], [0.6756517407427908], [0.5945646759284885], [0.5405435324071513], [0.5675541041678198], [0.6486411689821222], [0.7837493773177616], [0.864836442132064], [0.8918470138927326], [0.8918470138927326], [0.8378258703713953], [0.8378258703713953]], "deltas": [[1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [2.0], [3.0], [4.0], [5.0], [6.0], [7.0], [8.0], [9.0], [10.0], [11.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [2.0], [3.0], [4.0], [5.0], [6.0], [7.0], [8.0], [9.0], [10.0], [11.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [2.0], [3.0], [4.0], [5.0], [6.0], [7.0], [8.0], [9.0], [10.0], [11.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [2.0], [3.0], [4.0], [5.0], [6.0], [7.0], [8.0], [9.0], [10.0], [11.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0]]}} -{"label": 0, "forward": {"values": [[0.5356933879461673], [0.6071533060269163], [0.7143066120538326], [0.7856933879461674], [0.7856933879461674], [0.7143066120538326], [0.6786132241076653], [0.6786132241076653], [0.7143066120538326], [0.7856933879461674], [0.7856933879461674], [0.7143066120538326], [0.571459918080749], [0.3571533060269163], [0.1786132241076653], [0.071459918080749], [0.071459918080749], [0.1786132241076653], [0.3571533060269163], [0.5356933879461673], [0.6428466939730836], [0.6071533060269163], [0.46430661205383267], [0.3214599180807489], [0.2856933879461674], [0.3214599180807489], [0.4286132241076653], [0.5356933879461673], [0.6071533060269163], [0.6428466939730836], [0.571459918080749], [0.5356933879461673], [0.46430661205383267], [0.46430661205383267], [0.46430661205383267], [0.46430661205383267], [0.4286132241076653], [0.3571533060269163], [0.25], [0.1786132241076653], [0.1786132241076653], [0.25], [0.3928466939730837], [0.5], [0.5], [0.4286132241076653], [0.2856933879461674], [0.1786132241076653], [0.1786132241076653], [0.25], [0.3928466939730837], [0.46430661205383267], [0.46430661205383267], [0.3928466939730837], [0.2856933879461674], [0.25], [0.25], [0.3571533060269163], [0.4286132241076653], [0.46430661205383267], [0.46430661205383267], [0.46430661205383267], [0.46430661205383267], [0.46430661205383267], [0.5], [0.5], [0.46430661205383267], [0.5], [0.5], [0.5356933879461673], [0.5], [0.46430661205383267], [0.3928466939730837], [0.3571533060269163], [0.3214599180807489], [0.3571533060269163], [0.3214599180807489], [0.2856933879461674], [0.2856933879461674], [0.3214599180807489], [0.46430661205383267], [0.6071533060269163], [0.7143066120538326], [0.7143066120538326], [0.5356933879461673], [0.3571533060269163], [0.2143066120538327], [0.2143066120538327], [0.3214599180807489], [0.46430661205383267], [0.571459918080749], [0.6428466939730836], [0.7143066120538326], [0.7500000000000001], [0.7500000000000001], [0.6428466939730836], [0.46430661205383267], [0.2856933879461674], [0.1071533060269163], [0.071459918080749], [0.1428466939730837], [0.2856933879461674], [0.3928466939730837], [0.5], [0.6071533060269163], [0.6786132241076653], [0.7143066120538326], [0.7143066120538326], [0.6786132241076653], [0.6071533060269163], [0.5356933879461673], [0.46430661205383267], [0.46430661205383267], [0.5], [0.5356933879461673], [0.6071533060269163], [0.7143066120538326], [0.7856933879461674], [0.8214599180807489], [0.8571533060269164], [0.7856933879461674], [0.6428466939730836], [0.46430661205383267], [0.2856933879461674], [0.1786132241076653], [0.1786132241076653], [0.3571533060269163], [0.571459918080749], [0.7500000000000001], [0.8214599180807489], [0.7500000000000001], [0.6071533060269163], [0.4286132241076653], [0.2856933879461674], [0.25], [0.2856933879461674], [0.3571533060269163], [0.3928466939730837], [0.4286132241076653], [0.4286132241076653], [0.4286132241076653], [0.3928466939730837], [0.3928466939730837], [0.3214599180807489], [0.25], [0.2143066120538327], [0.2143066120538327], [0.2856933879461674], [0.3571533060269163], [0.3928466939730837], [0.3928466939730837], [0.3214599180807489], [0.3214599180807489], [0.3214599180807489], [0.3928466939730837], [0.5356933879461673], [0.6428466939730836], [0.6786132241076653], [0.6428466939730836], [0.5356933879461673], [0.4286132241076653], [0.3928466939730837], [0.4286132241076653], [0.5356933879461673], [0.7143066120538326], [0.8928466939730837], [1.0], [1.0], [0.8928466939730837], [0.7500000000000001], [0.5356933879461673], [0.4286132241076653], [0.3928466939730837], [0.46430661205383267], [0.6071533060269163], [0.7143066120538326], [0.7856933879461674], [0.7500000000000001], [0.7500000000000001], [0.7143066120538326], [0.7500000000000001], [0.7856933879461674], [0.7500000000000001], [0.6071533060269163], [0.4286132241076653], [0.2856933879461674], [0.2143066120538327], [0.2856933879461674], [0.4286132241076653], [0.571459918080749], [0.6786132241076653], [0.7500000000000001], [0.7143066120538326], [0.7143066120538326], [0.6786132241076653], [0.6786132241076653], [0.6786132241076653], [0.7143066120538326], [0.7143066120538326], [0.6786132241076653], [0.6071533060269163], [0.5], [0.3928466939730837], [0.3571533060269163], [0.3571533060269163], [0.4286132241076653], [0.5356933879461673], [0.571459918080749], [0.5356933879461673], [0.5], [0.46430661205383267], [0.5356933879461673], [0.6428466939730836], [0.7500000000000001], [0.7856933879461674], [0.7500000000000001], [0.6428466939730836], [0.5356933879461673], [0.46430661205383267], [0.3928466939730837], [0.3214599180807489], [0.2856933879461674], [0.2143066120538327], [0.1786132241076653], [0.1786132241076653], [0.25], [0.3571533060269163], [0.46430661205383267], [0.5356933879461673], [0.6428466939730836], [0.6786132241076653], [0.6786132241076653], [0.6786132241076653], [0.571459918080749], [0.46430661205383267], [0.3214599180807489], [0.2143066120538327], [0.1071533060269163], [0.035766530134581614], [0.0], [0.035766530134581614], [0.1071533060269163], [0.1786132241076653], [0.25], [0.3571533060269163], [0.5], [0.6071533060269163], [0.7143066120538326], [0.7856933879461674], [0.7500000000000001], [0.6428466939730836], [0.5356933879461673], [0.3928466939730837], [0.2856933879461674], [0.25], [0.25]], "masks": [[1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1]], "evals": [[0.5356933879461673], [0.6071533060269163], [0.7143066120538326], [0.7856933879461674], [0.7856933879461674], [0.7143066120538326], [0.6786132241076653], [0.6786132241076653], [0.7143066120538326], [0.7856933879461674], [0.7856933879461674], [0.7143066120538326], [0.571459918080749], [0.3571533060269163], [0.1786132241076653], [0.071459918080749], [0.071459918080749], [0.1786132241076653], [0.3571533060269163], [0.5356933879461673], [0.6428466939730836], [0.6071533060269163], [0.46430661205383267], [0.3214599180807489], [0.2856933879461674], [0.3214599180807489], [0.4286132241076653], [0.5356933879461673], [0.6071533060269163], [0.6428466939730836], [0.571459918080749], [0.5356933879461673], [0.46430661205383267], [0.46430661205383267], [0.46430661205383267], [0.46430661205383267], [0.4286132241076653], [0.3571533060269163], [0.25], [0.1786132241076653], [0.1786132241076653], [0.25], [0.3928466939730837], [0.5], [0.5], [0.4286132241076653], [0.2856933879461674], [0.1786132241076653], [0.1786132241076653], [0.25], [0.3928466939730837], [0.46430661205383267], [0.46430661205383267], [0.3928466939730837], [0.2856933879461674], [0.25], [0.25], [0.3571533060269163], [0.4286132241076653], [0.46430661205383267], [0.46430661205383267], [0.46430661205383267], [0.46430661205383267], [0.46430661205383267], [0.5], [0.5], [0.46430661205383267], [0.5], [0.5], [0.5356933879461673], [0.5], [0.46430661205383267], [0.3928466939730837], [0.3571533060269163], [0.3214599180807489], [0.3571533060269163], [0.3214599180807489], [0.2856933879461674], [0.2856933879461674], [0.3214599180807489], [0.46430661205383267], [0.6071533060269163], [0.7143066120538326], [0.7143066120538326], [0.5356933879461673], [0.3571533060269163], [0.2143066120538327], [0.2143066120538327], [0.3214599180807489], [0.46430661205383267], [0.571459918080749], [0.6428466939730836], [0.7143066120538326], [0.7500000000000001], [0.7500000000000001], [0.6428466939730836], [0.46430661205383267], [0.2856933879461674], [0.1071533060269163], [0.071459918080749], [0.1428466939730837], [0.2856933879461674], [0.3928466939730837], [0.5], [0.6071533060269163], [0.6786132241076653], [0.7143066120538326], [0.7143066120538326], [0.6786132241076653], [0.6071533060269163], [0.5356933879461673], [0.46430661205383267], [0.46430661205383267], [0.5], [0.5356933879461673], [0.6071533060269163], [0.7143066120538326], [0.7856933879461674], [0.8214599180807489], [0.8571533060269164], [0.7856933879461674], [0.6428466939730836], [0.46430661205383267], [0.2856933879461674], [0.1786132241076653], [0.1786132241076653], [0.3571533060269163], [0.571459918080749], [0.7500000000000001], [0.8214599180807489], [0.7500000000000001], [0.6071533060269163], [0.4286132241076653], [0.2856933879461674], [0.25], [0.2856933879461674], [0.3571533060269163], [0.3928466939730837], [0.4286132241076653], [0.4286132241076653], [0.4286132241076653], [0.3928466939730837], [0.3928466939730837], [0.3214599180807489], [0.25], [0.2143066120538327], [0.2143066120538327], [0.2856933879461674], [0.3571533060269163], [0.3928466939730837], [0.3928466939730837], [0.3214599180807489], [0.3214599180807489], [0.3214599180807489], [0.3928466939730837], [0.5356933879461673], [0.6428466939730836], [0.6786132241076653], [0.6428466939730836], [0.5356933879461673], [0.4286132241076653], [0.3928466939730837], [0.4286132241076653], [0.5356933879461673], [0.7143066120538326], [0.8928466939730837], [1.0], [1.0], [0.8928466939730837], [0.7500000000000001], [0.5356933879461673], [0.4286132241076653], [0.3928466939730837], [0.46430661205383267], [0.6071533060269163], [0.7143066120538326], [0.7856933879461674], [0.7500000000000001], [0.7500000000000001], [0.7143066120538326], [0.7500000000000001], [0.7856933879461674], [0.7500000000000001], [0.6071533060269163], [0.4286132241076653], [0.2856933879461674], [0.2143066120538327], [0.2856933879461674], [0.4286132241076653], [0.571459918080749], [0.6786132241076653], [0.7500000000000001], [0.7143066120538326], [0.7143066120538326], [0.6786132241076653], [0.6786132241076653], [0.6786132241076653], [0.7143066120538326], [0.7143066120538326], [0.6786132241076653], [0.6071533060269163], [0.5], [0.3928466939730837], [0.3571533060269163], [0.3571533060269163], [0.4286132241076653], [0.5356933879461673], [0.571459918080749], [0.5356933879461673], [0.5], [0.46430661205383267], [0.5356933879461673], [0.6428466939730836], [0.7500000000000001], [0.7856933879461674], [0.7500000000000001], [0.6428466939730836], [0.5356933879461673], [0.46430661205383267], [0.3928466939730837], [0.3214599180807489], [0.2856933879461674], [0.2143066120538327], [0.1786132241076653], [0.1786132241076653], [0.25], [0.3571533060269163], [0.46430661205383267], [0.5356933879461673], [0.6428466939730836], [0.6786132241076653], [0.6786132241076653], [0.6786132241076653], [0.571459918080749], [0.46430661205383267], [0.3214599180807489], [0.2143066120538327], [0.1071533060269163], [0.035766530134581614], [0.0], [0.035766530134581614], [0.1071533060269163], [0.1786132241076653], [0.25], [0.3571533060269163], [0.5], [0.6071533060269163], [0.7143066120538326], [0.7856933879461674], [0.7500000000000001], [0.6428466939730836], [0.5356933879461673], [0.3928466939730837], [0.2856933879461674], [0.25], [0.25]], "eval_masks": [[0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0]], "forwards": [[0.5356933879461673], [0.6071533060269163], [0.7143066120538326], [0.7856933879461674], [0.7856933879461674], [0.7143066120538326], [0.6786132241076653], [0.6786132241076653], [0.7143066120538326], [0.7856933879461674], [0.7856933879461674], [0.7143066120538326], [0.571459918080749], [0.3571533060269163], [0.1786132241076653], [0.071459918080749], [0.071459918080749], [0.1786132241076653], [0.3571533060269163], [0.5356933879461673], [0.6428466939730836], [0.6071533060269163], [0.46430661205383267], [0.3214599180807489], [0.2856933879461674], [0.3214599180807489], [0.4286132241076653], [0.5356933879461673], [0.6071533060269163], [0.6428466939730836], [0.571459918080749], [0.5356933879461673], [0.46430661205383267], [0.46430661205383267], [0.46430661205383267], [0.46430661205383267], [0.4286132241076653], [0.3571533060269163], [0.25], [0.1786132241076653], [0.1786132241076653], [0.25], [0.3928466939730837], [0.5], [0.5], [0.4286132241076653], [0.2856933879461674], [0.1786132241076653], [0.1786132241076653], [0.25], [0.3928466939730837], [0.46430661205383267], [0.46430661205383267], [0.3928466939730837], [0.2856933879461674], [0.25], [0.25], [0.3571533060269163], [0.4286132241076653], [0.46430661205383267], [0.46430661205383267], [0.46430661205383267], [0.46430661205383267], [0.46430661205383267], [0.5], [0.5], [0.46430661205383267], [0.5], [0.5], [0.5356933879461673], [0.5], [0.46430661205383267], [0.3928466939730837], [0.3571533060269163], [0.3214599180807489], [0.3571533060269163], [0.3214599180807489], [0.2856933879461674], [0.2856933879461674], [0.3214599180807489], [0.46430661205383267], [0.6071533060269163], [0.7143066120538326], [0.7143066120538326], [0.5356933879461673], [0.3571533060269163], [0.2143066120538327], [0.2143066120538327], [0.3214599180807489], [0.46430661205383267], [0.571459918080749], [0.6428466939730836], [0.7143066120538326], [0.7500000000000001], [0.7500000000000001], [0.6428466939730836], [0.46430661205383267], [0.2856933879461674], [0.1071533060269163], [0.071459918080749], [0.1428466939730837], [0.2856933879461674], [0.3928466939730837], [0.5], [0.6071533060269163], [0.6786132241076653], [0.7143066120538326], [0.7143066120538326], [0.6786132241076653], [0.6071533060269163], [0.5356933879461673], [0.46430661205383267], [0.46430661205383267], [0.5], [0.5356933879461673], [0.6071533060269163], [0.7143066120538326], [0.7856933879461674], [0.8214599180807489], [0.8571533060269164], [0.7856933879461674], [0.6428466939730836], [0.46430661205383267], [0.2856933879461674], [0.1786132241076653], [0.1786132241076653], [0.3571533060269163], [0.571459918080749], [0.7500000000000001], [0.8214599180807489], [0.7500000000000001], [0.6071533060269163], [0.4286132241076653], [0.2856933879461674], [0.25], [0.2856933879461674], [0.3571533060269163], [0.3928466939730837], [0.4286132241076653], [0.4286132241076653], [0.4286132241076653], [0.3928466939730837], [0.3928466939730837], [0.3214599180807489], [0.25], [0.2143066120538327], [0.2143066120538327], [0.2856933879461674], [0.3571533060269163], [0.3928466939730837], [0.3928466939730837], [0.3214599180807489], [0.3214599180807489], [0.3214599180807489], [0.3928466939730837], [0.5356933879461673], [0.6428466939730836], [0.6786132241076653], [0.6428466939730836], [0.5356933879461673], [0.4286132241076653], [0.3928466939730837], [0.4286132241076653], [0.5356933879461673], [0.7143066120538326], [0.8928466939730837], [1.0], [1.0], [0.8928466939730837], [0.7500000000000001], [0.5356933879461673], [0.4286132241076653], [0.3928466939730837], [0.46430661205383267], [0.6071533060269163], [0.7143066120538326], [0.7856933879461674], [0.7500000000000001], [0.7500000000000001], [0.7143066120538326], [0.7500000000000001], [0.7856933879461674], [0.7500000000000001], [0.6071533060269163], [0.4286132241076653], [0.2856933879461674], [0.2143066120538327], [0.2856933879461674], [0.4286132241076653], [0.571459918080749], [0.6786132241076653], [0.7500000000000001], [0.7143066120538326], [0.7143066120538326], [0.6786132241076653], [0.6786132241076653], [0.6786132241076653], [0.7143066120538326], [0.7143066120538326], [0.6786132241076653], [0.6071533060269163], [0.5], [0.3928466939730837], [0.3571533060269163], [0.3571533060269163], [0.4286132241076653], [0.5356933879461673], [0.571459918080749], [0.5356933879461673], [0.5], [0.46430661205383267], [0.5356933879461673], [0.6428466939730836], [0.7500000000000001], [0.7856933879461674], [0.7500000000000001], [0.6428466939730836], [0.5356933879461673], [0.46430661205383267], [0.3928466939730837], [0.3214599180807489], [0.2856933879461674], [0.2143066120538327], [0.1786132241076653], [0.1786132241076653], [0.25], [0.3571533060269163], [0.46430661205383267], [0.5356933879461673], [0.6428466939730836], [0.6786132241076653], [0.6786132241076653], [0.6786132241076653], [0.571459918080749], [0.46430661205383267], [0.3214599180807489], [0.2143066120538327], [0.1071533060269163], [0.035766530134581614], [0.0], [0.035766530134581614], [0.1071533060269163], [0.1786132241076653], [0.25], [0.3571533060269163], [0.5], [0.6071533060269163], [0.7143066120538326], [0.7856933879461674], [0.7500000000000001], [0.6428466939730836], [0.5356933879461673], [0.3928466939730837], [0.2856933879461674], [0.25], [0.25]], "deltas": [[1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0]]}, "backward": {"values": [[0.25], [0.25], [0.2856933879461674], [0.3928466939730837], [0.5356933879461673], [0.6428466939730836], [0.7500000000000001], [0.7856933879461674], [0.7143066120538326], [0.6071533060269163], [0.5], [0.3571533060269163], [0.25], [0.1786132241076653], [0.1071533060269163], [0.035766530134581614], [0.0], [0.035766530134581614], [0.1071533060269163], [0.2143066120538327], [0.3214599180807489], [0.46430661205383267], [0.571459918080749], [0.6786132241076653], [0.6786132241076653], [0.6786132241076653], [0.6428466939730836], [0.5356933879461673], [0.46430661205383267], [0.3571533060269163], [0.25], [0.1786132241076653], [0.1786132241076653], [0.2143066120538327], [0.2856933879461674], [0.3214599180807489], [0.3928466939730837], [0.46430661205383267], [0.5356933879461673], [0.6428466939730836], [0.7500000000000001], [0.7856933879461674], [0.7500000000000001], [0.6428466939730836], [0.5356933879461673], [0.46430661205383267], [0.5], [0.5356933879461673], [0.571459918080749], [0.5356933879461673], [0.4286132241076653], [0.3571533060269163], [0.3571533060269163], [0.3928466939730837], [0.5], [0.6071533060269163], [0.6786132241076653], [0.7143066120538326], [0.7143066120538326], [0.6786132241076653], [0.6786132241076653], [0.6786132241076653], [0.7143066120538326], [0.7143066120538326], [0.7500000000000001], [0.6786132241076653], [0.571459918080749], [0.4286132241076653], [0.2856933879461674], [0.2143066120538327], [0.2856933879461674], [0.4286132241076653], [0.6071533060269163], [0.7500000000000001], [0.7856933879461674], [0.7500000000000001], [0.7143066120538326], [0.7500000000000001], [0.7500000000000001], [0.7856933879461674], [0.7143066120538326], [0.6071533060269163], [0.46430661205383267], [0.3928466939730837], [0.4286132241076653], [0.5356933879461673], [0.7500000000000001], [0.8928466939730837], [1.0], [1.0], [0.8928466939730837], [0.7143066120538326], [0.5356933879461673], [0.4286132241076653], [0.3928466939730837], [0.4286132241076653], [0.5356933879461673], [0.6428466939730836], [0.6786132241076653], [0.6428466939730836], [0.5356933879461673], [0.3928466939730837], [0.3214599180807489], [0.3214599180807489], [0.3214599180807489], [0.3928466939730837], [0.3928466939730837], [0.3571533060269163], [0.2856933879461674], [0.2143066120538327], [0.2143066120538327], [0.25], [0.3214599180807489], [0.3928466939730837], [0.3928466939730837], [0.4286132241076653], [0.4286132241076653], [0.4286132241076653], [0.3928466939730837], [0.3571533060269163], [0.2856933879461674], [0.25], [0.2856933879461674], [0.4286132241076653], [0.6071533060269163], [0.7500000000000001], [0.8214599180807489], [0.7500000000000001], [0.571459918080749], [0.3571533060269163], [0.1786132241076653], [0.1786132241076653], [0.2856933879461674], [0.46430661205383267], [0.6428466939730836], [0.7856933879461674], [0.8571533060269164], [0.8214599180807489], [0.7856933879461674], [0.7143066120538326], [0.6071533060269163], [0.5356933879461673], [0.5], [0.46430661205383267], [0.46430661205383267], [0.5356933879461673], [0.6071533060269163], [0.6786132241076653], [0.7143066120538326], [0.7143066120538326], [0.6786132241076653], [0.6071533060269163], [0.5], [0.3928466939730837], [0.2856933879461674], [0.1428466939730837], [0.071459918080749], [0.1071533060269163], [0.2856933879461674], [0.46430661205383267], [0.6428466939730836], [0.7500000000000001], [0.7500000000000001], [0.7143066120538326], [0.6428466939730836], [0.571459918080749], [0.46430661205383267], [0.3214599180807489], [0.2143066120538327], [0.2143066120538327], [0.3571533060269163], [0.5356933879461673], [0.7143066120538326], [0.7143066120538326], [0.6071533060269163], [0.46430661205383267], [0.3214599180807489], [0.2856933879461674], [0.2856933879461674], [0.3214599180807489], [0.3571533060269163], [0.3214599180807489], [0.3571533060269163], [0.3928466939730837], [0.46430661205383267], [0.5], [0.5356933879461673], [0.5], [0.5], [0.46430661205383267], [0.5], [0.5], [0.46430661205383267], [0.46430661205383267], [0.46430661205383267], [0.46430661205383267], [0.46430661205383267], [0.4286132241076653], [0.3571533060269163], [0.25], [0.25], [0.2856933879461674], [0.3928466939730837], [0.46430661205383267], [0.46430661205383267], [0.3928466939730837], [0.25], [0.1786132241076653], [0.1786132241076653], [0.2856933879461674], [0.4286132241076653], [0.5], [0.5], [0.3928466939730837], [0.25], [0.1786132241076653], [0.1786132241076653], [0.25], [0.3571533060269163], [0.4286132241076653], [0.46430661205383267], [0.46430661205383267], [0.46430661205383267], [0.46430661205383267], [0.5356933879461673], [0.571459918080749], [0.6428466939730836], [0.6071533060269163], [0.5356933879461673], [0.4286132241076653], [0.3214599180807489], [0.2856933879461674], [0.3214599180807489], [0.46430661205383267], [0.6071533060269163], [0.6428466939730836], [0.5356933879461673], [0.3571533060269163], [0.1786132241076653], [0.071459918080749], [0.071459918080749], [0.1786132241076653], [0.3571533060269163], [0.571459918080749], [0.7143066120538326], [0.7856933879461674], [0.7856933879461674], [0.7143066120538326], [0.6786132241076653], [0.6786132241076653], [0.7143066120538326], [0.7856933879461674], [0.7856933879461674], [0.7143066120538326], [0.6071533060269163], [0.5356933879461673]], "masks": [[1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1]], "evals": [[0.25], [0.25], [0.2856933879461674], [0.3928466939730837], [0.5356933879461673], [0.6428466939730836], [0.7500000000000001], [0.7856933879461674], [0.7143066120538326], [0.6071533060269163], [0.5], [0.3571533060269163], [0.25], [0.1786132241076653], [0.1071533060269163], [0.035766530134581614], [0.0], [0.035766530134581614], [0.1071533060269163], [0.2143066120538327], [0.3214599180807489], [0.46430661205383267], [0.571459918080749], [0.6786132241076653], [0.6786132241076653], [0.6786132241076653], [0.6428466939730836], [0.5356933879461673], [0.46430661205383267], [0.3571533060269163], [0.25], [0.1786132241076653], [0.1786132241076653], [0.2143066120538327], [0.2856933879461674], [0.3214599180807489], [0.3928466939730837], [0.46430661205383267], [0.5356933879461673], [0.6428466939730836], [0.7500000000000001], [0.7856933879461674], [0.7500000000000001], [0.6428466939730836], [0.5356933879461673], [0.46430661205383267], [0.5], [0.5356933879461673], [0.571459918080749], [0.5356933879461673], [0.4286132241076653], [0.3571533060269163], [0.3571533060269163], [0.3928466939730837], [0.5], [0.6071533060269163], [0.6786132241076653], [0.7143066120538326], [0.7143066120538326], [0.6786132241076653], [0.6786132241076653], [0.6786132241076653], [0.7143066120538326], [0.7143066120538326], [0.7500000000000001], [0.6786132241076653], [0.571459918080749], [0.4286132241076653], [0.2856933879461674], [0.2143066120538327], [0.2856933879461674], [0.4286132241076653], [0.6071533060269163], [0.7500000000000001], [0.7856933879461674], [0.7500000000000001], [0.7143066120538326], [0.7500000000000001], [0.7500000000000001], [0.7856933879461674], [0.7143066120538326], [0.6071533060269163], [0.46430661205383267], [0.3928466939730837], [0.4286132241076653], [0.5356933879461673], [0.7500000000000001], [0.8928466939730837], [1.0], [1.0], [0.8928466939730837], [0.7143066120538326], [0.5356933879461673], [0.4286132241076653], [0.3928466939730837], [0.4286132241076653], [0.5356933879461673], [0.6428466939730836], [0.6786132241076653], [0.6428466939730836], [0.5356933879461673], [0.3928466939730837], [0.3214599180807489], [0.3214599180807489], [0.3214599180807489], [0.3928466939730837], [0.3928466939730837], [0.3571533060269163], [0.2856933879461674], [0.2143066120538327], [0.2143066120538327], [0.25], [0.3214599180807489], [0.3928466939730837], [0.3928466939730837], [0.4286132241076653], [0.4286132241076653], [0.4286132241076653], [0.3928466939730837], [0.3571533060269163], [0.2856933879461674], [0.25], [0.2856933879461674], [0.4286132241076653], [0.6071533060269163], [0.7500000000000001], [0.8214599180807489], [0.7500000000000001], [0.571459918080749], [0.3571533060269163], [0.1786132241076653], [0.1786132241076653], [0.2856933879461674], [0.46430661205383267], [0.6428466939730836], [0.7856933879461674], [0.8571533060269164], [0.8214599180807489], [0.7856933879461674], [0.7143066120538326], [0.6071533060269163], [0.5356933879461673], [0.5], [0.46430661205383267], [0.46430661205383267], [0.5356933879461673], [0.6071533060269163], [0.6786132241076653], [0.7143066120538326], [0.7143066120538326], [0.6786132241076653], [0.6071533060269163], [0.5], [0.3928466939730837], [0.2856933879461674], [0.1428466939730837], [0.071459918080749], [0.1071533060269163], [0.2856933879461674], [0.46430661205383267], [0.6428466939730836], [0.7500000000000001], [0.7500000000000001], [0.7143066120538326], [0.6428466939730836], [0.571459918080749], [0.46430661205383267], [0.3214599180807489], [0.2143066120538327], [0.2143066120538327], [0.3571533060269163], [0.5356933879461673], [0.7143066120538326], [0.7143066120538326], [0.6071533060269163], [0.46430661205383267], [0.3214599180807489], [0.2856933879461674], [0.2856933879461674], [0.3214599180807489], [0.3571533060269163], [0.3214599180807489], [0.3571533060269163], [0.3928466939730837], [0.46430661205383267], [0.5], [0.5356933879461673], [0.5], [0.5], [0.46430661205383267], [0.5], [0.5], [0.46430661205383267], [0.46430661205383267], [0.46430661205383267], [0.46430661205383267], [0.46430661205383267], [0.4286132241076653], [0.3571533060269163], [0.25], [0.25], [0.2856933879461674], [0.3928466939730837], [0.46430661205383267], [0.46430661205383267], [0.3928466939730837], [0.25], [0.1786132241076653], [0.1786132241076653], [0.2856933879461674], [0.4286132241076653], [0.5], [0.5], [0.3928466939730837], [0.25], [0.1786132241076653], [0.1786132241076653], [0.25], [0.3571533060269163], [0.4286132241076653], [0.46430661205383267], [0.46430661205383267], [0.46430661205383267], [0.46430661205383267], [0.5356933879461673], [0.571459918080749], [0.6428466939730836], [0.6071533060269163], [0.5356933879461673], [0.4286132241076653], [0.3214599180807489], [0.2856933879461674], [0.3214599180807489], [0.46430661205383267], [0.6071533060269163], [0.6428466939730836], [0.5356933879461673], [0.3571533060269163], [0.1786132241076653], [0.071459918080749], [0.071459918080749], [0.1786132241076653], [0.3571533060269163], [0.571459918080749], [0.7143066120538326], [0.7856933879461674], [0.7856933879461674], [0.7143066120538326], [0.6786132241076653], [0.6786132241076653], [0.7143066120538326], [0.7856933879461674], [0.7856933879461674], [0.7143066120538326], [0.6071533060269163], [0.5356933879461673]], "eval_masks": [[0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0]], "forwards": [[0.25], [0.25], [0.2856933879461674], [0.3928466939730837], [0.5356933879461673], [0.6428466939730836], [0.7500000000000001], [0.7856933879461674], [0.7143066120538326], [0.6071533060269163], [0.5], [0.3571533060269163], [0.25], [0.1786132241076653], [0.1071533060269163], [0.035766530134581614], [0.0], [0.035766530134581614], [0.1071533060269163], [0.2143066120538327], [0.3214599180807489], [0.46430661205383267], [0.571459918080749], [0.6786132241076653], [0.6786132241076653], [0.6786132241076653], [0.6428466939730836], [0.5356933879461673], [0.46430661205383267], [0.3571533060269163], [0.25], [0.1786132241076653], [0.1786132241076653], [0.2143066120538327], [0.2856933879461674], [0.3214599180807489], [0.3928466939730837], [0.46430661205383267], [0.5356933879461673], [0.6428466939730836], [0.7500000000000001], [0.7856933879461674], [0.7500000000000001], [0.6428466939730836], [0.5356933879461673], [0.46430661205383267], [0.5], [0.5356933879461673], [0.571459918080749], [0.5356933879461673], [0.4286132241076653], [0.3571533060269163], [0.3571533060269163], [0.3928466939730837], [0.5], [0.6071533060269163], [0.6786132241076653], [0.7143066120538326], [0.7143066120538326], [0.6786132241076653], [0.6786132241076653], [0.6786132241076653], [0.7143066120538326], [0.7143066120538326], [0.7500000000000001], [0.6786132241076653], [0.571459918080749], [0.4286132241076653], [0.2856933879461674], [0.2143066120538327], [0.2856933879461674], [0.4286132241076653], [0.6071533060269163], [0.7500000000000001], [0.7856933879461674], [0.7500000000000001], [0.7143066120538326], [0.7500000000000001], [0.7500000000000001], [0.7856933879461674], [0.7143066120538326], [0.6071533060269163], [0.46430661205383267], [0.3928466939730837], [0.4286132241076653], [0.5356933879461673], [0.7500000000000001], [0.8928466939730837], [1.0], [1.0], [0.8928466939730837], [0.7143066120538326], [0.5356933879461673], [0.4286132241076653], [0.3928466939730837], [0.4286132241076653], [0.5356933879461673], [0.6428466939730836], [0.6786132241076653], [0.6428466939730836], [0.5356933879461673], [0.3928466939730837], [0.3214599180807489], [0.3214599180807489], [0.3214599180807489], [0.3928466939730837], [0.3928466939730837], [0.3571533060269163], [0.2856933879461674], [0.2143066120538327], [0.2143066120538327], [0.25], [0.3214599180807489], [0.3928466939730837], [0.3928466939730837], [0.4286132241076653], [0.4286132241076653], [0.4286132241076653], [0.3928466939730837], [0.3571533060269163], [0.2856933879461674], [0.25], [0.2856933879461674], [0.4286132241076653], [0.6071533060269163], [0.7500000000000001], [0.8214599180807489], [0.7500000000000001], [0.571459918080749], [0.3571533060269163], [0.1786132241076653], [0.1786132241076653], [0.2856933879461674], [0.46430661205383267], [0.6428466939730836], [0.7856933879461674], [0.8571533060269164], [0.8214599180807489], [0.7856933879461674], [0.7143066120538326], [0.6071533060269163], [0.5356933879461673], [0.5], [0.46430661205383267], [0.46430661205383267], [0.5356933879461673], [0.6071533060269163], [0.6786132241076653], [0.7143066120538326], [0.7143066120538326], [0.6786132241076653], [0.6071533060269163], [0.5], [0.3928466939730837], [0.2856933879461674], [0.1428466939730837], [0.071459918080749], [0.1071533060269163], [0.2856933879461674], [0.46430661205383267], [0.6428466939730836], [0.7500000000000001], [0.7500000000000001], [0.7143066120538326], [0.6428466939730836], [0.571459918080749], [0.46430661205383267], [0.3214599180807489], [0.2143066120538327], [0.2143066120538327], [0.3571533060269163], [0.5356933879461673], [0.7143066120538326], [0.7143066120538326], [0.6071533060269163], [0.46430661205383267], [0.3214599180807489], [0.2856933879461674], [0.2856933879461674], [0.3214599180807489], [0.3571533060269163], [0.3214599180807489], [0.3571533060269163], [0.3928466939730837], [0.46430661205383267], [0.5], [0.5356933879461673], [0.5], [0.5], [0.46430661205383267], [0.5], [0.5], [0.46430661205383267], [0.46430661205383267], [0.46430661205383267], [0.46430661205383267], [0.46430661205383267], [0.4286132241076653], [0.3571533060269163], [0.25], [0.25], [0.2856933879461674], [0.3928466939730837], [0.46430661205383267], [0.46430661205383267], [0.3928466939730837], [0.25], [0.1786132241076653], [0.1786132241076653], [0.2856933879461674], [0.4286132241076653], [0.5], [0.5], [0.3928466939730837], [0.25], [0.1786132241076653], [0.1786132241076653], [0.25], [0.3571533060269163], [0.4286132241076653], [0.46430661205383267], [0.46430661205383267], [0.46430661205383267], [0.46430661205383267], [0.5356933879461673], [0.571459918080749], [0.6428466939730836], [0.6071533060269163], [0.5356933879461673], [0.4286132241076653], [0.3214599180807489], [0.2856933879461674], [0.3214599180807489], [0.46430661205383267], [0.6071533060269163], [0.6428466939730836], [0.5356933879461673], [0.3571533060269163], [0.1786132241076653], [0.071459918080749], [0.071459918080749], [0.1786132241076653], [0.3571533060269163], [0.571459918080749], [0.7143066120538326], [0.7856933879461674], [0.7856933879461674], [0.7143066120538326], [0.6786132241076653], [0.6786132241076653], [0.7143066120538326], [0.7856933879461674], [0.7856933879461674], [0.7143066120538326], [0.6071533060269163], [0.5356933879461673]], "deltas": [[1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0]]}} -{"label": 0, "forward": {"values": [[0.7586158192090396], [0.7586158192090396], [0.793114406779661], [0.8448446327683616], [0.8275776836158193], [0.7586158192090396], [0.6551553672316385], [0.5689618644067796], [0.5517302259887006], [0.5689618644067796], [0.6206920903954802], [0.6724223163841807], [0.6551553672316385], [0.6034604519774012], [0.5172316384180791], [0.46550141242937854], [0.43103813559322035], [0.46550141242937854], [0.5689618644067796], [0.7068855932203391], [0.8275776836158193], [0.8793079096045198], [0.8620762711864407], [0.7586158192090396], [0.6379237288135593], [0.5344985875706215], [0.48276836158192094], [0.5], [0.5172316384180791], [0.48276836158192094], [0.3965395480225989], [0.293114406779661], [0.22411723163841812], [0.20688559322033898], [0.293114406779661], [0.3965395480225989], [0.5], [0.5517302259887006], [0.5517302259887006], [0.5172316384180791], [0.46550141242937854], [0.43103813559322035], [0.3965395480225989], [0.3793079096045198], [0.3793079096045198], [0.3448093220338983], [0.3448093220338983], [0.3448093220338983], [0.3793079096045198], [0.3965395480225989], [0.43103813559322035], [0.4482697740112994], [0.4138064971751413], [0.3620762711864407], [0.293114406779661], [0.24138418079096047], [0.25861581920903953], [0.32757768361581924], [0.3793079096045198], [0.4138064971751413], [0.4138064971751413], [0.4138064971751413], [0.43103813559322035], [0.5], [0.5861935028248587], [0.6551553672316385], [0.6551553672316385], [0.5689618644067796], [0.4482697740112994], [0.3620762711864407], [0.32757768361581924], [0.3793079096045198], [0.5172316384180791], [0.6551553672316385], [0.7241525423728813], [0.6724223163841807], [0.48276836158192094], [0.25861581920903953], [0.05173022598870056], [0.0], [0.10342514124293792], [0.3620762711864407], [0.6206920903954802], [0.8103460451977401], [0.8448446327683616], [0.7413841807909605], [0.5689618644067796], [0.4138064971751413], [0.3103460451977401], [0.293114406779661], [0.3448093220338983], [0.43103813559322035], [0.5172316384180791], [0.5861935028248587], [0.6034604519774012], [0.5517302259887006], [0.46550141242937854], [0.3965395480225989], [0.3793079096045198], [0.43103813559322035], [0.48276836158192094], [0.5172316384180791], [0.5172316384180791], [0.48276836158192094], [0.4482697740112994], [0.4482697740112994], [0.46550141242937854], [0.5172316384180791], [0.5517302259887006], [0.5689618644067796], [0.6206920903954802], [0.6724223163841807], [0.7241525423728813], [0.7413841807909605], [0.7241525423728813], [0.6551553672316385], [0.6034604519774012], [0.5689618644067796], [0.5689618644067796], [0.5861935028248587], [0.6206920903954802], [0.6206920903954802], [0.6034604519774012], [0.5517302259887006], [0.5172316384180791], [0.5], [0.5172316384180791], [0.5517302259887006], [0.6034604519774012], [0.6379237288135593], [0.6206920903954802], [0.5861935028248587], [0.5517302259887006], [0.5517302259887006], [0.6206920903954802], [0.7068855932203391], [0.7758474576271187], [0.8103460451977401], [0.7758474576271187], [0.7241525423728813], [0.6724223163841807], [0.6379237288135593], [0.6034604519774012], [0.5689618644067796], [0.5344985875706215], [0.5172316384180791], [0.5344985875706215], [0.6206920903954802], [0.7068855932203391], [0.7758474576271187], [0.8103460451977401], [0.793114406779661], [0.7758474576271187], [0.7241525423728813], [0.7068855932203391], [0.7413841807909605], [0.793114406779661], [0.8448446327683616], [0.8448446327683616], [0.793114406779661], [0.6724223163841807], [0.5517302259887006], [0.46550141242937854], [0.4482697740112994], [0.5172316384180791], [0.6551553672316385], [0.793114406779661], [0.8793079096045198], [0.8620762711864407], [0.7586158192090396], [0.5861935028248587], [0.4482697740112994], [0.3965395480225989], [0.46550141242937854], [0.6206920903954802], [0.7758474576271187], [0.8448446327683616], [0.8103460451977401], [0.7241525423728813], [0.6379237288135593], [0.6034604519774012], [0.6206920903954802], [0.7068855932203391], [0.7758474576271187], [0.8448446327683616], [0.8793079096045198], [0.8793079096045198], [0.8620762711864407], [0.8448446327683616], [0.8275776836158193], [0.8620762711864407], [0.8965395480225988], [0.9138064971751413], [0.8793079096045198], [0.8275776836158193], [0.7758474576271187], [0.7758474576271187], [0.8620762711864407], [0.9655367231638419], [1.0], [0.9655367231638419], [0.8448446327683616], [0.7068855932203391], [0.6034604519774012], [0.6034604519774012], [0.6551553672316385], [0.7413841807909605], [0.8103460451977401], [0.8275776836158193], [0.8103460451977401], [0.7586158192090396], [0.6896539548022599], [0.6379237288135593], [0.6206920903954802], [0.6379237288135593], [0.6896539548022599], [0.7758474576271187], [0.8448446327683616], [0.8793079096045198], [0.8448446327683616], [0.7413841807909605], [0.6379237288135593], [0.5689618644067796], [0.5689618644067796], [0.6551553672316385], [0.7586158192090396], [0.8620762711864407], [0.8793079096045198], [0.793114406779661], [0.6379237288135593], [0.46550141242937854], [0.3793079096045198], [0.3965395480225989], [0.5344985875706215], [0.7068855932203391], [0.8275776836158193], [0.8103460451977401], [0.7068855932203391], [0.5344985875706215], [0.4138064971751413], [0.3793079096045198], [0.43103813559322035], [0.5344985875706215], [0.6379237288135593], [0.6551553672316385], [0.6034604519774012], [0.48276836158192094], [0.3620762711864407], [0.293114406779661], [0.32757768361581924], [0.48276836158192094], [0.6896539548022599], [0.8965395480225988], [0.9827683615819209], [0.9482697740112994], [0.793114406779661]], "masks": [[1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1]], "evals": [[0.7586158192090396], [0.7586158192090396], [0.793114406779661], [0.8448446327683616], [0.8275776836158193], [0.7586158192090396], [0.6551553672316385], [0.5689618644067796], [0.5517302259887006], [0.5689618644067796], [0.6206920903954802], [0.6724223163841807], [0.6551553672316385], [0.6034604519774012], [0.5172316384180791], [0.46550141242937854], [0.43103813559322035], [0.46550141242937854], [0.5689618644067796], [0.7068855932203391], [0.8275776836158193], [0.8793079096045198], [0.8620762711864407], [0.7586158192090396], [0.6379237288135593], [0.5344985875706215], [0.48276836158192094], [0.5], [0.5172316384180791], [0.48276836158192094], [0.3965395480225989], [0.293114406779661], [0.22411723163841812], [0.20688559322033898], [0.293114406779661], [0.3965395480225989], [0.5], [0.5517302259887006], [0.5517302259887006], [0.5172316384180791], [0.46550141242937854], [0.43103813559322035], [0.3965395480225989], [0.3793079096045198], [0.3793079096045198], [0.3448093220338983], [0.3448093220338983], [0.3448093220338983], [0.3793079096045198], [0.3965395480225989], [0.43103813559322035], [0.4482697740112994], [0.4138064971751413], [0.3620762711864407], [0.293114406779661], [0.24138418079096047], [0.25861581920903953], [0.32757768361581924], [0.3793079096045198], [0.4138064971751413], [0.4138064971751413], [0.4138064971751413], [0.43103813559322035], [0.5], [0.5861935028248587], [0.6551553672316385], [0.6551553672316385], [0.5689618644067796], [0.4482697740112994], [0.3620762711864407], [0.32757768361581924], [0.3793079096045198], [0.5172316384180791], [0.6551553672316385], [0.7241525423728813], [0.6724223163841807], [0.48276836158192094], [0.25861581920903953], [0.05173022598870056], [0.0], [0.10342514124293792], [0.3620762711864407], [0.6206920903954802], [0.8103460451977401], [0.8448446327683616], [0.7413841807909605], [0.5689618644067796], [0.4138064971751413], [0.3103460451977401], [0.293114406779661], [0.3448093220338983], [0.43103813559322035], [0.5172316384180791], [0.5861935028248587], [0.6034604519774012], [0.5517302259887006], [0.46550141242937854], [0.3965395480225989], [0.3793079096045198], [0.43103813559322035], [0.48276836158192094], [0.5172316384180791], [0.5172316384180791], [0.48276836158192094], [0.4482697740112994], [0.4482697740112994], [0.46550141242937854], [0.5172316384180791], [0.5517302259887006], [0.5689618644067796], [0.6206920903954802], [0.6724223163841807], [0.7241525423728813], [0.7413841807909605], [0.7241525423728813], [0.6551553672316385], [0.6034604519774012], [0.5689618644067796], [0.5689618644067796], [0.5861935028248587], [0.6206920903954802], [0.6206920903954802], [0.6034604519774012], [0.5517302259887006], [0.5172316384180791], [0.5], [0.5172316384180791], [0.5517302259887006], [0.6034604519774012], [0.6379237288135593], [0.6206920903954802], [0.5861935028248587], [0.5517302259887006], [0.5517302259887006], [0.6206920903954802], [0.7068855932203391], [0.7758474576271187], [0.8103460451977401], [0.7758474576271187], [0.7241525423728813], [0.6724223163841807], [0.6379237288135593], [0.6034604519774012], [0.5689618644067796], [0.5344985875706215], [0.5172316384180791], [0.5344985875706215], [0.6206920903954802], [0.7068855932203391], [0.7758474576271187], [0.8103460451977401], [0.793114406779661], [0.7758474576271187], [0.7241525423728813], [0.7068855932203391], [0.7413841807909605], [0.793114406779661], [0.8448446327683616], [0.8448446327683616], [0.793114406779661], [0.6724223163841807], [0.5517302259887006], [0.46550141242937854], [0.4482697740112994], [0.5172316384180791], [0.6551553672316385], [0.793114406779661], [0.8793079096045198], [0.8620762711864407], [0.7586158192090396], [0.5861935028248587], [0.4482697740112994], [0.3965395480225989], [0.46550141242937854], [0.6206920903954802], [0.7758474576271187], [0.8448446327683616], [0.8103460451977401], [0.7241525423728813], [0.6379237288135593], [0.6034604519774012], [0.6206920903954802], [0.7068855932203391], [0.7758474576271187], [0.8448446327683616], [0.8793079096045198], [0.8793079096045198], [0.8620762711864407], [0.8448446327683616], [0.8275776836158193], [0.8620762711864407], [0.8965395480225988], [0.9138064971751413], [0.8793079096045198], [0.8275776836158193], [0.7758474576271187], [0.7758474576271187], [0.8620762711864407], [0.9655367231638419], [1.0], [0.9655367231638419], [0.8448446327683616], [0.7068855932203391], [0.6034604519774012], [0.6034604519774012], [0.6551553672316385], [0.7413841807909605], [0.8103460451977401], [0.8275776836158193], [0.8103460451977401], [0.7586158192090396], [0.6896539548022599], [0.6379237288135593], [0.6206920903954802], [0.6379237288135593], [0.6896539548022599], [0.7758474576271187], [0.8448446327683616], [0.8793079096045198], [0.8448446327683616], [0.7413841807909605], [0.6379237288135593], [0.5689618644067796], [0.5689618644067796], [0.6551553672316385], [0.7586158192090396], [0.8620762711864407], [0.8793079096045198], [0.793114406779661], [0.6379237288135593], [0.46550141242937854], [0.3793079096045198], [0.3965395480225989], [0.5344985875706215], [0.7068855932203391], [0.8275776836158193], [0.8103460451977401], [0.7068855932203391], [0.5344985875706215], [0.4138064971751413], [0.3793079096045198], [0.43103813559322035], [0.5344985875706215], [0.6379237288135593], [0.6551553672316385], [0.6034604519774012], [0.48276836158192094], [0.3620762711864407], [0.293114406779661], [0.32757768361581924], [0.48276836158192094], [0.6896539548022599], [0.8965395480225988], [0.9827683615819209], [0.9482697740112994], [0.793114406779661]], "eval_masks": [[0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0]], "forwards": [[0.7586158192090396], [0.7586158192090396], [0.793114406779661], [0.8448446327683616], [0.8275776836158193], [0.7586158192090396], [0.6551553672316385], [0.5689618644067796], [0.5517302259887006], [0.5689618644067796], [0.6206920903954802], [0.6724223163841807], [0.6551553672316385], [0.6034604519774012], [0.5172316384180791], [0.46550141242937854], [0.43103813559322035], [0.46550141242937854], [0.5689618644067796], [0.7068855932203391], [0.8275776836158193], [0.8793079096045198], [0.8620762711864407], [0.7586158192090396], [0.6379237288135593], [0.5344985875706215], [0.48276836158192094], [0.5], [0.5172316384180791], [0.48276836158192094], [0.3965395480225989], [0.293114406779661], [0.22411723163841812], [0.20688559322033898], [0.293114406779661], [0.3965395480225989], [0.5], [0.5517302259887006], [0.5517302259887006], [0.5172316384180791], [0.46550141242937854], [0.43103813559322035], [0.3965395480225989], [0.3793079096045198], [0.3793079096045198], [0.3448093220338983], [0.3448093220338983], [0.3448093220338983], [0.3793079096045198], [0.3965395480225989], [0.43103813559322035], [0.4482697740112994], [0.4138064971751413], [0.3620762711864407], [0.293114406779661], [0.24138418079096047], [0.25861581920903953], [0.32757768361581924], [0.3793079096045198], [0.4138064971751413], [0.4138064971751413], [0.4138064971751413], [0.43103813559322035], [0.5], [0.5861935028248587], [0.6551553672316385], [0.6551553672316385], [0.5689618644067796], [0.4482697740112994], [0.3620762711864407], [0.32757768361581924], [0.3793079096045198], [0.5172316384180791], [0.6551553672316385], [0.7241525423728813], [0.6724223163841807], [0.48276836158192094], [0.25861581920903953], [0.05173022598870056], [0.0], [0.10342514124293792], [0.3620762711864407], [0.6206920903954802], [0.8103460451977401], [0.8448446327683616], [0.7413841807909605], [0.5689618644067796], [0.4138064971751413], [0.3103460451977401], [0.293114406779661], [0.3448093220338983], [0.43103813559322035], [0.5172316384180791], [0.5861935028248587], [0.6034604519774012], [0.5517302259887006], [0.46550141242937854], [0.3965395480225989], [0.3793079096045198], [0.43103813559322035], [0.48276836158192094], [0.5172316384180791], [0.5172316384180791], [0.48276836158192094], [0.4482697740112994], [0.4482697740112994], [0.46550141242937854], [0.5172316384180791], [0.5517302259887006], [0.5689618644067796], [0.6206920903954802], [0.6724223163841807], [0.7241525423728813], [0.7413841807909605], [0.7241525423728813], [0.6551553672316385], [0.6034604519774012], [0.5689618644067796], [0.5689618644067796], [0.5861935028248587], [0.6206920903954802], [0.6206920903954802], [0.6034604519774012], [0.5517302259887006], [0.5172316384180791], [0.5], [0.5172316384180791], [0.5517302259887006], [0.6034604519774012], [0.6379237288135593], [0.6206920903954802], [0.5861935028248587], [0.5517302259887006], [0.5517302259887006], [0.6206920903954802], [0.7068855932203391], [0.7758474576271187], [0.8103460451977401], [0.7758474576271187], [0.7241525423728813], [0.6724223163841807], [0.6379237288135593], [0.6034604519774012], [0.5689618644067796], [0.5344985875706215], [0.5172316384180791], [0.5344985875706215], [0.6206920903954802], [0.7068855932203391], [0.7758474576271187], [0.8103460451977401], [0.793114406779661], [0.7758474576271187], [0.7241525423728813], [0.7068855932203391], [0.7413841807909605], [0.793114406779661], [0.8448446327683616], [0.8448446327683616], [0.793114406779661], [0.6724223163841807], [0.5517302259887006], [0.46550141242937854], [0.4482697740112994], [0.5172316384180791], [0.6551553672316385], [0.793114406779661], [0.8793079096045198], [0.8620762711864407], [0.7586158192090396], [0.5861935028248587], [0.4482697740112994], [0.3965395480225989], [0.46550141242937854], [0.6206920903954802], [0.7758474576271187], [0.8448446327683616], [0.8103460451977401], [0.7241525423728813], [0.6379237288135593], [0.6034604519774012], [0.6206920903954802], [0.7068855932203391], [0.7758474576271187], [0.8448446327683616], [0.8793079096045198], [0.8793079096045198], [0.8620762711864407], [0.8448446327683616], [0.8275776836158193], [0.8620762711864407], [0.8965395480225988], [0.9138064971751413], [0.8793079096045198], [0.8275776836158193], [0.7758474576271187], [0.7758474576271187], [0.8620762711864407], [0.9655367231638419], [1.0], [0.9655367231638419], [0.8448446327683616], [0.7068855932203391], [0.6034604519774012], [0.6034604519774012], [0.6551553672316385], [0.7413841807909605], [0.8103460451977401], [0.8275776836158193], [0.8103460451977401], [0.7586158192090396], [0.6896539548022599], [0.6379237288135593], [0.6206920903954802], [0.6379237288135593], [0.6896539548022599], [0.7758474576271187], [0.8448446327683616], [0.8793079096045198], [0.8448446327683616], [0.7413841807909605], [0.6379237288135593], [0.5689618644067796], [0.5689618644067796], [0.6551553672316385], [0.7586158192090396], [0.8620762711864407], [0.8793079096045198], [0.793114406779661], [0.6379237288135593], [0.46550141242937854], [0.3793079096045198], [0.3965395480225989], [0.5344985875706215], [0.7068855932203391], [0.8275776836158193], [0.8103460451977401], [0.7068855932203391], [0.5344985875706215], [0.4138064971751413], [0.3793079096045198], [0.43103813559322035], [0.5344985875706215], [0.6379237288135593], [0.6551553672316385], [0.6034604519774012], [0.48276836158192094], [0.3620762711864407], [0.293114406779661], [0.32757768361581924], [0.48276836158192094], [0.6896539548022599], [0.8965395480225988], [0.9827683615819209], [0.9482697740112994], [0.793114406779661]], "deltas": [[1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0]]}, "backward": {"values": [[0.793114406779661], [0.9482697740112994], [0.9827683615819209], [0.8965395480225988], [0.6896539548022599], [0.48276836158192094], [0.32757768361581924], [0.293114406779661], [0.3620762711864407], [0.48276836158192094], [0.6034604519774012], [0.6551553672316385], [0.6379237288135593], [0.5344985875706215], [0.43103813559322035], [0.3793079096045198], [0.4138064971751413], [0.5344985875706215], [0.7068855932203391], [0.8103460451977401], [0.8275776836158193], [0.7068855932203391], [0.5344985875706215], [0.3965395480225989], [0.3793079096045198], [0.46550141242937854], [0.6379237288135593], [0.793114406779661], [0.8793079096045198], [0.8620762711864407], [0.7586158192090396], [0.6551553672316385], [0.5689618644067796], [0.5689618644067796], [0.6379237288135593], [0.7413841807909605], [0.8448446327683616], [0.8793079096045198], [0.8448446327683616], [0.7758474576271187], [0.6896539548022599], [0.6379237288135593], [0.6206920903954802], [0.6379237288135593], [0.6896539548022599], [0.7586158192090396], [0.8103460451977401], [0.8275776836158193], [0.8103460451977401], [0.7413841807909605], [0.6551553672316385], [0.6034604519774012], [0.6034604519774012], [0.7068855932203391], [0.8448446327683616], [0.9655367231638419], [1.0], [0.9655367231638419], [0.8620762711864407], [0.7758474576271187], [0.7758474576271187], [0.8275776836158193], [0.8793079096045198], [0.9138064971751413], [0.8965395480225988], [0.8620762711864407], [0.8275776836158193], [0.8448446327683616], [0.8620762711864407], [0.8793079096045198], [0.8793079096045198], [0.8448446327683616], [0.7758474576271187], [0.7068855932203391], [0.6206920903954802], [0.6034604519774012], [0.6379237288135593], [0.7241525423728813], [0.8103460451977401], [0.8448446327683616], [0.7758474576271187], [0.6206920903954802], [0.46550141242937854], [0.3965395480225989], [0.4482697740112994], [0.5861935028248587], [0.7586158192090396], [0.8620762711864407], [0.8793079096045198], [0.793114406779661], [0.6551553672316385], [0.5172316384180791], [0.4482697740112994], [0.46550141242937854], [0.5517302259887006], [0.6724223163841807], [0.793114406779661], [0.8448446327683616], [0.8448446327683616], [0.793114406779661], [0.7413841807909605], [0.7068855932203391], [0.7241525423728813], [0.7758474576271187], [0.793114406779661], [0.8103460451977401], [0.7758474576271187], [0.7068855932203391], [0.6206920903954802], [0.5344985875706215], [0.5172316384180791], [0.5344985875706215], [0.5689618644067796], [0.6034604519774012], [0.6379237288135593], [0.6724223163841807], [0.7241525423728813], [0.7758474576271187], [0.8103460451977401], [0.7758474576271187], [0.7068855932203391], [0.6206920903954802], [0.5517302259887006], [0.5517302259887006], [0.5861935028248587], [0.6206920903954802], [0.6379237288135593], [0.6034604519774012], [0.5517302259887006], [0.5172316384180791], [0.5], [0.5172316384180791], [0.5517302259887006], [0.6034604519774012], [0.6206920903954802], [0.6206920903954802], [0.5861935028248587], [0.5689618644067796], [0.5689618644067796], [0.6034604519774012], [0.6551553672316385], [0.7241525423728813], [0.7413841807909605], [0.7241525423728813], [0.6724223163841807], [0.6206920903954802], [0.5689618644067796], [0.5517302259887006], [0.5172316384180791], [0.46550141242937854], [0.4482697740112994], [0.4482697740112994], [0.48276836158192094], [0.5172316384180791], [0.5172316384180791], [0.48276836158192094], [0.43103813559322035], [0.3793079096045198], [0.3965395480225989], [0.46550141242937854], [0.5517302259887006], [0.6034604519774012], [0.5861935028248587], [0.5172316384180791], [0.43103813559322035], [0.3448093220338983], [0.293114406779661], [0.3103460451977401], [0.4138064971751413], [0.5689618644067796], [0.7413841807909605], [0.8448446327683616], [0.8103460451977401], [0.6206920903954802], [0.3620762711864407], [0.10342514124293792], [0.0], [0.05173022598870056], [0.25861581920903953], [0.48276836158192094], [0.6724223163841807], [0.7241525423728813], [0.6551553672316385], [0.5172316384180791], [0.3793079096045198], [0.32757768361581924], [0.3620762711864407], [0.4482697740112994], [0.5689618644067796], [0.6551553672316385], [0.6551553672316385], [0.5861935028248587], [0.5], [0.43103813559322035], [0.4138064971751413], [0.4138064971751413], [0.4138064971751413], [0.3793079096045198], [0.32757768361581924], [0.25861581920903953], [0.24138418079096047], [0.293114406779661], [0.3620762711864407], [0.4138064971751413], [0.4482697740112994], [0.43103813559322035], [0.3965395480225989], [0.3793079096045198], [0.3448093220338983], [0.3448093220338983], [0.3448093220338983], [0.3793079096045198], [0.3793079096045198], [0.3965395480225989], [0.43103813559322035], [0.46550141242937854], [0.5172316384180791], [0.5517302259887006], [0.5517302259887006], [0.5], [0.3965395480225989], [0.293114406779661], [0.20688559322033898], [0.22411723163841812], [0.293114406779661], [0.3965395480225989], [0.48276836158192094], [0.5172316384180791], [0.5], [0.48276836158192094], [0.5344985875706215], [0.6379237288135593], [0.7586158192090396], [0.8620762711864407], [0.8793079096045198], [0.8275776836158193], [0.7068855932203391], [0.5689618644067796], [0.46550141242937854], [0.43103813559322035], [0.46550141242937854], [0.5172316384180791], [0.6034604519774012], [0.6551553672316385], [0.6724223163841807], [0.6206920903954802], [0.5689618644067796], [0.5517302259887006], [0.5689618644067796], [0.6551553672316385], [0.7586158192090396], [0.8275776836158193], [0.8448446327683616], [0.793114406779661], [0.7586158192090396], [0.7586158192090396]], "masks": [[1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1]], "evals": [[0.793114406779661], [0.9482697740112994], [0.9827683615819209], [0.8965395480225988], [0.6896539548022599], [0.48276836158192094], [0.32757768361581924], [0.293114406779661], [0.3620762711864407], [0.48276836158192094], [0.6034604519774012], [0.6551553672316385], [0.6379237288135593], [0.5344985875706215], [0.43103813559322035], [0.3793079096045198], [0.4138064971751413], [0.5344985875706215], [0.7068855932203391], [0.8103460451977401], [0.8275776836158193], [0.7068855932203391], [0.5344985875706215], [0.3965395480225989], [0.3793079096045198], [0.46550141242937854], [0.6379237288135593], [0.793114406779661], [0.8793079096045198], [0.8620762711864407], [0.7586158192090396], [0.6551553672316385], [0.5689618644067796], [0.5689618644067796], [0.6379237288135593], [0.7413841807909605], [0.8448446327683616], [0.8793079096045198], [0.8448446327683616], [0.7758474576271187], [0.6896539548022599], [0.6379237288135593], [0.6206920903954802], [0.6379237288135593], [0.6896539548022599], [0.7586158192090396], [0.8103460451977401], [0.8275776836158193], [0.8103460451977401], [0.7413841807909605], [0.6551553672316385], [0.6034604519774012], [0.6034604519774012], [0.7068855932203391], [0.8448446327683616], [0.9655367231638419], [1.0], [0.9655367231638419], [0.8620762711864407], [0.7758474576271187], [0.7758474576271187], [0.8275776836158193], [0.8793079096045198], [0.9138064971751413], [0.8965395480225988], [0.8620762711864407], [0.8275776836158193], [0.8448446327683616], [0.8620762711864407], [0.8793079096045198], [0.8793079096045198], [0.8448446327683616], [0.7758474576271187], [0.7068855932203391], [0.6206920903954802], [0.6034604519774012], [0.6379237288135593], [0.7241525423728813], [0.8103460451977401], [0.8448446327683616], [0.7758474576271187], [0.6206920903954802], [0.46550141242937854], [0.3965395480225989], [0.4482697740112994], [0.5861935028248587], [0.7586158192090396], [0.8620762711864407], [0.8793079096045198], [0.793114406779661], [0.6551553672316385], [0.5172316384180791], [0.4482697740112994], [0.46550141242937854], [0.5517302259887006], [0.6724223163841807], [0.793114406779661], [0.8448446327683616], [0.8448446327683616], [0.793114406779661], [0.7413841807909605], [0.7068855932203391], [0.7241525423728813], [0.7758474576271187], [0.793114406779661], [0.8103460451977401], [0.7758474576271187], [0.7068855932203391], [0.6206920903954802], [0.5344985875706215], [0.5172316384180791], [0.5344985875706215], [0.5689618644067796], [0.6034604519774012], [0.6379237288135593], [0.6724223163841807], [0.7241525423728813], [0.7758474576271187], [0.8103460451977401], [0.7758474576271187], [0.7068855932203391], [0.6206920903954802], [0.5517302259887006], [0.5517302259887006], [0.5861935028248587], [0.6206920903954802], [0.6379237288135593], [0.6034604519774012], [0.5517302259887006], [0.5172316384180791], [0.5], [0.5172316384180791], [0.5517302259887006], [0.6034604519774012], [0.6206920903954802], [0.6206920903954802], [0.5861935028248587], [0.5689618644067796], [0.5689618644067796], [0.6034604519774012], [0.6551553672316385], [0.7241525423728813], [0.7413841807909605], [0.7241525423728813], [0.6724223163841807], [0.6206920903954802], [0.5689618644067796], [0.5517302259887006], [0.5172316384180791], [0.46550141242937854], [0.4482697740112994], [0.4482697740112994], [0.48276836158192094], [0.5172316384180791], [0.5172316384180791], [0.48276836158192094], [0.43103813559322035], [0.3793079096045198], [0.3965395480225989], [0.46550141242937854], [0.5517302259887006], [0.6034604519774012], [0.5861935028248587], [0.5172316384180791], [0.43103813559322035], [0.3448093220338983], [0.293114406779661], [0.3103460451977401], [0.4138064971751413], [0.5689618644067796], [0.7413841807909605], [0.8448446327683616], [0.8103460451977401], [0.6206920903954802], [0.3620762711864407], [0.10342514124293792], [0.0], [0.05173022598870056], [0.25861581920903953], [0.48276836158192094], [0.6724223163841807], [0.7241525423728813], [0.6551553672316385], [0.5172316384180791], [0.3793079096045198], [0.32757768361581924], [0.3620762711864407], [0.4482697740112994], [0.5689618644067796], [0.6551553672316385], [0.6551553672316385], [0.5861935028248587], [0.5], [0.43103813559322035], [0.4138064971751413], [0.4138064971751413], [0.4138064971751413], [0.3793079096045198], [0.32757768361581924], [0.25861581920903953], [0.24138418079096047], [0.293114406779661], [0.3620762711864407], [0.4138064971751413], [0.4482697740112994], [0.43103813559322035], [0.3965395480225989], [0.3793079096045198], [0.3448093220338983], [0.3448093220338983], [0.3448093220338983], [0.3793079096045198], [0.3793079096045198], [0.3965395480225989], [0.43103813559322035], [0.46550141242937854], [0.5172316384180791], [0.5517302259887006], [0.5517302259887006], [0.5], [0.3965395480225989], [0.293114406779661], [0.20688559322033898], [0.22411723163841812], [0.293114406779661], [0.3965395480225989], [0.48276836158192094], [0.5172316384180791], [0.5], [0.48276836158192094], [0.5344985875706215], [0.6379237288135593], [0.7586158192090396], [0.8620762711864407], [0.8793079096045198], [0.8275776836158193], [0.7068855932203391], [0.5689618644067796], [0.46550141242937854], [0.43103813559322035], [0.46550141242937854], [0.5172316384180791], [0.6034604519774012], [0.6551553672316385], [0.6724223163841807], [0.6206920903954802], [0.5689618644067796], [0.5517302259887006], [0.5689618644067796], [0.6551553672316385], [0.7586158192090396], [0.8275776836158193], [0.8448446327683616], [0.793114406779661], [0.7586158192090396], [0.7586158192090396]], "eval_masks": [[0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0]], "forwards": [[0.793114406779661], [0.9482697740112994], [0.9827683615819209], [0.8965395480225988], [0.6896539548022599], [0.48276836158192094], [0.32757768361581924], [0.293114406779661], [0.3620762711864407], [0.48276836158192094], [0.6034604519774012], [0.6551553672316385], [0.6379237288135593], [0.5344985875706215], [0.43103813559322035], [0.3793079096045198], [0.4138064971751413], [0.5344985875706215], [0.7068855932203391], [0.8103460451977401], [0.8275776836158193], [0.7068855932203391], [0.5344985875706215], [0.3965395480225989], [0.3793079096045198], [0.46550141242937854], [0.6379237288135593], [0.793114406779661], [0.8793079096045198], [0.8620762711864407], [0.7586158192090396], [0.6551553672316385], [0.5689618644067796], [0.5689618644067796], [0.6379237288135593], [0.7413841807909605], [0.8448446327683616], [0.8793079096045198], [0.8448446327683616], [0.7758474576271187], [0.6896539548022599], [0.6379237288135593], [0.6206920903954802], [0.6379237288135593], [0.6896539548022599], [0.7586158192090396], [0.8103460451977401], [0.8275776836158193], [0.8103460451977401], [0.7413841807909605], [0.6551553672316385], [0.6034604519774012], [0.6034604519774012], [0.7068855932203391], [0.8448446327683616], [0.9655367231638419], [1.0], [0.9655367231638419], [0.8620762711864407], [0.7758474576271187], [0.7758474576271187], [0.8275776836158193], [0.8793079096045198], [0.9138064971751413], [0.8965395480225988], [0.8620762711864407], [0.8275776836158193], [0.8448446327683616], [0.8620762711864407], [0.8793079096045198], [0.8793079096045198], [0.8448446327683616], [0.7758474576271187], [0.7068855932203391], [0.6206920903954802], [0.6034604519774012], [0.6379237288135593], [0.7241525423728813], [0.8103460451977401], [0.8448446327683616], [0.7758474576271187], [0.6206920903954802], [0.46550141242937854], [0.3965395480225989], [0.4482697740112994], [0.5861935028248587], [0.7586158192090396], [0.8620762711864407], [0.8793079096045198], [0.793114406779661], [0.6551553672316385], [0.5172316384180791], [0.4482697740112994], [0.46550141242937854], [0.5517302259887006], [0.6724223163841807], [0.793114406779661], [0.8448446327683616], [0.8448446327683616], [0.793114406779661], [0.7413841807909605], [0.7068855932203391], [0.7241525423728813], [0.7758474576271187], [0.793114406779661], [0.8103460451977401], [0.7758474576271187], [0.7068855932203391], [0.6206920903954802], [0.5344985875706215], [0.5172316384180791], [0.5344985875706215], [0.5689618644067796], [0.6034604519774012], [0.6379237288135593], [0.6724223163841807], [0.7241525423728813], [0.7758474576271187], [0.8103460451977401], [0.7758474576271187], [0.7068855932203391], [0.6206920903954802], [0.5517302259887006], [0.5517302259887006], [0.5861935028248587], [0.6206920903954802], [0.6379237288135593], [0.6034604519774012], [0.5517302259887006], [0.5172316384180791], [0.5], [0.5172316384180791], [0.5517302259887006], [0.6034604519774012], [0.6206920903954802], [0.6206920903954802], [0.5861935028248587], [0.5689618644067796], [0.5689618644067796], [0.6034604519774012], [0.6551553672316385], [0.7241525423728813], [0.7413841807909605], [0.7241525423728813], [0.6724223163841807], [0.6206920903954802], [0.5689618644067796], [0.5517302259887006], [0.5172316384180791], [0.46550141242937854], [0.4482697740112994], [0.4482697740112994], [0.48276836158192094], [0.5172316384180791], [0.5172316384180791], [0.48276836158192094], [0.43103813559322035], [0.3793079096045198], [0.3965395480225989], [0.46550141242937854], [0.5517302259887006], [0.6034604519774012], [0.5861935028248587], [0.5172316384180791], [0.43103813559322035], [0.3448093220338983], [0.293114406779661], [0.3103460451977401], [0.4138064971751413], [0.5689618644067796], [0.7413841807909605], [0.8448446327683616], [0.8103460451977401], [0.6206920903954802], [0.3620762711864407], [0.10342514124293792], [0.0], [0.05173022598870056], [0.25861581920903953], [0.48276836158192094], [0.6724223163841807], [0.7241525423728813], [0.6551553672316385], [0.5172316384180791], [0.3793079096045198], [0.32757768361581924], [0.3620762711864407], [0.4482697740112994], [0.5689618644067796], [0.6551553672316385], [0.6551553672316385], [0.5861935028248587], [0.5], [0.43103813559322035], [0.4138064971751413], [0.4138064971751413], [0.4138064971751413], [0.3793079096045198], [0.32757768361581924], [0.25861581920903953], [0.24138418079096047], [0.293114406779661], [0.3620762711864407], [0.4138064971751413], [0.4482697740112994], [0.43103813559322035], [0.3965395480225989], [0.3793079096045198], [0.3448093220338983], [0.3448093220338983], [0.3448093220338983], [0.3793079096045198], [0.3793079096045198], [0.3965395480225989], [0.43103813559322035], [0.46550141242937854], [0.5172316384180791], [0.5517302259887006], [0.5517302259887006], [0.5], [0.3965395480225989], [0.293114406779661], [0.20688559322033898], [0.22411723163841812], [0.293114406779661], [0.3965395480225989], [0.48276836158192094], [0.5172316384180791], [0.5], [0.48276836158192094], [0.5344985875706215], [0.6379237288135593], [0.7586158192090396], [0.8620762711864407], [0.8793079096045198], [0.8275776836158193], [0.7068855932203391], [0.5689618644067796], [0.46550141242937854], [0.43103813559322035], [0.46550141242937854], [0.5172316384180791], [0.6034604519774012], [0.6551553672316385], [0.6724223163841807], [0.6206920903954802], [0.5689618644067796], [0.5517302259887006], [0.5689618644067796], [0.6551553672316385], [0.7586158192090396], [0.8275776836158193], [0.8448446327683616], [0.793114406779661], [0.7586158192090396], [0.7586158192090396]], "deltas": [[1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0]]}} -{"label": 0, "forward": {"values": [[0.5000222608076221], [0.5652464271403767], [0.6739236899514714], [0.7608744045233962], [0.8043720226169806], [0.7826454743778105], [0.7391478562842261], [0.6956502381906416], [0.6956502381906416], [0.717421308045056], [0.6739236899514714], [0.6086995236187168], [0.4565246427140377], [0.2826232135701883], [0.10872178442633892], [0.0], [0.0], [0.10872178442633892], [0.3043497618093584], [0.5217488090467922], [0.6956502381906416], [0.7391478562842261], [0.717421308045056], [0.6521971417123014], [0.5869729753795467], [0.5652464271403767], [0.6086995236187168], [0.6521971417123014], [0.6739236899514714], [0.6739236899514714], [0.5869729753795467], [0.47829571256845194], [0.4130715462356974], [0.3913449979965273], [0.4130715462356974], [0.4565246427140377], [0.4565246427140377], [0.3913449979965273], [0.2608966653310182], [0.17394595075909355], [0.1521748809046792], [0.21739904723743375], [0.32612083166377276], [0.4130715462356974], [0.4130715462356974], [0.34784737990294284], [0.2608966653310182], [0.19567249899826364], [0.19567249899826364], [0.2608966653310182], [0.34784737990294284], [0.4130715462356974], [0.4130715462356974], [0.34784737990294284], [0.2608966653310182], [0.19567249899826364], [0.21739904723743375], [0.3043497618093584], [0.3913449979965273], [0.4347980944748675], [0.4347980944748675], [0.4347980944748675], [0.4347980944748675], [0.47829571256845194], [0.5435198789012065], [0.5652464271403767], [0.5217488090467922], [0.4565246427140377], [0.34784737990294284], [0.3043497618093584], [0.2826232135701883], [0.3043497618093584], [0.36957392814211293], [0.4565246427140377], [0.5000222608076221], [0.5000222608076221], [0.36957392814211293], [0.19567249899826364], [0.021771069854414276], [0.0], [0.10872178442633892], [0.36957392814211293], [0.6304705934731313], [0.7826454743778105], [0.7826454743778105], [0.6739236899514714], [0.47829571256845194], [0.32612083166377276], [0.19567249899826364], [0.10872178442633892], [0.1304483326655091], [0.2391701170918481], [0.4565246427140377], [0.6956502381906416], [0.8695961889497351], [0.8695961889497351], [0.7391478562842261], [0.5217488090467922], [0.32612083166377276], [0.21739904723743375], [0.2391701170918481], [0.3043497618093584], [0.36957392814211293], [0.4347980944748675], [0.5217488090467922], [0.6086995236187168], [0.6956502381906416], [0.6956502381906416], [0.6739236899514714], [0.6086995236187168], [0.5217488090467922], [0.5000222608076221], [0.5217488090467922], [0.5652464271403767], [0.5869729753795467], [0.6086995236187168], [0.6304705934731313], [0.6956502381906416], [0.7608744045233962], [0.8043720226169806], [0.7608744045233962], [0.6739236899514714], [0.5217488090467922], [0.3913449979965273], [0.34784737990294284], [0.36957392814211293], [0.5000222608076221], [0.6521971417123014], [0.7608744045233962], [0.7826454743778105], [0.6956502381906416], [0.5435198789012065], [0.3913449979965273], [0.3043497618093584], [0.2826232135701883], [0.34784737990294284], [0.4347980944748675], [0.47829571256845194], [0.4565246427140377], [0.4130715462356974], [0.36957392814211293], [0.32612083166377276], [0.2826232135701883], [0.2608966653310182], [0.21739904723743375], [0.19567249899826364], [0.21739904723743375], [0.2608966653310182], [0.34784737990294284], [0.4130715462356974], [0.4130715462356974], [0.34784737990294284], [0.2826232135701883], [0.2608966653310182], [0.3043497618093584], [0.4130715462356974], [0.5435198789012065], [0.6086995236187168], [0.5869729753795467], [0.5000222608076221], [0.36957392814211293], [0.2826232135701883], [0.2826232135701883], [0.4130715462356974], [0.6086995236187168], [0.8260985708561507], [0.9782734517608299], [1.0], [0.8913227371889052], [0.6956502381906416], [0.47829571256845194], [0.34784737990294284], [0.32612083166377276], [0.4565246427140377], [0.6086995236187168], [0.7608744045233962], [0.8043720226169806], [0.7391478562842261], [0.6521971417123014], [0.6086995236187168], [0.6086995236187168], [0.6521971417123014], [0.6739236899514714], [0.6304705934731313], [0.5217488090467922], [0.36957392814211293], [0.2826232135701883], [0.3043497618093584], [0.4565246427140377], [0.6521971417123014], [0.8260985708561507], [0.9130492854280754], [0.9130492854280754], [0.8478251190953208], [0.7826454743778105], [0.7391478562842261], [0.7608744045233962], [0.8043720226169806], [0.8043720226169806], [0.7608744045233962], [0.6086995236187168], [0.4130715462356974], [0.2391701170918481], [0.17394595075909355], [0.2391701170918481], [0.3913449979965273], [0.5435198789012065], [0.6304705934731313], [0.6086995236187168], [0.5000222608076221], [0.3913449979965273], [0.36957392814211293], [0.4565246427140377], [0.5869729753795467], [0.6956502381906416], [0.7391478562842261], [0.7391478562842261], [0.6956502381906416], [0.6304705934731313], [0.5435198789012065], [0.4565246427140377], [0.3913449979965273], [0.34784737990294284], [0.34784737990294284], [0.3913449979965273], [0.4565246427140377], [0.5435198789012065], [0.5869729753795467], [0.6304705934731313], [0.6086995236187168], [0.6086995236187168], [0.5869729753795467], [0.5652464271403767], [0.5435198789012065], [0.5000222608076221], [0.4565246427140377], [0.4130715462356974], [0.34784737990294284], [0.2826232135701883], [0.2391701170918481], [0.2391701170918481], [0.2608966653310182], [0.2826232135701883], [0.3043497618093584], [0.34784737990294284], [0.4130715462356974], [0.47829571256845194], [0.5652464271403767], [0.6086995236187168], [0.6086995236187168], [0.5435198789012065], [0.4565246427140377], [0.3913449979965273], [0.36957392814211293], [0.3913449979965273], [0.4347980944748675]], "masks": [[1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1]], "evals": [[0.5000222608076221], [0.5652464271403767], [0.6739236899514714], [0.7608744045233962], [0.8043720226169806], [0.7826454743778105], [0.7391478562842261], [0.6956502381906416], [0.6956502381906416], [0.717421308045056], [0.6739236899514714], [0.6086995236187168], [0.4565246427140377], [0.2826232135701883], [0.10872178442633892], [0.0], [0.0], [0.10872178442633892], [0.3043497618093584], [0.5217488090467922], [0.6956502381906416], [0.7391478562842261], [0.717421308045056], [0.6521971417123014], [0.5869729753795467], [0.5652464271403767], [0.6086995236187168], [0.6521971417123014], [0.6739236899514714], [0.6739236899514714], [0.5869729753795467], [0.47829571256845194], [0.4130715462356974], [0.3913449979965273], [0.4130715462356974], [0.4565246427140377], [0.4565246427140377], [0.3913449979965273], [0.2608966653310182], [0.17394595075909355], [0.1521748809046792], [0.21739904723743375], [0.32612083166377276], [0.4130715462356974], [0.4130715462356974], [0.34784737990294284], [0.2608966653310182], [0.19567249899826364], [0.19567249899826364], [0.2608966653310182], [0.34784737990294284], [0.4130715462356974], [0.4130715462356974], [0.34784737990294284], [0.2608966653310182], [0.19567249899826364], [0.21739904723743375], [0.3043497618093584], [0.3913449979965273], [0.4347980944748675], [0.4347980944748675], [0.4347980944748675], [0.4347980944748675], [0.47829571256845194], [0.5435198789012065], [0.5652464271403767], [0.5217488090467922], [0.4565246427140377], [0.34784737990294284], [0.3043497618093584], [0.2826232135701883], [0.3043497618093584], [0.36957392814211293], [0.4565246427140377], [0.5000222608076221], [0.5000222608076221], [0.36957392814211293], [0.19567249899826364], [0.021771069854414276], [0.0], [0.10872178442633892], [0.36957392814211293], [0.6304705934731313], [0.7826454743778105], [0.7826454743778105], [0.6739236899514714], [0.47829571256845194], [0.32612083166377276], [0.19567249899826364], [0.10872178442633892], [0.1304483326655091], [0.2391701170918481], [0.4565246427140377], [0.6956502381906416], [0.8695961889497351], [0.8695961889497351], [0.7391478562842261], [0.5217488090467922], [0.32612083166377276], [0.21739904723743375], [0.2391701170918481], [0.3043497618093584], [0.36957392814211293], [0.4347980944748675], [0.5217488090467922], [0.6086995236187168], [0.6956502381906416], [0.6956502381906416], [0.6739236899514714], [0.6086995236187168], [0.5217488090467922], [0.5000222608076221], [0.5217488090467922], [0.5652464271403767], [0.5869729753795467], [0.6086995236187168], [0.6304705934731313], [0.6956502381906416], [0.7608744045233962], [0.8043720226169806], [0.7608744045233962], [0.6739236899514714], [0.5217488090467922], [0.3913449979965273], [0.34784737990294284], [0.36957392814211293], [0.5000222608076221], [0.6521971417123014], [0.7608744045233962], [0.7826454743778105], [0.6956502381906416], [0.5435198789012065], [0.3913449979965273], [0.3043497618093584], [0.2826232135701883], [0.34784737990294284], [0.4347980944748675], [0.47829571256845194], [0.4565246427140377], [0.4130715462356974], [0.36957392814211293], [0.32612083166377276], [0.2826232135701883], [0.2608966653310182], [0.21739904723743375], [0.19567249899826364], [0.21739904723743375], [0.2608966653310182], [0.34784737990294284], [0.4130715462356974], [0.4130715462356974], [0.34784737990294284], [0.2826232135701883], [0.2608966653310182], [0.3043497618093584], [0.4130715462356974], [0.5435198789012065], [0.6086995236187168], [0.5869729753795467], [0.5000222608076221], [0.36957392814211293], [0.2826232135701883], [0.2826232135701883], [0.4130715462356974], [0.6086995236187168], [0.8260985708561507], [0.9782734517608299], [1.0], [0.8913227371889052], [0.6956502381906416], [0.47829571256845194], [0.34784737990294284], [0.32612083166377276], [0.4565246427140377], [0.6086995236187168], [0.7608744045233962], [0.8043720226169806], [0.7391478562842261], [0.6521971417123014], [0.6086995236187168], [0.6086995236187168], [0.6521971417123014], [0.6739236899514714], [0.6304705934731313], [0.5217488090467922], [0.36957392814211293], [0.2826232135701883], [0.3043497618093584], [0.4565246427140377], [0.6521971417123014], [0.8260985708561507], [0.9130492854280754], [0.9130492854280754], [0.8478251190953208], [0.7826454743778105], [0.7391478562842261], [0.7608744045233962], [0.8043720226169806], [0.8043720226169806], [0.7608744045233962], [0.6086995236187168], [0.4130715462356974], [0.2391701170918481], [0.17394595075909355], [0.2391701170918481], [0.3913449979965273], [0.5435198789012065], [0.6304705934731313], [0.6086995236187168], [0.5000222608076221], [0.3913449979965273], [0.36957392814211293], [0.4565246427140377], [0.5869729753795467], [0.6956502381906416], [0.7391478562842261], [0.7391478562842261], [0.6956502381906416], [0.6304705934731313], [0.5435198789012065], [0.4565246427140377], [0.3913449979965273], [0.34784737990294284], [0.34784737990294284], [0.3913449979965273], [0.4565246427140377], [0.5435198789012065], [0.5869729753795467], [0.6304705934731313], [0.6086995236187168], [0.6086995236187168], [0.5869729753795467], [0.5652464271403767], [0.5435198789012065], [0.5000222608076221], [0.4565246427140377], [0.4130715462356974], [0.34784737990294284], [0.2826232135701883], [0.2391701170918481], [0.2391701170918481], [0.2608966653310182], [0.2826232135701883], [0.3043497618093584], [0.34784737990294284], [0.4130715462356974], [0.47829571256845194], [0.5652464271403767], [0.6086995236187168], [0.6086995236187168], [0.5435198789012065], [0.4565246427140377], [0.3913449979965273], [0.36957392814211293], [0.3913449979965273], [0.4347980944748675]], "eval_masks": [[0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0]], "forwards": [[0.5000222608076221], [0.5652464271403767], [0.6739236899514714], [0.7608744045233962], [0.8043720226169806], [0.7826454743778105], [0.7391478562842261], [0.6956502381906416], [0.6956502381906416], [0.717421308045056], [0.6739236899514714], [0.6086995236187168], [0.4565246427140377], [0.2826232135701883], [0.10872178442633892], [0.0], [0.0], [0.10872178442633892], [0.3043497618093584], [0.5217488090467922], [0.6956502381906416], [0.7391478562842261], [0.717421308045056], [0.6521971417123014], [0.5869729753795467], [0.5652464271403767], [0.6086995236187168], [0.6521971417123014], [0.6739236899514714], [0.6739236899514714], [0.5869729753795467], [0.47829571256845194], [0.4130715462356974], [0.3913449979965273], [0.4130715462356974], [0.4565246427140377], [0.4565246427140377], [0.3913449979965273], [0.2608966653310182], [0.17394595075909355], [0.1521748809046792], [0.21739904723743375], [0.32612083166377276], [0.4130715462356974], [0.4130715462356974], [0.34784737990294284], [0.2608966653310182], [0.19567249899826364], [0.19567249899826364], [0.2608966653310182], [0.34784737990294284], [0.4130715462356974], [0.4130715462356974], [0.34784737990294284], [0.2608966653310182], [0.19567249899826364], [0.21739904723743375], [0.3043497618093584], [0.3913449979965273], [0.4347980944748675], [0.4347980944748675], [0.4347980944748675], [0.4347980944748675], [0.47829571256845194], [0.5435198789012065], [0.5652464271403767], [0.5217488090467922], [0.4565246427140377], [0.34784737990294284], [0.3043497618093584], [0.2826232135701883], [0.3043497618093584], [0.36957392814211293], [0.4565246427140377], [0.5000222608076221], [0.5000222608076221], [0.36957392814211293], [0.19567249899826364], [0.021771069854414276], [0.0], [0.10872178442633892], [0.36957392814211293], [0.6304705934731313], [0.7826454743778105], [0.7826454743778105], [0.6739236899514714], [0.47829571256845194], [0.32612083166377276], [0.19567249899826364], [0.10872178442633892], [0.1304483326655091], [0.2391701170918481], [0.4565246427140377], [0.6956502381906416], [0.8695961889497351], [0.8695961889497351], [0.7391478562842261], [0.5217488090467922], [0.32612083166377276], [0.21739904723743375], [0.2391701170918481], [0.3043497618093584], [0.36957392814211293], [0.4347980944748675], [0.5217488090467922], [0.6086995236187168], [0.6956502381906416], [0.6956502381906416], [0.6739236899514714], [0.6086995236187168], [0.5217488090467922], [0.5000222608076221], [0.5217488090467922], [0.5652464271403767], [0.5869729753795467], [0.6086995236187168], [0.6304705934731313], [0.6956502381906416], [0.7608744045233962], [0.8043720226169806], [0.7608744045233962], [0.6739236899514714], [0.5217488090467922], [0.3913449979965273], [0.34784737990294284], [0.36957392814211293], [0.5000222608076221], [0.6521971417123014], [0.7608744045233962], [0.7826454743778105], [0.6956502381906416], [0.5435198789012065], [0.3913449979965273], [0.3043497618093584], [0.2826232135701883], [0.34784737990294284], [0.4347980944748675], [0.47829571256845194], [0.4565246427140377], [0.4130715462356974], [0.36957392814211293], [0.32612083166377276], [0.2826232135701883], [0.2608966653310182], [0.21739904723743375], [0.19567249899826364], [0.21739904723743375], [0.2608966653310182], [0.34784737990294284], [0.4130715462356974], [0.4130715462356974], [0.34784737990294284], [0.2826232135701883], [0.2608966653310182], [0.3043497618093584], [0.4130715462356974], [0.5435198789012065], [0.6086995236187168], [0.5869729753795467], [0.5000222608076221], [0.36957392814211293], [0.2826232135701883], [0.2826232135701883], [0.4130715462356974], [0.6086995236187168], [0.8260985708561507], [0.9782734517608299], [1.0], [0.8913227371889052], [0.6956502381906416], [0.47829571256845194], [0.34784737990294284], [0.32612083166377276], [0.4565246427140377], [0.6086995236187168], [0.7608744045233962], [0.8043720226169806], [0.7391478562842261], [0.6521971417123014], [0.6086995236187168], [0.6086995236187168], [0.6521971417123014], [0.6739236899514714], [0.6304705934731313], [0.5217488090467922], [0.36957392814211293], [0.2826232135701883], [0.3043497618093584], [0.4565246427140377], [0.6521971417123014], [0.8260985708561507], [0.9130492854280754], [0.9130492854280754], [0.8478251190953208], [0.7826454743778105], [0.7391478562842261], [0.7608744045233962], [0.8043720226169806], [0.8043720226169806], [0.7608744045233962], [0.6086995236187168], [0.4130715462356974], [0.2391701170918481], [0.17394595075909355], [0.2391701170918481], [0.3913449979965273], [0.5435198789012065], [0.6304705934731313], [0.6086995236187168], [0.5000222608076221], [0.3913449979965273], [0.36957392814211293], [0.4565246427140377], [0.5869729753795467], [0.6956502381906416], [0.7391478562842261], [0.7391478562842261], [0.6956502381906416], [0.6304705934731313], [0.5435198789012065], [0.4565246427140377], [0.3913449979965273], [0.34784737990294284], [0.34784737990294284], [0.3913449979965273], [0.4565246427140377], [0.5435198789012065], [0.5869729753795467], [0.6304705934731313], [0.6086995236187168], [0.6086995236187168], [0.5869729753795467], [0.5652464271403767], [0.5435198789012065], [0.5000222608076221], [0.4565246427140377], [0.4130715462356974], [0.34784737990294284], [0.2826232135701883], [0.2391701170918481], [0.2391701170918481], [0.2608966653310182], [0.2826232135701883], [0.3043497618093584], [0.34784737990294284], [0.4130715462356974], [0.47829571256845194], [0.5652464271403767], [0.6086995236187168], [0.6086995236187168], [0.5435198789012065], [0.4565246427140377], [0.3913449979965273], [0.36957392814211293], [0.3913449979965273], [0.4347980944748675]], "deltas": [[1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0]]}, "backward": {"values": [[0.4347980944748675], [0.3913449979965273], [0.36957392814211293], [0.3913449979965273], [0.4565246427140377], [0.5435198789012065], [0.6086995236187168], [0.6086995236187168], [0.5652464271403767], [0.47829571256845194], [0.4130715462356974], [0.34784737990294284], [0.3043497618093584], [0.2826232135701883], [0.2608966653310182], [0.2391701170918481], [0.2391701170918481], [0.2826232135701883], [0.34784737990294284], [0.4130715462356974], [0.4565246427140377], [0.5000222608076221], [0.5435198789012065], [0.5652464271403767], [0.5869729753795467], [0.6086995236187168], [0.6086995236187168], [0.6304705934731313], [0.5869729753795467], [0.5435198789012065], [0.4565246427140377], [0.3913449979965273], [0.34784737990294284], [0.34784737990294284], [0.3913449979965273], [0.4565246427140377], [0.5435198789012065], [0.6304705934731313], [0.6956502381906416], [0.7391478562842261], [0.7391478562842261], [0.6956502381906416], [0.5869729753795467], [0.4565246427140377], [0.36957392814211293], [0.3913449979965273], [0.5000222608076221], [0.6086995236187168], [0.6304705934731313], [0.5435198789012065], [0.3913449979965273], [0.2391701170918481], [0.17394595075909355], [0.2391701170918481], [0.4130715462356974], [0.6086995236187168], [0.7608744045233962], [0.8043720226169806], [0.8043720226169806], [0.7608744045233962], [0.7391478562842261], [0.7826454743778105], [0.8478251190953208], [0.9130492854280754], [0.9130492854280754], [0.8260985708561507], [0.6521971417123014], [0.4565246427140377], [0.3043497618093584], [0.2826232135701883], [0.36957392814211293], [0.5217488090467922], [0.6304705934731313], [0.6739236899514714], [0.6521971417123014], [0.6086995236187168], [0.6086995236187168], [0.6521971417123014], [0.7391478562842261], [0.8043720226169806], [0.7608744045233962], [0.6086995236187168], [0.4565246427140377], [0.32612083166377276], [0.34784737990294284], [0.47829571256845194], [0.6956502381906416], [0.8913227371889052], [1.0], [0.9782734517608299], [0.8260985708561507], [0.6086995236187168], [0.4130715462356974], [0.2826232135701883], [0.2826232135701883], [0.36957392814211293], [0.5000222608076221], [0.5869729753795467], [0.6086995236187168], [0.5435198789012065], [0.4130715462356974], [0.3043497618093584], [0.2608966653310182], [0.2826232135701883], [0.34784737990294284], [0.4130715462356974], [0.4130715462356974], [0.34784737990294284], [0.2608966653310182], [0.21739904723743375], [0.19567249899826364], [0.21739904723743375], [0.2608966653310182], [0.2826232135701883], [0.32612083166377276], [0.36957392814211293], [0.4130715462356974], [0.4565246427140377], [0.47829571256845194], [0.4347980944748675], [0.34784737990294284], [0.2826232135701883], [0.3043497618093584], [0.3913449979965273], [0.5435198789012065], [0.6956502381906416], [0.7826454743778105], [0.7608744045233962], [0.6521971417123014], [0.5000222608076221], [0.36957392814211293], [0.34784737990294284], [0.3913449979965273], [0.5217488090467922], [0.6739236899514714], [0.7608744045233962], [0.8043720226169806], [0.7608744045233962], [0.6956502381906416], [0.6304705934731313], [0.6086995236187168], [0.5869729753795467], [0.5652464271403767], [0.5217488090467922], [0.5000222608076221], [0.5217488090467922], [0.6086995236187168], [0.6739236899514714], [0.6956502381906416], [0.6956502381906416], [0.6086995236187168], [0.5217488090467922], [0.4347980944748675], [0.36957392814211293], [0.3043497618093584], [0.2391701170918481], [0.21739904723743375], [0.32612083166377276], [0.5217488090467922], [0.7391478562842261], [0.8695961889497351], [0.8695961889497351], [0.6956502381906416], [0.4565246427140377], [0.2391701170918481], [0.1304483326655091], [0.10872178442633892], [0.19567249899826364], [0.32612083166377276], [0.47829571256845194], [0.6739236899514714], [0.7826454743778105], [0.7826454743778105], [0.6304705934731313], [0.36957392814211293], [0.10872178442633892], [0.0], [0.021771069854414276], [0.19567249899826364], [0.36957392814211293], [0.5000222608076221], [0.5000222608076221], [0.4565246427140377], [0.36957392814211293], [0.3043497618093584], [0.2826232135701883], [0.3043497618093584], [0.34784737990294284], [0.4565246427140377], [0.5217488090467922], [0.5652464271403767], [0.5435198789012065], [0.47829571256845194], [0.4347980944748675], [0.4347980944748675], [0.4347980944748675], [0.4347980944748675], [0.3913449979965273], [0.3043497618093584], [0.21739904723743375], [0.19567249899826364], [0.2608966653310182], [0.34784737990294284], [0.4130715462356974], [0.4130715462356974], [0.34784737990294284], [0.2608966653310182], [0.19567249899826364], [0.19567249899826364], [0.2608966653310182], [0.34784737990294284], [0.4130715462356974], [0.4130715462356974], [0.32612083166377276], [0.21739904723743375], [0.1521748809046792], [0.17394595075909355], [0.2608966653310182], [0.3913449979965273], [0.4565246427140377], [0.4565246427140377], [0.4130715462356974], [0.3913449979965273], [0.4130715462356974], [0.47829571256845194], [0.5869729753795467], [0.6739236899514714], [0.6739236899514714], [0.6521971417123014], [0.6086995236187168], [0.5652464271403767], [0.5869729753795467], [0.6521971417123014], [0.717421308045056], [0.7391478562842261], [0.6956502381906416], [0.5217488090467922], [0.3043497618093584], [0.10872178442633892], [0.0], [0.0], [0.10872178442633892], [0.2826232135701883], [0.4565246427140377], [0.6086995236187168], [0.6739236899514714], [0.717421308045056], [0.6956502381906416], [0.6956502381906416], [0.7391478562842261], [0.7826454743778105], [0.8043720226169806], [0.7608744045233962], [0.6739236899514714], [0.5652464271403767], [0.5000222608076221]], "masks": [[1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1]], "evals": [[0.4347980944748675], [0.3913449979965273], [0.36957392814211293], [0.3913449979965273], [0.4565246427140377], [0.5435198789012065], [0.6086995236187168], [0.6086995236187168], [0.5652464271403767], [0.47829571256845194], [0.4130715462356974], [0.34784737990294284], [0.3043497618093584], [0.2826232135701883], [0.2608966653310182], [0.2391701170918481], [0.2391701170918481], [0.2826232135701883], [0.34784737990294284], [0.4130715462356974], [0.4565246427140377], [0.5000222608076221], [0.5435198789012065], [0.5652464271403767], [0.5869729753795467], [0.6086995236187168], [0.6086995236187168], [0.6304705934731313], [0.5869729753795467], [0.5435198789012065], [0.4565246427140377], [0.3913449979965273], [0.34784737990294284], [0.34784737990294284], [0.3913449979965273], [0.4565246427140377], [0.5435198789012065], [0.6304705934731313], [0.6956502381906416], [0.7391478562842261], [0.7391478562842261], [0.6956502381906416], [0.5869729753795467], [0.4565246427140377], [0.36957392814211293], [0.3913449979965273], [0.5000222608076221], [0.6086995236187168], [0.6304705934731313], [0.5435198789012065], [0.3913449979965273], [0.2391701170918481], [0.17394595075909355], [0.2391701170918481], [0.4130715462356974], [0.6086995236187168], [0.7608744045233962], [0.8043720226169806], [0.8043720226169806], [0.7608744045233962], [0.7391478562842261], [0.7826454743778105], [0.8478251190953208], [0.9130492854280754], [0.9130492854280754], [0.8260985708561507], [0.6521971417123014], [0.4565246427140377], [0.3043497618093584], [0.2826232135701883], [0.36957392814211293], [0.5217488090467922], [0.6304705934731313], [0.6739236899514714], [0.6521971417123014], [0.6086995236187168], [0.6086995236187168], [0.6521971417123014], [0.7391478562842261], [0.8043720226169806], [0.7608744045233962], [0.6086995236187168], [0.4565246427140377], [0.32612083166377276], [0.34784737990294284], [0.47829571256845194], [0.6956502381906416], [0.8913227371889052], [1.0], [0.9782734517608299], [0.8260985708561507], [0.6086995236187168], [0.4130715462356974], [0.2826232135701883], [0.2826232135701883], [0.36957392814211293], [0.5000222608076221], [0.5869729753795467], [0.6086995236187168], [0.5435198789012065], [0.4130715462356974], [0.3043497618093584], [0.2608966653310182], [0.2826232135701883], [0.34784737990294284], [0.4130715462356974], [0.4130715462356974], [0.34784737990294284], [0.2608966653310182], [0.21739904723743375], [0.19567249899826364], [0.21739904723743375], [0.2608966653310182], [0.2826232135701883], [0.32612083166377276], [0.36957392814211293], [0.4130715462356974], [0.4565246427140377], [0.47829571256845194], [0.4347980944748675], [0.34784737990294284], [0.2826232135701883], [0.3043497618093584], [0.3913449979965273], [0.5435198789012065], [0.6956502381906416], [0.7826454743778105], [0.7608744045233962], [0.6521971417123014], [0.5000222608076221], [0.36957392814211293], [0.34784737990294284], [0.3913449979965273], [0.5217488090467922], [0.6739236899514714], [0.7608744045233962], [0.8043720226169806], [0.7608744045233962], [0.6956502381906416], [0.6304705934731313], [0.6086995236187168], [0.5869729753795467], [0.5652464271403767], [0.5217488090467922], [0.5000222608076221], [0.5217488090467922], [0.6086995236187168], [0.6739236899514714], [0.6956502381906416], [0.6956502381906416], [0.6086995236187168], [0.5217488090467922], [0.4347980944748675], [0.36957392814211293], [0.3043497618093584], [0.2391701170918481], [0.21739904723743375], [0.32612083166377276], [0.5217488090467922], [0.7391478562842261], [0.8695961889497351], [0.8695961889497351], [0.6956502381906416], [0.4565246427140377], [0.2391701170918481], [0.1304483326655091], [0.10872178442633892], [0.19567249899826364], [0.32612083166377276], [0.47829571256845194], [0.6739236899514714], [0.7826454743778105], [0.7826454743778105], [0.6304705934731313], [0.36957392814211293], [0.10872178442633892], [0.0], [0.021771069854414276], [0.19567249899826364], [0.36957392814211293], [0.5000222608076221], [0.5000222608076221], [0.4565246427140377], [0.36957392814211293], [0.3043497618093584], [0.2826232135701883], [0.3043497618093584], [0.34784737990294284], [0.4565246427140377], [0.5217488090467922], [0.5652464271403767], [0.5435198789012065], [0.47829571256845194], [0.4347980944748675], [0.4347980944748675], [0.4347980944748675], [0.4347980944748675], [0.3913449979965273], [0.3043497618093584], [0.21739904723743375], [0.19567249899826364], [0.2608966653310182], [0.34784737990294284], [0.4130715462356974], [0.4130715462356974], [0.34784737990294284], [0.2608966653310182], [0.19567249899826364], [0.19567249899826364], [0.2608966653310182], [0.34784737990294284], [0.4130715462356974], [0.4130715462356974], [0.32612083166377276], [0.21739904723743375], [0.1521748809046792], [0.17394595075909355], [0.2608966653310182], [0.3913449979965273], [0.4565246427140377], [0.4565246427140377], [0.4130715462356974], [0.3913449979965273], [0.4130715462356974], [0.47829571256845194], [0.5869729753795467], [0.6739236899514714], [0.6739236899514714], [0.6521971417123014], [0.6086995236187168], [0.5652464271403767], [0.5869729753795467], [0.6521971417123014], [0.717421308045056], [0.7391478562842261], [0.6956502381906416], [0.5217488090467922], [0.3043497618093584], [0.10872178442633892], [0.0], [0.0], [0.10872178442633892], [0.2826232135701883], [0.4565246427140377], [0.6086995236187168], [0.6739236899514714], [0.717421308045056], [0.6956502381906416], [0.6956502381906416], [0.7391478562842261], [0.7826454743778105], [0.8043720226169806], [0.7608744045233962], [0.6739236899514714], [0.5652464271403767], [0.5000222608076221]], "eval_masks": [[0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0]], "forwards": [[0.4347980944748675], [0.3913449979965273], [0.36957392814211293], [0.3913449979965273], [0.4565246427140377], [0.5435198789012065], [0.6086995236187168], [0.6086995236187168], [0.5652464271403767], [0.47829571256845194], [0.4130715462356974], [0.34784737990294284], [0.3043497618093584], [0.2826232135701883], [0.2608966653310182], [0.2391701170918481], [0.2391701170918481], [0.2826232135701883], [0.34784737990294284], [0.4130715462356974], [0.4565246427140377], [0.5000222608076221], [0.5435198789012065], [0.5652464271403767], [0.5869729753795467], [0.6086995236187168], [0.6086995236187168], [0.6304705934731313], [0.5869729753795467], [0.5435198789012065], [0.4565246427140377], [0.3913449979965273], [0.34784737990294284], [0.34784737990294284], [0.3913449979965273], [0.4565246427140377], [0.5435198789012065], [0.6304705934731313], [0.6956502381906416], [0.7391478562842261], [0.7391478562842261], [0.6956502381906416], [0.5869729753795467], [0.4565246427140377], [0.36957392814211293], [0.3913449979965273], [0.5000222608076221], [0.6086995236187168], [0.6304705934731313], [0.5435198789012065], [0.3913449979965273], [0.2391701170918481], [0.17394595075909355], [0.2391701170918481], [0.4130715462356974], [0.6086995236187168], [0.7608744045233962], [0.8043720226169806], [0.8043720226169806], [0.7608744045233962], [0.7391478562842261], [0.7826454743778105], [0.8478251190953208], [0.9130492854280754], [0.9130492854280754], [0.8260985708561507], [0.6521971417123014], [0.4565246427140377], [0.3043497618093584], [0.2826232135701883], [0.36957392814211293], [0.5217488090467922], [0.6304705934731313], [0.6739236899514714], [0.6521971417123014], [0.6086995236187168], [0.6086995236187168], [0.6521971417123014], [0.7391478562842261], [0.8043720226169806], [0.7608744045233962], [0.6086995236187168], [0.4565246427140377], [0.32612083166377276], [0.34784737990294284], [0.47829571256845194], [0.6956502381906416], [0.8913227371889052], [1.0], [0.9782734517608299], [0.8260985708561507], [0.6086995236187168], [0.4130715462356974], [0.2826232135701883], [0.2826232135701883], [0.36957392814211293], [0.5000222608076221], [0.5869729753795467], [0.6086995236187168], [0.5435198789012065], [0.4130715462356974], [0.3043497618093584], [0.2608966653310182], [0.2826232135701883], [0.34784737990294284], [0.4130715462356974], [0.4130715462356974], [0.34784737990294284], [0.2608966653310182], [0.21739904723743375], [0.19567249899826364], [0.21739904723743375], [0.2608966653310182], [0.2826232135701883], [0.32612083166377276], [0.36957392814211293], [0.4130715462356974], [0.4565246427140377], [0.47829571256845194], [0.4347980944748675], [0.34784737990294284], [0.2826232135701883], [0.3043497618093584], [0.3913449979965273], [0.5435198789012065], [0.6956502381906416], [0.7826454743778105], [0.7608744045233962], [0.6521971417123014], [0.5000222608076221], [0.36957392814211293], [0.34784737990294284], [0.3913449979965273], [0.5217488090467922], [0.6739236899514714], [0.7608744045233962], [0.8043720226169806], [0.7608744045233962], [0.6956502381906416], [0.6304705934731313], [0.6086995236187168], [0.5869729753795467], [0.5652464271403767], [0.5217488090467922], [0.5000222608076221], [0.5217488090467922], [0.6086995236187168], [0.6739236899514714], [0.6956502381906416], [0.6956502381906416], [0.6086995236187168], [0.5217488090467922], [0.4347980944748675], [0.36957392814211293], [0.3043497618093584], [0.2391701170918481], [0.21739904723743375], [0.32612083166377276], [0.5217488090467922], [0.7391478562842261], [0.8695961889497351], [0.8695961889497351], [0.6956502381906416], [0.4565246427140377], [0.2391701170918481], [0.1304483326655091], [0.10872178442633892], [0.19567249899826364], [0.32612083166377276], [0.47829571256845194], [0.6739236899514714], [0.7826454743778105], [0.7826454743778105], [0.6304705934731313], [0.36957392814211293], [0.10872178442633892], [0.0], [0.021771069854414276], [0.19567249899826364], [0.36957392814211293], [0.5000222608076221], [0.5000222608076221], [0.4565246427140377], [0.36957392814211293], [0.3043497618093584], [0.2826232135701883], [0.3043497618093584], [0.34784737990294284], [0.4565246427140377], [0.5217488090467922], [0.5652464271403767], [0.5435198789012065], [0.47829571256845194], [0.4347980944748675], [0.4347980944748675], [0.4347980944748675], [0.4347980944748675], [0.3913449979965273], [0.3043497618093584], [0.21739904723743375], [0.19567249899826364], [0.2608966653310182], [0.34784737990294284], [0.4130715462356974], [0.4130715462356974], [0.34784737990294284], [0.2608966653310182], [0.19567249899826364], [0.19567249899826364], [0.2608966653310182], [0.34784737990294284], [0.4130715462356974], [0.4130715462356974], [0.32612083166377276], [0.21739904723743375], [0.1521748809046792], [0.17394595075909355], [0.2608966653310182], [0.3913449979965273], [0.4565246427140377], [0.4565246427140377], [0.4130715462356974], [0.3913449979965273], [0.4130715462356974], [0.47829571256845194], [0.5869729753795467], [0.6739236899514714], [0.6739236899514714], [0.6521971417123014], [0.6086995236187168], [0.5652464271403767], [0.5869729753795467], [0.6521971417123014], [0.717421308045056], [0.7391478562842261], [0.6956502381906416], [0.5217488090467922], [0.3043497618093584], [0.10872178442633892], [0.0], [0.0], [0.10872178442633892], [0.2826232135701883], [0.4565246427140377], [0.6086995236187168], [0.6739236899514714], [0.717421308045056], [0.6956502381906416], [0.6956502381906416], [0.7391478562842261], [0.7826454743778105], [0.8043720226169806], [0.7608744045233962], [0.6739236899514714], [0.5652464271403767], [0.5000222608076221]], "deltas": [[1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0]]}} -{"label": 0, "forward": {"values": [[0.6551553672316384], [0.6896892655367232], [0.7930790960451978], [0.8620762711864407], [0.8276129943502825], [0.7586158192090395], [0.6551553672316384], [0.5517655367231639], [0.5172316384180791], [0.5517655367231639], [0.586228813559322], [0.6206920903954802], [0.586228813559322], [0.48276836158192094], [0.3448446327683616], [0.24138418079096038], [0.20692090395480223], [0.31038135593220334], [0.4483050847457627], [0.6551553672316384], [0.8276129943502825], [0.8965395480225988], [0.9310734463276835], [0.8620762711864407], [0.7930790960451978], [0.7241525423728813], [0.6896892655367232], [0.6896892655367232], [0.6551553672316384], [0.6206920903954802], [0.5172316384180791], [0.41377118644067795], [0.2758474576271186], [0.24138418079096038], [0.3448446327683616], [0.4483050847457627], [0.5517655367231639], [0.6206920903954802], [0.6206920903954802], [0.586228813559322], [0.5172316384180791], [0.5172316384180791], [0.5517655367231639], [0.5172316384180791], [0.5172316384180791], [0.4483050847457627], [0.41377118644067795], [0.37930790960451977], [0.4483050847457627], [0.5172316384180791], [0.5517655367231639], [0.586228813559322], [0.5172316384180791], [0.4483050847457627], [0.37930790960451977], [0.3448446327683616], [0.3448446327683616], [0.4483050847457627], [0.48276836158192094], [0.5517655367231639], [0.5172316384180791], [0.48276836158192094], [0.41377118644067795], [0.4483050847457627], [0.5172316384180791], [0.6206920903954802], [0.6551553672316384], [0.586228813559322], [0.48276836158192094], [0.3448446327683616], [0.2758474576271186], [0.31038135593220334], [0.48276836158192094], [0.6896892655367232], [0.8276129943502825], [0.8276129943502825], [0.6551553672316384], [0.37930790960451977], [0.10346045197740111], [0.0], [0.10346045197740111], [0.3448446327683616], [0.6206920903954802], [0.8620762711864407], [0.9310734463276835], [0.8620762711864407], [0.6896892655367232], [0.48276836158192094], [0.31038135593220334], [0.20692090395480223], [0.24138418079096038], [0.37930790960451977], [0.5517655367231639], [0.7241525423728813], [0.8276129943502825], [0.8276129943502825], [0.7241525423728813], [0.6206920903954802], [0.5172316384180791], [0.5172316384180791], [0.586228813559322], [0.6551553672316384], [0.6551553672316384], [0.6551553672316384], [0.6551553672316384], [0.6551553672316384], [0.6896892655367232], [0.6896892655367232], [0.7241525423728813], [0.7586158192090395], [0.8276129943502825], [0.8965395480225988], [0.9310734463276835], [1.0], [0.9655367231638419], [0.9310734463276835], [0.8965395480225988], [0.8965395480225988], [0.8965395480225988], [0.9655367231638419], [0.9655367231638419], [0.9655367231638419], [0.9310734463276835], [0.8965395480225988], [0.8620762711864407], [0.8276129943502825], [0.8620762711864407], [0.8965395480225988], [0.9310734463276835], [0.8965395480225988], [0.8276129943502825], [0.7586158192090395], [0.6896892655367232], [0.6551553672316384], [0.6896892655367232], [0.7586158192090395], [0.7930790960451978], [0.7930790960451978], [0.7930790960451978], [0.7241525423728813], [0.6896892655367232], [0.6206920903954802], [0.5517655367231639], [0.48276836158192094], [0.41377118644067795], [0.37930790960451977], [0.41377118644067795], [0.5172316384180791], [0.6206920903954802], [0.6896892655367232], [0.6896892655367232], [0.6551553672316384], [0.5517655367231639], [0.48276836158192094], [0.48276836158192094], [0.5517655367231639], [0.6551553672316384], [0.7241525423728813], [0.7586158192090395], [0.6896892655367232], [0.5517655367231639], [0.41377118644067795], [0.3448446327683616], [0.3448446327683616], [0.41377118644067795], [0.586228813559322], [0.7241525423728813], [0.8276129943502825], [0.7930790960451978], [0.6551553672316384], [0.48276836158192094], [0.31038135593220334], [0.2758474576271186], [0.3448446327683616], [0.5172316384180791], [0.6896892655367232], [0.7241525423728813], [0.6551553672316384], [0.5172316384180791], [0.3448446327683616], [0.31038135593220334], [0.3448446327683616], [0.4483050847457627], [0.586228813559322], [0.6551553672316384], [0.6896892655367232], [0.6551553672316384], [0.586228813559322], [0.586228813559322], [0.6551553672316384], [0.6896892655367232], [0.7586158192090395], [0.7241525423728813], [0.6551553672316384], [0.586228813559322], [0.5517655367231639], [0.6206920903954802], [0.7586158192090395], [0.8620762711864407], [0.8965395480225988], [0.7930790960451978], [0.6206920903954802], [0.41377118644067795], [0.2758474576271186], [0.24138418079096038], [0.31038135593220334], [0.41377118644067795], [0.5172316384180791], [0.586228813559322], [0.5517655367231639], [0.48276836158192094], [0.4483050847457627], [0.37930790960451977], [0.37930790960451977], [0.41377118644067795], [0.48276836158192094], [0.5517655367231639], [0.586228813559322], [0.6206920903954802], [0.586228813559322], [0.48276836158192094], [0.37930790960451977], [0.31038135593220334], [0.3448446327683616], [0.4483050847457627], [0.586228813559322], [0.6896892655367232], [0.6896892655367232], [0.586228813559322], [0.4483050847457627], [0.24138418079096038], [0.1723870056497175], [0.20692090395480223], [0.3448446327683616], [0.5172316384180791], [0.6551553672316384], [0.6896892655367232], [0.5517655367231639], [0.37930790960451977], [0.20692090395480223], [0.13792372881355927], [0.20692090395480223], [0.31038135593220334], [0.41377118644067795], [0.4483050847457627], [0.37930790960451977], [0.24138418079096038], [0.10346045197740111], [0.06899717514124296], [0.1723870056497175], [0.3448446327683616], [0.586228813559322], [0.7586158192090395], [0.8276129943502825], [0.7586158192090395], [0.6206920903954802]], "masks": [[1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1]], "evals": [[0.6551553672316384], [0.6896892655367232], [0.7930790960451978], [0.8620762711864407], [0.8276129943502825], [0.7586158192090395], [0.6551553672316384], [0.5517655367231639], [0.5172316384180791], [0.5517655367231639], [0.586228813559322], [0.6206920903954802], [0.586228813559322], [0.48276836158192094], [0.3448446327683616], [0.24138418079096038], [0.20692090395480223], [0.31038135593220334], [0.4483050847457627], [0.6551553672316384], [0.8276129943502825], [0.8965395480225988], [0.9310734463276835], [0.8620762711864407], [0.7930790960451978], [0.7241525423728813], [0.6896892655367232], [0.6896892655367232], [0.6551553672316384], [0.6206920903954802], [0.5172316384180791], [0.41377118644067795], [0.2758474576271186], [0.24138418079096038], [0.3448446327683616], [0.4483050847457627], [0.5517655367231639], [0.6206920903954802], [0.6206920903954802], [0.586228813559322], [0.5172316384180791], [0.5172316384180791], [0.5517655367231639], [0.5172316384180791], [0.5172316384180791], [0.4483050847457627], [0.41377118644067795], [0.37930790960451977], [0.4483050847457627], [0.5172316384180791], [0.5517655367231639], [0.586228813559322], [0.5172316384180791], [0.4483050847457627], [0.37930790960451977], [0.3448446327683616], [0.3448446327683616], [0.4483050847457627], [0.48276836158192094], [0.5517655367231639], [0.5172316384180791], [0.48276836158192094], [0.41377118644067795], [0.4483050847457627], [0.5172316384180791], [0.6206920903954802], [0.6551553672316384], [0.586228813559322], [0.48276836158192094], [0.3448446327683616], [0.2758474576271186], [0.31038135593220334], [0.48276836158192094], [0.6896892655367232], [0.8276129943502825], [0.8276129943502825], [0.6551553672316384], [0.37930790960451977], [0.10346045197740111], [0.0], [0.10346045197740111], [0.3448446327683616], [0.6206920903954802], [0.8620762711864407], [0.9310734463276835], [0.8620762711864407], [0.6896892655367232], [0.48276836158192094], [0.31038135593220334], [0.20692090395480223], [0.24138418079096038], [0.37930790960451977], [0.5517655367231639], [0.7241525423728813], [0.8276129943502825], [0.8276129943502825], [0.7241525423728813], [0.6206920903954802], [0.5172316384180791], [0.5172316384180791], [0.586228813559322], [0.6551553672316384], [0.6551553672316384], [0.6551553672316384], [0.6551553672316384], [0.6551553672316384], [0.6896892655367232], [0.6896892655367232], [0.7241525423728813], [0.7586158192090395], [0.8276129943502825], [0.8965395480225988], [0.9310734463276835], [1.0], [0.9655367231638419], [0.9310734463276835], [0.8965395480225988], [0.8965395480225988], [0.8965395480225988], [0.9655367231638419], [0.9655367231638419], [0.9655367231638419], [0.9310734463276835], [0.8965395480225988], [0.8620762711864407], [0.8276129943502825], [0.8620762711864407], [0.8965395480225988], [0.9310734463276835], [0.8965395480225988], [0.8276129943502825], [0.7586158192090395], [0.6896892655367232], [0.6551553672316384], [0.6896892655367232], [0.7586158192090395], [0.7930790960451978], [0.7930790960451978], [0.7930790960451978], [0.7241525423728813], [0.6896892655367232], [0.6206920903954802], [0.5517655367231639], [0.48276836158192094], [0.41377118644067795], [0.37930790960451977], [0.41377118644067795], [0.5172316384180791], [0.6206920903954802], [0.6896892655367232], [0.6896892655367232], [0.6551553672316384], [0.5517655367231639], [0.48276836158192094], [0.48276836158192094], [0.5517655367231639], [0.6551553672316384], [0.7241525423728813], [0.7586158192090395], [0.6896892655367232], [0.5517655367231639], [0.41377118644067795], [0.3448446327683616], [0.3448446327683616], [0.41377118644067795], [0.586228813559322], [0.7241525423728813], [0.8276129943502825], [0.7930790960451978], [0.6551553672316384], [0.48276836158192094], [0.31038135593220334], [0.2758474576271186], [0.3448446327683616], [0.5172316384180791], [0.6896892655367232], [0.7241525423728813], [0.6551553672316384], [0.5172316384180791], [0.3448446327683616], [0.31038135593220334], [0.3448446327683616], [0.4483050847457627], [0.586228813559322], [0.6551553672316384], [0.6896892655367232], [0.6551553672316384], [0.586228813559322], [0.586228813559322], [0.6551553672316384], [0.6896892655367232], [0.7586158192090395], [0.7241525423728813], [0.6551553672316384], [0.586228813559322], [0.5517655367231639], [0.6206920903954802], [0.7586158192090395], [0.8620762711864407], [0.8965395480225988], [0.7930790960451978], [0.6206920903954802], [0.41377118644067795], [0.2758474576271186], [0.24138418079096038], [0.31038135593220334], [0.41377118644067795], [0.5172316384180791], [0.586228813559322], [0.5517655367231639], [0.48276836158192094], [0.4483050847457627], [0.37930790960451977], [0.37930790960451977], [0.41377118644067795], [0.48276836158192094], [0.5517655367231639], [0.586228813559322], [0.6206920903954802], [0.586228813559322], [0.48276836158192094], [0.37930790960451977], [0.31038135593220334], [0.3448446327683616], [0.4483050847457627], [0.586228813559322], [0.6896892655367232], [0.6896892655367232], [0.586228813559322], [0.4483050847457627], [0.24138418079096038], [0.1723870056497175], [0.20692090395480223], [0.3448446327683616], [0.5172316384180791], [0.6551553672316384], [0.6896892655367232], [0.5517655367231639], [0.37930790960451977], [0.20692090395480223], [0.13792372881355927], [0.20692090395480223], [0.31038135593220334], [0.41377118644067795], [0.4483050847457627], [0.37930790960451977], [0.24138418079096038], [0.10346045197740111], [0.06899717514124296], [0.1723870056497175], [0.3448446327683616], [0.586228813559322], [0.7586158192090395], [0.8276129943502825], [0.7586158192090395], [0.6206920903954802]], "eval_masks": [[0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0]], "forwards": [[0.6551553672316384], [0.6896892655367232], [0.7930790960451978], [0.8620762711864407], [0.8276129943502825], [0.7586158192090395], [0.6551553672316384], [0.5517655367231639], [0.5172316384180791], [0.5517655367231639], [0.586228813559322], [0.6206920903954802], [0.586228813559322], [0.48276836158192094], [0.3448446327683616], [0.24138418079096038], [0.20692090395480223], [0.31038135593220334], [0.4483050847457627], [0.6551553672316384], [0.8276129943502825], [0.8965395480225988], [0.9310734463276835], [0.8620762711864407], [0.7930790960451978], [0.7241525423728813], [0.6896892655367232], [0.6896892655367232], [0.6551553672316384], [0.6206920903954802], [0.5172316384180791], [0.41377118644067795], [0.2758474576271186], [0.24138418079096038], [0.3448446327683616], [0.4483050847457627], [0.5517655367231639], [0.6206920903954802], [0.6206920903954802], [0.586228813559322], [0.5172316384180791], [0.5172316384180791], [0.5517655367231639], [0.5172316384180791], [0.5172316384180791], [0.4483050847457627], [0.41377118644067795], [0.37930790960451977], [0.4483050847457627], [0.5172316384180791], [0.5517655367231639], [0.586228813559322], [0.5172316384180791], [0.4483050847457627], [0.37930790960451977], [0.3448446327683616], [0.3448446327683616], [0.4483050847457627], [0.48276836158192094], [0.5517655367231639], [0.5172316384180791], [0.48276836158192094], [0.41377118644067795], [0.4483050847457627], [0.5172316384180791], [0.6206920903954802], [0.6551553672316384], [0.586228813559322], [0.48276836158192094], [0.3448446327683616], [0.2758474576271186], [0.31038135593220334], [0.48276836158192094], [0.6896892655367232], [0.8276129943502825], [0.8276129943502825], [0.6551553672316384], [0.37930790960451977], [0.10346045197740111], [0.0], [0.10346045197740111], [0.3448446327683616], [0.6206920903954802], [0.8620762711864407], [0.9310734463276835], [0.8620762711864407], [0.6896892655367232], [0.48276836158192094], [0.31038135593220334], [0.20692090395480223], [0.24138418079096038], [0.37930790960451977], [0.5517655367231639], [0.7241525423728813], [0.8276129943502825], [0.8276129943502825], [0.7241525423728813], [0.6206920903954802], [0.5172316384180791], [0.5172316384180791], [0.586228813559322], [0.6551553672316384], [0.6551553672316384], [0.6551553672316384], [0.6551553672316384], [0.6551553672316384], [0.6896892655367232], [0.6896892655367232], [0.7241525423728813], [0.7586158192090395], [0.8276129943502825], [0.8965395480225988], [0.9310734463276835], [1.0], [0.9655367231638419], [0.9310734463276835], [0.8965395480225988], [0.8965395480225988], [0.8965395480225988], [0.9655367231638419], [0.9655367231638419], [0.9655367231638419], [0.9310734463276835], [0.8965395480225988], [0.8620762711864407], [0.8276129943502825], [0.8620762711864407], [0.8965395480225988], [0.9310734463276835], [0.8965395480225988], [0.8276129943502825], [0.7586158192090395], [0.6896892655367232], [0.6551553672316384], [0.6896892655367232], [0.7586158192090395], [0.7930790960451978], [0.7930790960451978], [0.7930790960451978], [0.7241525423728813], [0.6896892655367232], [0.6206920903954802], [0.5517655367231639], [0.48276836158192094], [0.41377118644067795], [0.37930790960451977], [0.41377118644067795], [0.5172316384180791], [0.6206920903954802], [0.6896892655367232], [0.6896892655367232], [0.6551553672316384], [0.5517655367231639], [0.48276836158192094], [0.48276836158192094], [0.5517655367231639], [0.6551553672316384], [0.7241525423728813], [0.7586158192090395], [0.6896892655367232], [0.5517655367231639], [0.41377118644067795], [0.3448446327683616], [0.3448446327683616], [0.41377118644067795], [0.586228813559322], [0.7241525423728813], [0.8276129943502825], [0.7930790960451978], [0.6551553672316384], [0.48276836158192094], [0.31038135593220334], [0.2758474576271186], [0.3448446327683616], [0.5172316384180791], [0.6896892655367232], [0.7241525423728813], [0.6551553672316384], [0.5172316384180791], [0.3448446327683616], [0.31038135593220334], [0.3448446327683616], [0.4483050847457627], [0.586228813559322], [0.6551553672316384], [0.6896892655367232], [0.6551553672316384], [0.586228813559322], [0.586228813559322], [0.6551553672316384], [0.6896892655367232], [0.7586158192090395], [0.7241525423728813], [0.6551553672316384], [0.586228813559322], [0.5517655367231639], [0.6206920903954802], [0.7586158192090395], [0.8620762711864407], [0.8965395480225988], [0.7930790960451978], [0.6206920903954802], [0.41377118644067795], [0.2758474576271186], [0.24138418079096038], [0.31038135593220334], [0.41377118644067795], [0.5172316384180791], [0.586228813559322], [0.5517655367231639], [0.48276836158192094], [0.4483050847457627], [0.37930790960451977], [0.37930790960451977], [0.41377118644067795], [0.48276836158192094], [0.5517655367231639], [0.586228813559322], [0.6206920903954802], [0.586228813559322], [0.48276836158192094], [0.37930790960451977], [0.31038135593220334], [0.3448446327683616], [0.4483050847457627], [0.586228813559322], [0.6896892655367232], [0.6896892655367232], [0.586228813559322], [0.4483050847457627], [0.24138418079096038], [0.1723870056497175], [0.20692090395480223], [0.3448446327683616], [0.5172316384180791], [0.6551553672316384], [0.6896892655367232], [0.5517655367231639], [0.37930790960451977], [0.20692090395480223], [0.13792372881355927], [0.20692090395480223], [0.31038135593220334], [0.41377118644067795], [0.4483050847457627], [0.37930790960451977], [0.24138418079096038], [0.10346045197740111], [0.06899717514124296], [0.1723870056497175], [0.3448446327683616], [0.586228813559322], [0.7586158192090395], [0.8276129943502825], [0.7586158192090395], [0.6206920903954802]], "deltas": [[1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0]]}, "backward": {"values": [[0.6206920903954802], [0.7586158192090395], [0.8276129943502825], [0.7586158192090395], [0.586228813559322], [0.3448446327683616], [0.1723870056497175], [0.06899717514124296], [0.10346045197740111], [0.24138418079096038], [0.37930790960451977], [0.4483050847457627], [0.41377118644067795], [0.31038135593220334], [0.20692090395480223], [0.13792372881355927], [0.20692090395480223], [0.37930790960451977], [0.5517655367231639], [0.6896892655367232], [0.6551553672316384], [0.5172316384180791], [0.3448446327683616], [0.20692090395480223], [0.1723870056497175], [0.24138418079096038], [0.4483050847457627], [0.586228813559322], [0.6896892655367232], [0.6896892655367232], [0.586228813559322], [0.4483050847457627], [0.3448446327683616], [0.31038135593220334], [0.37930790960451977], [0.48276836158192094], [0.586228813559322], [0.6206920903954802], [0.586228813559322], [0.5517655367231639], [0.48276836158192094], [0.41377118644067795], [0.37930790960451977], [0.37930790960451977], [0.4483050847457627], [0.48276836158192094], [0.5517655367231639], [0.586228813559322], [0.5172316384180791], [0.41377118644067795], [0.31038135593220334], [0.24138418079096038], [0.2758474576271186], [0.41377118644067795], [0.6206920903954802], [0.7930790960451978], [0.8965395480225988], [0.8620762711864407], [0.7586158192090395], [0.6206920903954802], [0.5517655367231639], [0.586228813559322], [0.6551553672316384], [0.7241525423728813], [0.7586158192090395], [0.6896892655367232], [0.6551553672316384], [0.586228813559322], [0.586228813559322], [0.6551553672316384], [0.6896892655367232], [0.6551553672316384], [0.586228813559322], [0.4483050847457627], [0.3448446327683616], [0.31038135593220334], [0.3448446327683616], [0.5172316384180791], [0.6551553672316384], [0.7241525423728813], [0.6896892655367232], [0.5172316384180791], [0.3448446327683616], [0.2758474576271186], [0.31038135593220334], [0.48276836158192094], [0.6551553672316384], [0.7930790960451978], [0.8276129943502825], [0.7241525423728813], [0.586228813559322], [0.41377118644067795], [0.3448446327683616], [0.3448446327683616], [0.41377118644067795], [0.5517655367231639], [0.6896892655367232], [0.7586158192090395], [0.7241525423728813], [0.6551553672316384], [0.5517655367231639], [0.48276836158192094], [0.48276836158192094], [0.5517655367231639], [0.6551553672316384], [0.6896892655367232], [0.6896892655367232], [0.6206920903954802], [0.5172316384180791], [0.41377118644067795], [0.37930790960451977], [0.41377118644067795], [0.48276836158192094], [0.5517655367231639], [0.6206920903954802], [0.6896892655367232], [0.7241525423728813], [0.7930790960451978], [0.7930790960451978], [0.7930790960451978], [0.7586158192090395], [0.6896892655367232], [0.6551553672316384], [0.6896892655367232], [0.7586158192090395], [0.8276129943502825], [0.8965395480225988], [0.9310734463276835], [0.8965395480225988], [0.8620762711864407], [0.8276129943502825], [0.8620762711864407], [0.8965395480225988], [0.9310734463276835], [0.9655367231638419], [0.9655367231638419], [0.9655367231638419], [0.8965395480225988], [0.8965395480225988], [0.8965395480225988], [0.9310734463276835], [0.9655367231638419], [1.0], [0.9310734463276835], [0.8965395480225988], [0.8276129943502825], [0.7586158192090395], [0.7241525423728813], [0.6896892655367232], [0.6896892655367232], [0.6551553672316384], [0.6551553672316384], [0.6551553672316384], [0.6551553672316384], [0.6551553672316384], [0.586228813559322], [0.5172316384180791], [0.5172316384180791], [0.6206920903954802], [0.7241525423728813], [0.8276129943502825], [0.8276129943502825], [0.7241525423728813], [0.5517655367231639], [0.37930790960451977], [0.24138418079096038], [0.20692090395480223], [0.31038135593220334], [0.48276836158192094], [0.6896892655367232], [0.8620762711864407], [0.9310734463276835], [0.8620762711864407], [0.6206920903954802], [0.3448446327683616], [0.10346045197740111], [0.0], [0.10346045197740111], [0.37930790960451977], [0.6551553672316384], [0.8276129943502825], [0.8276129943502825], [0.6896892655367232], [0.48276836158192094], [0.31038135593220334], [0.2758474576271186], [0.3448446327683616], [0.48276836158192094], [0.586228813559322], [0.6551553672316384], [0.6206920903954802], [0.5172316384180791], [0.4483050847457627], [0.41377118644067795], [0.48276836158192094], [0.5172316384180791], [0.5517655367231639], [0.48276836158192094], [0.4483050847457627], [0.3448446327683616], [0.3448446327683616], [0.37930790960451977], [0.4483050847457627], [0.5172316384180791], [0.586228813559322], [0.5517655367231639], [0.5172316384180791], [0.4483050847457627], [0.37930790960451977], [0.41377118644067795], [0.4483050847457627], [0.5172316384180791], [0.5172316384180791], [0.5517655367231639], [0.5172316384180791], [0.5172316384180791], [0.586228813559322], [0.6206920903954802], [0.6206920903954802], [0.5517655367231639], [0.4483050847457627], [0.3448446327683616], [0.24138418079096038], [0.2758474576271186], [0.41377118644067795], [0.5172316384180791], [0.6206920903954802], [0.6551553672316384], [0.6896892655367232], [0.6896892655367232], [0.7241525423728813], [0.7930790960451978], [0.8620762711864407], [0.9310734463276835], [0.8965395480225988], [0.8276129943502825], [0.6551553672316384], [0.4483050847457627], [0.31038135593220334], [0.20692090395480223], [0.24138418079096038], [0.3448446327683616], [0.48276836158192094], [0.586228813559322], [0.6206920903954802], [0.586228813559322], [0.5517655367231639], [0.5172316384180791], [0.5517655367231639], [0.6551553672316384], [0.7586158192090395], [0.8276129943502825], [0.8620762711864407], [0.7930790960451978], [0.6896892655367232], [0.6551553672316384]], "masks": [[1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1]], "evals": [[0.6206920903954802], [0.7586158192090395], [0.8276129943502825], [0.7586158192090395], [0.586228813559322], [0.3448446327683616], [0.1723870056497175], [0.06899717514124296], [0.10346045197740111], [0.24138418079096038], [0.37930790960451977], [0.4483050847457627], [0.41377118644067795], [0.31038135593220334], [0.20692090395480223], [0.13792372881355927], [0.20692090395480223], [0.37930790960451977], [0.5517655367231639], [0.6896892655367232], [0.6551553672316384], [0.5172316384180791], [0.3448446327683616], [0.20692090395480223], [0.1723870056497175], [0.24138418079096038], [0.4483050847457627], [0.586228813559322], [0.6896892655367232], [0.6896892655367232], [0.586228813559322], [0.4483050847457627], [0.3448446327683616], [0.31038135593220334], [0.37930790960451977], [0.48276836158192094], [0.586228813559322], [0.6206920903954802], [0.586228813559322], [0.5517655367231639], [0.48276836158192094], [0.41377118644067795], [0.37930790960451977], [0.37930790960451977], [0.4483050847457627], [0.48276836158192094], [0.5517655367231639], [0.586228813559322], [0.5172316384180791], [0.41377118644067795], [0.31038135593220334], [0.24138418079096038], [0.2758474576271186], [0.41377118644067795], [0.6206920903954802], [0.7930790960451978], [0.8965395480225988], [0.8620762711864407], [0.7586158192090395], [0.6206920903954802], [0.5517655367231639], [0.586228813559322], [0.6551553672316384], [0.7241525423728813], [0.7586158192090395], [0.6896892655367232], [0.6551553672316384], [0.586228813559322], [0.586228813559322], [0.6551553672316384], [0.6896892655367232], [0.6551553672316384], [0.586228813559322], [0.4483050847457627], [0.3448446327683616], [0.31038135593220334], [0.3448446327683616], [0.5172316384180791], [0.6551553672316384], [0.7241525423728813], [0.6896892655367232], [0.5172316384180791], [0.3448446327683616], [0.2758474576271186], [0.31038135593220334], [0.48276836158192094], [0.6551553672316384], [0.7930790960451978], [0.8276129943502825], [0.7241525423728813], [0.586228813559322], [0.41377118644067795], [0.3448446327683616], [0.3448446327683616], [0.41377118644067795], [0.5517655367231639], [0.6896892655367232], [0.7586158192090395], [0.7241525423728813], [0.6551553672316384], [0.5517655367231639], [0.48276836158192094], [0.48276836158192094], [0.5517655367231639], [0.6551553672316384], [0.6896892655367232], [0.6896892655367232], [0.6206920903954802], [0.5172316384180791], [0.41377118644067795], [0.37930790960451977], [0.41377118644067795], [0.48276836158192094], [0.5517655367231639], [0.6206920903954802], [0.6896892655367232], [0.7241525423728813], [0.7930790960451978], [0.7930790960451978], [0.7930790960451978], [0.7586158192090395], [0.6896892655367232], [0.6551553672316384], [0.6896892655367232], [0.7586158192090395], [0.8276129943502825], [0.8965395480225988], [0.9310734463276835], [0.8965395480225988], [0.8620762711864407], [0.8276129943502825], [0.8620762711864407], [0.8965395480225988], [0.9310734463276835], [0.9655367231638419], [0.9655367231638419], [0.9655367231638419], [0.8965395480225988], [0.8965395480225988], [0.8965395480225988], [0.9310734463276835], [0.9655367231638419], [1.0], [0.9310734463276835], [0.8965395480225988], [0.8276129943502825], [0.7586158192090395], [0.7241525423728813], [0.6896892655367232], [0.6896892655367232], [0.6551553672316384], [0.6551553672316384], [0.6551553672316384], [0.6551553672316384], [0.6551553672316384], [0.586228813559322], [0.5172316384180791], [0.5172316384180791], [0.6206920903954802], [0.7241525423728813], [0.8276129943502825], [0.8276129943502825], [0.7241525423728813], [0.5517655367231639], [0.37930790960451977], [0.24138418079096038], [0.20692090395480223], [0.31038135593220334], [0.48276836158192094], [0.6896892655367232], [0.8620762711864407], [0.9310734463276835], [0.8620762711864407], [0.6206920903954802], [0.3448446327683616], [0.10346045197740111], [0.0], [0.10346045197740111], [0.37930790960451977], [0.6551553672316384], [0.8276129943502825], [0.8276129943502825], [0.6896892655367232], [0.48276836158192094], [0.31038135593220334], [0.2758474576271186], [0.3448446327683616], [0.48276836158192094], [0.586228813559322], [0.6551553672316384], [0.6206920903954802], [0.5172316384180791], [0.4483050847457627], [0.41377118644067795], [0.48276836158192094], [0.5172316384180791], [0.5517655367231639], [0.48276836158192094], [0.4483050847457627], [0.3448446327683616], [0.3448446327683616], [0.37930790960451977], [0.4483050847457627], [0.5172316384180791], [0.586228813559322], [0.5517655367231639], [0.5172316384180791], [0.4483050847457627], [0.37930790960451977], [0.41377118644067795], [0.4483050847457627], [0.5172316384180791], [0.5172316384180791], [0.5517655367231639], [0.5172316384180791], [0.5172316384180791], [0.586228813559322], [0.6206920903954802], [0.6206920903954802], [0.5517655367231639], [0.4483050847457627], [0.3448446327683616], [0.24138418079096038], [0.2758474576271186], [0.41377118644067795], [0.5172316384180791], [0.6206920903954802], [0.6551553672316384], [0.6896892655367232], [0.6896892655367232], [0.7241525423728813], [0.7930790960451978], [0.8620762711864407], [0.9310734463276835], [0.8965395480225988], [0.8276129943502825], [0.6551553672316384], [0.4483050847457627], [0.31038135593220334], [0.20692090395480223], [0.24138418079096038], [0.3448446327683616], [0.48276836158192094], [0.586228813559322], [0.6206920903954802], [0.586228813559322], [0.5517655367231639], [0.5172316384180791], [0.5517655367231639], [0.6551553672316384], [0.7586158192090395], [0.8276129943502825], [0.8620762711864407], [0.7930790960451978], [0.6896892655367232], [0.6551553672316384]], "eval_masks": [[0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0]], "forwards": [[0.6206920903954802], [0.7586158192090395], [0.8276129943502825], [0.7586158192090395], [0.586228813559322], [0.3448446327683616], [0.1723870056497175], [0.06899717514124296], [0.10346045197740111], [0.24138418079096038], [0.37930790960451977], [0.4483050847457627], [0.41377118644067795], [0.31038135593220334], [0.20692090395480223], [0.13792372881355927], [0.20692090395480223], [0.37930790960451977], [0.5517655367231639], [0.6896892655367232], [0.6551553672316384], [0.5172316384180791], [0.3448446327683616], [0.20692090395480223], [0.1723870056497175], [0.24138418079096038], [0.4483050847457627], [0.586228813559322], [0.6896892655367232], [0.6896892655367232], [0.586228813559322], [0.4483050847457627], [0.3448446327683616], [0.31038135593220334], [0.37930790960451977], [0.48276836158192094], [0.586228813559322], [0.6206920903954802], [0.586228813559322], [0.5517655367231639], [0.48276836158192094], [0.41377118644067795], [0.37930790960451977], [0.37930790960451977], [0.4483050847457627], [0.48276836158192094], [0.5517655367231639], [0.586228813559322], [0.5172316384180791], [0.41377118644067795], [0.31038135593220334], [0.24138418079096038], [0.2758474576271186], [0.41377118644067795], [0.6206920903954802], [0.7930790960451978], [0.8965395480225988], [0.8620762711864407], [0.7586158192090395], [0.6206920903954802], [0.5517655367231639], [0.586228813559322], [0.6551553672316384], [0.7241525423728813], [0.7586158192090395], [0.6896892655367232], [0.6551553672316384], [0.586228813559322], [0.586228813559322], [0.6551553672316384], [0.6896892655367232], [0.6551553672316384], [0.586228813559322], [0.4483050847457627], [0.3448446327683616], [0.31038135593220334], [0.3448446327683616], [0.5172316384180791], [0.6551553672316384], [0.7241525423728813], [0.6896892655367232], [0.5172316384180791], [0.3448446327683616], [0.2758474576271186], [0.31038135593220334], [0.48276836158192094], [0.6551553672316384], [0.7930790960451978], [0.8276129943502825], [0.7241525423728813], [0.586228813559322], [0.41377118644067795], [0.3448446327683616], [0.3448446327683616], [0.41377118644067795], [0.5517655367231639], [0.6896892655367232], [0.7586158192090395], [0.7241525423728813], [0.6551553672316384], [0.5517655367231639], [0.48276836158192094], [0.48276836158192094], [0.5517655367231639], [0.6551553672316384], [0.6896892655367232], [0.6896892655367232], [0.6206920903954802], [0.5172316384180791], [0.41377118644067795], [0.37930790960451977], [0.41377118644067795], [0.48276836158192094], [0.5517655367231639], [0.6206920903954802], [0.6896892655367232], [0.7241525423728813], [0.7930790960451978], [0.7930790960451978], [0.7930790960451978], [0.7586158192090395], [0.6896892655367232], [0.6551553672316384], [0.6896892655367232], [0.7586158192090395], [0.8276129943502825], [0.8965395480225988], [0.9310734463276835], [0.8965395480225988], [0.8620762711864407], [0.8276129943502825], [0.8620762711864407], [0.8965395480225988], [0.9310734463276835], [0.9655367231638419], [0.9655367231638419], [0.9655367231638419], [0.8965395480225988], [0.8965395480225988], [0.8965395480225988], [0.9310734463276835], [0.9655367231638419], [1.0], [0.9310734463276835], [0.8965395480225988], [0.8276129943502825], [0.7586158192090395], [0.7241525423728813], [0.6896892655367232], [0.6896892655367232], [0.6551553672316384], [0.6551553672316384], [0.6551553672316384], [0.6551553672316384], [0.6551553672316384], [0.586228813559322], [0.5172316384180791], [0.5172316384180791], [0.6206920903954802], [0.7241525423728813], [0.8276129943502825], [0.8276129943502825], [0.7241525423728813], [0.5517655367231639], [0.37930790960451977], [0.24138418079096038], [0.20692090395480223], [0.31038135593220334], [0.48276836158192094], [0.6896892655367232], [0.8620762711864407], [0.9310734463276835], [0.8620762711864407], [0.6206920903954802], [0.3448446327683616], [0.10346045197740111], [0.0], [0.10346045197740111], [0.37930790960451977], [0.6551553672316384], [0.8276129943502825], [0.8276129943502825], [0.6896892655367232], [0.48276836158192094], [0.31038135593220334], [0.2758474576271186], [0.3448446327683616], [0.48276836158192094], [0.586228813559322], [0.6551553672316384], [0.6206920903954802], [0.5172316384180791], [0.4483050847457627], [0.41377118644067795], [0.48276836158192094], [0.5172316384180791], [0.5517655367231639], [0.48276836158192094], [0.4483050847457627], [0.3448446327683616], [0.3448446327683616], [0.37930790960451977], [0.4483050847457627], [0.5172316384180791], [0.586228813559322], [0.5517655367231639], [0.5172316384180791], [0.4483050847457627], [0.37930790960451977], [0.41377118644067795], [0.4483050847457627], [0.5172316384180791], [0.5172316384180791], [0.5517655367231639], [0.5172316384180791], [0.5172316384180791], [0.586228813559322], [0.6206920903954802], [0.6206920903954802], [0.5517655367231639], [0.4483050847457627], [0.3448446327683616], [0.24138418079096038], [0.2758474576271186], [0.41377118644067795], [0.5172316384180791], [0.6206920903954802], [0.6551553672316384], [0.6896892655367232], [0.6896892655367232], [0.7241525423728813], [0.7930790960451978], [0.8620762711864407], [0.9310734463276835], [0.8965395480225988], [0.8276129943502825], [0.6551553672316384], [0.4483050847457627], [0.31038135593220334], [0.20692090395480223], [0.24138418079096038], [0.3448446327683616], [0.48276836158192094], [0.586228813559322], [0.6206920903954802], [0.586228813559322], [0.5517655367231639], [0.5172316384180791], [0.5517655367231639], [0.6551553672316384], [0.7586158192090395], [0.8276129943502825], [0.8620762711864407], [0.7930790960451978], [0.6896892655367232], [0.6551553672316384]], "deltas": [[1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0]]}} -{"label": 0, "forward": {"values": [[0.3055523950392536], [0.38889520992149273], [0.527761975196268], [0.6388667652747754], [0.6666287404710434], [0.6388667652747754], [0.5833428148822392], [0.5555239503925362], [0.527761975196268], [0.5555239503925362], [0.527761975196268], [0.47223802480373195], [0.38889520992149273], [0.24997155535328253], [0.1111047900785072], [0.027761975196268038], [0.0], [0.08334281488223916], [0.22220958015701445], [0.36107634543178974], [0.47223802480373195], [0.527761975196268], [0.527761975196268], [0.5], [0.527761975196268], [0.5555239503925362], [0.5833428148822392], [0.6111047900785072], [0.5833428148822392], [0.5], [0.4444191603140289], [0.3333143702355217], [0.3055523950392536], [0.3055523950392536], [0.3333143702355217], [0.36107634543178974], [0.38889520992149273], [0.36107634543178974], [0.3055523950392536], [0.3055523950392536], [0.3333143702355217], [0.38889520992149273], [0.47223802480373195], [0.5], [0.4444191603140289], [0.3333143702355217], [0.24997155535328253], [0.24997155535328253], [0.2777904198429855], [0.36107634543178974], [0.41665718511776084], [0.4444191603140289], [0.38889520992149273], [0.3333143702355217], [0.3055523950392536], [0.2777904198429855], [0.3055523950392536], [0.36107634543178974], [0.41665718511776084], [0.41665718511776084], [0.41665718511776084], [0.38889520992149273], [0.36107634543178974], [0.36107634543178974], [0.38889520992149273], [0.41665718511776084], [0.4444191603140289], [0.41665718511776084], [0.3333143702355217], [0.2777904198429855], [0.22220958015701445], [0.24997155535328253], [0.3333143702355217], [0.41665718511776084], [0.527761975196268], [0.5555239503925362], [0.5], [0.36107634543178974], [0.22220958015701445], [0.1666287404710433], [0.22220958015701445], [0.36107634543178974], [0.5555239503925362], [0.7222095801570145], [0.7777904198429856], [0.7499715553532825], [0.6111047900785072], [0.47223802480373195], [0.2777904198429855], [0.1666287404710433], [0.19444760496074634], [0.3055523950392536], [0.527761975196268], [0.7499715553532825], [0.8888952099214928], [0.8888952099214928], [0.7777904198429856], [0.6388667652747754], [0.47223802480373195], [0.38889520992149273], [0.36107634543178974], [0.41665718511776084], [0.47223802480373195], [0.527761975196268], [0.5833428148822392], [0.6388667652747754], [0.6666287404710434], [0.6944476049607463], [0.6666287404710434], [0.6666287404710434], [0.6388667652747754], [0.6666287404710434], [0.6944476049607463], [0.7222095801570145], [0.7499715553532825], [0.8055523950392537], [0.8333143702355217], [0.8610763454317897], [0.9166571851177608], [0.9444191603140288], [0.9444191603140288], [0.8888952099214928], [0.8055523950392537], [0.7222095801570145], [0.6666287404710434], [0.7222095801570145], [0.8055523950392537], [0.8888952099214928], [0.972238024803732], [0.972238024803732], [0.9166571851177608], [0.8055523950392537], [0.7222095801570145], [0.6666287404710434], [0.6388667652747754], [0.6666287404710434], [0.6944476049607463], [0.7222095801570145], [0.7499715553532825], [0.7222095801570145], [0.7222095801570145], [0.6666287404710434], [0.6388667652747754], [0.5833428148822392], [0.5], [0.4444191603140289], [0.4444191603140289], [0.5], [0.5555239503925362], [0.6388667652747754], [0.6666287404710434], [0.6111047900785072], [0.5555239503925362], [0.47223802480373195], [0.4444191603140289], [0.5], [0.5833428148822392], [0.6944476049607463], [0.7499715553532825], [0.6944476049607463], [0.6388667652747754], [0.5555239503925362], [0.5555239503925362], [0.6388667652747754], [0.7777904198429856], [0.9166571851177608], [1.0], [0.972238024803732], [0.8610763454317897], [0.6666287404710434], [0.5], [0.38889520992149273], [0.38889520992149273], [0.5], [0.6388667652747754], [0.7499715553532825], [0.7777904198429856], [0.6944476049607463], [0.5833428148822392], [0.5], [0.47223802480373195], [0.527761975196268], [0.5833428148822392], [0.6111047900785072], [0.5833428148822392], [0.527761975196268], [0.4444191603140289], [0.4444191603140289], [0.527761975196268], [0.6388667652747754], [0.7222095801570145], [0.7777904198429856], [0.7222095801570145], [0.6388667652747754], [0.5833428148822392], [0.5555239503925362], [0.6111047900785072], [0.6944476049607463], [0.7777904198429856], [0.7499715553532825], [0.6111047900785072], [0.4444191603140289], [0.24997155535328253], [0.1666287404710433], [0.1666287404710433], [0.2777904198429855], [0.38889520992149273], [0.5], [0.527761975196268], [0.4444191603140289], [0.36107634543178974], [0.3055523950392536], [0.3055523950392536], [0.36107634543178974], [0.4444191603140289], [0.5], [0.527761975196268], [0.5], [0.4444191603140289], [0.38889520992149273], [0.36107634543178974], [0.3333143702355217], [0.3333143702355217], [0.36107634543178974], [0.41665718511776084], [0.47223802480373195], [0.47223802480373195], [0.47223802480373195], [0.4444191603140289], [0.38889520992149273], [0.36107634543178974], [0.36107634543178974], [0.38889520992149273], [0.38889520992149273], [0.4444191603140289], [0.4444191603140289], [0.4444191603140289], [0.38889520992149273], [0.36107634543178974], [0.3055523950392536], [0.2777904198429855], [0.24997155535328253], [0.24997155535328253], [0.24997155535328253], [0.24997155535328253], [0.24997155535328253], [0.2777904198429855], [0.3055523950392536], [0.36107634543178974], [0.41665718511776084], [0.41665718511776084], [0.41665718511776084], [0.38889520992149273], [0.38889520992149273], [0.41665718511776084], [0.5]], "masks": [[1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1]], "evals": [[0.3055523950392536], [0.38889520992149273], [0.527761975196268], [0.6388667652747754], [0.6666287404710434], [0.6388667652747754], [0.5833428148822392], [0.5555239503925362], [0.527761975196268], [0.5555239503925362], [0.527761975196268], [0.47223802480373195], [0.38889520992149273], [0.24997155535328253], [0.1111047900785072], [0.027761975196268038], [0.0], [0.08334281488223916], [0.22220958015701445], [0.36107634543178974], [0.47223802480373195], [0.527761975196268], [0.527761975196268], [0.5], [0.527761975196268], [0.5555239503925362], [0.5833428148822392], [0.6111047900785072], [0.5833428148822392], [0.5], [0.4444191603140289], [0.3333143702355217], [0.3055523950392536], [0.3055523950392536], [0.3333143702355217], [0.36107634543178974], [0.38889520992149273], [0.36107634543178974], [0.3055523950392536], [0.3055523950392536], [0.3333143702355217], [0.38889520992149273], [0.47223802480373195], [0.5], [0.4444191603140289], [0.3333143702355217], [0.24997155535328253], [0.24997155535328253], [0.2777904198429855], [0.36107634543178974], [0.41665718511776084], [0.4444191603140289], [0.38889520992149273], [0.3333143702355217], [0.3055523950392536], [0.2777904198429855], [0.3055523950392536], [0.36107634543178974], [0.41665718511776084], [0.41665718511776084], [0.41665718511776084], [0.38889520992149273], [0.36107634543178974], [0.36107634543178974], [0.38889520992149273], [0.41665718511776084], [0.4444191603140289], [0.41665718511776084], [0.3333143702355217], [0.2777904198429855], [0.22220958015701445], [0.24997155535328253], [0.3333143702355217], [0.41665718511776084], [0.527761975196268], [0.5555239503925362], [0.5], [0.36107634543178974], [0.22220958015701445], [0.1666287404710433], [0.22220958015701445], [0.36107634543178974], [0.5555239503925362], [0.7222095801570145], [0.7777904198429856], [0.7499715553532825], [0.6111047900785072], [0.47223802480373195], [0.2777904198429855], [0.1666287404710433], [0.19444760496074634], [0.3055523950392536], [0.527761975196268], [0.7499715553532825], [0.8888952099214928], [0.8888952099214928], [0.7777904198429856], [0.6388667652747754], [0.47223802480373195], [0.38889520992149273], [0.36107634543178974], [0.41665718511776084], [0.47223802480373195], [0.527761975196268], [0.5833428148822392], [0.6388667652747754], [0.6666287404710434], [0.6944476049607463], [0.6666287404710434], [0.6666287404710434], [0.6388667652747754], [0.6666287404710434], [0.6944476049607463], [0.7222095801570145], [0.7499715553532825], [0.8055523950392537], [0.8333143702355217], [0.8610763454317897], [0.9166571851177608], [0.9444191603140288], [0.9444191603140288], [0.8888952099214928], [0.8055523950392537], [0.7222095801570145], [0.6666287404710434], [0.7222095801570145], [0.8055523950392537], [0.8888952099214928], [0.972238024803732], [0.972238024803732], [0.9166571851177608], [0.8055523950392537], [0.7222095801570145], [0.6666287404710434], [0.6388667652747754], [0.6666287404710434], [0.6944476049607463], [0.7222095801570145], [0.7499715553532825], [0.7222095801570145], [0.7222095801570145], [0.6666287404710434], [0.6388667652747754], [0.5833428148822392], [0.5], [0.4444191603140289], [0.4444191603140289], [0.5], [0.5555239503925362], [0.6388667652747754], [0.6666287404710434], [0.6111047900785072], [0.5555239503925362], [0.47223802480373195], [0.4444191603140289], [0.5], [0.5833428148822392], [0.6944476049607463], [0.7499715553532825], [0.6944476049607463], [0.6388667652747754], [0.5555239503925362], [0.5555239503925362], [0.6388667652747754], [0.7777904198429856], [0.9166571851177608], [1.0], [0.972238024803732], [0.8610763454317897], [0.6666287404710434], [0.5], [0.38889520992149273], [0.38889520992149273], [0.5], [0.6388667652747754], [0.7499715553532825], [0.7777904198429856], [0.6944476049607463], [0.5833428148822392], [0.5], [0.47223802480373195], [0.527761975196268], [0.5833428148822392], [0.6111047900785072], [0.5833428148822392], [0.527761975196268], [0.4444191603140289], [0.4444191603140289], [0.527761975196268], [0.6388667652747754], [0.7222095801570145], [0.7777904198429856], [0.7222095801570145], [0.6388667652747754], [0.5833428148822392], [0.5555239503925362], [0.6111047900785072], [0.6944476049607463], [0.7777904198429856], [0.7499715553532825], [0.6111047900785072], [0.4444191603140289], [0.24997155535328253], [0.1666287404710433], [0.1666287404710433], [0.2777904198429855], [0.38889520992149273], [0.5], [0.527761975196268], [0.4444191603140289], [0.36107634543178974], [0.3055523950392536], [0.3055523950392536], [0.36107634543178974], [0.4444191603140289], [0.5], [0.527761975196268], [0.5], [0.4444191603140289], [0.38889520992149273], [0.36107634543178974], [0.3333143702355217], [0.3333143702355217], [0.36107634543178974], [0.41665718511776084], [0.47223802480373195], [0.47223802480373195], [0.47223802480373195], [0.4444191603140289], [0.38889520992149273], [0.36107634543178974], [0.36107634543178974], [0.38889520992149273], [0.38889520992149273], [0.4444191603140289], [0.4444191603140289], [0.4444191603140289], [0.38889520992149273], [0.36107634543178974], [0.3055523950392536], [0.2777904198429855], [0.24997155535328253], [0.24997155535328253], [0.24997155535328253], [0.24997155535328253], [0.24997155535328253], [0.2777904198429855], [0.3055523950392536], [0.36107634543178974], [0.41665718511776084], [0.41665718511776084], [0.41665718511776084], [0.38889520992149273], [0.38889520992149273], [0.41665718511776084], [0.5]], "eval_masks": [[0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0]], "forwards": [[0.3055523950392536], [0.38889520992149273], [0.527761975196268], [0.6388667652747754], [0.6666287404710434], [0.6388667652747754], [0.5833428148822392], [0.5555239503925362], [0.527761975196268], [0.5555239503925362], [0.527761975196268], [0.47223802480373195], [0.38889520992149273], [0.24997155535328253], [0.1111047900785072], [0.027761975196268038], [0.0], [0.08334281488223916], [0.22220958015701445], [0.36107634543178974], [0.47223802480373195], [0.527761975196268], [0.527761975196268], [0.5], [0.527761975196268], [0.5555239503925362], [0.5833428148822392], [0.6111047900785072], [0.5833428148822392], [0.5], [0.4444191603140289], [0.3333143702355217], [0.3055523950392536], [0.3055523950392536], [0.3333143702355217], [0.36107634543178974], [0.38889520992149273], [0.36107634543178974], [0.3055523950392536], [0.3055523950392536], [0.3333143702355217], [0.38889520992149273], [0.47223802480373195], [0.5], [0.4444191603140289], [0.3333143702355217], [0.24997155535328253], [0.24997155535328253], [0.2777904198429855], [0.36107634543178974], [0.41665718511776084], [0.4444191603140289], [0.38889520992149273], [0.3333143702355217], [0.3055523950392536], [0.2777904198429855], [0.3055523950392536], [0.36107634543178974], [0.41665718511776084], [0.41665718511776084], [0.41665718511776084], [0.38889520992149273], [0.36107634543178974], [0.36107634543178974], [0.38889520992149273], [0.41665718511776084], [0.4444191603140289], [0.41665718511776084], [0.3333143702355217], [0.2777904198429855], [0.22220958015701445], [0.24997155535328253], [0.3333143702355217], [0.41665718511776084], [0.527761975196268], [0.5555239503925362], [0.5], [0.36107634543178974], [0.22220958015701445], [0.1666287404710433], [0.22220958015701445], [0.36107634543178974], [0.5555239503925362], [0.7222095801570145], [0.7777904198429856], [0.7499715553532825], [0.6111047900785072], [0.47223802480373195], [0.2777904198429855], [0.1666287404710433], [0.19444760496074634], [0.3055523950392536], [0.527761975196268], [0.7499715553532825], [0.8888952099214928], [0.8888952099214928], [0.7777904198429856], [0.6388667652747754], [0.47223802480373195], [0.38889520992149273], [0.36107634543178974], [0.41665718511776084], [0.47223802480373195], [0.527761975196268], [0.5833428148822392], [0.6388667652747754], [0.6666287404710434], [0.6944476049607463], [0.6666287404710434], [0.6666287404710434], [0.6388667652747754], [0.6666287404710434], [0.6944476049607463], [0.7222095801570145], [0.7499715553532825], [0.8055523950392537], [0.8333143702355217], [0.8610763454317897], [0.9166571851177608], [0.9444191603140288], [0.9444191603140288], [0.8888952099214928], [0.8055523950392537], [0.7222095801570145], [0.6666287404710434], [0.7222095801570145], [0.8055523950392537], [0.8888952099214928], [0.972238024803732], [0.972238024803732], [0.9166571851177608], [0.8055523950392537], [0.7222095801570145], [0.6666287404710434], [0.6388667652747754], [0.6666287404710434], [0.6944476049607463], [0.7222095801570145], [0.7499715553532825], [0.7222095801570145], [0.7222095801570145], [0.6666287404710434], [0.6388667652747754], [0.5833428148822392], [0.5], [0.4444191603140289], [0.4444191603140289], [0.5], [0.5555239503925362], [0.6388667652747754], [0.6666287404710434], [0.6111047900785072], [0.5555239503925362], [0.47223802480373195], [0.4444191603140289], [0.5], [0.5833428148822392], [0.6944476049607463], [0.7499715553532825], [0.6944476049607463], [0.6388667652747754], [0.5555239503925362], [0.5555239503925362], [0.6388667652747754], [0.7777904198429856], [0.9166571851177608], [1.0], [0.972238024803732], [0.8610763454317897], [0.6666287404710434], [0.5], [0.38889520992149273], [0.38889520992149273], [0.5], [0.6388667652747754], [0.7499715553532825], [0.7777904198429856], [0.6944476049607463], [0.5833428148822392], [0.5], [0.47223802480373195], [0.527761975196268], [0.5833428148822392], [0.6111047900785072], [0.5833428148822392], [0.527761975196268], [0.4444191603140289], [0.4444191603140289], [0.527761975196268], [0.6388667652747754], [0.7222095801570145], [0.7777904198429856], [0.7222095801570145], [0.6388667652747754], [0.5833428148822392], [0.5555239503925362], [0.6111047900785072], [0.6944476049607463], [0.7777904198429856], [0.7499715553532825], [0.6111047900785072], [0.4444191603140289], [0.24997155535328253], [0.1666287404710433], [0.1666287404710433], [0.2777904198429855], [0.38889520992149273], [0.5], [0.527761975196268], [0.4444191603140289], [0.36107634543178974], [0.3055523950392536], [0.3055523950392536], [0.36107634543178974], [0.4444191603140289], [0.5], [0.527761975196268], [0.5], [0.4444191603140289], [0.38889520992149273], [0.36107634543178974], [0.3333143702355217], [0.3333143702355217], [0.36107634543178974], [0.41665718511776084], [0.47223802480373195], [0.47223802480373195], [0.47223802480373195], [0.4444191603140289], [0.38889520992149273], [0.36107634543178974], [0.36107634543178974], [0.38889520992149273], [0.38889520992149273], [0.4444191603140289], [0.4444191603140289], [0.4444191603140289], [0.38889520992149273], [0.36107634543178974], [0.3055523950392536], [0.2777904198429855], [0.24997155535328253], [0.24997155535328253], [0.24997155535328253], [0.24997155535328253], [0.24997155535328253], [0.2777904198429855], [0.3055523950392536], [0.36107634543178974], [0.41665718511776084], [0.41665718511776084], [0.41665718511776084], [0.38889520992149273], [0.38889520992149273], [0.41665718511776084], [0.5]], "deltas": [[1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0]]}, "backward": {"values": [[0.5], [0.41665718511776084], [0.38889520992149273], [0.38889520992149273], [0.41665718511776084], [0.41665718511776084], [0.41665718511776084], [0.36107634543178974], [0.3055523950392536], [0.2777904198429855], [0.24997155535328253], [0.24997155535328253], [0.24997155535328253], [0.24997155535328253], [0.24997155535328253], [0.2777904198429855], [0.3055523950392536], [0.36107634543178974], [0.38889520992149273], [0.4444191603140289], [0.4444191603140289], [0.4444191603140289], [0.38889520992149273], [0.38889520992149273], [0.36107634543178974], [0.36107634543178974], [0.38889520992149273], [0.4444191603140289], [0.47223802480373195], [0.47223802480373195], [0.47223802480373195], [0.41665718511776084], [0.36107634543178974], [0.3333143702355217], [0.3333143702355217], [0.36107634543178974], [0.38889520992149273], [0.4444191603140289], [0.5], [0.527761975196268], [0.5], [0.4444191603140289], [0.36107634543178974], [0.3055523950392536], [0.3055523950392536], [0.36107634543178974], [0.4444191603140289], [0.527761975196268], [0.5], [0.38889520992149273], [0.2777904198429855], [0.1666287404710433], [0.1666287404710433], [0.24997155535328253], [0.4444191603140289], [0.6111047900785072], [0.7499715553532825], [0.7777904198429856], [0.6944476049607463], [0.6111047900785072], [0.5555239503925362], [0.5833428148822392], [0.6388667652747754], [0.7222095801570145], [0.7777904198429856], [0.7222095801570145], [0.6388667652747754], [0.527761975196268], [0.4444191603140289], [0.4444191603140289], [0.527761975196268], [0.5833428148822392], [0.6111047900785072], [0.5833428148822392], [0.527761975196268], [0.47223802480373195], [0.5], [0.5833428148822392], [0.6944476049607463], [0.7777904198429856], [0.7499715553532825], [0.6388667652747754], [0.5], [0.38889520992149273], [0.38889520992149273], [0.5], [0.6666287404710434], [0.8610763454317897], [0.972238024803732], [1.0], [0.9166571851177608], [0.7777904198429856], [0.6388667652747754], [0.5555239503925362], [0.5555239503925362], [0.6388667652747754], [0.6944476049607463], [0.7499715553532825], [0.6944476049607463], [0.5833428148822392], [0.5], [0.4444191603140289], [0.47223802480373195], [0.5555239503925362], [0.6111047900785072], [0.6666287404710434], [0.6388667652747754], [0.5555239503925362], [0.5], [0.4444191603140289], [0.4444191603140289], [0.5], [0.5833428148822392], [0.6388667652747754], [0.6666287404710434], [0.7222095801570145], [0.7222095801570145], [0.7499715553532825], [0.7222095801570145], [0.6944476049607463], [0.6666287404710434], [0.6388667652747754], [0.6666287404710434], [0.7222095801570145], [0.8055523950392537], [0.9166571851177608], [0.972238024803732], [0.972238024803732], [0.8888952099214928], [0.8055523950392537], [0.7222095801570145], [0.6666287404710434], [0.7222095801570145], [0.8055523950392537], [0.8888952099214928], [0.9444191603140288], [0.9444191603140288], [0.9166571851177608], [0.8610763454317897], [0.8333143702355217], [0.8055523950392537], [0.7499715553532825], [0.7222095801570145], [0.6944476049607463], [0.6666287404710434], [0.6388667652747754], [0.6666287404710434], [0.6666287404710434], [0.6944476049607463], [0.6666287404710434], [0.6388667652747754], [0.5833428148822392], [0.527761975196268], [0.47223802480373195], [0.41665718511776084], [0.36107634543178974], [0.38889520992149273], [0.47223802480373195], [0.6388667652747754], [0.7777904198429856], [0.8888952099214928], [0.8888952099214928], [0.7499715553532825], [0.527761975196268], [0.3055523950392536], [0.19444760496074634], [0.1666287404710433], [0.2777904198429855], [0.47223802480373195], [0.6111047900785072], [0.7499715553532825], [0.7777904198429856], [0.7222095801570145], [0.5555239503925362], [0.36107634543178974], [0.22220958015701445], [0.1666287404710433], [0.22220958015701445], [0.36107634543178974], [0.5], [0.5555239503925362], [0.527761975196268], [0.41665718511776084], [0.3333143702355217], [0.24997155535328253], [0.22220958015701445], [0.2777904198429855], [0.3333143702355217], [0.41665718511776084], [0.4444191603140289], [0.41665718511776084], [0.38889520992149273], [0.36107634543178974], [0.36107634543178974], [0.38889520992149273], [0.41665718511776084], [0.41665718511776084], [0.41665718511776084], [0.36107634543178974], [0.3055523950392536], [0.2777904198429855], [0.3055523950392536], [0.3333143702355217], [0.38889520992149273], [0.4444191603140289], [0.41665718511776084], [0.36107634543178974], [0.2777904198429855], [0.24997155535328253], [0.24997155535328253], [0.3333143702355217], [0.4444191603140289], [0.5], [0.47223802480373195], [0.38889520992149273], [0.3333143702355217], [0.3055523950392536], [0.3055523950392536], [0.36107634543178974], [0.38889520992149273], [0.36107634543178974], [0.3333143702355217], [0.3055523950392536], [0.3055523950392536], [0.3333143702355217], [0.4444191603140289], [0.5], [0.5833428148822392], [0.6111047900785072], [0.5833428148822392], [0.5555239503925362], [0.527761975196268], [0.5], [0.527761975196268], [0.527761975196268], [0.47223802480373195], [0.36107634543178974], [0.22220958015701445], [0.08334281488223916], [0.0], [0.027761975196268038], [0.1111047900785072], [0.24997155535328253], [0.38889520992149273], [0.47223802480373195], [0.527761975196268], [0.5555239503925362], [0.527761975196268], [0.5555239503925362], [0.5833428148822392], [0.6388667652747754], [0.6666287404710434], [0.6388667652747754], [0.527761975196268], [0.38889520992149273], [0.3055523950392536]], "masks": [[1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1]], "evals": [[0.5], [0.41665718511776084], [0.38889520992149273], [0.38889520992149273], [0.41665718511776084], [0.41665718511776084], [0.41665718511776084], [0.36107634543178974], [0.3055523950392536], [0.2777904198429855], [0.24997155535328253], [0.24997155535328253], [0.24997155535328253], [0.24997155535328253], [0.24997155535328253], [0.2777904198429855], [0.3055523950392536], [0.36107634543178974], [0.38889520992149273], [0.4444191603140289], [0.4444191603140289], [0.4444191603140289], [0.38889520992149273], [0.38889520992149273], [0.36107634543178974], [0.36107634543178974], [0.38889520992149273], [0.4444191603140289], [0.47223802480373195], [0.47223802480373195], [0.47223802480373195], [0.41665718511776084], [0.36107634543178974], [0.3333143702355217], [0.3333143702355217], [0.36107634543178974], [0.38889520992149273], [0.4444191603140289], [0.5], [0.527761975196268], [0.5], [0.4444191603140289], [0.36107634543178974], [0.3055523950392536], [0.3055523950392536], [0.36107634543178974], [0.4444191603140289], [0.527761975196268], [0.5], [0.38889520992149273], [0.2777904198429855], [0.1666287404710433], [0.1666287404710433], [0.24997155535328253], [0.4444191603140289], [0.6111047900785072], [0.7499715553532825], [0.7777904198429856], [0.6944476049607463], [0.6111047900785072], [0.5555239503925362], [0.5833428148822392], [0.6388667652747754], [0.7222095801570145], [0.7777904198429856], [0.7222095801570145], [0.6388667652747754], [0.527761975196268], [0.4444191603140289], [0.4444191603140289], [0.527761975196268], [0.5833428148822392], [0.6111047900785072], [0.5833428148822392], [0.527761975196268], [0.47223802480373195], [0.5], [0.5833428148822392], [0.6944476049607463], [0.7777904198429856], [0.7499715553532825], [0.6388667652747754], [0.5], [0.38889520992149273], [0.38889520992149273], [0.5], [0.6666287404710434], [0.8610763454317897], [0.972238024803732], [1.0], [0.9166571851177608], [0.7777904198429856], [0.6388667652747754], [0.5555239503925362], [0.5555239503925362], [0.6388667652747754], [0.6944476049607463], [0.7499715553532825], [0.6944476049607463], [0.5833428148822392], [0.5], [0.4444191603140289], [0.47223802480373195], [0.5555239503925362], [0.6111047900785072], [0.6666287404710434], [0.6388667652747754], [0.5555239503925362], [0.5], [0.4444191603140289], [0.4444191603140289], [0.5], [0.5833428148822392], [0.6388667652747754], [0.6666287404710434], [0.7222095801570145], [0.7222095801570145], [0.7499715553532825], [0.7222095801570145], [0.6944476049607463], [0.6666287404710434], [0.6388667652747754], [0.6666287404710434], [0.7222095801570145], [0.8055523950392537], [0.9166571851177608], [0.972238024803732], [0.972238024803732], [0.8888952099214928], [0.8055523950392537], [0.7222095801570145], [0.6666287404710434], [0.7222095801570145], [0.8055523950392537], [0.8888952099214928], [0.9444191603140288], [0.9444191603140288], [0.9166571851177608], [0.8610763454317897], [0.8333143702355217], [0.8055523950392537], [0.7499715553532825], [0.7222095801570145], [0.6944476049607463], [0.6666287404710434], [0.6388667652747754], [0.6666287404710434], [0.6666287404710434], [0.6944476049607463], [0.6666287404710434], [0.6388667652747754], [0.5833428148822392], [0.527761975196268], [0.47223802480373195], [0.41665718511776084], [0.36107634543178974], [0.38889520992149273], [0.47223802480373195], [0.6388667652747754], [0.7777904198429856], [0.8888952099214928], [0.8888952099214928], [0.7499715553532825], [0.527761975196268], [0.3055523950392536], [0.19444760496074634], [0.1666287404710433], [0.2777904198429855], [0.47223802480373195], [0.6111047900785072], [0.7499715553532825], [0.7777904198429856], [0.7222095801570145], [0.5555239503925362], [0.36107634543178974], [0.22220958015701445], [0.1666287404710433], [0.22220958015701445], [0.36107634543178974], [0.5], [0.5555239503925362], [0.527761975196268], [0.41665718511776084], [0.3333143702355217], [0.24997155535328253], [0.22220958015701445], [0.2777904198429855], [0.3333143702355217], [0.41665718511776084], [0.4444191603140289], [0.41665718511776084], [0.38889520992149273], [0.36107634543178974], [0.36107634543178974], [0.38889520992149273], [0.41665718511776084], [0.41665718511776084], [0.41665718511776084], [0.36107634543178974], [0.3055523950392536], [0.2777904198429855], [0.3055523950392536], [0.3333143702355217], [0.38889520992149273], [0.4444191603140289], [0.41665718511776084], [0.36107634543178974], [0.2777904198429855], [0.24997155535328253], [0.24997155535328253], [0.3333143702355217], [0.4444191603140289], [0.5], [0.47223802480373195], [0.38889520992149273], [0.3333143702355217], [0.3055523950392536], [0.3055523950392536], [0.36107634543178974], [0.38889520992149273], [0.36107634543178974], [0.3333143702355217], [0.3055523950392536], [0.3055523950392536], [0.3333143702355217], [0.4444191603140289], [0.5], [0.5833428148822392], [0.6111047900785072], [0.5833428148822392], [0.5555239503925362], [0.527761975196268], [0.5], [0.527761975196268], [0.527761975196268], [0.47223802480373195], [0.36107634543178974], [0.22220958015701445], [0.08334281488223916], [0.0], [0.027761975196268038], [0.1111047900785072], [0.24997155535328253], [0.38889520992149273], [0.47223802480373195], [0.527761975196268], [0.5555239503925362], [0.527761975196268], [0.5555239503925362], [0.5833428148822392], [0.6388667652747754], [0.6666287404710434], [0.6388667652747754], [0.527761975196268], [0.38889520992149273], [0.3055523950392536]], "eval_masks": [[0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0]], "forwards": [[0.5], [0.41665718511776084], [0.38889520992149273], [0.38889520992149273], [0.41665718511776084], [0.41665718511776084], [0.41665718511776084], [0.36107634543178974], [0.3055523950392536], [0.2777904198429855], [0.24997155535328253], [0.24997155535328253], [0.24997155535328253], [0.24997155535328253], [0.24997155535328253], [0.2777904198429855], [0.3055523950392536], [0.36107634543178974], [0.38889520992149273], [0.4444191603140289], [0.4444191603140289], [0.4444191603140289], [0.38889520992149273], [0.38889520992149273], [0.36107634543178974], [0.36107634543178974], [0.38889520992149273], [0.4444191603140289], [0.47223802480373195], [0.47223802480373195], [0.47223802480373195], [0.41665718511776084], [0.36107634543178974], [0.3333143702355217], [0.3333143702355217], [0.36107634543178974], [0.38889520992149273], [0.4444191603140289], [0.5], [0.527761975196268], [0.5], [0.4444191603140289], [0.36107634543178974], [0.3055523950392536], [0.3055523950392536], [0.36107634543178974], [0.4444191603140289], [0.527761975196268], [0.5], [0.38889520992149273], [0.2777904198429855], [0.1666287404710433], [0.1666287404710433], [0.24997155535328253], [0.4444191603140289], [0.6111047900785072], [0.7499715553532825], [0.7777904198429856], [0.6944476049607463], [0.6111047900785072], [0.5555239503925362], [0.5833428148822392], [0.6388667652747754], [0.7222095801570145], [0.7777904198429856], [0.7222095801570145], [0.6388667652747754], [0.527761975196268], [0.4444191603140289], [0.4444191603140289], [0.527761975196268], [0.5833428148822392], [0.6111047900785072], [0.5833428148822392], [0.527761975196268], [0.47223802480373195], [0.5], [0.5833428148822392], [0.6944476049607463], [0.7777904198429856], [0.7499715553532825], [0.6388667652747754], [0.5], [0.38889520992149273], [0.38889520992149273], [0.5], [0.6666287404710434], [0.8610763454317897], [0.972238024803732], [1.0], [0.9166571851177608], [0.7777904198429856], [0.6388667652747754], [0.5555239503925362], [0.5555239503925362], [0.6388667652747754], [0.6944476049607463], [0.7499715553532825], [0.6944476049607463], [0.5833428148822392], [0.5], [0.4444191603140289], [0.47223802480373195], [0.5555239503925362], [0.6111047900785072], [0.6666287404710434], [0.6388667652747754], [0.5555239503925362], [0.5], [0.4444191603140289], [0.4444191603140289], [0.5], [0.5833428148822392], [0.6388667652747754], [0.6666287404710434], [0.7222095801570145], [0.7222095801570145], [0.7499715553532825], [0.7222095801570145], [0.6944476049607463], [0.6666287404710434], [0.6388667652747754], [0.6666287404710434], [0.7222095801570145], [0.8055523950392537], [0.9166571851177608], [0.972238024803732], [0.972238024803732], [0.8888952099214928], [0.8055523950392537], [0.7222095801570145], [0.6666287404710434], [0.7222095801570145], [0.8055523950392537], [0.8888952099214928], [0.9444191603140288], [0.9444191603140288], [0.9166571851177608], [0.8610763454317897], [0.8333143702355217], [0.8055523950392537], [0.7499715553532825], [0.7222095801570145], [0.6944476049607463], [0.6666287404710434], [0.6388667652747754], [0.6666287404710434], [0.6666287404710434], [0.6944476049607463], [0.6666287404710434], [0.6388667652747754], [0.5833428148822392], [0.527761975196268], [0.47223802480373195], [0.41665718511776084], [0.36107634543178974], [0.38889520992149273], [0.47223802480373195], [0.6388667652747754], [0.7777904198429856], [0.8888952099214928], [0.8888952099214928], [0.7499715553532825], [0.527761975196268], [0.3055523950392536], [0.19444760496074634], [0.1666287404710433], [0.2777904198429855], [0.47223802480373195], [0.6111047900785072], [0.7499715553532825], [0.7777904198429856], [0.7222095801570145], [0.5555239503925362], [0.36107634543178974], [0.22220958015701445], [0.1666287404710433], [0.22220958015701445], [0.36107634543178974], [0.5], [0.5555239503925362], [0.527761975196268], [0.41665718511776084], [0.3333143702355217], [0.24997155535328253], [0.22220958015701445], [0.2777904198429855], [0.3333143702355217], [0.41665718511776084], [0.4444191603140289], [0.41665718511776084], [0.38889520992149273], [0.36107634543178974], [0.36107634543178974], [0.38889520992149273], [0.41665718511776084], [0.41665718511776084], [0.41665718511776084], [0.36107634543178974], [0.3055523950392536], [0.2777904198429855], [0.3055523950392536], [0.3333143702355217], [0.38889520992149273], [0.4444191603140289], [0.41665718511776084], [0.36107634543178974], [0.2777904198429855], [0.24997155535328253], [0.24997155535328253], [0.3333143702355217], [0.4444191603140289], [0.5], [0.47223802480373195], [0.38889520992149273], [0.3333143702355217], [0.3055523950392536], [0.3055523950392536], [0.36107634543178974], [0.38889520992149273], [0.36107634543178974], [0.3333143702355217], [0.3055523950392536], [0.3055523950392536], [0.3333143702355217], [0.4444191603140289], [0.5], [0.5833428148822392], [0.6111047900785072], [0.5833428148822392], [0.5555239503925362], [0.527761975196268], [0.5], [0.527761975196268], [0.527761975196268], [0.47223802480373195], [0.36107634543178974], [0.22220958015701445], [0.08334281488223916], [0.0], [0.027761975196268038], [0.1111047900785072], [0.24997155535328253], [0.38889520992149273], [0.47223802480373195], [0.527761975196268], [0.5555239503925362], [0.527761975196268], [0.5555239503925362], [0.5833428148822392], [0.6388667652747754], [0.6666287404710434], [0.6388667652747754], [0.527761975196268], [0.38889520992149273], [0.3055523950392536]], "deltas": [[1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0]]}} -{"label": 0, "forward": {"values": [[0.6799787007454738], [0.739985254362251], [0.8199803391496681], [0.8799868927664454], [0.8799868927664454], [0.7999918079790284], [0.6999672319161137], [0.6199721471286965], [0.5599655935119193], [0.5599655935119193], [0.579995084787417], [0.5999836159580568], [0.5599655935119193], [0.4799705087245023], [0.3799868927664454], [0.2999918079790284], [0.2599737855328909], [0.339968870320308], [0.4799705087245023], [0.6799787007454738], [0.8599983615958056], [0.9599819775538624], [1.0], [0.9799705087245022], [0.8999754239370853], [0.8199803391496681], [0.7599737855328909], [0.7199967231916113], [0.6999672319161137], [0.6400016384041943], [0.5399770623412795], [0.3999754239370853], [0.2999918079790284], [0.2599737855328909], [0.31998033914966817], [0.3999754239370853], [0.49999999999999994], [0.5199885311706398], [0.5199885311706398], [0.49999999999999994], [0.4799705087245023], [0.5199885311706398], [0.5399770623412795], [0.5399770623412795], [0.49999999999999994], [0.45998197755386255], [0.4200049152125829], [0.4200049152125829], [0.45998197755386255], [0.5199885311706398], [0.5599655935119193], [0.5999836159580568], [0.5599655935119193], [0.4799705087245023], [0.4200049152125829], [0.3999754239370853], [0.4200049152125829], [0.49999999999999994], [0.5599655935119193], [0.5599655935119193], [0.5599655935119193], [0.5199885311706398], [0.5199885311706398], [0.579995084787417], [0.6799787007454738], [0.7599737855328909], [0.7599737855328909], [0.659990169574834], [0.49999999999999994], [0.3799868927664454], [0.31998033914966817], [0.3799868927664454], [0.5399770623412795], [0.7199967231916113], [0.7999918079790284], [0.7599737855328909], [0.579995084787417], [0.31998033914966817], [0.07999508478741703], [0.0], [0.07999508478741703], [0.31998033914966817], [0.5999836159580568], [0.8199803391496681], [0.8999754239370853], [0.8399688703203079], [0.659990169574834], [0.4399934463832227], [0.28000327680838855], [0.21999672319161132], [0.2599737855328909], [0.3799868927664454], [0.5599655935119193], [0.6999672319161137], [0.7800032768083885], [0.7599737855328909], [0.6799787007454738], [0.579995084787417], [0.5399770623412795], [0.5399770623412795], [0.579995084787417], [0.6199721471286965], [0.6400016384041943], [0.6400016384041943], [0.6400016384041943], [0.6799787007454738], [0.7199967231916113], [0.739985254362251], [0.7800032768083885], [0.7999918079790284], [0.8199803391496681], [0.8799868927664454], [0.9399934463832226], [0.9599819775538624], [0.9399934463832226], [0.9200049152125829], [0.9200049152125829], [0.9200049152125829], [0.9599819775538624], [0.9799705087245022], [0.9599819775538624], [0.9200049152125829], [0.8599983615958056], [0.8199803391496681], [0.7800032768083885], [0.7800032768083885], [0.8199803391496681], [0.8799868927664454], [0.9200049152125829], [0.8999754239370853], [0.8199803391496681], [0.7199967231916113], [0.6400016384041943], [0.6199721471286965], [0.6799787007454738], [0.739985254362251], [0.7800032768083885], [0.7999918079790284], [0.7599737855328909], [0.7199967231916113], [0.6799787007454738], [0.6199721471286965], [0.5599655935119193], [0.49999999999999994], [0.4200049152125829], [0.3999754239370853], [0.4399934463832227], [0.5399770623412795], [0.659990169574834], [0.739985254362251], [0.7599737855328909], [0.739985254362251], [0.659990169574834], [0.5999836159580568], [0.579995084787417], [0.5999836159580568], [0.659990169574834], [0.7199967231916113], [0.739985254362251], [0.659990169574834], [0.5399770623412795], [0.4200049152125829], [0.3799868927664454], [0.4200049152125829], [0.5599655935119193], [0.7199967231916113], [0.8599983615958056], [0.8999754239370853], [0.8599983615958056], [0.6999672319161137], [0.5199885311706398], [0.3799868927664454], [0.339968870320308], [0.4399934463832227], [0.5999836159580568], [0.7199967231916113], [0.7800032768083885], [0.7199967231916113], [0.5999836159580568], [0.49999999999999994], [0.45998197755386255], [0.5199885311706398], [0.6199721471286965], [0.6999672319161137], [0.739985254362251], [0.7199967231916113], [0.6799787007454738], [0.659990169574834], [0.6999672319161137], [0.7599737855328909], [0.8599983615958056], [0.8999754239370853], [0.8799868927664454], [0.7999918079790284], [0.739985254362251], [0.6999672319161137], [0.7800032768083885], [0.8799868927664454], [0.9799705087245022], [1.0], [0.8999754239370853], [0.7199967231916113], [0.5399770623412795], [0.4200049152125829], [0.35999836159580567], [0.4200049152125829], [0.49999999999999994], [0.5599655935119193], [0.579995084787417], [0.5599655935119193], [0.5199885311706398], [0.4799705087245023], [0.49999999999999994], [0.5199885311706398], [0.5599655935119193], [0.6199721471286965], [0.659990169574834], [0.7199967231916113], [0.739985254362251], [0.7199967231916113], [0.6400016384041943], [0.579995084787417], [0.5199885311706398], [0.5199885311706398], [0.5999836159580568], [0.6999672319161137], [0.7800032768083885], [0.7999918079790284], [0.739985254362251], [0.579995084787417], [0.4200049152125829], [0.31998033914966817], [0.31998033914966817], [0.4200049152125829], [0.5599655935119193], [0.6799787007454738], [0.6999672319161137], [0.6400016384041943], [0.4799705087245023], [0.3799868927664454], [0.2999918079790284], [0.339968870320308], [0.4200049152125829], [0.5199885311706398], [0.579995084787417], [0.5399770623412795], [0.4399934463832227], [0.339968870320308], [0.2999918079790284], [0.339968870320308], [0.4799705087245023], [0.659990169574834], [0.7999918079790284], [0.8599983615958056], [0.8199803391496681], [0.7199967231916113]], "masks": [[1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1]], "evals": [[0.6799787007454738], [0.739985254362251], [0.8199803391496681], [0.8799868927664454], [0.8799868927664454], [0.7999918079790284], [0.6999672319161137], [0.6199721471286965], [0.5599655935119193], [0.5599655935119193], [0.579995084787417], [0.5999836159580568], [0.5599655935119193], [0.4799705087245023], [0.3799868927664454], [0.2999918079790284], [0.2599737855328909], [0.339968870320308], [0.4799705087245023], [0.6799787007454738], [0.8599983615958056], [0.9599819775538624], [1.0], [0.9799705087245022], [0.8999754239370853], [0.8199803391496681], [0.7599737855328909], [0.7199967231916113], [0.6999672319161137], [0.6400016384041943], [0.5399770623412795], [0.3999754239370853], [0.2999918079790284], [0.2599737855328909], [0.31998033914966817], [0.3999754239370853], [0.49999999999999994], [0.5199885311706398], [0.5199885311706398], [0.49999999999999994], [0.4799705087245023], [0.5199885311706398], [0.5399770623412795], [0.5399770623412795], [0.49999999999999994], [0.45998197755386255], [0.4200049152125829], [0.4200049152125829], [0.45998197755386255], [0.5199885311706398], [0.5599655935119193], [0.5999836159580568], [0.5599655935119193], [0.4799705087245023], [0.4200049152125829], [0.3999754239370853], [0.4200049152125829], [0.49999999999999994], [0.5599655935119193], [0.5599655935119193], [0.5599655935119193], [0.5199885311706398], [0.5199885311706398], [0.579995084787417], [0.6799787007454738], [0.7599737855328909], [0.7599737855328909], [0.659990169574834], [0.49999999999999994], [0.3799868927664454], [0.31998033914966817], [0.3799868927664454], [0.5399770623412795], [0.7199967231916113], [0.7999918079790284], [0.7599737855328909], [0.579995084787417], [0.31998033914966817], [0.07999508478741703], [0.0], [0.07999508478741703], [0.31998033914966817], [0.5999836159580568], [0.8199803391496681], [0.8999754239370853], [0.8399688703203079], [0.659990169574834], [0.4399934463832227], [0.28000327680838855], [0.21999672319161132], [0.2599737855328909], [0.3799868927664454], [0.5599655935119193], [0.6999672319161137], [0.7800032768083885], [0.7599737855328909], [0.6799787007454738], [0.579995084787417], [0.5399770623412795], [0.5399770623412795], [0.579995084787417], [0.6199721471286965], [0.6400016384041943], [0.6400016384041943], [0.6400016384041943], [0.6799787007454738], [0.7199967231916113], [0.739985254362251], [0.7800032768083885], [0.7999918079790284], [0.8199803391496681], [0.8799868927664454], [0.9399934463832226], [0.9599819775538624], [0.9399934463832226], [0.9200049152125829], [0.9200049152125829], [0.9200049152125829], [0.9599819775538624], [0.9799705087245022], [0.9599819775538624], [0.9200049152125829], [0.8599983615958056], [0.8199803391496681], [0.7800032768083885], [0.7800032768083885], [0.8199803391496681], [0.8799868927664454], [0.9200049152125829], [0.8999754239370853], [0.8199803391496681], [0.7199967231916113], [0.6400016384041943], [0.6199721471286965], [0.6799787007454738], [0.739985254362251], [0.7800032768083885], [0.7999918079790284], [0.7599737855328909], [0.7199967231916113], [0.6799787007454738], [0.6199721471286965], [0.5599655935119193], [0.49999999999999994], [0.4200049152125829], [0.3999754239370853], [0.4399934463832227], [0.5399770623412795], [0.659990169574834], [0.739985254362251], [0.7599737855328909], [0.739985254362251], [0.659990169574834], [0.5999836159580568], [0.579995084787417], [0.5999836159580568], [0.659990169574834], [0.7199967231916113], [0.739985254362251], [0.659990169574834], [0.5399770623412795], [0.4200049152125829], [0.3799868927664454], [0.4200049152125829], [0.5599655935119193], [0.7199967231916113], [0.8599983615958056], [0.8999754239370853], [0.8599983615958056], [0.6999672319161137], [0.5199885311706398], [0.3799868927664454], [0.339968870320308], [0.4399934463832227], [0.5999836159580568], [0.7199967231916113], [0.7800032768083885], [0.7199967231916113], [0.5999836159580568], [0.49999999999999994], [0.45998197755386255], [0.5199885311706398], [0.6199721471286965], [0.6999672319161137], [0.739985254362251], [0.7199967231916113], [0.6799787007454738], [0.659990169574834], [0.6999672319161137], [0.7599737855328909], [0.8599983615958056], [0.8999754239370853], [0.8799868927664454], [0.7999918079790284], [0.739985254362251], [0.6999672319161137], [0.7800032768083885], [0.8799868927664454], [0.9799705087245022], [1.0], [0.8999754239370853], [0.7199967231916113], [0.5399770623412795], [0.4200049152125829], [0.35999836159580567], [0.4200049152125829], [0.49999999999999994], [0.5599655935119193], [0.579995084787417], [0.5599655935119193], [0.5199885311706398], [0.4799705087245023], [0.49999999999999994], [0.5199885311706398], [0.5599655935119193], [0.6199721471286965], [0.659990169574834], [0.7199967231916113], [0.739985254362251], [0.7199967231916113], [0.6400016384041943], [0.579995084787417], [0.5199885311706398], [0.5199885311706398], [0.5999836159580568], [0.6999672319161137], [0.7800032768083885], [0.7999918079790284], [0.739985254362251], [0.579995084787417], [0.4200049152125829], [0.31998033914966817], [0.31998033914966817], [0.4200049152125829], [0.5599655935119193], [0.6799787007454738], [0.6999672319161137], [0.6400016384041943], [0.4799705087245023], [0.3799868927664454], [0.2999918079790284], [0.339968870320308], [0.4200049152125829], [0.5199885311706398], [0.579995084787417], [0.5399770623412795], [0.4399934463832227], [0.339968870320308], [0.2999918079790284], [0.339968870320308], [0.4799705087245023], [0.659990169574834], [0.7999918079790284], [0.8599983615958056], [0.8199803391496681], [0.7199967231916113]], "eval_masks": [[0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0]], "forwards": [[0.6799787007454738], [0.739985254362251], [0.8199803391496681], [0.8799868927664454], [0.8799868927664454], [0.7999918079790284], [0.6999672319161137], [0.6199721471286965], [0.5599655935119193], [0.5599655935119193], [0.579995084787417], [0.5999836159580568], [0.5599655935119193], [0.4799705087245023], [0.3799868927664454], [0.2999918079790284], [0.2599737855328909], [0.339968870320308], [0.4799705087245023], [0.6799787007454738], [0.8599983615958056], [0.9599819775538624], [1.0], [0.9799705087245022], [0.8999754239370853], [0.8199803391496681], [0.7599737855328909], [0.7199967231916113], [0.6999672319161137], [0.6400016384041943], [0.5399770623412795], [0.3999754239370853], [0.2999918079790284], [0.2599737855328909], [0.31998033914966817], [0.3999754239370853], [0.49999999999999994], [0.5199885311706398], [0.5199885311706398], [0.49999999999999994], [0.4799705087245023], [0.5199885311706398], [0.5399770623412795], [0.5399770623412795], [0.49999999999999994], [0.45998197755386255], [0.4200049152125829], [0.4200049152125829], [0.45998197755386255], [0.5199885311706398], [0.5599655935119193], [0.5999836159580568], [0.5599655935119193], [0.4799705087245023], [0.4200049152125829], [0.3999754239370853], [0.4200049152125829], [0.49999999999999994], [0.5599655935119193], [0.5599655935119193], [0.5599655935119193], [0.5199885311706398], [0.5199885311706398], [0.579995084787417], [0.6799787007454738], [0.7599737855328909], [0.7599737855328909], [0.659990169574834], [0.49999999999999994], [0.3799868927664454], [0.31998033914966817], [0.3799868927664454], [0.5399770623412795], [0.7199967231916113], [0.7999918079790284], [0.7599737855328909], [0.579995084787417], [0.31998033914966817], [0.07999508478741703], [0.0], [0.07999508478741703], [0.31998033914966817], [0.5999836159580568], [0.8199803391496681], [0.8999754239370853], [0.8399688703203079], [0.659990169574834], [0.4399934463832227], [0.28000327680838855], [0.21999672319161132], [0.2599737855328909], [0.3799868927664454], [0.5599655935119193], [0.6999672319161137], [0.7800032768083885], [0.7599737855328909], [0.6799787007454738], [0.579995084787417], [0.5399770623412795], [0.5399770623412795], [0.579995084787417], [0.6199721471286965], [0.6400016384041943], [0.6400016384041943], [0.6400016384041943], [0.6799787007454738], [0.7199967231916113], [0.739985254362251], [0.7800032768083885], [0.7999918079790284], [0.8199803391496681], [0.8799868927664454], [0.9399934463832226], [0.9599819775538624], [0.9399934463832226], [0.9200049152125829], [0.9200049152125829], [0.9200049152125829], [0.9599819775538624], [0.9799705087245022], [0.9599819775538624], [0.9200049152125829], [0.8599983615958056], [0.8199803391496681], [0.7800032768083885], [0.7800032768083885], [0.8199803391496681], [0.8799868927664454], [0.9200049152125829], [0.8999754239370853], [0.8199803391496681], [0.7199967231916113], [0.6400016384041943], [0.6199721471286965], [0.6799787007454738], [0.739985254362251], [0.7800032768083885], [0.7999918079790284], [0.7599737855328909], [0.7199967231916113], [0.6799787007454738], [0.6199721471286965], [0.5599655935119193], [0.49999999999999994], [0.4200049152125829], [0.3999754239370853], [0.4399934463832227], [0.5399770623412795], [0.659990169574834], [0.739985254362251], [0.7599737855328909], [0.739985254362251], [0.659990169574834], [0.5999836159580568], [0.579995084787417], [0.5999836159580568], [0.659990169574834], [0.7199967231916113], [0.739985254362251], [0.659990169574834], [0.5399770623412795], [0.4200049152125829], [0.3799868927664454], [0.4200049152125829], [0.5599655935119193], [0.7199967231916113], [0.8599983615958056], [0.8999754239370853], [0.8599983615958056], [0.6999672319161137], [0.5199885311706398], [0.3799868927664454], [0.339968870320308], [0.4399934463832227], [0.5999836159580568], [0.7199967231916113], [0.7800032768083885], [0.7199967231916113], [0.5999836159580568], [0.49999999999999994], [0.45998197755386255], [0.5199885311706398], [0.6199721471286965], [0.6999672319161137], [0.739985254362251], [0.7199967231916113], [0.6799787007454738], [0.659990169574834], [0.6999672319161137], [0.7599737855328909], [0.8599983615958056], [0.8999754239370853], [0.8799868927664454], [0.7999918079790284], [0.739985254362251], [0.6999672319161137], [0.7800032768083885], [0.8799868927664454], [0.9799705087245022], [1.0], [0.8999754239370853], [0.7199967231916113], [0.5399770623412795], [0.4200049152125829], [0.35999836159580567], [0.4200049152125829], [0.49999999999999994], [0.5599655935119193], [0.579995084787417], [0.5599655935119193], [0.5199885311706398], [0.4799705087245023], [0.49999999999999994], [0.5199885311706398], [0.5599655935119193], [0.6199721471286965], [0.659990169574834], [0.7199967231916113], [0.739985254362251], [0.7199967231916113], [0.6400016384041943], [0.579995084787417], [0.5199885311706398], [0.5199885311706398], [0.5999836159580568], [0.6999672319161137], [0.7800032768083885], [0.7999918079790284], [0.739985254362251], [0.579995084787417], [0.4200049152125829], [0.31998033914966817], [0.31998033914966817], [0.4200049152125829], [0.5599655935119193], [0.6799787007454738], [0.6999672319161137], [0.6400016384041943], [0.4799705087245023], [0.3799868927664454], [0.2999918079790284], [0.339968870320308], [0.4200049152125829], [0.5199885311706398], [0.579995084787417], [0.5399770623412795], [0.4399934463832227], [0.339968870320308], [0.2999918079790284], [0.339968870320308], [0.4799705087245023], [0.659990169574834], [0.7999918079790284], [0.8599983615958056], [0.8199803391496681], [0.7199967231916113]], "deltas": [[1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0]]}, "backward": {"values": [[0.7199967231916113], [0.8199803391496681], [0.8599983615958056], [0.7999918079790284], [0.659990169574834], [0.4799705087245023], [0.339968870320308], [0.2999918079790284], [0.339968870320308], [0.4399934463832227], [0.5399770623412795], [0.579995084787417], [0.5199885311706398], [0.4200049152125829], [0.339968870320308], [0.2999918079790284], [0.3799868927664454], [0.4799705087245023], [0.6400016384041943], [0.6999672319161137], [0.6799787007454738], [0.5599655935119193], [0.4200049152125829], [0.31998033914966817], [0.31998033914966817], [0.4200049152125829], [0.579995084787417], [0.739985254362251], [0.7999918079790284], [0.7800032768083885], [0.6999672319161137], [0.5999836159580568], [0.5199885311706398], [0.5199885311706398], [0.579995084787417], [0.6400016384041943], [0.7199967231916113], [0.739985254362251], [0.7199967231916113], [0.659990169574834], [0.6199721471286965], [0.5599655935119193], [0.5199885311706398], [0.49999999999999994], [0.4799705087245023], [0.5199885311706398], [0.5599655935119193], [0.579995084787417], [0.5599655935119193], [0.49999999999999994], [0.4200049152125829], [0.35999836159580567], [0.4200049152125829], [0.5399770623412795], [0.7199967231916113], [0.8999754239370853], [1.0], [0.9799705087245022], [0.8799868927664454], [0.7800032768083885], [0.6999672319161137], [0.739985254362251], [0.7999918079790284], [0.8799868927664454], [0.8999754239370853], [0.8599983615958056], [0.7599737855328909], [0.6999672319161137], [0.659990169574834], [0.6799787007454738], [0.7199967231916113], [0.739985254362251], [0.6999672319161137], [0.6199721471286965], [0.5199885311706398], [0.45998197755386255], [0.49999999999999994], [0.5999836159580568], [0.7199967231916113], [0.7800032768083885], [0.7199967231916113], [0.5999836159580568], [0.4399934463832227], [0.339968870320308], [0.3799868927664454], [0.5199885311706398], [0.6999672319161137], [0.8599983615958056], [0.8999754239370853], [0.8599983615958056], [0.7199967231916113], [0.5599655935119193], [0.4200049152125829], [0.3799868927664454], [0.4200049152125829], [0.5399770623412795], [0.659990169574834], [0.739985254362251], [0.7199967231916113], [0.659990169574834], [0.5999836159580568], [0.579995084787417], [0.5999836159580568], [0.659990169574834], [0.739985254362251], [0.7599737855328909], [0.739985254362251], [0.659990169574834], [0.5399770623412795], [0.4399934463832227], [0.3999754239370853], [0.4200049152125829], [0.49999999999999994], [0.5599655935119193], [0.6199721471286965], [0.6799787007454738], [0.7199967231916113], [0.7599737855328909], [0.7999918079790284], [0.7800032768083885], [0.739985254362251], [0.6799787007454738], [0.6199721471286965], [0.6400016384041943], [0.7199967231916113], [0.8199803391496681], [0.8999754239370853], [0.9200049152125829], [0.8799868927664454], [0.8199803391496681], [0.7800032768083885], [0.7800032768083885], [0.8199803391496681], [0.8599983615958056], [0.9200049152125829], [0.9599819775538624], [0.9799705087245022], [0.9599819775538624], [0.9200049152125829], [0.9200049152125829], [0.9200049152125829], [0.9399934463832226], [0.9599819775538624], [0.9399934463832226], [0.8799868927664454], [0.8199803391496681], [0.7999918079790284], [0.7800032768083885], [0.739985254362251], [0.7199967231916113], [0.6799787007454738], [0.6400016384041943], [0.6400016384041943], [0.6400016384041943], [0.6199721471286965], [0.579995084787417], [0.5399770623412795], [0.5399770623412795], [0.579995084787417], [0.6799787007454738], [0.7599737855328909], [0.7800032768083885], [0.6999672319161137], [0.5599655935119193], [0.3799868927664454], [0.2599737855328909], [0.21999672319161132], [0.28000327680838855], [0.4399934463832227], [0.659990169574834], [0.8399688703203079], [0.8999754239370853], [0.8199803391496681], [0.5999836159580568], [0.31998033914966817], [0.07999508478741703], [0.0], [0.07999508478741703], [0.31998033914966817], [0.579995084787417], [0.7599737855328909], [0.7999918079790284], [0.7199967231916113], [0.5399770623412795], [0.3799868927664454], [0.31998033914966817], [0.3799868927664454], [0.49999999999999994], [0.659990169574834], [0.7599737855328909], [0.7599737855328909], [0.6799787007454738], [0.579995084787417], [0.5199885311706398], [0.5199885311706398], [0.5599655935119193], [0.5599655935119193], [0.5599655935119193], [0.49999999999999994], [0.4200049152125829], [0.3999754239370853], [0.4200049152125829], [0.4799705087245023], [0.5599655935119193], [0.5999836159580568], [0.5599655935119193], [0.5199885311706398], [0.45998197755386255], [0.4200049152125829], [0.4200049152125829], [0.45998197755386255], [0.49999999999999994], [0.5399770623412795], [0.5399770623412795], [0.5199885311706398], [0.4799705087245023], [0.49999999999999994], [0.5199885311706398], [0.5199885311706398], [0.49999999999999994], [0.3999754239370853], [0.31998033914966817], [0.2599737855328909], [0.2999918079790284], [0.3999754239370853], [0.5399770623412795], [0.6400016384041943], [0.6999672319161137], [0.7199967231916113], [0.7599737855328909], [0.8199803391496681], [0.8999754239370853], [0.9799705087245022], [1.0], [0.9599819775538624], [0.8599983615958056], [0.6799787007454738], [0.4799705087245023], [0.339968870320308], [0.2599737855328909], [0.2999918079790284], [0.3799868927664454], [0.4799705087245023], [0.5599655935119193], [0.5999836159580568], [0.579995084787417], [0.5599655935119193], [0.5599655935119193], [0.6199721471286965], [0.6999672319161137], [0.7999918079790284], [0.8799868927664454], [0.8799868927664454], [0.8199803391496681], [0.739985254362251], [0.6799787007454738]], "masks": [[1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1]], "evals": [[0.7199967231916113], [0.8199803391496681], [0.8599983615958056], [0.7999918079790284], [0.659990169574834], [0.4799705087245023], [0.339968870320308], [0.2999918079790284], [0.339968870320308], [0.4399934463832227], [0.5399770623412795], [0.579995084787417], [0.5199885311706398], [0.4200049152125829], [0.339968870320308], [0.2999918079790284], [0.3799868927664454], [0.4799705087245023], [0.6400016384041943], [0.6999672319161137], [0.6799787007454738], [0.5599655935119193], [0.4200049152125829], [0.31998033914966817], [0.31998033914966817], [0.4200049152125829], [0.579995084787417], [0.739985254362251], [0.7999918079790284], [0.7800032768083885], [0.6999672319161137], [0.5999836159580568], [0.5199885311706398], [0.5199885311706398], [0.579995084787417], [0.6400016384041943], [0.7199967231916113], [0.739985254362251], [0.7199967231916113], [0.659990169574834], [0.6199721471286965], [0.5599655935119193], [0.5199885311706398], [0.49999999999999994], [0.4799705087245023], [0.5199885311706398], [0.5599655935119193], [0.579995084787417], [0.5599655935119193], [0.49999999999999994], [0.4200049152125829], [0.35999836159580567], [0.4200049152125829], [0.5399770623412795], [0.7199967231916113], [0.8999754239370853], [1.0], [0.9799705087245022], [0.8799868927664454], [0.7800032768083885], [0.6999672319161137], [0.739985254362251], [0.7999918079790284], [0.8799868927664454], [0.8999754239370853], [0.8599983615958056], [0.7599737855328909], [0.6999672319161137], [0.659990169574834], [0.6799787007454738], [0.7199967231916113], [0.739985254362251], [0.6999672319161137], [0.6199721471286965], [0.5199885311706398], [0.45998197755386255], [0.49999999999999994], [0.5999836159580568], [0.7199967231916113], [0.7800032768083885], [0.7199967231916113], [0.5999836159580568], [0.4399934463832227], [0.339968870320308], [0.3799868927664454], [0.5199885311706398], [0.6999672319161137], [0.8599983615958056], [0.8999754239370853], [0.8599983615958056], [0.7199967231916113], [0.5599655935119193], [0.4200049152125829], [0.3799868927664454], [0.4200049152125829], [0.5399770623412795], [0.659990169574834], [0.739985254362251], [0.7199967231916113], [0.659990169574834], [0.5999836159580568], [0.579995084787417], [0.5999836159580568], [0.659990169574834], [0.739985254362251], [0.7599737855328909], [0.739985254362251], [0.659990169574834], [0.5399770623412795], [0.4399934463832227], [0.3999754239370853], [0.4200049152125829], [0.49999999999999994], [0.5599655935119193], [0.6199721471286965], [0.6799787007454738], [0.7199967231916113], [0.7599737855328909], [0.7999918079790284], [0.7800032768083885], [0.739985254362251], [0.6799787007454738], [0.6199721471286965], [0.6400016384041943], [0.7199967231916113], [0.8199803391496681], [0.8999754239370853], [0.9200049152125829], [0.8799868927664454], [0.8199803391496681], [0.7800032768083885], [0.7800032768083885], [0.8199803391496681], [0.8599983615958056], [0.9200049152125829], [0.9599819775538624], [0.9799705087245022], [0.9599819775538624], [0.9200049152125829], [0.9200049152125829], [0.9200049152125829], [0.9399934463832226], [0.9599819775538624], [0.9399934463832226], [0.8799868927664454], [0.8199803391496681], [0.7999918079790284], [0.7800032768083885], [0.739985254362251], [0.7199967231916113], [0.6799787007454738], [0.6400016384041943], [0.6400016384041943], [0.6400016384041943], [0.6199721471286965], [0.579995084787417], [0.5399770623412795], [0.5399770623412795], [0.579995084787417], [0.6799787007454738], [0.7599737855328909], [0.7800032768083885], [0.6999672319161137], [0.5599655935119193], [0.3799868927664454], [0.2599737855328909], [0.21999672319161132], [0.28000327680838855], [0.4399934463832227], [0.659990169574834], [0.8399688703203079], [0.8999754239370853], [0.8199803391496681], [0.5999836159580568], [0.31998033914966817], [0.07999508478741703], [0.0], [0.07999508478741703], [0.31998033914966817], [0.579995084787417], [0.7599737855328909], [0.7999918079790284], [0.7199967231916113], [0.5399770623412795], [0.3799868927664454], [0.31998033914966817], [0.3799868927664454], [0.49999999999999994], [0.659990169574834], [0.7599737855328909], [0.7599737855328909], [0.6799787007454738], [0.579995084787417], [0.5199885311706398], [0.5199885311706398], [0.5599655935119193], [0.5599655935119193], [0.5599655935119193], [0.49999999999999994], [0.4200049152125829], [0.3999754239370853], [0.4200049152125829], [0.4799705087245023], [0.5599655935119193], [0.5999836159580568], [0.5599655935119193], [0.5199885311706398], [0.45998197755386255], [0.4200049152125829], [0.4200049152125829], [0.45998197755386255], [0.49999999999999994], [0.5399770623412795], [0.5399770623412795], [0.5199885311706398], [0.4799705087245023], [0.49999999999999994], [0.5199885311706398], [0.5199885311706398], [0.49999999999999994], [0.3999754239370853], [0.31998033914966817], [0.2599737855328909], [0.2999918079790284], [0.3999754239370853], [0.5399770623412795], [0.6400016384041943], [0.6999672319161137], [0.7199967231916113], [0.7599737855328909], [0.8199803391496681], [0.8999754239370853], [0.9799705087245022], [1.0], [0.9599819775538624], [0.8599983615958056], [0.6799787007454738], [0.4799705087245023], [0.339968870320308], [0.2599737855328909], [0.2999918079790284], [0.3799868927664454], [0.4799705087245023], [0.5599655935119193], [0.5999836159580568], [0.579995084787417], [0.5599655935119193], [0.5599655935119193], [0.6199721471286965], [0.6999672319161137], [0.7999918079790284], [0.8799868927664454], [0.8799868927664454], [0.8199803391496681], [0.739985254362251], [0.6799787007454738]], "eval_masks": [[0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0]], "forwards": [[0.7199967231916113], [0.8199803391496681], [0.8599983615958056], [0.7999918079790284], [0.659990169574834], [0.4799705087245023], [0.339968870320308], [0.2999918079790284], [0.339968870320308], [0.4399934463832227], [0.5399770623412795], [0.579995084787417], [0.5199885311706398], [0.4200049152125829], [0.339968870320308], [0.2999918079790284], [0.3799868927664454], [0.4799705087245023], [0.6400016384041943], [0.6999672319161137], [0.6799787007454738], [0.5599655935119193], [0.4200049152125829], [0.31998033914966817], [0.31998033914966817], [0.4200049152125829], [0.579995084787417], [0.739985254362251], [0.7999918079790284], [0.7800032768083885], [0.6999672319161137], [0.5999836159580568], [0.5199885311706398], [0.5199885311706398], [0.579995084787417], [0.6400016384041943], [0.7199967231916113], [0.739985254362251], [0.7199967231916113], [0.659990169574834], [0.6199721471286965], [0.5599655935119193], [0.5199885311706398], [0.49999999999999994], [0.4799705087245023], [0.5199885311706398], [0.5599655935119193], [0.579995084787417], [0.5599655935119193], [0.49999999999999994], [0.4200049152125829], [0.35999836159580567], [0.4200049152125829], [0.5399770623412795], [0.7199967231916113], [0.8999754239370853], [1.0], [0.9799705087245022], [0.8799868927664454], [0.7800032768083885], [0.6999672319161137], [0.739985254362251], [0.7999918079790284], [0.8799868927664454], [0.8999754239370853], [0.8599983615958056], [0.7599737855328909], [0.6999672319161137], [0.659990169574834], [0.6799787007454738], [0.7199967231916113], [0.739985254362251], [0.6999672319161137], [0.6199721471286965], [0.5199885311706398], [0.45998197755386255], [0.49999999999999994], [0.5999836159580568], [0.7199967231916113], [0.7800032768083885], [0.7199967231916113], [0.5999836159580568], [0.4399934463832227], [0.339968870320308], [0.3799868927664454], [0.5199885311706398], [0.6999672319161137], [0.8599983615958056], [0.8999754239370853], [0.8599983615958056], [0.7199967231916113], [0.5599655935119193], [0.4200049152125829], [0.3799868927664454], [0.4200049152125829], [0.5399770623412795], [0.659990169574834], [0.739985254362251], [0.7199967231916113], [0.659990169574834], [0.5999836159580568], [0.579995084787417], [0.5999836159580568], [0.659990169574834], [0.739985254362251], [0.7599737855328909], [0.739985254362251], [0.659990169574834], [0.5399770623412795], [0.4399934463832227], [0.3999754239370853], [0.4200049152125829], [0.49999999999999994], [0.5599655935119193], [0.6199721471286965], [0.6799787007454738], [0.7199967231916113], [0.7599737855328909], [0.7999918079790284], [0.7800032768083885], [0.739985254362251], [0.6799787007454738], [0.6199721471286965], [0.6400016384041943], [0.7199967231916113], [0.8199803391496681], [0.8999754239370853], [0.9200049152125829], [0.8799868927664454], [0.8199803391496681], [0.7800032768083885], [0.7800032768083885], [0.8199803391496681], [0.8599983615958056], [0.9200049152125829], [0.9599819775538624], [0.9799705087245022], [0.9599819775538624], [0.9200049152125829], [0.9200049152125829], [0.9200049152125829], [0.9399934463832226], [0.9599819775538624], [0.9399934463832226], [0.8799868927664454], [0.8199803391496681], [0.7999918079790284], [0.7800032768083885], [0.739985254362251], [0.7199967231916113], [0.6799787007454738], [0.6400016384041943], [0.6400016384041943], [0.6400016384041943], [0.6199721471286965], [0.579995084787417], [0.5399770623412795], [0.5399770623412795], [0.579995084787417], [0.6799787007454738], [0.7599737855328909], [0.7800032768083885], [0.6999672319161137], [0.5599655935119193], [0.3799868927664454], [0.2599737855328909], [0.21999672319161132], [0.28000327680838855], [0.4399934463832227], [0.659990169574834], [0.8399688703203079], [0.8999754239370853], [0.8199803391496681], [0.5999836159580568], [0.31998033914966817], [0.07999508478741703], [0.0], [0.07999508478741703], [0.31998033914966817], [0.579995084787417], [0.7599737855328909], [0.7999918079790284], [0.7199967231916113], [0.5399770623412795], [0.3799868927664454], [0.31998033914966817], [0.3799868927664454], [0.49999999999999994], [0.659990169574834], [0.7599737855328909], [0.7599737855328909], [0.6799787007454738], [0.579995084787417], [0.5199885311706398], [0.5199885311706398], [0.5599655935119193], [0.5599655935119193], [0.5599655935119193], [0.49999999999999994], [0.4200049152125829], [0.3999754239370853], [0.4200049152125829], [0.4799705087245023], [0.5599655935119193], [0.5999836159580568], [0.5599655935119193], [0.5199885311706398], [0.45998197755386255], [0.4200049152125829], [0.4200049152125829], [0.45998197755386255], [0.49999999999999994], [0.5399770623412795], [0.5399770623412795], [0.5199885311706398], [0.4799705087245023], [0.49999999999999994], [0.5199885311706398], [0.5199885311706398], [0.49999999999999994], [0.3999754239370853], [0.31998033914966817], [0.2599737855328909], [0.2999918079790284], [0.3999754239370853], [0.5399770623412795], [0.6400016384041943], [0.6999672319161137], [0.7199967231916113], [0.7599737855328909], [0.8199803391496681], [0.8999754239370853], [0.9799705087245022], [1.0], [0.9599819775538624], [0.8599983615958056], [0.6799787007454738], [0.4799705087245023], [0.339968870320308], [0.2599737855328909], [0.2999918079790284], [0.3799868927664454], [0.4799705087245023], [0.5599655935119193], [0.5999836159580568], [0.579995084787417], [0.5599655935119193], [0.5599655935119193], [0.6199721471286965], [0.6999672319161137], [0.7999918079790284], [0.8799868927664454], [0.8799868927664454], [0.8199803391496681], [0.739985254362251], [0.6799787007454738]], "deltas": [[1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0]]}} -{"label": 0, "forward": {"values": [[0.47272388754421896], [0.5454477750884379], [0.6545522249115621], [0.7454477750884378], [0.8], [0.8], [0.7454477750884378], [0.7091044498231241], [0.6909327871904674], [0.6727238875442189], [0.6545522249115621], [0.5818283373673432], [0.4909327871904673], [0.34544777508843794], [0.21817166263265686], [0.10910444982312417], [0.09089555017687584], [0.14544777508843793], [0.2908955501768758], [0.4545522249115621], [0.6181716626326568], [0.7091044498231241], [0.7454477750884378], [0.7454477750884378], [0.7091044498231241], [0.7091044498231241], [0.7091044498231241], [0.7091044498231241], [0.7091044498231241], [0.6545522249115621], [0.5818283373673432], [0.47272388754421896], [0.4], [0.36365667473468627], [0.3818283373673432], [0.41817166263265687], [0.4363805622789052], [0.4], [0.32727611245578103], [0.2545522249115621], [0.2545522249115621], [0.3091044498231242], [0.3818283373673432], [0.4363805622789052], [0.4363805622789052], [0.3818283373673432], [0.3091044498231242], [0.27272388754421895], [0.2908955501768758], [0.34544777508843794], [0.4], [0.41817166263265687], [0.4], [0.32727611245578103], [0.27272388754421895], [0.2545522249115621], [0.27272388754421895], [0.34544777508843794], [0.4], [0.41817166263265687], [0.4], [0.36365667473468627], [0.34544777508843794], [0.3818283373673432], [0.4363805622789052], [0.47272388754421896], [0.47272388754421896], [0.41817166263265687], [0.32727611245578103], [0.23638056227890525], [0.2], [0.23638056227890525], [0.32727611245578103], [0.4545522249115621], [0.5272761124557811], [0.5272761124557811], [0.41817166263265687], [0.23638056227890525], [0.07272388754421893], [0.0], [0.07272388754421893], [0.2545522249115621], [0.4545522249115621], [0.6181716626326568], [0.6727238875442189], [0.6181716626326568], [0.4909327871904673], [0.32727611245578103], [0.18182833736734316], [0.10910444982312417], [0.10910444982312417], [0.23638056227890525], [0.4363805622789052], [0.6363805622789053], [0.7636566747346862], [0.7818283373673433], [0.7091044498231241], [0.5636566747346863], [0.4363805622789052], [0.3818283373673432], [0.3818283373673432], [0.41817166263265687], [0.4545522249115621], [0.5091044498231242], [0.5454477750884379], [0.5818283373673432], [0.6363805622789053], [0.6545522249115621], [0.6545522249115621], [0.6181716626326568], [0.5818283373673432], [0.5818283373673432], [0.6], [0.6181716626326568], [0.6545522249115621], [0.6909327871904674], [0.7454477750884378], [0.8], [0.8727238875442188], [0.9091044498231242], [0.8909327871904674], [0.8363805622789051], [0.7272761124557809], [0.6545522249115621], [0.6181716626326568], [0.6363805622789053], [0.7091044498231241], [0.8182088996462483], [0.8909327871904674], [0.9091044498231242], [0.8363805622789051], [0.7091044498231241], [0.6], [0.5272761124557811], [0.5454477750884379], [0.5818283373673432], [0.6545522249115621], [0.6727238875442189], [0.6727238875442189], [0.6363805622789053], [0.5818283373673432], [0.5454477750884379], [0.4909327871904673], [0.4545522249115621], [0.4], [0.36365667473468627], [0.4], [0.4545522249115621], [0.5454477750884379], [0.6363805622789053], [0.6363805622789053], [0.5818283373673432], [0.5272761124557811], [0.4545522249115621], [0.4545522249115621], [0.4909327871904673], [0.5818283373673432], [0.6545522249115621], [0.6727238875442189], [0.6181716626326568], [0.5272761124557811], [0.4545522249115621], [0.4363805622789052], [0.5272761124557811], [0.7091044498231241], [0.8727238875442188], [0.9818283373673432], [1.0], [0.8727238875442188], [0.6727238875442189], [0.4909327871904673], [0.36365667473468627], [0.34544777508843794], [0.47272388754421896], [0.6181716626326568], [0.7272761124557809], [0.7636566747346862], [0.7091044498231241], [0.6], [0.5272761124557811], [0.5272761124557811], [0.5636566747346863], [0.6181716626326568], [0.6363805622789053], [0.5818283373673432], [0.4909327871904673], [0.4363805622789052], [0.4545522249115621], [0.5454477750884379], [0.7091044498231241], [0.8363805622789051], [0.9272761124557811], [0.9091044498231242], [0.8363805622789051], [0.7636566747346862], [0.7272761124557809], [0.7454477750884378], [0.8], [0.8182088996462483], [0.7636566747346862], [0.6363805622789053], [0.4545522249115621], [0.3091044498231242], [0.23638056227890525], [0.27272388754421895], [0.4], [0.5272761124557811], [0.6], [0.5818283373673432], [0.5091044498231242], [0.41817166263265687], [0.3818283373673432], [0.4], [0.4909327871904673], [0.5636566747346863], [0.6363805622789053], [0.6545522249115621], [0.6363805622789053], [0.6], [0.5636566747346863], [0.5091044498231242], [0.47272388754421896], [0.47272388754421896], [0.4909327871904673], [0.5454477750884379], [0.6181716626326568], [0.6545522249115621], [0.6545522249115621], [0.6363805622789053], [0.5818283373673432], [0.5272761124557811], [0.47272388754421896], [0.4545522249115621], [0.4545522249115621], [0.47272388754421896], [0.4909327871904673], [0.5091044498231242], [0.5091044498231242], [0.47272388754421896], [0.4545522249115621], [0.4363805622789052], [0.41817166263265687], [0.4363805622789052], [0.4545522249115621], [0.4545522249115621], [0.4545522249115621], [0.4545522249115621], [0.4545522249115621], [0.47272388754421896], [0.4909327871904673], [0.4909327871904673], [0.4909327871904673], [0.4909327871904673], [0.5272761124557811], [0.5636566747346863], [0.6181716626326568]], "masks": [[1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1]], "evals": [[0.47272388754421896], [0.5454477750884379], [0.6545522249115621], [0.7454477750884378], [0.8], [0.8], [0.7454477750884378], [0.7091044498231241], [0.6909327871904674], [0.6727238875442189], [0.6545522249115621], [0.5818283373673432], [0.4909327871904673], [0.34544777508843794], [0.21817166263265686], [0.10910444982312417], [0.09089555017687584], [0.14544777508843793], [0.2908955501768758], [0.4545522249115621], [0.6181716626326568], [0.7091044498231241], [0.7454477750884378], [0.7454477750884378], [0.7091044498231241], [0.7091044498231241], [0.7091044498231241], [0.7091044498231241], [0.7091044498231241], [0.6545522249115621], [0.5818283373673432], [0.47272388754421896], [0.4], [0.36365667473468627], [0.3818283373673432], [0.41817166263265687], [0.4363805622789052], [0.4], [0.32727611245578103], [0.2545522249115621], [0.2545522249115621], [0.3091044498231242], [0.3818283373673432], [0.4363805622789052], [0.4363805622789052], [0.3818283373673432], [0.3091044498231242], [0.27272388754421895], [0.2908955501768758], [0.34544777508843794], [0.4], [0.41817166263265687], [0.4], [0.32727611245578103], [0.27272388754421895], [0.2545522249115621], [0.27272388754421895], [0.34544777508843794], [0.4], [0.41817166263265687], [0.4], [0.36365667473468627], [0.34544777508843794], [0.3818283373673432], [0.4363805622789052], [0.47272388754421896], [0.47272388754421896], [0.41817166263265687], [0.32727611245578103], [0.23638056227890525], [0.2], [0.23638056227890525], [0.32727611245578103], [0.4545522249115621], [0.5272761124557811], [0.5272761124557811], [0.41817166263265687], [0.23638056227890525], [0.07272388754421893], [0.0], [0.07272388754421893], [0.2545522249115621], [0.4545522249115621], [0.6181716626326568], [0.6727238875442189], [0.6181716626326568], [0.4909327871904673], [0.32727611245578103], [0.18182833736734316], [0.10910444982312417], [0.10910444982312417], [0.23638056227890525], [0.4363805622789052], [0.6363805622789053], [0.7636566747346862], [0.7818283373673433], [0.7091044498231241], [0.5636566747346863], [0.4363805622789052], [0.3818283373673432], [0.3818283373673432], [0.41817166263265687], [0.4545522249115621], [0.5091044498231242], [0.5454477750884379], [0.5818283373673432], [0.6363805622789053], [0.6545522249115621], [0.6545522249115621], [0.6181716626326568], [0.5818283373673432], [0.5818283373673432], [0.6], [0.6181716626326568], [0.6545522249115621], [0.6909327871904674], [0.7454477750884378], [0.8], [0.8727238875442188], [0.9091044498231242], [0.8909327871904674], [0.8363805622789051], [0.7272761124557809], [0.6545522249115621], [0.6181716626326568], [0.6363805622789053], [0.7091044498231241], [0.8182088996462483], [0.8909327871904674], [0.9091044498231242], [0.8363805622789051], [0.7091044498231241], [0.6], [0.5272761124557811], [0.5454477750884379], [0.5818283373673432], [0.6545522249115621], [0.6727238875442189], [0.6727238875442189], [0.6363805622789053], [0.5818283373673432], [0.5454477750884379], [0.4909327871904673], [0.4545522249115621], [0.4], [0.36365667473468627], [0.4], [0.4545522249115621], [0.5454477750884379], [0.6363805622789053], [0.6363805622789053], [0.5818283373673432], [0.5272761124557811], [0.4545522249115621], [0.4545522249115621], [0.4909327871904673], [0.5818283373673432], [0.6545522249115621], [0.6727238875442189], [0.6181716626326568], [0.5272761124557811], [0.4545522249115621], [0.4363805622789052], [0.5272761124557811], [0.7091044498231241], [0.8727238875442188], [0.9818283373673432], [1.0], [0.8727238875442188], [0.6727238875442189], [0.4909327871904673], [0.36365667473468627], [0.34544777508843794], [0.47272388754421896], [0.6181716626326568], [0.7272761124557809], [0.7636566747346862], [0.7091044498231241], [0.6], [0.5272761124557811], [0.5272761124557811], [0.5636566747346863], [0.6181716626326568], [0.6363805622789053], [0.5818283373673432], [0.4909327871904673], [0.4363805622789052], [0.4545522249115621], [0.5454477750884379], [0.7091044498231241], [0.8363805622789051], [0.9272761124557811], [0.9091044498231242], [0.8363805622789051], [0.7636566747346862], [0.7272761124557809], [0.7454477750884378], [0.8], [0.8182088996462483], [0.7636566747346862], [0.6363805622789053], [0.4545522249115621], [0.3091044498231242], [0.23638056227890525], [0.27272388754421895], [0.4], [0.5272761124557811], [0.6], [0.5818283373673432], [0.5091044498231242], [0.41817166263265687], [0.3818283373673432], [0.4], [0.4909327871904673], [0.5636566747346863], [0.6363805622789053], [0.6545522249115621], [0.6363805622789053], [0.6], [0.5636566747346863], [0.5091044498231242], [0.47272388754421896], [0.47272388754421896], [0.4909327871904673], [0.5454477750884379], [0.6181716626326568], [0.6545522249115621], [0.6545522249115621], [0.6363805622789053], [0.5818283373673432], [0.5272761124557811], [0.47272388754421896], [0.4545522249115621], [0.4545522249115621], [0.47272388754421896], [0.4909327871904673], [0.5091044498231242], [0.5091044498231242], [0.47272388754421896], [0.4545522249115621], [0.4363805622789052], [0.41817166263265687], [0.4363805622789052], [0.4545522249115621], [0.4545522249115621], [0.4545522249115621], [0.4545522249115621], [0.4545522249115621], [0.47272388754421896], [0.4909327871904673], [0.4909327871904673], [0.4909327871904673], [0.4909327871904673], [0.5272761124557811], [0.5636566747346863], [0.6181716626326568]], "eval_masks": [[0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0]], "forwards": [[0.47272388754421896], [0.5454477750884379], [0.6545522249115621], [0.7454477750884378], [0.8], [0.8], [0.7454477750884378], [0.7091044498231241], [0.6909327871904674], [0.6727238875442189], [0.6545522249115621], [0.5818283373673432], [0.4909327871904673], [0.34544777508843794], [0.21817166263265686], [0.10910444982312417], [0.09089555017687584], [0.14544777508843793], [0.2908955501768758], [0.4545522249115621], [0.6181716626326568], [0.7091044498231241], [0.7454477750884378], [0.7454477750884378], [0.7091044498231241], [0.7091044498231241], [0.7091044498231241], [0.7091044498231241], [0.7091044498231241], [0.6545522249115621], [0.5818283373673432], [0.47272388754421896], [0.4], [0.36365667473468627], [0.3818283373673432], [0.41817166263265687], [0.4363805622789052], [0.4], [0.32727611245578103], [0.2545522249115621], [0.2545522249115621], [0.3091044498231242], [0.3818283373673432], [0.4363805622789052], [0.4363805622789052], [0.3818283373673432], [0.3091044498231242], [0.27272388754421895], [0.2908955501768758], [0.34544777508843794], [0.4], [0.41817166263265687], [0.4], [0.32727611245578103], [0.27272388754421895], [0.2545522249115621], [0.27272388754421895], [0.34544777508843794], [0.4], [0.41817166263265687], [0.4], [0.36365667473468627], [0.34544777508843794], [0.3818283373673432], [0.4363805622789052], [0.47272388754421896], [0.47272388754421896], [0.41817166263265687], [0.32727611245578103], [0.23638056227890525], [0.2], [0.23638056227890525], [0.32727611245578103], [0.4545522249115621], [0.5272761124557811], [0.5272761124557811], [0.41817166263265687], [0.23638056227890525], [0.07272388754421893], [0.0], [0.07272388754421893], [0.2545522249115621], [0.4545522249115621], [0.6181716626326568], [0.6727238875442189], [0.6181716626326568], [0.4909327871904673], [0.32727611245578103], [0.18182833736734316], [0.10910444982312417], [0.10910444982312417], [0.23638056227890525], [0.4363805622789052], [0.6363805622789053], [0.7636566747346862], [0.7818283373673433], [0.7091044498231241], [0.5636566747346863], [0.4363805622789052], [0.3818283373673432], [0.3818283373673432], [0.41817166263265687], [0.4545522249115621], [0.5091044498231242], [0.5454477750884379], [0.5818283373673432], [0.6363805622789053], [0.6545522249115621], [0.6545522249115621], [0.6181716626326568], [0.5818283373673432], [0.5818283373673432], [0.6], [0.6181716626326568], [0.6545522249115621], [0.6909327871904674], [0.7454477750884378], [0.8], [0.8727238875442188], [0.9091044498231242], [0.8909327871904674], [0.8363805622789051], [0.7272761124557809], [0.6545522249115621], [0.6181716626326568], [0.6363805622789053], [0.7091044498231241], [0.8182088996462483], [0.8909327871904674], [0.9091044498231242], [0.8363805622789051], [0.7091044498231241], [0.6], [0.5272761124557811], [0.5454477750884379], [0.5818283373673432], [0.6545522249115621], [0.6727238875442189], [0.6727238875442189], [0.6363805622789053], [0.5818283373673432], [0.5454477750884379], [0.4909327871904673], [0.4545522249115621], [0.4], [0.36365667473468627], [0.4], [0.4545522249115621], [0.5454477750884379], [0.6363805622789053], [0.6363805622789053], [0.5818283373673432], [0.5272761124557811], [0.4545522249115621], [0.4545522249115621], [0.4909327871904673], [0.5818283373673432], [0.6545522249115621], [0.6727238875442189], [0.6181716626326568], [0.5272761124557811], [0.4545522249115621], [0.4363805622789052], [0.5272761124557811], [0.7091044498231241], [0.8727238875442188], [0.9818283373673432], [1.0], [0.8727238875442188], [0.6727238875442189], [0.4909327871904673], [0.36365667473468627], [0.34544777508843794], [0.47272388754421896], [0.6181716626326568], [0.7272761124557809], [0.7636566747346862], [0.7091044498231241], [0.6], [0.5272761124557811], [0.5272761124557811], [0.5636566747346863], [0.6181716626326568], [0.6363805622789053], [0.5818283373673432], [0.4909327871904673], [0.4363805622789052], [0.4545522249115621], [0.5454477750884379], [0.7091044498231241], [0.8363805622789051], [0.9272761124557811], [0.9091044498231242], [0.8363805622789051], [0.7636566747346862], [0.7272761124557809], [0.7454477750884378], [0.8], [0.8182088996462483], [0.7636566747346862], [0.6363805622789053], [0.4545522249115621], [0.3091044498231242], [0.23638056227890525], [0.27272388754421895], [0.4], [0.5272761124557811], [0.6], [0.5818283373673432], [0.5091044498231242], [0.41817166263265687], [0.3818283373673432], [0.4], [0.4909327871904673], [0.5636566747346863], [0.6363805622789053], [0.6545522249115621], [0.6363805622789053], [0.6], [0.5636566747346863], [0.5091044498231242], [0.47272388754421896], [0.47272388754421896], [0.4909327871904673], [0.5454477750884379], [0.6181716626326568], [0.6545522249115621], [0.6545522249115621], [0.6363805622789053], [0.5818283373673432], [0.5272761124557811], [0.47272388754421896], [0.4545522249115621], [0.4545522249115621], [0.47272388754421896], [0.4909327871904673], [0.5091044498231242], [0.5091044498231242], [0.47272388754421896], [0.4545522249115621], [0.4363805622789052], [0.41817166263265687], [0.4363805622789052], [0.4545522249115621], [0.4545522249115621], [0.4545522249115621], [0.4545522249115621], [0.4545522249115621], [0.47272388754421896], [0.4909327871904673], [0.4909327871904673], [0.4909327871904673], [0.4909327871904673], [0.5272761124557811], [0.5636566747346863], [0.6181716626326568]], "deltas": [[1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0]]}, "backward": {"values": [[0.6181716626326568], [0.5636566747346863], [0.5272761124557811], [0.4909327871904673], [0.4909327871904673], [0.4909327871904673], [0.4909327871904673], [0.47272388754421896], [0.4545522249115621], [0.4545522249115621], [0.4545522249115621], [0.4545522249115621], [0.4545522249115621], [0.4363805622789052], [0.41817166263265687], [0.4363805622789052], [0.4545522249115621], [0.47272388754421896], [0.5091044498231242], [0.5091044498231242], [0.4909327871904673], [0.47272388754421896], [0.4545522249115621], [0.4545522249115621], [0.47272388754421896], [0.5272761124557811], [0.5818283373673432], [0.6363805622789053], [0.6545522249115621], [0.6545522249115621], [0.6181716626326568], [0.5454477750884379], [0.4909327871904673], [0.47272388754421896], [0.47272388754421896], [0.5091044498231242], [0.5636566747346863], [0.6], [0.6363805622789053], [0.6545522249115621], [0.6363805622789053], [0.5636566747346863], [0.4909327871904673], [0.4], [0.3818283373673432], [0.41817166263265687], [0.5091044498231242], [0.5818283373673432], [0.6], [0.5272761124557811], [0.4], [0.27272388754421895], [0.23638056227890525], [0.3091044498231242], [0.4545522249115621], [0.6363805622789053], [0.7636566747346862], [0.8182088996462483], [0.8], [0.7454477750884378], [0.7272761124557809], [0.7636566747346862], [0.8363805622789051], [0.9091044498231242], [0.9272761124557811], [0.8363805622789051], [0.7091044498231241], [0.5454477750884379], [0.4545522249115621], [0.4363805622789052], [0.4909327871904673], [0.5818283373673432], [0.6363805622789053], [0.6181716626326568], [0.5636566747346863], [0.5272761124557811], [0.5272761124557811], [0.6], [0.7091044498231241], [0.7636566747346862], [0.7272761124557809], [0.6181716626326568], [0.47272388754421896], [0.34544777508843794], [0.36365667473468627], [0.4909327871904673], [0.6727238875442189], [0.8727238875442188], [1.0], [0.9818283373673432], [0.8727238875442188], [0.7091044498231241], [0.5272761124557811], [0.4363805622789052], [0.4545522249115621], [0.5272761124557811], [0.6181716626326568], [0.6727238875442189], [0.6545522249115621], [0.5818283373673432], [0.4909327871904673], [0.4545522249115621], [0.4545522249115621], [0.5272761124557811], [0.5818283373673432], [0.6363805622789053], [0.6363805622789053], [0.5454477750884379], [0.4545522249115621], [0.4], [0.36365667473468627], [0.4], [0.4545522249115621], [0.4909327871904673], [0.5454477750884379], [0.5818283373673432], [0.6363805622789053], [0.6727238875442189], [0.6727238875442189], [0.6545522249115621], [0.5818283373673432], [0.5454477750884379], [0.5272761124557811], [0.6], [0.7091044498231241], [0.8363805622789051], [0.9091044498231242], [0.8909327871904674], [0.8182088996462483], [0.7091044498231241], [0.6363805622789053], [0.6181716626326568], [0.6545522249115621], [0.7272761124557809], [0.8363805622789051], [0.8909327871904674], [0.9091044498231242], [0.8727238875442188], [0.8], [0.7454477750884378], [0.6909327871904674], [0.6545522249115621], [0.6181716626326568], [0.6], [0.5818283373673432], [0.5818283373673432], [0.6181716626326568], [0.6545522249115621], [0.6545522249115621], [0.6363805622789053], [0.5818283373673432], [0.5454477750884379], [0.5091044498231242], [0.4545522249115621], [0.41817166263265687], [0.3818283373673432], [0.3818283373673432], [0.4363805622789052], [0.5636566747346863], [0.7091044498231241], [0.7818283373673433], [0.7636566747346862], [0.6363805622789053], [0.4363805622789052], [0.23638056227890525], [0.10910444982312417], [0.10910444982312417], [0.18182833736734316], [0.32727611245578103], [0.4909327871904673], [0.6181716626326568], [0.6727238875442189], [0.6181716626326568], [0.4545522249115621], [0.2545522249115621], [0.07272388754421893], [0.0], [0.07272388754421893], [0.23638056227890525], [0.41817166263265687], [0.5272761124557811], [0.5272761124557811], [0.4545522249115621], [0.32727611245578103], [0.23638056227890525], [0.2], [0.23638056227890525], [0.32727611245578103], [0.41817166263265687], [0.47272388754421896], [0.47272388754421896], [0.4363805622789052], [0.3818283373673432], [0.34544777508843794], [0.36365667473468627], [0.4], [0.41817166263265687], [0.4], [0.34544777508843794], [0.27272388754421895], [0.2545522249115621], [0.27272388754421895], [0.32727611245578103], [0.4], [0.41817166263265687], [0.4], [0.34544777508843794], [0.2908955501768758], [0.27272388754421895], [0.3091044498231242], [0.3818283373673432], [0.4363805622789052], [0.4363805622789052], [0.3818283373673432], [0.3091044498231242], [0.2545522249115621], [0.2545522249115621], [0.32727611245578103], [0.4], [0.4363805622789052], [0.41817166263265687], [0.3818283373673432], [0.36365667473468627], [0.4], [0.47272388754421896], [0.5818283373673432], [0.6545522249115621], [0.7091044498231241], [0.7091044498231241], [0.7091044498231241], [0.7091044498231241], [0.7091044498231241], [0.7454477750884378], [0.7454477750884378], [0.7091044498231241], [0.6181716626326568], [0.4545522249115621], [0.2908955501768758], [0.14544777508843793], [0.09089555017687584], [0.10910444982312417], [0.21817166263265686], [0.34544777508843794], [0.4909327871904673], [0.5818283373673432], [0.6545522249115621], [0.6727238875442189], [0.6909327871904674], [0.7091044498231241], [0.7454477750884378], [0.8], [0.8], [0.7454477750884378], [0.6545522249115621], [0.5454477750884379], [0.47272388754421896]], "masks": [[1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1]], "evals": [[0.6181716626326568], [0.5636566747346863], [0.5272761124557811], [0.4909327871904673], [0.4909327871904673], [0.4909327871904673], [0.4909327871904673], [0.47272388754421896], [0.4545522249115621], [0.4545522249115621], [0.4545522249115621], [0.4545522249115621], [0.4545522249115621], [0.4363805622789052], [0.41817166263265687], [0.4363805622789052], [0.4545522249115621], [0.47272388754421896], [0.5091044498231242], [0.5091044498231242], [0.4909327871904673], [0.47272388754421896], [0.4545522249115621], [0.4545522249115621], [0.47272388754421896], [0.5272761124557811], [0.5818283373673432], [0.6363805622789053], [0.6545522249115621], [0.6545522249115621], [0.6181716626326568], [0.5454477750884379], [0.4909327871904673], [0.47272388754421896], [0.47272388754421896], [0.5091044498231242], [0.5636566747346863], [0.6], [0.6363805622789053], [0.6545522249115621], [0.6363805622789053], [0.5636566747346863], [0.4909327871904673], [0.4], [0.3818283373673432], [0.41817166263265687], [0.5091044498231242], [0.5818283373673432], [0.6], [0.5272761124557811], [0.4], [0.27272388754421895], [0.23638056227890525], [0.3091044498231242], [0.4545522249115621], [0.6363805622789053], [0.7636566747346862], [0.8182088996462483], [0.8], [0.7454477750884378], [0.7272761124557809], [0.7636566747346862], [0.8363805622789051], [0.9091044498231242], [0.9272761124557811], [0.8363805622789051], [0.7091044498231241], [0.5454477750884379], [0.4545522249115621], [0.4363805622789052], [0.4909327871904673], [0.5818283373673432], [0.6363805622789053], [0.6181716626326568], [0.5636566747346863], [0.5272761124557811], [0.5272761124557811], [0.6], [0.7091044498231241], [0.7636566747346862], [0.7272761124557809], [0.6181716626326568], [0.47272388754421896], [0.34544777508843794], [0.36365667473468627], [0.4909327871904673], [0.6727238875442189], [0.8727238875442188], [1.0], [0.9818283373673432], [0.8727238875442188], [0.7091044498231241], [0.5272761124557811], [0.4363805622789052], [0.4545522249115621], [0.5272761124557811], [0.6181716626326568], [0.6727238875442189], [0.6545522249115621], [0.5818283373673432], [0.4909327871904673], [0.4545522249115621], [0.4545522249115621], [0.5272761124557811], [0.5818283373673432], [0.6363805622789053], [0.6363805622789053], [0.5454477750884379], [0.4545522249115621], [0.4], [0.36365667473468627], [0.4], [0.4545522249115621], [0.4909327871904673], [0.5454477750884379], [0.5818283373673432], [0.6363805622789053], [0.6727238875442189], [0.6727238875442189], [0.6545522249115621], [0.5818283373673432], [0.5454477750884379], [0.5272761124557811], [0.6], [0.7091044498231241], [0.8363805622789051], [0.9091044498231242], [0.8909327871904674], [0.8182088996462483], [0.7091044498231241], [0.6363805622789053], [0.6181716626326568], [0.6545522249115621], [0.7272761124557809], [0.8363805622789051], [0.8909327871904674], [0.9091044498231242], [0.8727238875442188], [0.8], [0.7454477750884378], [0.6909327871904674], [0.6545522249115621], [0.6181716626326568], [0.6], [0.5818283373673432], [0.5818283373673432], [0.6181716626326568], [0.6545522249115621], [0.6545522249115621], [0.6363805622789053], [0.5818283373673432], [0.5454477750884379], [0.5091044498231242], [0.4545522249115621], [0.41817166263265687], [0.3818283373673432], [0.3818283373673432], [0.4363805622789052], [0.5636566747346863], [0.7091044498231241], [0.7818283373673433], [0.7636566747346862], [0.6363805622789053], [0.4363805622789052], [0.23638056227890525], [0.10910444982312417], [0.10910444982312417], [0.18182833736734316], [0.32727611245578103], [0.4909327871904673], [0.6181716626326568], [0.6727238875442189], [0.6181716626326568], [0.4545522249115621], [0.2545522249115621], [0.07272388754421893], [0.0], [0.07272388754421893], [0.23638056227890525], [0.41817166263265687], [0.5272761124557811], [0.5272761124557811], [0.4545522249115621], [0.32727611245578103], [0.23638056227890525], [0.2], [0.23638056227890525], [0.32727611245578103], [0.41817166263265687], [0.47272388754421896], [0.47272388754421896], [0.4363805622789052], [0.3818283373673432], [0.34544777508843794], [0.36365667473468627], [0.4], [0.41817166263265687], [0.4], [0.34544777508843794], [0.27272388754421895], [0.2545522249115621], [0.27272388754421895], [0.32727611245578103], [0.4], [0.41817166263265687], [0.4], [0.34544777508843794], [0.2908955501768758], [0.27272388754421895], [0.3091044498231242], [0.3818283373673432], [0.4363805622789052], [0.4363805622789052], [0.3818283373673432], [0.3091044498231242], [0.2545522249115621], [0.2545522249115621], [0.32727611245578103], [0.4], [0.4363805622789052], [0.41817166263265687], [0.3818283373673432], [0.36365667473468627], [0.4], [0.47272388754421896], [0.5818283373673432], [0.6545522249115621], [0.7091044498231241], [0.7091044498231241], [0.7091044498231241], [0.7091044498231241], [0.7091044498231241], [0.7454477750884378], [0.7454477750884378], [0.7091044498231241], [0.6181716626326568], [0.4545522249115621], [0.2908955501768758], [0.14544777508843793], [0.09089555017687584], [0.10910444982312417], [0.21817166263265686], [0.34544777508843794], [0.4909327871904673], [0.5818283373673432], [0.6545522249115621], [0.6727238875442189], [0.6909327871904674], [0.7091044498231241], [0.7454477750884378], [0.8], [0.8], [0.7454477750884378], [0.6545522249115621], [0.5454477750884379], [0.47272388754421896]], "eval_masks": [[0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0]], "forwards": [[0.6181716626326568], [0.5636566747346863], [0.5272761124557811], [0.4909327871904673], [0.4909327871904673], [0.4909327871904673], [0.4909327871904673], [0.47272388754421896], [0.4545522249115621], [0.4545522249115621], [0.4545522249115621], [0.4545522249115621], [0.4545522249115621], [0.4363805622789052], [0.41817166263265687], [0.4363805622789052], [0.4545522249115621], [0.47272388754421896], [0.5091044498231242], [0.5091044498231242], [0.4909327871904673], [0.47272388754421896], [0.4545522249115621], [0.4545522249115621], [0.47272388754421896], [0.5272761124557811], [0.5818283373673432], [0.6363805622789053], [0.6545522249115621], [0.6545522249115621], [0.6181716626326568], [0.5454477750884379], [0.4909327871904673], [0.47272388754421896], [0.47272388754421896], [0.5091044498231242], [0.5636566747346863], [0.6], [0.6363805622789053], [0.6545522249115621], [0.6363805622789053], [0.5636566747346863], [0.4909327871904673], [0.4], [0.3818283373673432], [0.41817166263265687], [0.5091044498231242], [0.5818283373673432], [0.6], [0.5272761124557811], [0.4], [0.27272388754421895], [0.23638056227890525], [0.3091044498231242], [0.4545522249115621], [0.6363805622789053], [0.7636566747346862], [0.8182088996462483], [0.8], [0.7454477750884378], [0.7272761124557809], [0.7636566747346862], [0.8363805622789051], [0.9091044498231242], [0.9272761124557811], [0.8363805622789051], [0.7091044498231241], [0.5454477750884379], [0.4545522249115621], [0.4363805622789052], [0.4909327871904673], [0.5818283373673432], [0.6363805622789053], [0.6181716626326568], [0.5636566747346863], [0.5272761124557811], [0.5272761124557811], [0.6], [0.7091044498231241], [0.7636566747346862], [0.7272761124557809], [0.6181716626326568], [0.47272388754421896], [0.34544777508843794], [0.36365667473468627], [0.4909327871904673], [0.6727238875442189], [0.8727238875442188], [1.0], [0.9818283373673432], [0.8727238875442188], [0.7091044498231241], [0.5272761124557811], [0.4363805622789052], [0.4545522249115621], [0.5272761124557811], [0.6181716626326568], [0.6727238875442189], [0.6545522249115621], [0.5818283373673432], [0.4909327871904673], [0.4545522249115621], [0.4545522249115621], [0.5272761124557811], [0.5818283373673432], [0.6363805622789053], [0.6363805622789053], [0.5454477750884379], [0.4545522249115621], [0.4], [0.36365667473468627], [0.4], [0.4545522249115621], [0.4909327871904673], [0.5454477750884379], [0.5818283373673432], [0.6363805622789053], [0.6727238875442189], [0.6727238875442189], [0.6545522249115621], [0.5818283373673432], [0.5454477750884379], [0.5272761124557811], [0.6], [0.7091044498231241], [0.8363805622789051], [0.9091044498231242], [0.8909327871904674], [0.8182088996462483], [0.7091044498231241], [0.6363805622789053], [0.6181716626326568], [0.6545522249115621], [0.7272761124557809], [0.8363805622789051], [0.8909327871904674], [0.9091044498231242], [0.8727238875442188], [0.8], [0.7454477750884378], [0.6909327871904674], [0.6545522249115621], [0.6181716626326568], [0.6], [0.5818283373673432], [0.5818283373673432], [0.6181716626326568], [0.6545522249115621], [0.6545522249115621], [0.6363805622789053], [0.5818283373673432], [0.5454477750884379], [0.5091044498231242], [0.4545522249115621], [0.41817166263265687], [0.3818283373673432], [0.3818283373673432], [0.4363805622789052], [0.5636566747346863], [0.7091044498231241], [0.7818283373673433], [0.7636566747346862], [0.6363805622789053], [0.4363805622789052], [0.23638056227890525], [0.10910444982312417], [0.10910444982312417], [0.18182833736734316], [0.32727611245578103], [0.4909327871904673], [0.6181716626326568], [0.6727238875442189], [0.6181716626326568], [0.4545522249115621], [0.2545522249115621], [0.07272388754421893], [0.0], [0.07272388754421893], [0.23638056227890525], [0.41817166263265687], [0.5272761124557811], [0.5272761124557811], [0.4545522249115621], [0.32727611245578103], [0.23638056227890525], [0.2], [0.23638056227890525], [0.32727611245578103], [0.41817166263265687], [0.47272388754421896], [0.47272388754421896], [0.4363805622789052], [0.3818283373673432], [0.34544777508843794], [0.36365667473468627], [0.4], [0.41817166263265687], [0.4], [0.34544777508843794], [0.27272388754421895], [0.2545522249115621], [0.27272388754421895], [0.32727611245578103], [0.4], [0.41817166263265687], [0.4], [0.34544777508843794], [0.2908955501768758], [0.27272388754421895], [0.3091044498231242], [0.3818283373673432], [0.4363805622789052], [0.4363805622789052], [0.3818283373673432], [0.3091044498231242], [0.2545522249115621], [0.2545522249115621], [0.32727611245578103], [0.4], [0.4363805622789052], [0.41817166263265687], [0.3818283373673432], [0.36365667473468627], [0.4], [0.47272388754421896], [0.5818283373673432], [0.6545522249115621], [0.7091044498231241], [0.7091044498231241], [0.7091044498231241], [0.7091044498231241], [0.7091044498231241], [0.7454477750884378], [0.7454477750884378], [0.7091044498231241], [0.6181716626326568], [0.4545522249115621], [0.2908955501768758], [0.14544777508843793], [0.09089555017687584], [0.10910444982312417], [0.21817166263265686], [0.34544777508843794], [0.4909327871904673], [0.5818283373673432], [0.6545522249115621], [0.6727238875442189], [0.6909327871904674], [0.7091044498231241], [0.7454477750884378], [0.8], [0.8], [0.7454477750884378], [0.6545522249115621], [0.5454477750884379], [0.47272388754421896]], "deltas": [[1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0]]}} -{"label": 0, "forward": {"values": [[0.4509677937515059], [0.5294353867159265], [0.6274596417958397], [0.7058870773431852], [0.725483896875753], [0.7058870773431852], [0.6470564613284073], [0.607862822263272], [0.5686290257810618], [0.5686290257810618], [0.5882258453136294], [0.5686290257810618], [0.4902015902337162], [0.3725403582041603], [0.2352823066420368], [0.11766123202955585], [0.07842743554734564], [0.13725805156212356], [0.27451610312424707], [0.4509677937515059], [0.607862822263272], [0.7058870773431852], [0.7647176933579631], [0.7647176933579631], [0.7647176933579631], [0.7451208738253955], [0.725483896875753], [0.7058870773431852], [0.6862902578106176], [0.6274596417958397], [0.5490322062484941], [0.47060477070114853], [0.3921773351538029], [0.33334671913902497], [0.3725403582041603], [0.41177415468637063], [0.4509677937515059], [0.47060477070114853], [0.4313709742189383], [0.41177415468637063], [0.4313709742189383], [0.4902015902337162], [0.5294353867159265], [0.5490322062484941], [0.4902015902337162], [0.41177415468637063], [0.33334671913902497], [0.31370974218938236], [0.33334671913902497], [0.41177415468637063], [0.4509677937515059], [0.47060477070114853], [0.41177415468637063], [0.35294353867159267], [0.2941129226568147], [0.2941129226568147], [0.33334671913902497], [0.3921773351538029], [0.41177415468637063], [0.41177415468637063], [0.3921773351538029], [0.33334671913902497], [0.31370974218938236], [0.33334671913902497], [0.41177415468637063], [0.47060477070114853], [0.4902015902337162], [0.4509677937515059], [0.35294353867159267], [0.2352823066420368], [0.17645169062725885], [0.21568548710946914], [0.33334671913902497], [0.4902015902337162], [0.5882258453136294], [0.5882258453136294], [0.4509677937515059], [0.2549192835916794], [0.07842743554734564], [0.0], [0.058830616014777924], [0.2352823066420368], [0.4509677937515059], [0.6274596417958397], [0.7058870773431852], [0.6862902578106176], [0.5490322062484941], [0.35294353867159267], [0.17645169062725885], [0.058830616014777924], [0.058830616014777924], [0.1960886675769015], [0.41177415468637063], [0.6274596417958397], [0.7647176933579631], [0.7647176933579631], [0.6666934382780499], [0.5294353867159265], [0.4313709742189383], [0.3725403582041603], [0.3921773351538029], [0.4313709742189383], [0.4902015902337162], [0.5097984097662839], [0.5490322062484941], [0.5882258453136294], [0.6274596417958397], [0.6666934382780499], [0.6666934382780499], [0.6666934382780499], [0.6862902578106176], [0.7058870773431852], [0.725483896875753], [0.7647176933579631], [0.8039113324230985], [0.8431451289053089], [0.8627419484378765], [0.9215725644526543], [0.9608063609348647], [0.9804031804674324], [0.9804031804674324], [0.9411693839852221], [0.8627419484378765], [0.8039113324230985], [0.7647176933579631], [0.7843145128905308], [0.8431451289053089], [0.9215725644526543], [0.9608063609348647], [0.9608063609348647], [0.8823789253875189], [0.8039113324230985], [0.725483896875753], [0.6862902578106176], [0.7058870773431852], [0.7451208738253955], [0.7647176933579631], [0.7843145128905308], [0.7843145128905308], [0.7647176933579631], [0.7451208738253955], [0.7058870773431852], [0.6470564613284073], [0.5686290257810618], [0.4902015902337162], [0.4509677937515059], [0.4509677937515059], [0.5294353867159265], [0.6470564613284073], [0.725483896875753], [0.7451208738253955], [0.725483896875753], [0.6470564613284073], [0.5882258453136294], [0.5490322062484941], [0.5882258453136294], [0.6470564613284073], [0.725483896875753], [0.7647176933579631], [0.725483896875753], [0.6470564613284073], [0.5490322062484941], [0.5294353867159265], [0.5882258453136294], [0.7058870773431852], [0.8627419484378765], [0.9804031804674324], [1.0], [0.9019757449200867], [0.725483896875753], [0.5490322062484941], [0.4313709742189383], [0.41177415468637063], [0.5097984097662839], [0.6470564613284073], [0.7647176933579631], [0.8039113324230985], [0.725483896875753], [0.607862822263272], [0.5097984097662839], [0.4902015902337162], [0.5490322062484941], [0.6274596417958397], [0.6862902578106176], [0.7058870773431852], [0.6666934382780499], [0.607862822263272], [0.5882258453136294], [0.6274596417958397], [0.725483896875753], [0.8235483093727413], [0.8823789253875189], [0.8431451289053089], [0.7647176933579631], [0.6862902578106176], [0.6862902578106176], [0.7451208738253955], [0.8431451289053089], [0.9019757449200867], [0.8823789253875189], [0.7451208738253955], [0.5686290257810618], [0.3921773351538029], [0.31370974218938236], [0.31370974218938236], [0.3921773351538029], [0.4902015902337162], [0.5490322062484941], [0.5490322062484941], [0.4902015902337162], [0.4313709742189383], [0.3921773351538029], [0.3921773351538029], [0.41177415468637063], [0.4509677937515059], [0.5097984097662839], [0.5490322062484941], [0.5490322062484941], [0.5686290257810618], [0.5294353867159265], [0.5097984097662839], [0.4902015902337162], [0.4902015902337162], [0.5490322062484941], [0.6274596417958397], [0.7058870773431852], [0.7451208738253955], [0.725483896875753], [0.6470564613284073], [0.5294353867159265], [0.41177415468637063], [0.33334671913902497], [0.31370974218938236], [0.3725403582041603], [0.4509677937515059], [0.5294353867159265], [0.5882258453136294], [0.5686290257810618], [0.5097984097662839], [0.4509677937515059], [0.3921773351538029], [0.3921773351538029], [0.41177415468637063], [0.41177415468637063], [0.41177415468637063], [0.3921773351538029], [0.33334671913902497], [0.31370974218938236], [0.31370974218938236], [0.3725403582041603], [0.4509677937515059], [0.5294353867159265], [0.607862822263272], [0.6470564613284073], [0.6862902578106176], [0.6862902578106176]], "masks": [[1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1]], "evals": [[0.4509677937515059], [0.5294353867159265], [0.6274596417958397], [0.7058870773431852], [0.725483896875753], [0.7058870773431852], [0.6470564613284073], [0.607862822263272], [0.5686290257810618], [0.5686290257810618], [0.5882258453136294], [0.5686290257810618], [0.4902015902337162], [0.3725403582041603], [0.2352823066420368], [0.11766123202955585], [0.07842743554734564], [0.13725805156212356], [0.27451610312424707], [0.4509677937515059], [0.607862822263272], [0.7058870773431852], [0.7647176933579631], [0.7647176933579631], [0.7647176933579631], [0.7451208738253955], [0.725483896875753], [0.7058870773431852], [0.6862902578106176], [0.6274596417958397], [0.5490322062484941], [0.47060477070114853], [0.3921773351538029], [0.33334671913902497], [0.3725403582041603], [0.41177415468637063], [0.4509677937515059], [0.47060477070114853], [0.4313709742189383], [0.41177415468637063], [0.4313709742189383], [0.4902015902337162], [0.5294353867159265], [0.5490322062484941], [0.4902015902337162], [0.41177415468637063], [0.33334671913902497], [0.31370974218938236], [0.33334671913902497], [0.41177415468637063], [0.4509677937515059], [0.47060477070114853], [0.41177415468637063], [0.35294353867159267], [0.2941129226568147], [0.2941129226568147], [0.33334671913902497], [0.3921773351538029], [0.41177415468637063], [0.41177415468637063], [0.3921773351538029], [0.33334671913902497], [0.31370974218938236], [0.33334671913902497], [0.41177415468637063], [0.47060477070114853], [0.4902015902337162], [0.4509677937515059], [0.35294353867159267], [0.2352823066420368], [0.17645169062725885], [0.21568548710946914], [0.33334671913902497], [0.4902015902337162], [0.5882258453136294], [0.5882258453136294], [0.4509677937515059], [0.2549192835916794], [0.07842743554734564], [0.0], [0.058830616014777924], [0.2352823066420368], [0.4509677937515059], [0.6274596417958397], [0.7058870773431852], [0.6862902578106176], [0.5490322062484941], [0.35294353867159267], [0.17645169062725885], [0.058830616014777924], [0.058830616014777924], [0.1960886675769015], [0.41177415468637063], [0.6274596417958397], [0.7647176933579631], [0.7647176933579631], [0.6666934382780499], [0.5294353867159265], [0.4313709742189383], [0.3725403582041603], [0.3921773351538029], [0.4313709742189383], [0.4902015902337162], [0.5097984097662839], [0.5490322062484941], [0.5882258453136294], [0.6274596417958397], [0.6666934382780499], [0.6666934382780499], [0.6666934382780499], [0.6862902578106176], [0.7058870773431852], [0.725483896875753], [0.7647176933579631], [0.8039113324230985], [0.8431451289053089], [0.8627419484378765], [0.9215725644526543], [0.9608063609348647], [0.9804031804674324], [0.9804031804674324], [0.9411693839852221], [0.8627419484378765], [0.8039113324230985], [0.7647176933579631], [0.7843145128905308], [0.8431451289053089], [0.9215725644526543], [0.9608063609348647], [0.9608063609348647], [0.8823789253875189], [0.8039113324230985], [0.725483896875753], [0.6862902578106176], [0.7058870773431852], [0.7451208738253955], [0.7647176933579631], [0.7843145128905308], [0.7843145128905308], [0.7647176933579631], [0.7451208738253955], [0.7058870773431852], [0.6470564613284073], [0.5686290257810618], [0.4902015902337162], [0.4509677937515059], [0.4509677937515059], [0.5294353867159265], [0.6470564613284073], [0.725483896875753], [0.7451208738253955], [0.725483896875753], [0.6470564613284073], [0.5882258453136294], [0.5490322062484941], [0.5882258453136294], [0.6470564613284073], [0.725483896875753], [0.7647176933579631], [0.725483896875753], [0.6470564613284073], [0.5490322062484941], [0.5294353867159265], [0.5882258453136294], [0.7058870773431852], [0.8627419484378765], [0.9804031804674324], [1.0], [0.9019757449200867], [0.725483896875753], [0.5490322062484941], [0.4313709742189383], [0.41177415468637063], [0.5097984097662839], [0.6470564613284073], [0.7647176933579631], [0.8039113324230985], [0.725483896875753], [0.607862822263272], [0.5097984097662839], [0.4902015902337162], [0.5490322062484941], [0.6274596417958397], [0.6862902578106176], [0.7058870773431852], [0.6666934382780499], [0.607862822263272], [0.5882258453136294], [0.6274596417958397], [0.725483896875753], [0.8235483093727413], [0.8823789253875189], [0.8431451289053089], [0.7647176933579631], [0.6862902578106176], [0.6862902578106176], [0.7451208738253955], [0.8431451289053089], [0.9019757449200867], [0.8823789253875189], [0.7451208738253955], [0.5686290257810618], [0.3921773351538029], [0.31370974218938236], [0.31370974218938236], [0.3921773351538029], [0.4902015902337162], [0.5490322062484941], [0.5490322062484941], [0.4902015902337162], [0.4313709742189383], [0.3921773351538029], [0.3921773351538029], [0.41177415468637063], [0.4509677937515059], [0.5097984097662839], [0.5490322062484941], [0.5490322062484941], [0.5686290257810618], [0.5294353867159265], [0.5097984097662839], [0.4902015902337162], [0.4902015902337162], [0.5490322062484941], [0.6274596417958397], [0.7058870773431852], [0.7451208738253955], [0.725483896875753], [0.6470564613284073], [0.5294353867159265], [0.41177415468637063], [0.33334671913902497], [0.31370974218938236], [0.3725403582041603], [0.4509677937515059], [0.5294353867159265], [0.5882258453136294], [0.5686290257810618], [0.5097984097662839], [0.4509677937515059], [0.3921773351538029], [0.3921773351538029], [0.41177415468637063], [0.41177415468637063], [0.41177415468637063], [0.3921773351538029], [0.33334671913902497], [0.31370974218938236], [0.31370974218938236], [0.3725403582041603], [0.4509677937515059], [0.5294353867159265], [0.607862822263272], [0.6470564613284073], [0.6862902578106176], [0.6862902578106176]], "eval_masks": [[0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0]], "forwards": [[0.4509677937515059], [0.5294353867159265], [0.6274596417958397], [0.7058870773431852], [0.725483896875753], [0.7058870773431852], [0.6470564613284073], [0.607862822263272], [0.5686290257810618], [0.5686290257810618], [0.5882258453136294], [0.5686290257810618], [0.4902015902337162], [0.3725403582041603], [0.2352823066420368], [0.11766123202955585], [0.07842743554734564], [0.13725805156212356], [0.27451610312424707], [0.4509677937515059], [0.607862822263272], [0.7058870773431852], [0.7647176933579631], [0.7647176933579631], [0.7647176933579631], [0.7451208738253955], [0.725483896875753], [0.7058870773431852], [0.6862902578106176], [0.6274596417958397], [0.5490322062484941], [0.47060477070114853], [0.3921773351538029], [0.33334671913902497], [0.3725403582041603], [0.41177415468637063], [0.4509677937515059], [0.47060477070114853], [0.4313709742189383], [0.41177415468637063], [0.4313709742189383], [0.4902015902337162], [0.5294353867159265], [0.5490322062484941], [0.4902015902337162], [0.41177415468637063], [0.33334671913902497], [0.31370974218938236], [0.33334671913902497], [0.41177415468637063], [0.4509677937515059], [0.47060477070114853], [0.41177415468637063], [0.35294353867159267], [0.2941129226568147], [0.2941129226568147], [0.33334671913902497], [0.3921773351538029], [0.41177415468637063], [0.41177415468637063], [0.3921773351538029], [0.33334671913902497], [0.31370974218938236], [0.33334671913902497], [0.41177415468637063], [0.47060477070114853], [0.4902015902337162], [0.4509677937515059], [0.35294353867159267], [0.2352823066420368], [0.17645169062725885], [0.21568548710946914], [0.33334671913902497], [0.4902015902337162], [0.5882258453136294], [0.5882258453136294], [0.4509677937515059], [0.2549192835916794], [0.07842743554734564], [0.0], [0.058830616014777924], [0.2352823066420368], [0.4509677937515059], [0.6274596417958397], [0.7058870773431852], [0.6862902578106176], [0.5490322062484941], [0.35294353867159267], [0.17645169062725885], [0.058830616014777924], [0.058830616014777924], [0.1960886675769015], [0.41177415468637063], [0.6274596417958397], [0.7647176933579631], [0.7647176933579631], [0.6666934382780499], [0.5294353867159265], [0.4313709742189383], [0.3725403582041603], [0.3921773351538029], [0.4313709742189383], [0.4902015902337162], [0.5097984097662839], [0.5490322062484941], [0.5882258453136294], [0.6274596417958397], [0.6666934382780499], [0.6666934382780499], [0.6666934382780499], [0.6862902578106176], [0.7058870773431852], [0.725483896875753], [0.7647176933579631], [0.8039113324230985], [0.8431451289053089], [0.8627419484378765], [0.9215725644526543], [0.9608063609348647], [0.9804031804674324], [0.9804031804674324], [0.9411693839852221], [0.8627419484378765], [0.8039113324230985], [0.7647176933579631], [0.7843145128905308], [0.8431451289053089], [0.9215725644526543], [0.9608063609348647], [0.9608063609348647], [0.8823789253875189], [0.8039113324230985], [0.725483896875753], [0.6862902578106176], [0.7058870773431852], [0.7451208738253955], [0.7647176933579631], [0.7843145128905308], [0.7843145128905308], [0.7647176933579631], [0.7451208738253955], [0.7058870773431852], [0.6470564613284073], [0.5686290257810618], [0.4902015902337162], [0.4509677937515059], [0.4509677937515059], [0.5294353867159265], [0.6470564613284073], [0.725483896875753], [0.7451208738253955], [0.725483896875753], [0.6470564613284073], [0.5882258453136294], [0.5490322062484941], [0.5882258453136294], [0.6470564613284073], [0.725483896875753], [0.7647176933579631], [0.725483896875753], [0.6470564613284073], [0.5490322062484941], [0.5294353867159265], [0.5882258453136294], [0.7058870773431852], [0.8627419484378765], [0.9804031804674324], [1.0], [0.9019757449200867], [0.725483896875753], [0.5490322062484941], [0.4313709742189383], [0.41177415468637063], [0.5097984097662839], [0.6470564613284073], [0.7647176933579631], [0.8039113324230985], [0.725483896875753], [0.607862822263272], [0.5097984097662839], [0.4902015902337162], [0.5490322062484941], [0.6274596417958397], [0.6862902578106176], [0.7058870773431852], [0.6666934382780499], [0.607862822263272], [0.5882258453136294], [0.6274596417958397], [0.725483896875753], [0.8235483093727413], [0.8823789253875189], [0.8431451289053089], [0.7647176933579631], [0.6862902578106176], [0.6862902578106176], [0.7451208738253955], [0.8431451289053089], [0.9019757449200867], [0.8823789253875189], [0.7451208738253955], [0.5686290257810618], [0.3921773351538029], [0.31370974218938236], [0.31370974218938236], [0.3921773351538029], [0.4902015902337162], [0.5490322062484941], [0.5490322062484941], [0.4902015902337162], [0.4313709742189383], [0.3921773351538029], [0.3921773351538029], [0.41177415468637063], [0.4509677937515059], [0.5097984097662839], [0.5490322062484941], [0.5490322062484941], [0.5686290257810618], [0.5294353867159265], [0.5097984097662839], [0.4902015902337162], [0.4902015902337162], [0.5490322062484941], [0.6274596417958397], [0.7058870773431852], [0.7451208738253955], [0.725483896875753], [0.6470564613284073], [0.5294353867159265], [0.41177415468637063], [0.33334671913902497], [0.31370974218938236], [0.3725403582041603], [0.4509677937515059], [0.5294353867159265], [0.5882258453136294], [0.5686290257810618], [0.5097984097662839], [0.4509677937515059], [0.3921773351538029], [0.3921773351538029], [0.41177415468637063], [0.41177415468637063], [0.41177415468637063], [0.3921773351538029], [0.33334671913902497], [0.31370974218938236], [0.31370974218938236], [0.3725403582041603], [0.4509677937515059], [0.5294353867159265], [0.607862822263272], [0.6470564613284073], [0.6862902578106176], [0.6862902578106176]], "deltas": [[1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0]]}, "backward": {"values": [[0.6862902578106176], [0.6862902578106176], [0.6470564613284073], [0.607862822263272], [0.5294353867159265], [0.4509677937515059], [0.3725403582041603], [0.31370974218938236], [0.31370974218938236], [0.33334671913902497], [0.3921773351538029], [0.41177415468637063], [0.41177415468637063], [0.41177415468637063], [0.3921773351538029], [0.3921773351538029], [0.4509677937515059], [0.5097984097662839], [0.5686290257810618], [0.5882258453136294], [0.5294353867159265], [0.4509677937515059], [0.3725403582041603], [0.31370974218938236], [0.33334671913902497], [0.41177415468637063], [0.5294353867159265], [0.6470564613284073], [0.725483896875753], [0.7451208738253955], [0.7058870773431852], [0.6274596417958397], [0.5490322062484941], [0.4902015902337162], [0.4902015902337162], [0.5097984097662839], [0.5294353867159265], [0.5686290257810618], [0.5490322062484941], [0.5490322062484941], [0.5097984097662839], [0.4509677937515059], [0.41177415468637063], [0.3921773351538029], [0.3921773351538029], [0.4313709742189383], [0.4902015902337162], [0.5490322062484941], [0.5490322062484941], [0.4902015902337162], [0.3921773351538029], [0.31370974218938236], [0.31370974218938236], [0.3921773351538029], [0.5686290257810618], [0.7451208738253955], [0.8823789253875189], [0.9019757449200867], [0.8431451289053089], [0.7451208738253955], [0.6862902578106176], [0.6862902578106176], [0.7647176933579631], [0.8431451289053089], [0.8823789253875189], [0.8235483093727413], [0.725483896875753], [0.6274596417958397], [0.5882258453136294], [0.607862822263272], [0.6666934382780499], [0.7058870773431852], [0.6862902578106176], [0.6274596417958397], [0.5490322062484941], [0.4902015902337162], [0.5097984097662839], [0.607862822263272], [0.725483896875753], [0.8039113324230985], [0.7647176933579631], [0.6470564613284073], [0.5097984097662839], [0.41177415468637063], [0.4313709742189383], [0.5490322062484941], [0.725483896875753], [0.9019757449200867], [1.0], [0.9804031804674324], [0.8627419484378765], [0.7058870773431852], [0.5882258453136294], [0.5294353867159265], [0.5490322062484941], [0.6470564613284073], [0.725483896875753], [0.7647176933579631], [0.725483896875753], [0.6470564613284073], [0.5882258453136294], [0.5490322062484941], [0.5882258453136294], [0.6470564613284073], [0.725483896875753], [0.7451208738253955], [0.725483896875753], [0.6470564613284073], [0.5294353867159265], [0.4509677937515059], [0.4509677937515059], [0.4902015902337162], [0.5686290257810618], [0.6470564613284073], [0.7058870773431852], [0.7451208738253955], [0.7647176933579631], [0.7843145128905308], [0.7843145128905308], [0.7647176933579631], [0.7451208738253955], [0.7058870773431852], [0.6862902578106176], [0.725483896875753], [0.8039113324230985], [0.8823789253875189], [0.9608063609348647], [0.9608063609348647], [0.9215725644526543], [0.8431451289053089], [0.7843145128905308], [0.7647176933579631], [0.8039113324230985], [0.8627419484378765], [0.9411693839852221], [0.9804031804674324], [0.9804031804674324], [0.9608063609348647], [0.9215725644526543], [0.8627419484378765], [0.8431451289053089], [0.8039113324230985], [0.7647176933579631], [0.725483896875753], [0.7058870773431852], [0.6862902578106176], [0.6666934382780499], [0.6666934382780499], [0.6666934382780499], [0.6274596417958397], [0.5882258453136294], [0.5490322062484941], [0.5097984097662839], [0.4902015902337162], [0.4313709742189383], [0.3921773351538029], [0.3725403582041603], [0.4313709742189383], [0.5294353867159265], [0.6666934382780499], [0.7647176933579631], [0.7647176933579631], [0.6274596417958397], [0.41177415468637063], [0.1960886675769015], [0.058830616014777924], [0.058830616014777924], [0.17645169062725885], [0.35294353867159267], [0.5490322062484941], [0.6862902578106176], [0.7058870773431852], [0.6274596417958397], [0.4509677937515059], [0.2352823066420368], [0.058830616014777924], [0.0], [0.07842743554734564], [0.2549192835916794], [0.4509677937515059], [0.5882258453136294], [0.5882258453136294], [0.4902015902337162], [0.33334671913902497], [0.21568548710946914], [0.17645169062725885], [0.2352823066420368], [0.35294353867159267], [0.4509677937515059], [0.4902015902337162], [0.47060477070114853], [0.41177415468637063], [0.33334671913902497], [0.31370974218938236], [0.33334671913902497], [0.3921773351538029], [0.41177415468637063], [0.41177415468637063], [0.3921773351538029], [0.33334671913902497], [0.2941129226568147], [0.2941129226568147], [0.35294353867159267], [0.41177415468637063], [0.47060477070114853], [0.4509677937515059], [0.41177415468637063], [0.33334671913902497], [0.31370974218938236], [0.33334671913902497], [0.41177415468637063], [0.4902015902337162], [0.5490322062484941], [0.5294353867159265], [0.4902015902337162], [0.4313709742189383], [0.41177415468637063], [0.4313709742189383], [0.47060477070114853], [0.4509677937515059], [0.41177415468637063], [0.3725403582041603], [0.33334671913902497], [0.3921773351538029], [0.47060477070114853], [0.5490322062484941], [0.6274596417958397], [0.6862902578106176], [0.7058870773431852], [0.725483896875753], [0.7451208738253955], [0.7647176933579631], [0.7647176933579631], [0.7647176933579631], [0.7058870773431852], [0.607862822263272], [0.4509677937515059], [0.27451610312424707], [0.13725805156212356], [0.07842743554734564], [0.11766123202955585], [0.2352823066420368], [0.3725403582041603], [0.4902015902337162], [0.5686290257810618], [0.5882258453136294], [0.5686290257810618], [0.5686290257810618], [0.607862822263272], [0.6470564613284073], [0.7058870773431852], [0.725483896875753], [0.7058870773431852], [0.6274596417958397], [0.5294353867159265], [0.4509677937515059]], "masks": [[1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1]], "evals": [[0.6862902578106176], [0.6862902578106176], [0.6470564613284073], [0.607862822263272], [0.5294353867159265], [0.4509677937515059], [0.3725403582041603], [0.31370974218938236], [0.31370974218938236], [0.33334671913902497], [0.3921773351538029], [0.41177415468637063], [0.41177415468637063], [0.41177415468637063], [0.3921773351538029], [0.3921773351538029], [0.4509677937515059], [0.5097984097662839], [0.5686290257810618], [0.5882258453136294], [0.5294353867159265], [0.4509677937515059], [0.3725403582041603], [0.31370974218938236], [0.33334671913902497], [0.41177415468637063], [0.5294353867159265], [0.6470564613284073], [0.725483896875753], [0.7451208738253955], [0.7058870773431852], [0.6274596417958397], [0.5490322062484941], [0.4902015902337162], [0.4902015902337162], [0.5097984097662839], [0.5294353867159265], [0.5686290257810618], [0.5490322062484941], [0.5490322062484941], [0.5097984097662839], [0.4509677937515059], [0.41177415468637063], [0.3921773351538029], [0.3921773351538029], [0.4313709742189383], [0.4902015902337162], [0.5490322062484941], [0.5490322062484941], [0.4902015902337162], [0.3921773351538029], [0.31370974218938236], [0.31370974218938236], [0.3921773351538029], [0.5686290257810618], [0.7451208738253955], [0.8823789253875189], [0.9019757449200867], [0.8431451289053089], [0.7451208738253955], [0.6862902578106176], [0.6862902578106176], [0.7647176933579631], [0.8431451289053089], [0.8823789253875189], [0.8235483093727413], [0.725483896875753], [0.6274596417958397], [0.5882258453136294], [0.607862822263272], [0.6666934382780499], [0.7058870773431852], [0.6862902578106176], [0.6274596417958397], [0.5490322062484941], [0.4902015902337162], [0.5097984097662839], [0.607862822263272], [0.725483896875753], [0.8039113324230985], [0.7647176933579631], [0.6470564613284073], [0.5097984097662839], [0.41177415468637063], [0.4313709742189383], [0.5490322062484941], [0.725483896875753], [0.9019757449200867], [1.0], [0.9804031804674324], [0.8627419484378765], [0.7058870773431852], [0.5882258453136294], [0.5294353867159265], [0.5490322062484941], [0.6470564613284073], [0.725483896875753], [0.7647176933579631], [0.725483896875753], [0.6470564613284073], [0.5882258453136294], [0.5490322062484941], [0.5882258453136294], [0.6470564613284073], [0.725483896875753], [0.7451208738253955], [0.725483896875753], [0.6470564613284073], [0.5294353867159265], [0.4509677937515059], [0.4509677937515059], [0.4902015902337162], [0.5686290257810618], [0.6470564613284073], [0.7058870773431852], [0.7451208738253955], [0.7647176933579631], [0.7843145128905308], [0.7843145128905308], [0.7647176933579631], [0.7451208738253955], [0.7058870773431852], [0.6862902578106176], [0.725483896875753], [0.8039113324230985], [0.8823789253875189], [0.9608063609348647], [0.9608063609348647], [0.9215725644526543], [0.8431451289053089], [0.7843145128905308], [0.7647176933579631], [0.8039113324230985], [0.8627419484378765], [0.9411693839852221], [0.9804031804674324], [0.9804031804674324], [0.9608063609348647], [0.9215725644526543], [0.8627419484378765], [0.8431451289053089], [0.8039113324230985], [0.7647176933579631], [0.725483896875753], [0.7058870773431852], [0.6862902578106176], [0.6666934382780499], [0.6666934382780499], [0.6666934382780499], [0.6274596417958397], [0.5882258453136294], [0.5490322062484941], [0.5097984097662839], [0.4902015902337162], [0.4313709742189383], [0.3921773351538029], [0.3725403582041603], [0.4313709742189383], [0.5294353867159265], [0.6666934382780499], [0.7647176933579631], [0.7647176933579631], [0.6274596417958397], [0.41177415468637063], [0.1960886675769015], [0.058830616014777924], [0.058830616014777924], [0.17645169062725885], [0.35294353867159267], [0.5490322062484941], [0.6862902578106176], [0.7058870773431852], [0.6274596417958397], [0.4509677937515059], [0.2352823066420368], [0.058830616014777924], [0.0], [0.07842743554734564], [0.2549192835916794], [0.4509677937515059], [0.5882258453136294], [0.5882258453136294], [0.4902015902337162], [0.33334671913902497], [0.21568548710946914], [0.17645169062725885], [0.2352823066420368], [0.35294353867159267], [0.4509677937515059], [0.4902015902337162], [0.47060477070114853], [0.41177415468637063], [0.33334671913902497], [0.31370974218938236], [0.33334671913902497], [0.3921773351538029], [0.41177415468637063], [0.41177415468637063], [0.3921773351538029], [0.33334671913902497], [0.2941129226568147], [0.2941129226568147], [0.35294353867159267], [0.41177415468637063], [0.47060477070114853], [0.4509677937515059], [0.41177415468637063], [0.33334671913902497], [0.31370974218938236], [0.33334671913902497], [0.41177415468637063], [0.4902015902337162], [0.5490322062484941], [0.5294353867159265], [0.4902015902337162], [0.4313709742189383], [0.41177415468637063], [0.4313709742189383], [0.47060477070114853], [0.4509677937515059], [0.41177415468637063], [0.3725403582041603], [0.33334671913902497], [0.3921773351538029], [0.47060477070114853], [0.5490322062484941], [0.6274596417958397], [0.6862902578106176], [0.7058870773431852], [0.725483896875753], [0.7451208738253955], [0.7647176933579631], [0.7647176933579631], [0.7647176933579631], [0.7058870773431852], [0.607862822263272], [0.4509677937515059], [0.27451610312424707], [0.13725805156212356], [0.07842743554734564], [0.11766123202955585], [0.2352823066420368], [0.3725403582041603], [0.4902015902337162], [0.5686290257810618], [0.5882258453136294], [0.5686290257810618], [0.5686290257810618], [0.607862822263272], [0.6470564613284073], [0.7058870773431852], [0.725483896875753], [0.7058870773431852], [0.6274596417958397], [0.5294353867159265], [0.4509677937515059]], "eval_masks": [[0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0]], "forwards": [[0.6862902578106176], [0.6862902578106176], [0.6470564613284073], [0.607862822263272], [0.5294353867159265], [0.4509677937515059], [0.3725403582041603], [0.31370974218938236], [0.31370974218938236], [0.33334671913902497], [0.3921773351538029], [0.41177415468637063], [0.41177415468637063], [0.41177415468637063], [0.3921773351538029], [0.3921773351538029], [0.4509677937515059], [0.5097984097662839], [0.5686290257810618], [0.5882258453136294], [0.5294353867159265], [0.4509677937515059], [0.3725403582041603], [0.31370974218938236], [0.33334671913902497], [0.41177415468637063], [0.5294353867159265], [0.6470564613284073], [0.725483896875753], [0.7451208738253955], [0.7058870773431852], [0.6274596417958397], [0.5490322062484941], [0.4902015902337162], [0.4902015902337162], [0.5097984097662839], [0.5294353867159265], [0.5686290257810618], [0.5490322062484941], [0.5490322062484941], [0.5097984097662839], [0.4509677937515059], [0.41177415468637063], [0.3921773351538029], [0.3921773351538029], [0.4313709742189383], [0.4902015902337162], [0.5490322062484941], [0.5490322062484941], [0.4902015902337162], [0.3921773351538029], [0.31370974218938236], [0.31370974218938236], [0.3921773351538029], [0.5686290257810618], [0.7451208738253955], [0.8823789253875189], [0.9019757449200867], [0.8431451289053089], [0.7451208738253955], [0.6862902578106176], [0.6862902578106176], [0.7647176933579631], [0.8431451289053089], [0.8823789253875189], [0.8235483093727413], [0.725483896875753], [0.6274596417958397], [0.5882258453136294], [0.607862822263272], [0.6666934382780499], [0.7058870773431852], [0.6862902578106176], [0.6274596417958397], [0.5490322062484941], [0.4902015902337162], [0.5097984097662839], [0.607862822263272], [0.725483896875753], [0.8039113324230985], [0.7647176933579631], [0.6470564613284073], [0.5097984097662839], [0.41177415468637063], [0.4313709742189383], [0.5490322062484941], [0.725483896875753], [0.9019757449200867], [1.0], [0.9804031804674324], [0.8627419484378765], [0.7058870773431852], [0.5882258453136294], [0.5294353867159265], [0.5490322062484941], [0.6470564613284073], [0.725483896875753], [0.7647176933579631], [0.725483896875753], [0.6470564613284073], [0.5882258453136294], [0.5490322062484941], [0.5882258453136294], [0.6470564613284073], [0.725483896875753], [0.7451208738253955], [0.725483896875753], [0.6470564613284073], [0.5294353867159265], [0.4509677937515059], [0.4509677937515059], [0.4902015902337162], [0.5686290257810618], [0.6470564613284073], [0.7058870773431852], [0.7451208738253955], [0.7647176933579631], [0.7843145128905308], [0.7843145128905308], [0.7647176933579631], [0.7451208738253955], [0.7058870773431852], [0.6862902578106176], [0.725483896875753], [0.8039113324230985], [0.8823789253875189], [0.9608063609348647], [0.9608063609348647], [0.9215725644526543], [0.8431451289053089], [0.7843145128905308], [0.7647176933579631], [0.8039113324230985], [0.8627419484378765], [0.9411693839852221], [0.9804031804674324], [0.9804031804674324], [0.9608063609348647], [0.9215725644526543], [0.8627419484378765], [0.8431451289053089], [0.8039113324230985], [0.7647176933579631], [0.725483896875753], [0.7058870773431852], [0.6862902578106176], [0.6666934382780499], [0.6666934382780499], [0.6666934382780499], [0.6274596417958397], [0.5882258453136294], [0.5490322062484941], [0.5097984097662839], [0.4902015902337162], [0.4313709742189383], [0.3921773351538029], [0.3725403582041603], [0.4313709742189383], [0.5294353867159265], [0.6666934382780499], [0.7647176933579631], [0.7647176933579631], [0.6274596417958397], [0.41177415468637063], [0.1960886675769015], [0.058830616014777924], [0.058830616014777924], [0.17645169062725885], [0.35294353867159267], [0.5490322062484941], [0.6862902578106176], [0.7058870773431852], [0.6274596417958397], [0.4509677937515059], [0.2352823066420368], [0.058830616014777924], [0.0], [0.07842743554734564], [0.2549192835916794], [0.4509677937515059], [0.5882258453136294], [0.5882258453136294], [0.4902015902337162], [0.33334671913902497], [0.21568548710946914], [0.17645169062725885], [0.2352823066420368], [0.35294353867159267], [0.4509677937515059], [0.4902015902337162], [0.47060477070114853], [0.41177415468637063], [0.33334671913902497], [0.31370974218938236], [0.33334671913902497], [0.3921773351538029], [0.41177415468637063], [0.41177415468637063], [0.3921773351538029], [0.33334671913902497], [0.2941129226568147], [0.2941129226568147], [0.35294353867159267], [0.41177415468637063], [0.47060477070114853], [0.4509677937515059], [0.41177415468637063], [0.33334671913902497], [0.31370974218938236], [0.33334671913902497], [0.41177415468637063], [0.4902015902337162], [0.5490322062484941], [0.5294353867159265], [0.4902015902337162], [0.4313709742189383], [0.41177415468637063], [0.4313709742189383], [0.47060477070114853], [0.4509677937515059], [0.41177415468637063], [0.3725403582041603], [0.33334671913902497], [0.3921773351538029], [0.47060477070114853], [0.5490322062484941], [0.6274596417958397], [0.6862902578106176], [0.7058870773431852], [0.725483896875753], [0.7451208738253955], [0.7647176933579631], [0.7647176933579631], [0.7647176933579631], [0.7058870773431852], [0.607862822263272], [0.4509677937515059], [0.27451610312424707], [0.13725805156212356], [0.07842743554734564], [0.11766123202955585], [0.2352823066420368], [0.3725403582041603], [0.4902015902337162], [0.5686290257810618], [0.5882258453136294], [0.5686290257810618], [0.5686290257810618], [0.607862822263272], [0.6470564613284073], [0.7058870773431852], [0.725483896875753], [0.7058870773431852], [0.6274596417958397], [0.5294353867159265], [0.4509677937515059]], "deltas": [[1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0]]}} -{"label": 0, "forward": {"values": [[0.6056305526710511], [0.619706934348679], [0.6760413061036115], [0.7464809045805931], [0.8028152763355256], [0.7887100496134766], [0.7605572862582208], [0.732375677858544], [0.7042229145032884], [0.6901176877812392], [0.6619649244259836], [0.6056305526710511], [0.507038190838814], [0.36618783892927204], [0.253519095419407], [0.16900311526479755], [0.16900311526479755], [0.253519095419407], [0.4084458290065767], [0.591525325949002], [0.7605572862582208], [0.8732260297680859], [0.9014076381677628], [0.8732260297680859], [0.8028152763355256], [0.732375677858544], [0.6760413061036115], [0.6760413061036115], [0.6901176877812392], [0.6901176877812392], [0.647888542748356], [0.5774489442713743], [0.4929329641167648], [0.45070381908388146], [0.45070381908388146], [0.46478020076150917], [0.46478020076150917], [0.4084458290065767], [0.3098534671743395], [0.22533748701973005], [0.18307949694242534], [0.22533748701973005], [0.3239298488519673], [0.3802642206068998], [0.3943694473289489], [0.36618783892927204], [0.3098534671743395], [0.253519095419407], [0.26759547709703474], [0.3239298488519673], [0.4084458290065767], [0.45070381908388146], [0.45070381908388146], [0.4084458290065767], [0.33800623052959505], [0.3098534671743395], [0.3239298488519673], [0.3802642206068998], [0.4365985923618323], [0.47885658243913704], [0.46478020076150917], [0.45070381908388146], [0.46478020076150917], [0.5211145725164418], [0.591525325949002], [0.6337833160263068], [0.619706934348679], [0.5211145725164418], [0.4084458290065767], [0.3098534671743395], [0.2957770854967117], [0.33800623052959505], [0.4365985923618323], [0.5351909541940695], [0.591525325949002], [0.5633725625937465], [0.4365985923618323], [0.2394138686973578], [0.07041075343256036], [0.0], [0.09859236183223731], [0.3239298488519673], [0.591525325949002], [0.7605572862582208], [0.8028152763355256], [0.7042229145032884], [0.5211145725164418], [0.3521114572516442], [0.2394138686973578], [0.1971847236644745], [0.2394138686973578], [0.3521114572516442], [0.5211145725164418], [0.7042229145032884], [0.8309680396907811], [0.8450732664128303], [0.7887100496134766], [0.6760413061036115], [0.591525325949002], [0.5492961809161186], [0.5492961809161186], [0.591525325949002], [0.6056305526710511], [0.619706934348679], [0.6337833160263068], [0.6619649244259836], [0.6901176877812392], [0.7042229145032884], [0.6760413061036115], [0.6337833160263068], [0.591525325949002], [0.591525325949002], [0.6056305526710511], [0.647888542748356], [0.6619649244259836], [0.6619649244259836], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.6760413061036115], [0.7887100496134766], [0.8591496480904581], [0.8732260297680859], [0.8028152763355256], [0.6901176877812392], [0.5492961809161186], [0.46478020076150917], [0.45070381908388146], [0.507038190838814], [0.5633725625937465], [0.6056305526710511], [0.591525325949002], [0.5351909541940695], [0.4929329641167648], [0.45070381908388146], [0.4225222106842045], [0.3802642206068998], [0.3521114572516442], [0.3239298488519673], [0.33800623052959505], [0.4225222106842045], [0.507038190838814], [0.591525325949002], [0.6056305526710511], [0.591525325949002], [0.5211145725164418], [0.47885658243913704], [0.46478020076150917], [0.507038190838814], [0.5774489442713743], [0.619706934348679], [0.619706934348679], [0.5492961809161186], [0.45070381908388146], [0.3802642206068998], [0.36618783892927204], [0.4365985923618323], [0.6056305526710511], [0.8028152763355256], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.8028152763355256], [0.7605572862582208], [0.6901176877812392], [0.647888542748356], [0.647888542748356], [0.6619649244259836], [0.6619649244259836], [0.619706934348679], [0.5351909541940695], [0.45070381908388146], [0.3943694473289489], [0.4365985923618323], [0.5351909541940695], [0.7042229145032884], [0.8732260297680859], [0.9858947732779509], [1.0], [0.9436367832006461], [0.8450732664128303], [0.7887100496134766], [0.7746336679358486], [0.8028152763355256], [0.8309680396907811], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.5351909541940695], [0.4225222106842045], [0.36618783892927204], [0.4084458290065767], [0.5211145725164418], [0.647888542748356], [0.7464809045805931], [0.7887100496134766], [0.7746336679358486], [0.732375677858544], [0.6760413061036115], [0.619706934348679], [0.5633725625937465], [0.5211145725164418], [0.507038190838814], [0.5351909541940695], [0.591525325949002], [0.647888542748356], [0.6901176877812392], [0.6901176877812392], [0.6619649244259836], [0.591525325949002], [0.5492961809161186], [0.507038190838814], [0.507038190838814], [0.507038190838814], [0.507038190838814], [0.4929329641167648], [0.47885658243913704], [0.45070381908388146], [0.45070381908388146], [0.46478020076150917], [0.507038190838814], [0.5211145725164418], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.5633725625937465], [0.619706934348679], [0.647888542748356]], "masks": [[1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [1], [1], [1]], "evals": [[0.6056305526710511], [0.619706934348679], [0.6760413061036115], [0.7464809045805931], [0.8028152763355256], [0.7887100496134766], [0.7605572862582208], [0.732375677858544], [0.7042229145032884], [0.6901176877812392], [0.6619649244259836], [0.6056305526710511], [0.507038190838814], [0.36618783892927204], [0.253519095419407], [0.16900311526479755], [0.16900311526479755], [0.253519095419407], [0.4084458290065767], [0.591525325949002], [0.7605572862582208], [0.8732260297680859], [0.9014076381677628], [0.8732260297680859], [0.8028152763355256], [0.732375677858544], [0.6760413061036115], [0.6760413061036115], [0.6901176877812392], [0.6901176877812392], [0.647888542748356], [0.5774489442713743], [0.4929329641167648], [0.45070381908388146], [0.45070381908388146], [0.46478020076150917], [0.46478020076150917], [0.4084458290065767], [0.3098534671743395], [0.22533748701973005], [0.18307949694242534], [0.22533748701973005], [0.3239298488519673], [0.3802642206068998], [0.3943694473289489], [0.36618783892927204], [0.3098534671743395], [0.253519095419407], [0.26759547709703474], [0.3239298488519673], [0.4084458290065767], [0.45070381908388146], [0.45070381908388146], [0.4084458290065767], [0.33800623052959505], [0.3098534671743395], [0.3239298488519673], [0.3802642206068998], [0.4365985923618323], [0.47885658243913704], [0.46478020076150917], [0.45070381908388146], [0.46478020076150917], [0.5211145725164418], [0.591525325949002], [0.6337833160263068], [0.619706934348679], [0.5211145725164418], [0.4084458290065767], [0.3098534671743395], [0.2957770854967117], [0.33800623052959505], [0.4365985923618323], [0.5351909541940695], [0.591525325949002], [0.5633725625937465], [0.4365985923618323], [0.2394138686973578], [0.07041075343256036], [0.0], [0.09859236183223731], [0.3239298488519673], [0.591525325949002], [0.7605572862582208], [0.8028152763355256], [0.7042229145032884], [0.5211145725164418], [0.3521114572516442], [0.2394138686973578], [0.1971847236644745], [0.2394138686973578], [0.3521114572516442], [0.5211145725164418], [0.7042229145032884], [0.8309680396907811], [0.8450732664128303], [0.7887100496134766], [0.6760413061036115], [0.591525325949002], [0.5492961809161186], [0.5492961809161186], [0.591525325949002], [0.6056305526710511], [0.619706934348679], [0.6337833160263068], [0.6619649244259836], [0.6901176877812392], [0.7042229145032884], [0.6760413061036115], [0.6337833160263068], [0.591525325949002], [0.591525325949002], [0.6056305526710511], [0.647888542748356], [0.6619649244259836], [0.6619649244259836], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.6760413061036115], [0.7887100496134766], [0.8591496480904581], [0.8732260297680859], [0.8028152763355256], [0.6901176877812392], [0.5492961809161186], [0.46478020076150917], [0.45070381908388146], [0.507038190838814], [0.5633725625937465], [0.6056305526710511], [0.591525325949002], [0.5351909541940695], [0.4929329641167648], [0.45070381908388146], [0.4225222106842045], [0.3802642206068998], [0.3521114572516442], [0.3239298488519673], [0.33800623052959505], [0.4225222106842045], [0.507038190838814], [0.591525325949002], [0.6056305526710511], [0.591525325949002], [0.5211145725164418], [0.47885658243913704], [0.46478020076150917], [0.507038190838814], [0.5774489442713743], [0.619706934348679], [0.619706934348679], [0.5492961809161186], [0.45070381908388146], [0.3802642206068998], [0.36618783892927204], [0.4365985923618323], [0.6056305526710511], [0.8028152763355256], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.8028152763355256], [0.7605572862582208], [0.6901176877812392], [0.647888542748356], [0.647888542748356], [0.6619649244259836], [0.6619649244259836], [0.619706934348679], [0.5351909541940695], [0.45070381908388146], [0.3943694473289489], [0.4365985923618323], [0.5351909541940695], [0.7042229145032884], [0.8732260297680859], [0.9858947732779509], [1.0], [0.9436367832006461], [0.8450732664128303], [0.7887100496134766], [0.7746336679358486], [0.8028152763355256], [0.8309680396907811], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.5351909541940695], [0.4225222106842045], [0.36618783892927204], [0.4084458290065767], [0.5211145725164418], [0.647888542748356], [0.7464809045805931], [0.7887100496134766], [0.7746336679358486], [0.732375677858544], [0.6760413061036115], [0.619706934348679], [0.5633725625937465], [0.5211145725164418], [0.507038190838814], [0.5351909541940695], [0.591525325949002], [0.647888542748356], [0.6901176877812392], [0.6901176877812392], [0.6619649244259836], [0.591525325949002], [0.5492961809161186], [0.507038190838814], [0.507038190838814], [0.507038190838814], [0.507038190838814], [0.4929329641167648], [0.47885658243913704], [0.45070381908388146], [0.45070381908388146], [0.46478020076150917], [0.507038190838814], [0.5211145725164418], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.5633725625937465], [0.619706934348679], [0.647888542748356]], "eval_masks": [[0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0]], "forwards": [[0.6056305526710511], [0.619706934348679], [0.6760413061036115], [0.7464809045805931], [0.8028152763355256], [0.7887100496134766], [0.7605572862582208], [0.732375677858544], [0.7042229145032884], [0.6901176877812392], [0.6619649244259836], [0.6056305526710511], [0.507038190838814], [0.36618783892927204], [0.253519095419407], [0.16900311526479755], [0.16900311526479755], [0.253519095419407], [0.4084458290065767], [0.591525325949002], [0.7605572862582208], [0.8732260297680859], [0.9014076381677628], [0.8732260297680859], [0.8028152763355256], [0.732375677858544], [0.6760413061036115], [0.6760413061036115], [0.6901176877812392], [0.6901176877812392], [0.647888542748356], [0.5774489442713743], [0.4929329641167648], [0.45070381908388146], [0.45070381908388146], [0.46478020076150917], [0.46478020076150917], [0.4084458290065767], [0.3098534671743395], [0.22533748701973005], [0.18307949694242534], [0.22533748701973005], [0.3239298488519673], [0.3802642206068998], [0.3943694473289489], [0.36618783892927204], [0.3098534671743395], [0.253519095419407], [0.26759547709703474], [0.3239298488519673], [0.4084458290065767], [0.45070381908388146], [0.45070381908388146], [0.4084458290065767], [0.33800623052959505], [0.3098534671743395], [0.3239298488519673], [0.3802642206068998], [0.4365985923618323], [0.47885658243913704], [0.46478020076150917], [0.45070381908388146], [0.46478020076150917], [0.5211145725164418], [0.591525325949002], [0.6337833160263068], [0.619706934348679], [0.5211145725164418], [0.4084458290065767], [0.3098534671743395], [0.2957770854967117], [0.33800623052959505], [0.4365985923618323], [0.5351909541940695], [0.591525325949002], [0.5633725625937465], [0.4365985923618323], [0.2394138686973578], [0.07041075343256036], [0.0], [0.09859236183223731], [0.3239298488519673], [0.591525325949002], [0.7605572862582208], [0.8028152763355256], [0.7042229145032884], [0.5211145725164418], [0.3521114572516442], [0.2394138686973578], [0.1971847236644745], [0.2394138686973578], [0.3521114572516442], [0.5211145725164418], [0.7042229145032884], [0.8309680396907811], [0.8450732664128303], [0.7887100496134766], [0.6760413061036115], [0.591525325949002], [0.5492961809161186], [0.5492961809161186], [0.591525325949002], [0.6056305526710511], [0.619706934348679], [0.6337833160263068], [0.6619649244259836], [0.6901176877812392], [0.7042229145032884], [0.6760413061036115], [0.6337833160263068], [0.591525325949002], [0.591525325949002], [0.6056305526710511], [0.647888542748356], [0.6619649244259836], [0.6619649244259836], [0.6619649244259836], [0.6619649244259836], [0.6619649244259836], [0.6619649244259836], [0.6619649244259836], [0.6619649244259836], [0.6619649244259836], [0.6619649244259836], [0.6619649244259836], [0.6619649244259836], [0.6760413061036115], [0.7887100496134766], [0.8591496480904581], [0.8732260297680859], [0.8028152763355256], [0.6901176877812392], [0.5492961809161186], [0.46478020076150917], [0.45070381908388146], [0.507038190838814], [0.5633725625937465], [0.6056305526710511], [0.591525325949002], [0.5351909541940695], [0.4929329641167648], [0.45070381908388146], [0.4225222106842045], [0.3802642206068998], [0.3521114572516442], [0.3239298488519673], [0.33800623052959505], [0.4225222106842045], [0.507038190838814], [0.591525325949002], [0.6056305526710511], [0.591525325949002], [0.5211145725164418], [0.47885658243913704], [0.46478020076150917], [0.507038190838814], [0.5774489442713743], [0.619706934348679], [0.619706934348679], [0.5492961809161186], [0.45070381908388146], [0.3802642206068998], [0.36618783892927204], [0.4365985923618323], [0.6056305526710511], [0.8028152763355256], [0.8028152763355256], [0.8028152763355256], [0.8028152763355256], [0.8028152763355256], [0.8028152763355256], [0.8028152763355256], [0.8028152763355256], [0.8028152763355256], [0.8028152763355256], [0.8028152763355256], [0.8028152763355256], [0.7605572862582208], [0.6901176877812392], [0.647888542748356], [0.647888542748356], [0.6619649244259836], [0.6619649244259836], [0.619706934348679], [0.5351909541940695], [0.45070381908388146], [0.3943694473289489], [0.4365985923618323], [0.5351909541940695], [0.7042229145032884], [0.8732260297680859], [0.9858947732779509], [1.0], [0.9436367832006461], [0.8450732664128303], [0.7887100496134766], [0.7746336679358486], [0.8028152763355256], [0.8309680396907811], [0.8309680396907811], [0.8309680396907811], [0.8309680396907811], [0.8309680396907811], [0.8309680396907811], [0.8309680396907811], [0.8309680396907811], [0.8309680396907811], [0.8309680396907811], [0.8309680396907811], [0.5351909541940695], [0.4225222106842045], [0.36618783892927204], [0.4084458290065767], [0.5211145725164418], [0.647888542748356], [0.7464809045805931], [0.7887100496134766], [0.7746336679358486], [0.732375677858544], [0.6760413061036115], [0.619706934348679], [0.5633725625937465], [0.5211145725164418], [0.507038190838814], [0.5351909541940695], [0.591525325949002], [0.647888542748356], [0.6901176877812392], [0.6901176877812392], [0.6619649244259836], [0.591525325949002], [0.5492961809161186], [0.507038190838814], [0.507038190838814], [0.507038190838814], [0.507038190838814], [0.4929329641167648], [0.47885658243913704], [0.45070381908388146], [0.45070381908388146], [0.46478020076150917], [0.507038190838814], [0.5211145725164418], [0.5211145725164418], [0.5211145725164418], [0.5211145725164418], [0.5211145725164418], [0.5211145725164418], [0.5211145725164418], [0.5211145725164418], [0.5211145725164418], [0.5211145725164418], [0.5211145725164418], [0.5633725625937465], [0.619706934348679], [0.647888542748356]], "deltas": [[1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [2.0], [3.0], [4.0], [5.0], [6.0], [7.0], [8.0], [9.0], [10.0], [11.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [2.0], [3.0], [4.0], [5.0], [6.0], [7.0], [8.0], [9.0], [10.0], [11.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [2.0], [3.0], [4.0], [5.0], [6.0], [7.0], [8.0], [9.0], [10.0], [11.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [2.0], [3.0], [4.0], [5.0], [6.0], [7.0], [8.0], [9.0], [10.0], [11.0], [1.0], [1.0], [1.0]]}, "backward": {"values": [[0.647888542748356], [0.619706934348679], [0.5633725625937465], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.5211145725164418], [0.507038190838814], [0.46478020076150917], [0.45070381908388146], [0.45070381908388146], [0.47885658243913704], [0.4929329641167648], [0.507038190838814], [0.507038190838814], [0.507038190838814], [0.507038190838814], [0.5492961809161186], [0.591525325949002], [0.6619649244259836], [0.6901176877812392], [0.6901176877812392], [0.647888542748356], [0.591525325949002], [0.5351909541940695], [0.507038190838814], [0.5211145725164418], [0.5633725625937465], [0.619706934348679], [0.6760413061036115], [0.732375677858544], [0.7746336679358486], [0.7887100496134766], [0.7464809045805931], [0.647888542748356], [0.5211145725164418], [0.4084458290065767], [0.36618783892927204], [0.4225222106842045], [0.5351909541940695], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.8309680396907811], [0.8028152763355256], [0.7746336679358486], [0.7887100496134766], [0.8450732664128303], [0.9436367832006461], [1.0], [0.9858947732779509], [0.8732260297680859], [0.7042229145032884], [0.5351909541940695], [0.4365985923618323], [0.3943694473289489], [0.45070381908388146], [0.5351909541940695], [0.619706934348679], [0.6619649244259836], [0.6619649244259836], [0.647888542748356], [0.647888542748356], [0.6901176877812392], [0.7605572862582208], [0.8028152763355256], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.8028152763355256], [0.6056305526710511], [0.4365985923618323], [0.36618783892927204], [0.3802642206068998], [0.45070381908388146], [0.5492961809161186], [0.619706934348679], [0.619706934348679], [0.5774489442713743], [0.507038190838814], [0.46478020076150917], [0.47885658243913704], [0.5211145725164418], [0.591525325949002], [0.6056305526710511], [0.591525325949002], [0.507038190838814], [0.4225222106842045], [0.33800623052959505], [0.3239298488519673], [0.3521114572516442], [0.3802642206068998], [0.4225222106842045], [0.45070381908388146], [0.4929329641167648], [0.5351909541940695], [0.591525325949002], [0.6056305526710511], [0.5633725625937465], [0.507038190838814], [0.45070381908388146], [0.46478020076150917], [0.5492961809161186], [0.6901176877812392], [0.8028152763355256], [0.8732260297680859], [0.8591496480904581], [0.7887100496134766], [0.6760413061036115], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.6619649244259836], [0.6619649244259836], [0.647888542748356], [0.6056305526710511], [0.591525325949002], [0.591525325949002], [0.6337833160263068], [0.6760413061036115], [0.7042229145032884], [0.6901176877812392], [0.6619649244259836], [0.6337833160263068], [0.619706934348679], [0.6056305526710511], [0.591525325949002], [0.5492961809161186], [0.5492961809161186], [0.591525325949002], [0.6760413061036115], [0.7887100496134766], [0.8450732664128303], [0.8309680396907811], [0.7042229145032884], [0.5211145725164418], [0.3521114572516442], [0.2394138686973578], [0.1971847236644745], [0.2394138686973578], [0.3521114572516442], [0.5211145725164418], [0.7042229145032884], [0.8028152763355256], [0.7605572862582208], [0.591525325949002], [0.3239298488519673], [0.09859236183223731], [0.0], [0.07041075343256036], [0.2394138686973578], [0.4365985923618323], [0.5633725625937465], [0.591525325949002], [0.5351909541940695], [0.4365985923618323], [0.33800623052959505], [0.2957770854967117], [0.3098534671743395], [0.4084458290065767], [0.5211145725164418], [0.619706934348679], [0.6337833160263068], [0.591525325949002], [0.5211145725164418], [0.46478020076150917], [0.45070381908388146], [0.46478020076150917], [0.47885658243913704], [0.4365985923618323], [0.3802642206068998], [0.3239298488519673], [0.3098534671743395], [0.33800623052959505], [0.4084458290065767], [0.45070381908388146], [0.45070381908388146], [0.4084458290065767], [0.3239298488519673], [0.26759547709703474], [0.253519095419407], [0.3098534671743395], [0.36618783892927204], [0.3943694473289489], [0.3802642206068998], [0.3239298488519673], [0.22533748701973005], [0.18307949694242534], [0.22533748701973005], [0.3098534671743395], [0.4084458290065767], [0.46478020076150917], [0.46478020076150917], [0.45070381908388146], [0.45070381908388146], [0.4929329641167648], [0.5774489442713743], [0.647888542748356], [0.6901176877812392], [0.6901176877812392], [0.6760413061036115], [0.6760413061036115], [0.732375677858544], [0.8028152763355256], [0.8732260297680859], [0.9014076381677628], [0.8732260297680859], [0.7605572862582208], [0.591525325949002], [0.4084458290065767], [0.253519095419407], [0.16900311526479755], [0.16900311526479755], [0.253519095419407], [0.36618783892927204], [0.507038190838814], [0.6056305526710511], [0.6619649244259836], [0.6901176877812392], [0.7042229145032884], [0.732375677858544], [0.7605572862582208], [0.7887100496134766], [0.8028152763355256], [0.7464809045805931], [0.6760413061036115], [0.619706934348679], [0.6056305526710511]], "masks": [[1], [1], [1], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1]], "evals": [[0.647888542748356], [0.619706934348679], [0.5633725625937465], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.5211145725164418], [0.507038190838814], [0.46478020076150917], [0.45070381908388146], [0.45070381908388146], [0.47885658243913704], [0.4929329641167648], [0.507038190838814], [0.507038190838814], [0.507038190838814], [0.507038190838814], [0.5492961809161186], [0.591525325949002], [0.6619649244259836], [0.6901176877812392], [0.6901176877812392], [0.647888542748356], [0.591525325949002], [0.5351909541940695], [0.507038190838814], [0.5211145725164418], [0.5633725625937465], [0.619706934348679], [0.6760413061036115], [0.732375677858544], [0.7746336679358486], [0.7887100496134766], [0.7464809045805931], [0.647888542748356], [0.5211145725164418], [0.4084458290065767], [0.36618783892927204], [0.4225222106842045], [0.5351909541940695], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.8309680396907811], [0.8028152763355256], [0.7746336679358486], [0.7887100496134766], [0.8450732664128303], [0.9436367832006461], [1.0], [0.9858947732779509], [0.8732260297680859], [0.7042229145032884], [0.5351909541940695], [0.4365985923618323], [0.3943694473289489], [0.45070381908388146], [0.5351909541940695], [0.619706934348679], [0.6619649244259836], [0.6619649244259836], [0.647888542748356], [0.647888542748356], [0.6901176877812392], [0.7605572862582208], [0.8028152763355256], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.8028152763355256], [0.6056305526710511], [0.4365985923618323], [0.36618783892927204], [0.3802642206068998], [0.45070381908388146], [0.5492961809161186], [0.619706934348679], [0.619706934348679], [0.5774489442713743], [0.507038190838814], [0.46478020076150917], [0.47885658243913704], [0.5211145725164418], [0.591525325949002], [0.6056305526710511], [0.591525325949002], [0.507038190838814], [0.4225222106842045], [0.33800623052959505], [0.3239298488519673], [0.3521114572516442], [0.3802642206068998], [0.4225222106842045], [0.45070381908388146], [0.4929329641167648], [0.5351909541940695], [0.591525325949002], [0.6056305526710511], [0.5633725625937465], [0.507038190838814], [0.45070381908388146], [0.46478020076150917], [0.5492961809161186], [0.6901176877812392], [0.8028152763355256], [0.8732260297680859], [0.8591496480904581], [0.7887100496134766], [0.6760413061036115], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.6619649244259836], [0.6619649244259836], [0.647888542748356], [0.6056305526710511], [0.591525325949002], [0.591525325949002], [0.6337833160263068], [0.6760413061036115], [0.7042229145032884], [0.6901176877812392], [0.6619649244259836], [0.6337833160263068], [0.619706934348679], [0.6056305526710511], [0.591525325949002], [0.5492961809161186], [0.5492961809161186], [0.591525325949002], [0.6760413061036115], [0.7887100496134766], [0.8450732664128303], [0.8309680396907811], [0.7042229145032884], [0.5211145725164418], [0.3521114572516442], [0.2394138686973578], [0.1971847236644745], [0.2394138686973578], [0.3521114572516442], [0.5211145725164418], [0.7042229145032884], [0.8028152763355256], [0.7605572862582208], [0.591525325949002], [0.3239298488519673], [0.09859236183223731], [0.0], [0.07041075343256036], [0.2394138686973578], [0.4365985923618323], [0.5633725625937465], [0.591525325949002], [0.5351909541940695], [0.4365985923618323], [0.33800623052959505], [0.2957770854967117], [0.3098534671743395], [0.4084458290065767], [0.5211145725164418], [0.619706934348679], [0.6337833160263068], [0.591525325949002], [0.5211145725164418], [0.46478020076150917], [0.45070381908388146], [0.46478020076150917], [0.47885658243913704], [0.4365985923618323], [0.3802642206068998], [0.3239298488519673], [0.3098534671743395], [0.33800623052959505], [0.4084458290065767], [0.45070381908388146], [0.45070381908388146], [0.4084458290065767], [0.3239298488519673], [0.26759547709703474], [0.253519095419407], [0.3098534671743395], [0.36618783892927204], [0.3943694473289489], [0.3802642206068998], [0.3239298488519673], [0.22533748701973005], [0.18307949694242534], [0.22533748701973005], [0.3098534671743395], [0.4084458290065767], [0.46478020076150917], [0.46478020076150917], [0.45070381908388146], [0.45070381908388146], [0.4929329641167648], [0.5774489442713743], [0.647888542748356], [0.6901176877812392], [0.6901176877812392], [0.6760413061036115], [0.6760413061036115], [0.732375677858544], [0.8028152763355256], [0.8732260297680859], [0.9014076381677628], [0.8732260297680859], [0.7605572862582208], [0.591525325949002], [0.4084458290065767], [0.253519095419407], [0.16900311526479755], [0.16900311526479755], [0.253519095419407], [0.36618783892927204], [0.507038190838814], [0.6056305526710511], [0.6619649244259836], [0.6901176877812392], [0.7042229145032884], [0.732375677858544], [0.7605572862582208], [0.7887100496134766], [0.8028152763355256], [0.7464809045805931], [0.6760413061036115], [0.619706934348679], [0.6056305526710511]], "eval_masks": [[0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0]], "forwards": [[0.647888542748356], [0.619706934348679], [0.5633725625937465], [0.5633725625937465], [0.5633725625937465], [0.5633725625937465], [0.5633725625937465], [0.5633725625937465], [0.5633725625937465], [0.5633725625937465], [0.5633725625937465], [0.5633725625937465], [0.5633725625937465], [0.5211145725164418], [0.507038190838814], [0.46478020076150917], [0.45070381908388146], [0.45070381908388146], [0.47885658243913704], [0.4929329641167648], [0.507038190838814], [0.507038190838814], [0.507038190838814], [0.507038190838814], [0.5492961809161186], [0.591525325949002], [0.6619649244259836], [0.6901176877812392], [0.6901176877812392], [0.647888542748356], [0.591525325949002], [0.5351909541940695], [0.507038190838814], [0.5211145725164418], [0.5633725625937465], [0.619706934348679], [0.6760413061036115], [0.732375677858544], [0.7746336679358486], [0.7887100496134766], [0.7464809045805931], [0.647888542748356], [0.5211145725164418], [0.4084458290065767], [0.36618783892927204], [0.4225222106842045], [0.5351909541940695], [0.5351909541940695], [0.5351909541940695], [0.5351909541940695], [0.5351909541940695], [0.5351909541940695], [0.5351909541940695], [0.5351909541940695], [0.5351909541940695], [0.5351909541940695], [0.5351909541940695], [0.8309680396907811], [0.8028152763355256], [0.7746336679358486], [0.7887100496134766], [0.8450732664128303], [0.9436367832006461], [1.0], [0.9858947732779509], [0.8732260297680859], [0.7042229145032884], [0.5351909541940695], [0.4365985923618323], [0.3943694473289489], [0.45070381908388146], [0.5351909541940695], [0.619706934348679], [0.6619649244259836], [0.6619649244259836], [0.647888542748356], [0.647888542748356], [0.6901176877812392], [0.7605572862582208], [0.8028152763355256], [0.8028152763355256], [0.8028152763355256], [0.8028152763355256], [0.8028152763355256], [0.8028152763355256], [0.8028152763355256], [0.8028152763355256], [0.8028152763355256], [0.8028152763355256], [0.8028152763355256], [0.8028152763355256], [0.6056305526710511], [0.4365985923618323], [0.36618783892927204], [0.3802642206068998], [0.45070381908388146], [0.5492961809161186], [0.619706934348679], [0.619706934348679], [0.5774489442713743], [0.507038190838814], [0.46478020076150917], [0.47885658243913704], [0.5211145725164418], [0.591525325949002], [0.6056305526710511], [0.591525325949002], [0.507038190838814], [0.4225222106842045], [0.33800623052959505], [0.3239298488519673], [0.3521114572516442], [0.3802642206068998], [0.4225222106842045], [0.45070381908388146], [0.4929329641167648], [0.5351909541940695], [0.591525325949002], [0.6056305526710511], [0.5633725625937465], [0.507038190838814], [0.45070381908388146], [0.46478020076150917], [0.5492961809161186], [0.6901176877812392], [0.8028152763355256], [0.8732260297680859], [0.8591496480904581], [0.7887100496134766], [0.6760413061036115], [0.6760413061036115], [0.6760413061036115], [0.6760413061036115], [0.6760413061036115], [0.6760413061036115], [0.6760413061036115], [0.6760413061036115], [0.6760413061036115], [0.6760413061036115], [0.6760413061036115], [0.6619649244259836], [0.6619649244259836], [0.647888542748356], [0.6056305526710511], [0.591525325949002], [0.591525325949002], [0.6337833160263068], [0.6760413061036115], [0.7042229145032884], [0.6901176877812392], [0.6619649244259836], [0.6337833160263068], [0.619706934348679], [0.6056305526710511], [0.591525325949002], [0.5492961809161186], [0.5492961809161186], [0.591525325949002], [0.6760413061036115], [0.7887100496134766], [0.8450732664128303], [0.8309680396907811], [0.7042229145032884], [0.5211145725164418], [0.3521114572516442], [0.2394138686973578], [0.1971847236644745], [0.2394138686973578], [0.3521114572516442], [0.5211145725164418], [0.7042229145032884], [0.8028152763355256], [0.7605572862582208], [0.591525325949002], [0.3239298488519673], [0.09859236183223731], [0.0], [0.07041075343256036], [0.2394138686973578], [0.4365985923618323], [0.5633725625937465], [0.591525325949002], [0.5351909541940695], [0.4365985923618323], [0.33800623052959505], [0.2957770854967117], [0.3098534671743395], [0.4084458290065767], [0.5211145725164418], [0.619706934348679], [0.6337833160263068], [0.591525325949002], [0.5211145725164418], [0.46478020076150917], [0.45070381908388146], [0.46478020076150917], [0.47885658243913704], [0.4365985923618323], [0.3802642206068998], [0.3239298488519673], [0.3098534671743395], [0.33800623052959505], [0.4084458290065767], [0.45070381908388146], [0.45070381908388146], [0.4084458290065767], [0.3239298488519673], [0.26759547709703474], [0.253519095419407], [0.3098534671743395], [0.36618783892927204], [0.3943694473289489], [0.3802642206068998], [0.3239298488519673], [0.22533748701973005], [0.18307949694242534], [0.22533748701973005], [0.3098534671743395], [0.4084458290065767], [0.46478020076150917], [0.46478020076150917], [0.45070381908388146], [0.45070381908388146], [0.4929329641167648], [0.5774489442713743], [0.647888542748356], [0.6901176877812392], [0.6901176877812392], [0.6760413061036115], [0.6760413061036115], [0.732375677858544], [0.8028152763355256], [0.8732260297680859], [0.9014076381677628], [0.8732260297680859], [0.7605572862582208], [0.591525325949002], [0.4084458290065767], [0.253519095419407], [0.16900311526479755], [0.16900311526479755], [0.253519095419407], [0.36618783892927204], [0.507038190838814], [0.6056305526710511], [0.6619649244259836], [0.6901176877812392], [0.7042229145032884], [0.732375677858544], [0.7605572862582208], [0.7887100496134766], [0.8028152763355256], [0.7464809045805931], [0.6760413061036115], [0.619706934348679], [0.6056305526710511]], "deltas": [[1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [2.0], [3.0], [4.0], [5.0], [6.0], [7.0], [8.0], [9.0], [10.0], [11.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [2.0], [3.0], [4.0], [5.0], [6.0], [7.0], [8.0], [9.0], [10.0], [11.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [2.0], [3.0], [4.0], [5.0], [6.0], [7.0], [8.0], [9.0], [10.0], [11.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [2.0], [3.0], [4.0], [5.0], [6.0], [7.0], [8.0], [9.0], [10.0], [11.0], [1.0], [1.0], [1.0]]}} -{"label": 0, "forward": {"values": [[0.7324045229029652], [0.746480904580593], [0.77466251298027], [0.8169205030575747], [0.8169205030575747], [0.77466251298027], [0.7042229145032883], [0.6197357793931003], [0.5915541709934233], [0.5915541709934233], [0.6197357793931003], [0.6478885427483558], [0.6478885427483558], [0.605630552671051], [0.5492961809161186], [0.49296180916118604], [0.46480904580593047], [0.5070381908388139], [0.6197357793931003], [0.7605572862582207], [0.9014076381677628], [0.9859236183223722], [1.0], [0.9436656282450674], [0.8309968847352024], [0.7183281412253375], [0.6478885427483558], [0.6197357793931003], [0.605630552671051], [0.5774777893157955], [0.5070381908388139], [0.4084458290065766], [0.3380350755740163], [0.3098534671743394], [0.35211145725164417], [0.4366274374062536], [0.521143417560863], [0.5492961809161186], [0.521143417560863], [0.49296180916118604], [0.46480904580593047], [0.45070381908388135], [0.46480904580593047], [0.46480904580593047], [0.4366274374062536], [0.39436944732894885], [0.3662166839736933], [0.3662166839736933], [0.4084458290065766], [0.46480904580593047], [0.5070381908388139], [0.5070381908388139], [0.46480904580593047], [0.4084458290065766], [0.35211145725164417], [0.35211145725164417], [0.38029306565132104], [0.45070381908388135], [0.5070381908388139], [0.5352197992384908], [0.5352197992384908], [0.5352197992384908], [0.5634014076381677], [0.6478885427483558], [0.7324045229029652], [0.7887388946578977], [0.77466251298027], [0.6760701511480327], [0.5492961809161186], [0.4366274374062536], [0.39436944732894885], [0.45070381908388135], [0.5774777893157955], [0.7183281412253375], [0.7887388946578977], [0.746480904580593], [0.5774777893157955], [0.32395869389638854], [0.0985923618322372], [0.0], [0.08451598015460943], [0.3098534671743394], [0.5774777893157955], [0.7887388946578977], [0.8450732664128302], [0.7605572862582207], [0.605630552671051], [0.4225510557286258], [0.2957770854967116], [0.25351909541940687], [0.3098534671743394], [0.4225510557286258], [0.5492961809161186], [0.6478885427483558], [0.6760701511480327], [0.6478885427483558], [0.5915541709934233], [0.5352197992384908], [0.521143417560863], [0.5492961809161186], [0.5774777893157955], [0.5915541709934233], [0.5915541709934233], [0.5915541709934233], [0.5915541709934233], [0.5915541709934233], [0.605630552671051], [0.605630552671051], [0.605630552671051], [0.633812161070728], [0.6901465328256605], [0.746480904580593], [0.7887388946578977], [0.8028152763355255], [0.77466251298027], [0.7183281412253375], [0.6901465328256605], [0.6760701511480327], [0.7042229145032883], [0.7183281412253375], [0.7183281412253375], [0.6760701511480327], [0.6197357793931003], [0.5634014076381677], [0.5352197992384908], [0.5492961809161186], [0.5774777893157955], [0.6197357793931003], [0.6478885427483558], [0.633812161070728], [0.5634014076381677], [0.4788854274835582], [0.4084458290065766], [0.4084458290065766], [0.46480904580593047], [0.5492961809161186], [0.605630552671051], [0.633812161070728], [0.605630552671051], [0.5634014076381677], [0.521143417560863], [0.46480904580593047], [0.39436944732894885], [0.3380350755740163], [0.2957770854967116], [0.28170070381908385], [0.32395869389638854], [0.4084458290065766], [0.5070381908388139], [0.5774777893157955], [0.5915541709934233], [0.5774777893157955], [0.521143417560863], [0.49296180916118604], [0.4788854274835582], [0.49296180916118604], [0.5352197992384908], [0.5492961809161186], [0.5492961809161186], [0.49296180916118604], [0.39436944732894885], [0.3098534671743394], [0.25351909541940687], [0.28170070381908385], [0.38029306565132104], [0.5070381908388139], [0.633812161070728], [0.7042229145032883], [0.6760701511480327], [0.5634014076381677], [0.4225510557286258], [0.2957770854967116], [0.26762432214145604], [0.32395869389638854], [0.45070381908388135], [0.5634014076381677], [0.6197357793931003], [0.5774777893157955], [0.5070381908388139], [0.4084458290065766], [0.3662166839736933], [0.38029306565132104], [0.4366274374062536], [0.5070381908388139], [0.5634014076381677], [0.605630552671051], [0.6197357793931003], [0.633812161070728], [0.661993769470405], [0.7042229145032883], [0.746480904580593], [0.77466251298027], [0.746480904580593], [0.6760701511480327], [0.5915541709934233], [0.5492961809161186], [0.5774777893157955], [0.6760701511480327], [0.77466251298027], [0.8169205030575747], [0.7605572862582207], [0.633812161070728], [0.4788854274835582], [0.3662166839736933], [0.3380350755740163], [0.38029306565132104], [0.45070381908388135], [0.5070381908388139], [0.5070381908388139], [0.4788854274835582], [0.4366274374062536], [0.4084458290065766], [0.4084458290065766], [0.4366274374062536], [0.4788854274835582], [0.521143417560863], [0.5774777893157955], [0.6197357793931003], [0.633812161070728], [0.605630552671051], [0.5352197992384908], [0.46480904580593047], [0.4084458290065766], [0.4084458290065766], [0.46480904580593047], [0.5492961809161186], [0.633812161070728], [0.661993769470405], [0.605630552671051], [0.49296180916118604], [0.3662166839736933], [0.28170070381908385], [0.26762432214145604], [0.3380350755740163], [0.4366274374062536], [0.521143417560863], [0.5492961809161186], [0.49296180916118604], [0.39436944732894885], [0.3098534671743394], [0.28170070381908385], [0.3380350755740163], [0.4225510557286258], [0.5070381908388139], [0.5352197992384908], [0.49296180916118604], [0.39436944732894885], [0.2957770854967116], [0.25351909541940687], [0.28170070381908385], [0.39436944732894885], [0.5492961809161186], [0.6901465328256605], [0.746480904580593], [0.7324045229029652], [0.6197357793931003]], "masks": [[1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1]], "evals": [[0.7324045229029652], [0.746480904580593], [0.77466251298027], [0.8169205030575747], [0.8169205030575747], [0.77466251298027], [0.7042229145032883], [0.6197357793931003], [0.5915541709934233], [0.5915541709934233], [0.6197357793931003], [0.6478885427483558], [0.6478885427483558], [0.605630552671051], [0.5492961809161186], [0.49296180916118604], [0.46480904580593047], [0.5070381908388139], [0.6197357793931003], [0.7605572862582207], [0.9014076381677628], [0.9859236183223722], [1.0], [0.9436656282450674], [0.8309968847352024], [0.7183281412253375], [0.6478885427483558], [0.6197357793931003], [0.605630552671051], [0.5774777893157955], [0.5070381908388139], [0.4084458290065766], [0.3380350755740163], [0.3098534671743394], [0.35211145725164417], [0.4366274374062536], [0.521143417560863], [0.5492961809161186], [0.521143417560863], [0.49296180916118604], [0.46480904580593047], [0.45070381908388135], [0.46480904580593047], [0.46480904580593047], [0.4366274374062536], [0.39436944732894885], [0.3662166839736933], [0.3662166839736933], [0.4084458290065766], [0.46480904580593047], [0.5070381908388139], [0.5070381908388139], [0.46480904580593047], [0.4084458290065766], [0.35211145725164417], [0.35211145725164417], [0.38029306565132104], [0.45070381908388135], [0.5070381908388139], [0.5352197992384908], [0.5352197992384908], [0.5352197992384908], [0.5634014076381677], [0.6478885427483558], [0.7324045229029652], [0.7887388946578977], [0.77466251298027], [0.6760701511480327], [0.5492961809161186], [0.4366274374062536], [0.39436944732894885], [0.45070381908388135], [0.5774777893157955], [0.7183281412253375], [0.7887388946578977], [0.746480904580593], [0.5774777893157955], [0.32395869389638854], [0.0985923618322372], [0.0], [0.08451598015460943], [0.3098534671743394], [0.5774777893157955], [0.7887388946578977], [0.8450732664128302], [0.7605572862582207], [0.605630552671051], [0.4225510557286258], [0.2957770854967116], [0.25351909541940687], [0.3098534671743394], [0.4225510557286258], [0.5492961809161186], [0.6478885427483558], [0.6760701511480327], [0.6478885427483558], [0.5915541709934233], [0.5352197992384908], [0.521143417560863], [0.5492961809161186], [0.5774777893157955], [0.5915541709934233], [0.5915541709934233], [0.5915541709934233], [0.5915541709934233], [0.5915541709934233], [0.605630552671051], [0.605630552671051], [0.605630552671051], [0.633812161070728], [0.6901465328256605], [0.746480904580593], [0.7887388946578977], [0.8028152763355255], [0.77466251298027], [0.7183281412253375], [0.6901465328256605], [0.6760701511480327], [0.7042229145032883], [0.7183281412253375], [0.7183281412253375], [0.6760701511480327], [0.6197357793931003], [0.5634014076381677], [0.5352197992384908], [0.5492961809161186], [0.5774777893157955], [0.6197357793931003], [0.6478885427483558], [0.633812161070728], [0.5634014076381677], [0.4788854274835582], [0.4084458290065766], [0.4084458290065766], [0.46480904580593047], [0.5492961809161186], [0.605630552671051], [0.633812161070728], [0.605630552671051], [0.5634014076381677], [0.521143417560863], [0.46480904580593047], [0.39436944732894885], [0.3380350755740163], [0.2957770854967116], [0.28170070381908385], [0.32395869389638854], [0.4084458290065766], [0.5070381908388139], [0.5774777893157955], [0.5915541709934233], [0.5774777893157955], [0.521143417560863], [0.49296180916118604], [0.4788854274835582], [0.49296180916118604], [0.5352197992384908], [0.5492961809161186], [0.5492961809161186], [0.49296180916118604], [0.39436944732894885], [0.3098534671743394], [0.25351909541940687], [0.28170070381908385], [0.38029306565132104], [0.5070381908388139], [0.633812161070728], [0.7042229145032883], [0.6760701511480327], [0.5634014076381677], [0.4225510557286258], [0.2957770854967116], [0.26762432214145604], [0.32395869389638854], [0.45070381908388135], [0.5634014076381677], [0.6197357793931003], [0.5774777893157955], [0.5070381908388139], [0.4084458290065766], [0.3662166839736933], [0.38029306565132104], [0.4366274374062536], [0.5070381908388139], [0.5634014076381677], [0.605630552671051], [0.6197357793931003], [0.633812161070728], [0.661993769470405], [0.7042229145032883], [0.746480904580593], [0.77466251298027], [0.746480904580593], [0.6760701511480327], [0.5915541709934233], [0.5492961809161186], [0.5774777893157955], [0.6760701511480327], [0.77466251298027], [0.8169205030575747], [0.7605572862582207], [0.633812161070728], [0.4788854274835582], [0.3662166839736933], [0.3380350755740163], [0.38029306565132104], [0.45070381908388135], [0.5070381908388139], [0.5070381908388139], [0.4788854274835582], [0.4366274374062536], [0.4084458290065766], [0.4084458290065766], [0.4366274374062536], [0.4788854274835582], [0.521143417560863], [0.5774777893157955], [0.6197357793931003], [0.633812161070728], [0.605630552671051], [0.5352197992384908], [0.46480904580593047], [0.4084458290065766], [0.4084458290065766], [0.46480904580593047], [0.5492961809161186], [0.633812161070728], [0.661993769470405], [0.605630552671051], [0.49296180916118604], [0.3662166839736933], [0.28170070381908385], [0.26762432214145604], [0.3380350755740163], [0.4366274374062536], [0.521143417560863], [0.5492961809161186], [0.49296180916118604], [0.39436944732894885], [0.3098534671743394], [0.28170070381908385], [0.3380350755740163], [0.4225510557286258], [0.5070381908388139], [0.5352197992384908], [0.49296180916118604], [0.39436944732894885], [0.2957770854967116], [0.25351909541940687], [0.28170070381908385], [0.39436944732894885], [0.5492961809161186], [0.6901465328256605], [0.746480904580593], [0.7324045229029652], [0.6197357793931003]], "eval_masks": [[0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0]], "forwards": [[0.7324045229029652], [0.746480904580593], [0.77466251298027], [0.8169205030575747], [0.8169205030575747], [0.77466251298027], [0.7042229145032883], [0.6197357793931003], [0.5915541709934233], [0.5915541709934233], [0.6197357793931003], [0.6478885427483558], [0.6478885427483558], [0.605630552671051], [0.5492961809161186], [0.49296180916118604], [0.46480904580593047], [0.5070381908388139], [0.6197357793931003], [0.7605572862582207], [0.9014076381677628], [0.9859236183223722], [1.0], [0.9436656282450674], [0.8309968847352024], [0.7183281412253375], [0.6478885427483558], [0.6197357793931003], [0.605630552671051], [0.5774777893157955], [0.5070381908388139], [0.4084458290065766], [0.3380350755740163], [0.3098534671743394], [0.35211145725164417], [0.4366274374062536], [0.521143417560863], [0.5492961809161186], [0.521143417560863], [0.49296180916118604], [0.46480904580593047], [0.45070381908388135], [0.46480904580593047], [0.46480904580593047], [0.4366274374062536], [0.39436944732894885], [0.3662166839736933], [0.3662166839736933], [0.4084458290065766], [0.46480904580593047], [0.5070381908388139], [0.5070381908388139], [0.46480904580593047], [0.4084458290065766], [0.35211145725164417], [0.35211145725164417], [0.38029306565132104], [0.45070381908388135], [0.5070381908388139], [0.5352197992384908], [0.5352197992384908], [0.5352197992384908], [0.5634014076381677], [0.6478885427483558], [0.7324045229029652], [0.7887388946578977], [0.77466251298027], [0.6760701511480327], [0.5492961809161186], [0.4366274374062536], [0.39436944732894885], [0.45070381908388135], [0.5774777893157955], [0.7183281412253375], [0.7887388946578977], [0.746480904580593], [0.5774777893157955], [0.32395869389638854], [0.0985923618322372], [0.0], [0.08451598015460943], [0.3098534671743394], [0.5774777893157955], [0.7887388946578977], [0.8450732664128302], [0.7605572862582207], [0.605630552671051], [0.4225510557286258], [0.2957770854967116], [0.25351909541940687], [0.3098534671743394], [0.4225510557286258], [0.5492961809161186], [0.6478885427483558], [0.6760701511480327], [0.6478885427483558], [0.5915541709934233], [0.5352197992384908], [0.521143417560863], [0.5492961809161186], [0.5774777893157955], [0.5915541709934233], [0.5915541709934233], [0.5915541709934233], [0.5915541709934233], [0.5915541709934233], [0.605630552671051], [0.605630552671051], [0.605630552671051], [0.633812161070728], [0.6901465328256605], [0.746480904580593], [0.7887388946578977], [0.8028152763355255], [0.77466251298027], [0.7183281412253375], [0.6901465328256605], [0.6760701511480327], [0.7042229145032883], [0.7183281412253375], [0.7183281412253375], [0.6760701511480327], [0.6197357793931003], [0.5634014076381677], [0.5352197992384908], [0.5492961809161186], [0.5774777893157955], [0.6197357793931003], [0.6478885427483558], [0.633812161070728], [0.5634014076381677], [0.4788854274835582], [0.4084458290065766], [0.4084458290065766], [0.46480904580593047], [0.5492961809161186], [0.605630552671051], [0.633812161070728], [0.605630552671051], [0.5634014076381677], [0.521143417560863], [0.46480904580593047], [0.39436944732894885], [0.3380350755740163], [0.2957770854967116], [0.28170070381908385], [0.32395869389638854], [0.4084458290065766], [0.5070381908388139], [0.5774777893157955], [0.5915541709934233], [0.5774777893157955], [0.521143417560863], [0.49296180916118604], [0.4788854274835582], [0.49296180916118604], [0.5352197992384908], [0.5492961809161186], [0.5492961809161186], [0.49296180916118604], [0.39436944732894885], [0.3098534671743394], [0.25351909541940687], [0.28170070381908385], [0.38029306565132104], [0.5070381908388139], [0.633812161070728], [0.7042229145032883], [0.6760701511480327], [0.5634014076381677], [0.4225510557286258], [0.2957770854967116], [0.26762432214145604], [0.32395869389638854], [0.45070381908388135], [0.5634014076381677], [0.6197357793931003], [0.5774777893157955], [0.5070381908388139], [0.4084458290065766], [0.3662166839736933], [0.38029306565132104], [0.4366274374062536], [0.5070381908388139], [0.5634014076381677], [0.605630552671051], [0.6197357793931003], [0.633812161070728], [0.661993769470405], [0.7042229145032883], [0.746480904580593], [0.77466251298027], [0.746480904580593], [0.6760701511480327], [0.5915541709934233], [0.5492961809161186], [0.5774777893157955], [0.6760701511480327], [0.77466251298027], [0.8169205030575747], [0.7605572862582207], [0.633812161070728], [0.4788854274835582], [0.3662166839736933], [0.3380350755740163], [0.38029306565132104], [0.45070381908388135], [0.5070381908388139], [0.5070381908388139], [0.4788854274835582], [0.4366274374062536], [0.4084458290065766], [0.4084458290065766], [0.4366274374062536], [0.4788854274835582], [0.521143417560863], [0.5774777893157955], [0.6197357793931003], [0.633812161070728], [0.605630552671051], [0.5352197992384908], [0.46480904580593047], [0.4084458290065766], [0.4084458290065766], [0.46480904580593047], [0.5492961809161186], [0.633812161070728], [0.661993769470405], [0.605630552671051], [0.49296180916118604], [0.3662166839736933], [0.28170070381908385], [0.26762432214145604], [0.3380350755740163], [0.4366274374062536], [0.521143417560863], [0.5492961809161186], [0.49296180916118604], [0.39436944732894885], [0.3098534671743394], [0.28170070381908385], [0.3380350755740163], [0.4225510557286258], [0.5070381908388139], [0.5352197992384908], [0.49296180916118604], [0.39436944732894885], [0.2957770854967116], [0.25351909541940687], [0.28170070381908385], [0.39436944732894885], [0.5492961809161186], [0.6901465328256605], [0.746480904580593], [0.7324045229029652], [0.6197357793931003]], "deltas": [[1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0]]}, "backward": {"values": [[0.6197357793931003], [0.7324045229029652], [0.746480904580593], [0.6901465328256605], [0.5492961809161186], [0.39436944732894885], [0.28170070381908385], [0.25351909541940687], [0.2957770854967116], [0.39436944732894885], [0.49296180916118604], [0.5352197992384908], [0.5070381908388139], [0.4225510557286258], [0.3380350755740163], [0.28170070381908385], [0.3098534671743394], [0.39436944732894885], [0.49296180916118604], [0.5492961809161186], [0.521143417560863], [0.4366274374062536], [0.3380350755740163], [0.26762432214145604], [0.28170070381908385], [0.3662166839736933], [0.49296180916118604], [0.605630552671051], [0.661993769470405], [0.633812161070728], [0.5492961809161186], [0.46480904580593047], [0.4084458290065766], [0.4084458290065766], [0.46480904580593047], [0.5352197992384908], [0.605630552671051], [0.633812161070728], [0.6197357793931003], [0.5774777893157955], [0.521143417560863], [0.4788854274835582], [0.4366274374062536], [0.4084458290065766], [0.4084458290065766], [0.4366274374062536], [0.4788854274835582], [0.5070381908388139], [0.5070381908388139], [0.45070381908388135], [0.38029306565132104], [0.3380350755740163], [0.3662166839736933], [0.4788854274835582], [0.633812161070728], [0.7605572862582207], [0.8169205030575747], [0.77466251298027], [0.6760701511480327], [0.5774777893157955], [0.5492961809161186], [0.5915541709934233], [0.6760701511480327], [0.746480904580593], [0.77466251298027], [0.746480904580593], [0.7042229145032883], [0.661993769470405], [0.633812161070728], [0.6197357793931003], [0.605630552671051], [0.5634014076381677], [0.5070381908388139], [0.4366274374062536], [0.38029306565132104], [0.3662166839736933], [0.4084458290065766], [0.5070381908388139], [0.5774777893157955], [0.6197357793931003], [0.5634014076381677], [0.45070381908388135], [0.32395869389638854], [0.26762432214145604], [0.2957770854967116], [0.4225510557286258], [0.5634014076381677], [0.6760701511480327], [0.7042229145032883], [0.633812161070728], [0.5070381908388139], [0.38029306565132104], [0.28170070381908385], [0.25351909541940687], [0.3098534671743394], [0.39436944732894885], [0.49296180916118604], [0.5492961809161186], [0.5492961809161186], [0.5352197992384908], [0.49296180916118604], [0.4788854274835582], [0.49296180916118604], [0.521143417560863], [0.5774777893157955], [0.5915541709934233], [0.5774777893157955], [0.5070381908388139], [0.4084458290065766], [0.32395869389638854], [0.28170070381908385], [0.2957770854967116], [0.3380350755740163], [0.39436944732894885], [0.46480904580593047], [0.521143417560863], [0.5634014076381677], [0.605630552671051], [0.633812161070728], [0.605630552671051], [0.5492961809161186], [0.46480904580593047], [0.4084458290065766], [0.4084458290065766], [0.4788854274835582], [0.5634014076381677], [0.633812161070728], [0.6478885427483558], [0.6197357793931003], [0.5774777893157955], [0.5492961809161186], [0.5352197992384908], [0.5634014076381677], [0.6197357793931003], [0.6760701511480327], [0.7183281412253375], [0.7183281412253375], [0.7042229145032883], [0.6760701511480327], [0.6901465328256605], [0.7183281412253375], [0.77466251298027], [0.8028152763355255], [0.7887388946578977], [0.746480904580593], [0.6901465328256605], [0.633812161070728], [0.605630552671051], [0.605630552671051], [0.605630552671051], [0.5915541709934233], [0.5915541709934233], [0.5915541709934233], [0.5915541709934233], [0.5915541709934233], [0.5774777893157955], [0.5492961809161186], [0.521143417560863], [0.5352197992384908], [0.5915541709934233], [0.6478885427483558], [0.6760701511480327], [0.6478885427483558], [0.5492961809161186], [0.4225510557286258], [0.3098534671743394], [0.25351909541940687], [0.2957770854967116], [0.4225510557286258], [0.605630552671051], [0.7605572862582207], [0.8450732664128302], [0.7887388946578977], [0.5774777893157955], [0.3098534671743394], [0.08451598015460943], [0.0], [0.0985923618322372], [0.32395869389638854], [0.5774777893157955], [0.746480904580593], [0.7887388946578977], [0.7183281412253375], [0.5774777893157955], [0.45070381908388135], [0.39436944732894885], [0.4366274374062536], [0.5492961809161186], [0.6760701511480327], [0.77466251298027], [0.7887388946578977], [0.7324045229029652], [0.6478885427483558], [0.5634014076381677], [0.5352197992384908], [0.5352197992384908], [0.5352197992384908], [0.5070381908388139], [0.45070381908388135], [0.38029306565132104], [0.35211145725164417], [0.35211145725164417], [0.4084458290065766], [0.46480904580593047], [0.5070381908388139], [0.5070381908388139], [0.46480904580593047], [0.4084458290065766], [0.3662166839736933], [0.3662166839736933], [0.39436944732894885], [0.4366274374062536], [0.46480904580593047], [0.46480904580593047], [0.45070381908388135], [0.46480904580593047], [0.49296180916118604], [0.521143417560863], [0.5492961809161186], [0.521143417560863], [0.4366274374062536], [0.35211145725164417], [0.3098534671743394], [0.3380350755740163], [0.4084458290065766], [0.5070381908388139], [0.5774777893157955], [0.605630552671051], [0.6197357793931003], [0.6478885427483558], [0.7183281412253375], [0.8309968847352024], [0.9436656282450674], [1.0], [0.9859236183223722], [0.9014076381677628], [0.7605572862582207], [0.6197357793931003], [0.5070381908388139], [0.46480904580593047], [0.49296180916118604], [0.5492961809161186], [0.605630552671051], [0.6478885427483558], [0.6478885427483558], [0.6197357793931003], [0.5915541709934233], [0.5915541709934233], [0.6197357793931003], [0.7042229145032883], [0.77466251298027], [0.8169205030575747], [0.8169205030575747], [0.77466251298027], [0.746480904580593], [0.7324045229029652]], "masks": [[1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1]], "evals": [[0.6197357793931003], [0.7324045229029652], [0.746480904580593], [0.6901465328256605], [0.5492961809161186], [0.39436944732894885], [0.28170070381908385], [0.25351909541940687], [0.2957770854967116], [0.39436944732894885], [0.49296180916118604], [0.5352197992384908], [0.5070381908388139], [0.4225510557286258], [0.3380350755740163], [0.28170070381908385], [0.3098534671743394], [0.39436944732894885], [0.49296180916118604], [0.5492961809161186], [0.521143417560863], [0.4366274374062536], [0.3380350755740163], [0.26762432214145604], [0.28170070381908385], [0.3662166839736933], [0.49296180916118604], [0.605630552671051], [0.661993769470405], [0.633812161070728], [0.5492961809161186], [0.46480904580593047], [0.4084458290065766], [0.4084458290065766], [0.46480904580593047], [0.5352197992384908], [0.605630552671051], [0.633812161070728], [0.6197357793931003], [0.5774777893157955], [0.521143417560863], [0.4788854274835582], [0.4366274374062536], [0.4084458290065766], [0.4084458290065766], [0.4366274374062536], [0.4788854274835582], [0.5070381908388139], [0.5070381908388139], [0.45070381908388135], [0.38029306565132104], [0.3380350755740163], [0.3662166839736933], [0.4788854274835582], [0.633812161070728], [0.7605572862582207], [0.8169205030575747], [0.77466251298027], [0.6760701511480327], [0.5774777893157955], [0.5492961809161186], [0.5915541709934233], [0.6760701511480327], [0.746480904580593], [0.77466251298027], [0.746480904580593], [0.7042229145032883], [0.661993769470405], [0.633812161070728], [0.6197357793931003], [0.605630552671051], [0.5634014076381677], [0.5070381908388139], [0.4366274374062536], [0.38029306565132104], [0.3662166839736933], [0.4084458290065766], [0.5070381908388139], [0.5774777893157955], [0.6197357793931003], [0.5634014076381677], [0.45070381908388135], [0.32395869389638854], [0.26762432214145604], [0.2957770854967116], [0.4225510557286258], [0.5634014076381677], [0.6760701511480327], [0.7042229145032883], [0.633812161070728], [0.5070381908388139], [0.38029306565132104], [0.28170070381908385], [0.25351909541940687], [0.3098534671743394], [0.39436944732894885], [0.49296180916118604], [0.5492961809161186], [0.5492961809161186], [0.5352197992384908], [0.49296180916118604], [0.4788854274835582], [0.49296180916118604], [0.521143417560863], [0.5774777893157955], [0.5915541709934233], [0.5774777893157955], [0.5070381908388139], [0.4084458290065766], [0.32395869389638854], [0.28170070381908385], [0.2957770854967116], [0.3380350755740163], [0.39436944732894885], [0.46480904580593047], [0.521143417560863], [0.5634014076381677], [0.605630552671051], [0.633812161070728], [0.605630552671051], [0.5492961809161186], [0.46480904580593047], [0.4084458290065766], [0.4084458290065766], [0.4788854274835582], [0.5634014076381677], [0.633812161070728], [0.6478885427483558], [0.6197357793931003], [0.5774777893157955], [0.5492961809161186], [0.5352197992384908], [0.5634014076381677], [0.6197357793931003], [0.6760701511480327], [0.7183281412253375], [0.7183281412253375], [0.7042229145032883], [0.6760701511480327], [0.6901465328256605], [0.7183281412253375], [0.77466251298027], [0.8028152763355255], [0.7887388946578977], [0.746480904580593], [0.6901465328256605], [0.633812161070728], [0.605630552671051], [0.605630552671051], [0.605630552671051], [0.5915541709934233], [0.5915541709934233], [0.5915541709934233], [0.5915541709934233], [0.5915541709934233], [0.5774777893157955], [0.5492961809161186], [0.521143417560863], [0.5352197992384908], [0.5915541709934233], [0.6478885427483558], [0.6760701511480327], [0.6478885427483558], [0.5492961809161186], [0.4225510557286258], [0.3098534671743394], [0.25351909541940687], [0.2957770854967116], [0.4225510557286258], [0.605630552671051], [0.7605572862582207], [0.8450732664128302], [0.7887388946578977], [0.5774777893157955], [0.3098534671743394], [0.08451598015460943], [0.0], [0.0985923618322372], [0.32395869389638854], [0.5774777893157955], [0.746480904580593], [0.7887388946578977], [0.7183281412253375], [0.5774777893157955], [0.45070381908388135], [0.39436944732894885], [0.4366274374062536], [0.5492961809161186], [0.6760701511480327], [0.77466251298027], [0.7887388946578977], [0.7324045229029652], [0.6478885427483558], [0.5634014076381677], [0.5352197992384908], [0.5352197992384908], [0.5352197992384908], [0.5070381908388139], [0.45070381908388135], [0.38029306565132104], [0.35211145725164417], [0.35211145725164417], [0.4084458290065766], [0.46480904580593047], [0.5070381908388139], [0.5070381908388139], [0.46480904580593047], [0.4084458290065766], [0.3662166839736933], [0.3662166839736933], [0.39436944732894885], [0.4366274374062536], [0.46480904580593047], [0.46480904580593047], [0.45070381908388135], [0.46480904580593047], [0.49296180916118604], [0.521143417560863], [0.5492961809161186], [0.521143417560863], [0.4366274374062536], [0.35211145725164417], [0.3098534671743394], [0.3380350755740163], [0.4084458290065766], [0.5070381908388139], [0.5774777893157955], [0.605630552671051], [0.6197357793931003], [0.6478885427483558], [0.7183281412253375], [0.8309968847352024], [0.9436656282450674], [1.0], [0.9859236183223722], [0.9014076381677628], [0.7605572862582207], [0.6197357793931003], [0.5070381908388139], [0.46480904580593047], [0.49296180916118604], [0.5492961809161186], [0.605630552671051], [0.6478885427483558], [0.6478885427483558], [0.6197357793931003], [0.5915541709934233], [0.5915541709934233], [0.6197357793931003], [0.7042229145032883], [0.77466251298027], [0.8169205030575747], [0.8169205030575747], [0.77466251298027], [0.746480904580593], [0.7324045229029652]], "eval_masks": [[0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0]], "forwards": [[0.6197357793931003], [0.7324045229029652], [0.746480904580593], [0.6901465328256605], [0.5492961809161186], [0.39436944732894885], [0.28170070381908385], [0.25351909541940687], [0.2957770854967116], [0.39436944732894885], [0.49296180916118604], [0.5352197992384908], [0.5070381908388139], [0.4225510557286258], [0.3380350755740163], [0.28170070381908385], [0.3098534671743394], [0.39436944732894885], [0.49296180916118604], [0.5492961809161186], [0.521143417560863], [0.4366274374062536], [0.3380350755740163], [0.26762432214145604], [0.28170070381908385], [0.3662166839736933], [0.49296180916118604], [0.605630552671051], [0.661993769470405], [0.633812161070728], [0.5492961809161186], [0.46480904580593047], [0.4084458290065766], [0.4084458290065766], [0.46480904580593047], [0.5352197992384908], [0.605630552671051], [0.633812161070728], [0.6197357793931003], [0.5774777893157955], [0.521143417560863], [0.4788854274835582], [0.4366274374062536], [0.4084458290065766], [0.4084458290065766], [0.4366274374062536], [0.4788854274835582], [0.5070381908388139], [0.5070381908388139], [0.45070381908388135], [0.38029306565132104], [0.3380350755740163], [0.3662166839736933], [0.4788854274835582], [0.633812161070728], [0.7605572862582207], [0.8169205030575747], [0.77466251298027], [0.6760701511480327], [0.5774777893157955], [0.5492961809161186], [0.5915541709934233], [0.6760701511480327], [0.746480904580593], [0.77466251298027], [0.746480904580593], [0.7042229145032883], [0.661993769470405], [0.633812161070728], [0.6197357793931003], [0.605630552671051], [0.5634014076381677], [0.5070381908388139], [0.4366274374062536], [0.38029306565132104], [0.3662166839736933], [0.4084458290065766], [0.5070381908388139], [0.5774777893157955], [0.6197357793931003], [0.5634014076381677], [0.45070381908388135], [0.32395869389638854], [0.26762432214145604], [0.2957770854967116], [0.4225510557286258], [0.5634014076381677], [0.6760701511480327], [0.7042229145032883], [0.633812161070728], [0.5070381908388139], [0.38029306565132104], [0.28170070381908385], [0.25351909541940687], [0.3098534671743394], [0.39436944732894885], [0.49296180916118604], [0.5492961809161186], [0.5492961809161186], [0.5352197992384908], [0.49296180916118604], [0.4788854274835582], [0.49296180916118604], [0.521143417560863], [0.5774777893157955], [0.5915541709934233], [0.5774777893157955], [0.5070381908388139], [0.4084458290065766], [0.32395869389638854], [0.28170070381908385], [0.2957770854967116], [0.3380350755740163], [0.39436944732894885], [0.46480904580593047], [0.521143417560863], [0.5634014076381677], [0.605630552671051], [0.633812161070728], [0.605630552671051], [0.5492961809161186], [0.46480904580593047], [0.4084458290065766], [0.4084458290065766], [0.4788854274835582], [0.5634014076381677], [0.633812161070728], [0.6478885427483558], [0.6197357793931003], [0.5774777893157955], [0.5492961809161186], [0.5352197992384908], [0.5634014076381677], [0.6197357793931003], [0.6760701511480327], [0.7183281412253375], [0.7183281412253375], [0.7042229145032883], [0.6760701511480327], [0.6901465328256605], [0.7183281412253375], [0.77466251298027], [0.8028152763355255], [0.7887388946578977], [0.746480904580593], [0.6901465328256605], [0.633812161070728], [0.605630552671051], [0.605630552671051], [0.605630552671051], [0.5915541709934233], [0.5915541709934233], [0.5915541709934233], [0.5915541709934233], [0.5915541709934233], [0.5774777893157955], [0.5492961809161186], [0.521143417560863], [0.5352197992384908], [0.5915541709934233], [0.6478885427483558], [0.6760701511480327], [0.6478885427483558], [0.5492961809161186], [0.4225510557286258], [0.3098534671743394], [0.25351909541940687], [0.2957770854967116], [0.4225510557286258], [0.605630552671051], [0.7605572862582207], [0.8450732664128302], [0.7887388946578977], [0.5774777893157955], [0.3098534671743394], [0.08451598015460943], [0.0], [0.0985923618322372], [0.32395869389638854], [0.5774777893157955], [0.746480904580593], [0.7887388946578977], [0.7183281412253375], [0.5774777893157955], [0.45070381908388135], [0.39436944732894885], [0.4366274374062536], [0.5492961809161186], [0.6760701511480327], [0.77466251298027], [0.7887388946578977], [0.7324045229029652], [0.6478885427483558], [0.5634014076381677], [0.5352197992384908], [0.5352197992384908], [0.5352197992384908], [0.5070381908388139], [0.45070381908388135], [0.38029306565132104], [0.35211145725164417], [0.35211145725164417], [0.4084458290065766], [0.46480904580593047], [0.5070381908388139], [0.5070381908388139], [0.46480904580593047], [0.4084458290065766], [0.3662166839736933], [0.3662166839736933], [0.39436944732894885], [0.4366274374062536], [0.46480904580593047], [0.46480904580593047], [0.45070381908388135], [0.46480904580593047], [0.49296180916118604], [0.521143417560863], [0.5492961809161186], [0.521143417560863], [0.4366274374062536], [0.35211145725164417], [0.3098534671743394], [0.3380350755740163], [0.4084458290065766], [0.5070381908388139], [0.5774777893157955], [0.605630552671051], [0.6197357793931003], [0.6478885427483558], [0.7183281412253375], [0.8309968847352024], [0.9436656282450674], [1.0], [0.9859236183223722], [0.9014076381677628], [0.7605572862582207], [0.6197357793931003], [0.5070381908388139], [0.46480904580593047], [0.49296180916118604], [0.5492961809161186], [0.605630552671051], [0.6478885427483558], [0.6478885427483558], [0.6197357793931003], [0.5915541709934233], [0.5915541709934233], [0.6197357793931003], [0.7042229145032883], [0.77466251298027], [0.8169205030575747], [0.8169205030575747], [0.77466251298027], [0.746480904580593], [0.7324045229029652]], "deltas": [[1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0]]}} -{"label": 0, "forward": {"values": [[0.6025836265294334], [0.6666754187890563], [0.7436065745943391], [0.8333508375781127], [0.8717901591135849], [0.8589770519350942], [0.820511474032453], [0.7564196817728299], [0.7179541038701884], [0.679488525967547], [0.6538623116105655], [0.6025836265294334], [0.5256524707241507], [0.4230951005618862], [0.307698366853962], [0.2179541038701885], [0.20514099669169772], [0.26923278895132063], [0.3846295226592449], [0.5384655779026414], [0.679488525967547], [0.7948852596754713], [0.8589770519350942], [0.8974426298377357], [0.8846295226592449], [0.8589770519350942], [0.820511474032453], [0.8076983668539621], [0.7820458961298115], [0.7307672110486793], [0.6538623116105655], [0.564118048626792], [0.47437378564301846], [0.4230951005618862], [0.435908207740377], [0.4615344220973586], [0.47437378564301846], [0.4615344220973586], [0.4102557370162264], [0.37179015911358504], [0.37179015911358504], [0.4102557370162264], [0.47437378564301846], [0.5128393635456597], [0.5], [0.44872131491886774], [0.39744262983773565], [0.37179015911358504], [0.3846295226592449], [0.4230951005618862], [0.47437378564301846], [0.47437378564301846], [0.44872131491886774], [0.39744262983773565], [0.3333508375781126], [0.32051147403245284], [0.3333508375781126], [0.37179015911358504], [0.39744262983773565], [0.39744262983773565], [0.37179015911358504], [0.32051147403245284], [0.32051147403245284], [0.3333508375781126], [0.3846295226592449], [0.4230951005618862], [0.435908207740377], [0.37179015911358504], [0.26923278895132063], [0.19232788951320695], [0.15386231161056554], [0.20514099669169772], [0.307698366853962], [0.4230951005618862], [0.5], [0.5], [0.37179015911358504], [0.20514099669169772], [0.05127868508113216], [0.0], [0.064118048626792], [0.2179541038701885], [0.4102557370162264], [0.5512786850811322], [0.6153967337079241], [0.564118048626792], [0.44872131491886774], [0.307698366853962], [0.1794885259675471], [0.11539673370792417], [0.15386231161056554], [0.26923278895132063], [0.435908207740377], [0.6025836265294334], [0.6923278895132069], [0.7051409966916977], [0.6538623116105655], [0.564118048626792], [0.48718689282150923], [0.47437378564301846], [0.47437378564301846], [0.5], [0.5384655779026414], [0.5512786850811322], [0.5512786850811322], [0.564118048626792], [0.5897442629837736], [0.6153967337079241], [0.628209840886415], [0.628209840886415], [0.628209840886415], [0.6410229480649057], [0.6538623116105655], [0.6923278895132069], [0.7307672110486793], [0.7692327889513206], [0.8333508375781127], [0.8846295226592449], [0.9487213149188678], [0.9743737856430185], [0.9615344220973585], [0.9102557370162264], [0.8333508375781127], [0.7692327889513206], [0.7436065745943391], [0.7564196817728299], [0.820511474032453], [0.8974426298377357], [0.935908207740377], [0.935908207740377], [0.8717901591135849], [0.7692327889513206], [0.6923278895132069], [0.6410229480649057], [0.6410229480649057], [0.679488525967547], [0.7179541038701884], [0.7436065745943391], [0.7307672110486793], [0.7179541038701884], [0.6923278895132069], [0.6538623116105655], [0.6153967337079241], [0.564118048626792], [0.5128393635456597], [0.5128393635456597], [0.5384655779026414], [0.628209840886415], [0.7051409966916977], [0.7820458961298115], [0.7948852596754713], [0.7692327889513206], [0.7051409966916977], [0.6538623116105655], [0.628209840886415], [0.6538623116105655], [0.7051409966916977], [0.7564196817728299], [0.7564196817728299], [0.7051409966916977], [0.6153967337079241], [0.5256524707241507], [0.5128393635456597], [0.5769311558052828], [0.7179541038701884], [0.8717901591135849], [0.9871868928215092], [1.0], [0.9102557370162264], [0.7436065745943391], [0.5769311558052828], [0.4615344220973586], [0.4615344220973586], [0.5512786850811322], [0.679488525967547], [0.7820458961298115], [0.7948852596754713], [0.7436065745943391], [0.6410229480649057], [0.5897442629837736], [0.564118048626792], [0.6153967337079241], [0.6666754187890563], [0.6923278895132069], [0.679488525967547], [0.628209840886415], [0.5897442629837736], [0.5897442629837736], [0.6538623116105655], [0.7692327889513206], [0.8846295226592449], [0.9743737856430185], [0.9743737856430185], [0.9230951005618862], [0.8461639447566034], [0.8076983668539621], [0.820511474032453], [0.8589770519350942], [0.8717901591135849], [0.8333508375781127], [0.7307672110486793], [0.5897442629837736], [0.4615344220973586], [0.4230951005618862], [0.44872131491886774], [0.5384655779026414], [0.6153967337079241], [0.6538623116105655], [0.6153967337079241], [0.5512786850811322], [0.47437378564301846], [0.44872131491886774], [0.47437378564301846], [0.5384655779026414], [0.6025836265294334], [0.6538623116105655], [0.679488525967547], [0.679488525967547], [0.679488525967547], [0.6538623116105655], [0.628209840886415], [0.6153967337079241], [0.6025836265294334], [0.628209840886415], [0.679488525967547], [0.7436065745943391], [0.7820458961298115], [0.7948852596754713], [0.7307672110486793], [0.6538623116105655], [0.564118048626792], [0.48718689282150923], [0.4615344220973586], [0.4615344220973586], [0.5128393635456597], [0.564118048626792], [0.6025836265294334], [0.628209840886415], [0.628209840886415], [0.6025836265294334], [0.5769311558052828], [0.5769311558052828], [0.6025836265294334], [0.628209840886415], [0.6410229480649057], [0.628209840886415], [0.5897442629837736], [0.5384655779026414], [0.5128393635456597], [0.5256524707241507], [0.5769311558052828], [0.6410229480649057], [0.7051409966916977], [0.7692327889513206], [0.820511474032453], [0.8461639447566034]], "masks": [[1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1]], "evals": [[0.6025836265294334], [0.6666754187890563], [0.7436065745943391], [0.8333508375781127], [0.8717901591135849], [0.8589770519350942], [0.820511474032453], [0.7564196817728299], [0.7179541038701884], [0.679488525967547], [0.6538623116105655], [0.6025836265294334], [0.5256524707241507], [0.4230951005618862], [0.307698366853962], [0.2179541038701885], [0.20514099669169772], [0.26923278895132063], [0.3846295226592449], [0.5384655779026414], [0.679488525967547], [0.7948852596754713], [0.8589770519350942], [0.8974426298377357], [0.8846295226592449], [0.8589770519350942], [0.820511474032453], [0.8076983668539621], [0.7820458961298115], [0.7307672110486793], [0.6538623116105655], [0.564118048626792], [0.47437378564301846], [0.4230951005618862], [0.435908207740377], [0.4615344220973586], [0.47437378564301846], [0.4615344220973586], [0.4102557370162264], [0.37179015911358504], [0.37179015911358504], [0.4102557370162264], [0.47437378564301846], [0.5128393635456597], [0.5], [0.44872131491886774], [0.39744262983773565], [0.37179015911358504], [0.3846295226592449], [0.4230951005618862], [0.47437378564301846], [0.47437378564301846], [0.44872131491886774], [0.39744262983773565], [0.3333508375781126], [0.32051147403245284], [0.3333508375781126], [0.37179015911358504], [0.39744262983773565], [0.39744262983773565], [0.37179015911358504], [0.32051147403245284], [0.32051147403245284], [0.3333508375781126], [0.3846295226592449], [0.4230951005618862], [0.435908207740377], [0.37179015911358504], [0.26923278895132063], [0.19232788951320695], [0.15386231161056554], [0.20514099669169772], [0.307698366853962], [0.4230951005618862], [0.5], [0.5], [0.37179015911358504], [0.20514099669169772], [0.05127868508113216], [0.0], [0.064118048626792], [0.2179541038701885], [0.4102557370162264], [0.5512786850811322], [0.6153967337079241], [0.564118048626792], [0.44872131491886774], [0.307698366853962], [0.1794885259675471], [0.11539673370792417], [0.15386231161056554], [0.26923278895132063], [0.435908207740377], [0.6025836265294334], [0.6923278895132069], [0.7051409966916977], [0.6538623116105655], [0.564118048626792], [0.48718689282150923], [0.47437378564301846], [0.47437378564301846], [0.5], [0.5384655779026414], [0.5512786850811322], [0.5512786850811322], [0.564118048626792], [0.5897442629837736], [0.6153967337079241], [0.628209840886415], [0.628209840886415], [0.628209840886415], [0.6410229480649057], [0.6538623116105655], [0.6923278895132069], [0.7307672110486793], [0.7692327889513206], [0.8333508375781127], [0.8846295226592449], [0.9487213149188678], [0.9743737856430185], [0.9615344220973585], [0.9102557370162264], [0.8333508375781127], [0.7692327889513206], [0.7436065745943391], [0.7564196817728299], [0.820511474032453], [0.8974426298377357], [0.935908207740377], [0.935908207740377], [0.8717901591135849], [0.7692327889513206], [0.6923278895132069], [0.6410229480649057], [0.6410229480649057], [0.679488525967547], [0.7179541038701884], [0.7436065745943391], [0.7307672110486793], [0.7179541038701884], [0.6923278895132069], [0.6538623116105655], [0.6153967337079241], [0.564118048626792], [0.5128393635456597], [0.5128393635456597], [0.5384655779026414], [0.628209840886415], [0.7051409966916977], [0.7820458961298115], [0.7948852596754713], [0.7692327889513206], [0.7051409966916977], [0.6538623116105655], [0.628209840886415], [0.6538623116105655], [0.7051409966916977], [0.7564196817728299], [0.7564196817728299], [0.7051409966916977], [0.6153967337079241], [0.5256524707241507], [0.5128393635456597], [0.5769311558052828], [0.7179541038701884], [0.8717901591135849], [0.9871868928215092], [1.0], [0.9102557370162264], [0.7436065745943391], [0.5769311558052828], [0.4615344220973586], [0.4615344220973586], [0.5512786850811322], [0.679488525967547], [0.7820458961298115], [0.7948852596754713], [0.7436065745943391], [0.6410229480649057], [0.5897442629837736], [0.564118048626792], [0.6153967337079241], [0.6666754187890563], [0.6923278895132069], [0.679488525967547], [0.628209840886415], [0.5897442629837736], [0.5897442629837736], [0.6538623116105655], [0.7692327889513206], [0.8846295226592449], [0.9743737856430185], [0.9743737856430185], [0.9230951005618862], [0.8461639447566034], [0.8076983668539621], [0.820511474032453], [0.8589770519350942], [0.8717901591135849], [0.8333508375781127], [0.7307672110486793], [0.5897442629837736], [0.4615344220973586], [0.4230951005618862], [0.44872131491886774], [0.5384655779026414], [0.6153967337079241], [0.6538623116105655], [0.6153967337079241], [0.5512786850811322], [0.47437378564301846], [0.44872131491886774], [0.47437378564301846], [0.5384655779026414], [0.6025836265294334], [0.6538623116105655], [0.679488525967547], [0.679488525967547], [0.679488525967547], [0.6538623116105655], [0.628209840886415], [0.6153967337079241], [0.6025836265294334], [0.628209840886415], [0.679488525967547], [0.7436065745943391], [0.7820458961298115], [0.7948852596754713], [0.7307672110486793], [0.6538623116105655], [0.564118048626792], [0.48718689282150923], [0.4615344220973586], [0.4615344220973586], [0.5128393635456597], [0.564118048626792], [0.6025836265294334], [0.628209840886415], [0.628209840886415], [0.6025836265294334], [0.5769311558052828], [0.5769311558052828], [0.6025836265294334], [0.628209840886415], [0.6410229480649057], [0.628209840886415], [0.5897442629837736], [0.5384655779026414], [0.5128393635456597], [0.5256524707241507], [0.5769311558052828], [0.6410229480649057], [0.7051409966916977], [0.7692327889513206], [0.820511474032453], [0.8461639447566034]], "eval_masks": [[0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0]], "forwards": [[0.6025836265294334], [0.6666754187890563], [0.7436065745943391], [0.8333508375781127], [0.8717901591135849], [0.8589770519350942], [0.820511474032453], [0.7564196817728299], [0.7179541038701884], [0.679488525967547], [0.6538623116105655], [0.6025836265294334], [0.5256524707241507], [0.4230951005618862], [0.307698366853962], [0.2179541038701885], [0.20514099669169772], [0.26923278895132063], [0.3846295226592449], [0.5384655779026414], [0.679488525967547], [0.7948852596754713], [0.8589770519350942], [0.8974426298377357], [0.8846295226592449], [0.8589770519350942], [0.820511474032453], [0.8076983668539621], [0.7820458961298115], [0.7307672110486793], [0.6538623116105655], [0.564118048626792], [0.47437378564301846], [0.4230951005618862], [0.435908207740377], [0.4615344220973586], [0.47437378564301846], [0.4615344220973586], [0.4102557370162264], [0.37179015911358504], [0.37179015911358504], [0.4102557370162264], [0.47437378564301846], [0.5128393635456597], [0.5], [0.44872131491886774], [0.39744262983773565], [0.37179015911358504], [0.3846295226592449], [0.4230951005618862], [0.47437378564301846], [0.47437378564301846], [0.44872131491886774], [0.39744262983773565], [0.3333508375781126], [0.32051147403245284], [0.3333508375781126], [0.37179015911358504], [0.39744262983773565], [0.39744262983773565], [0.37179015911358504], [0.32051147403245284], [0.32051147403245284], [0.3333508375781126], [0.3846295226592449], [0.4230951005618862], [0.435908207740377], [0.37179015911358504], [0.26923278895132063], [0.19232788951320695], [0.15386231161056554], [0.20514099669169772], [0.307698366853962], [0.4230951005618862], [0.5], [0.5], [0.37179015911358504], [0.20514099669169772], [0.05127868508113216], [0.0], [0.064118048626792], [0.2179541038701885], [0.4102557370162264], [0.5512786850811322], [0.6153967337079241], [0.564118048626792], [0.44872131491886774], [0.307698366853962], [0.1794885259675471], [0.11539673370792417], [0.15386231161056554], [0.26923278895132063], [0.435908207740377], [0.6025836265294334], [0.6923278895132069], [0.7051409966916977], [0.6538623116105655], [0.564118048626792], [0.48718689282150923], [0.47437378564301846], [0.47437378564301846], [0.5], [0.5384655779026414], [0.5512786850811322], [0.5512786850811322], [0.564118048626792], [0.5897442629837736], [0.6153967337079241], [0.628209840886415], [0.628209840886415], [0.628209840886415], [0.6410229480649057], [0.6538623116105655], [0.6923278895132069], [0.7307672110486793], [0.7692327889513206], [0.8333508375781127], [0.8846295226592449], [0.9487213149188678], [0.9743737856430185], [0.9615344220973585], [0.9102557370162264], [0.8333508375781127], [0.7692327889513206], [0.7436065745943391], [0.7564196817728299], [0.820511474032453], [0.8974426298377357], [0.935908207740377], [0.935908207740377], [0.8717901591135849], [0.7692327889513206], [0.6923278895132069], [0.6410229480649057], [0.6410229480649057], [0.679488525967547], [0.7179541038701884], [0.7436065745943391], [0.7307672110486793], [0.7179541038701884], [0.6923278895132069], [0.6538623116105655], [0.6153967337079241], [0.564118048626792], [0.5128393635456597], [0.5128393635456597], [0.5384655779026414], [0.628209840886415], [0.7051409966916977], [0.7820458961298115], [0.7948852596754713], [0.7692327889513206], [0.7051409966916977], [0.6538623116105655], [0.628209840886415], [0.6538623116105655], [0.7051409966916977], [0.7564196817728299], [0.7564196817728299], [0.7051409966916977], [0.6153967337079241], [0.5256524707241507], [0.5128393635456597], [0.5769311558052828], [0.7179541038701884], [0.8717901591135849], [0.9871868928215092], [1.0], [0.9102557370162264], [0.7436065745943391], [0.5769311558052828], [0.4615344220973586], [0.4615344220973586], [0.5512786850811322], [0.679488525967547], [0.7820458961298115], [0.7948852596754713], [0.7436065745943391], [0.6410229480649057], [0.5897442629837736], [0.564118048626792], [0.6153967337079241], [0.6666754187890563], [0.6923278895132069], [0.679488525967547], [0.628209840886415], [0.5897442629837736], [0.5897442629837736], [0.6538623116105655], [0.7692327889513206], [0.8846295226592449], [0.9743737856430185], [0.9743737856430185], [0.9230951005618862], [0.8461639447566034], [0.8076983668539621], [0.820511474032453], [0.8589770519350942], [0.8717901591135849], [0.8333508375781127], [0.7307672110486793], [0.5897442629837736], [0.4615344220973586], [0.4230951005618862], [0.44872131491886774], [0.5384655779026414], [0.6153967337079241], [0.6538623116105655], [0.6153967337079241], [0.5512786850811322], [0.47437378564301846], [0.44872131491886774], [0.47437378564301846], [0.5384655779026414], [0.6025836265294334], [0.6538623116105655], [0.679488525967547], [0.679488525967547], [0.679488525967547], [0.6538623116105655], [0.628209840886415], [0.6153967337079241], [0.6025836265294334], [0.628209840886415], [0.679488525967547], [0.7436065745943391], [0.7820458961298115], [0.7948852596754713], [0.7307672110486793], [0.6538623116105655], [0.564118048626792], [0.48718689282150923], [0.4615344220973586], [0.4615344220973586], [0.5128393635456597], [0.564118048626792], [0.6025836265294334], [0.628209840886415], [0.628209840886415], [0.6025836265294334], [0.5769311558052828], [0.5769311558052828], [0.6025836265294334], [0.628209840886415], [0.6410229480649057], [0.628209840886415], [0.5897442629837736], [0.5384655779026414], [0.5128393635456597], [0.5256524707241507], [0.5769311558052828], [0.6410229480649057], [0.7051409966916977], [0.7692327889513206], [0.820511474032453], [0.8461639447566034]], "deltas": [[1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0]]}, "backward": {"values": [[0.8461639447566034], [0.820511474032453], [0.7692327889513206], [0.7051409966916977], [0.6410229480649057], [0.5769311558052828], [0.5256524707241507], [0.5128393635456597], [0.5384655779026414], [0.5897442629837736], [0.628209840886415], [0.6410229480649057], [0.628209840886415], [0.6025836265294334], [0.5769311558052828], [0.5769311558052828], [0.6025836265294334], [0.628209840886415], [0.628209840886415], [0.6025836265294334], [0.564118048626792], [0.5128393635456597], [0.4615344220973586], [0.4615344220973586], [0.48718689282150923], [0.564118048626792], [0.6538623116105655], [0.7307672110486793], [0.7948852596754713], [0.7820458961298115], [0.7436065745943391], [0.679488525967547], [0.628209840886415], [0.6025836265294334], [0.6153967337079241], [0.628209840886415], [0.6538623116105655], [0.679488525967547], [0.679488525967547], [0.679488525967547], [0.6538623116105655], [0.6025836265294334], [0.5384655779026414], [0.47437378564301846], [0.44872131491886774], [0.47437378564301846], [0.5512786850811322], [0.6153967337079241], [0.6538623116105655], [0.6153967337079241], [0.5384655779026414], [0.44872131491886774], [0.4230951005618862], [0.4615344220973586], [0.5897442629837736], [0.7307672110486793], [0.8333508375781127], [0.8717901591135849], [0.8589770519350942], [0.820511474032453], [0.8076983668539621], [0.8461639447566034], [0.9230951005618862], [0.9743737856430185], [0.9743737856430185], [0.8846295226592449], [0.7692327889513206], [0.6538623116105655], [0.5897442629837736], [0.5897442629837736], [0.628209840886415], [0.679488525967547], [0.6923278895132069], [0.6666754187890563], [0.6153967337079241], [0.564118048626792], [0.5897442629837736], [0.6410229480649057], [0.7436065745943391], [0.7948852596754713], [0.7820458961298115], [0.679488525967547], [0.5512786850811322], [0.4615344220973586], [0.4615344220973586], [0.5769311558052828], [0.7436065745943391], [0.9102557370162264], [1.0], [0.9871868928215092], [0.8717901591135849], [0.7179541038701884], [0.5769311558052828], [0.5128393635456597], [0.5256524707241507], [0.6153967337079241], [0.7051409966916977], [0.7564196817728299], [0.7564196817728299], [0.7051409966916977], [0.6538623116105655], [0.628209840886415], [0.6538623116105655], [0.7051409966916977], [0.7692327889513206], [0.7948852596754713], [0.7820458961298115], [0.7051409966916977], [0.628209840886415], [0.5384655779026414], [0.5128393635456597], [0.5128393635456597], [0.564118048626792], [0.6153967337079241], [0.6538623116105655], [0.6923278895132069], [0.7179541038701884], [0.7307672110486793], [0.7436065745943391], [0.7179541038701884], [0.679488525967547], [0.6410229480649057], [0.6410229480649057], [0.6923278895132069], [0.7692327889513206], [0.8717901591135849], [0.935908207740377], [0.935908207740377], [0.8974426298377357], [0.820511474032453], [0.7564196817728299], [0.7436065745943391], [0.7692327889513206], [0.8333508375781127], [0.9102557370162264], [0.9615344220973585], [0.9743737856430185], [0.9487213149188678], [0.8846295226592449], [0.8333508375781127], [0.7692327889513206], [0.7307672110486793], [0.6923278895132069], [0.6538623116105655], [0.6410229480649057], [0.628209840886415], [0.628209840886415], [0.628209840886415], [0.6153967337079241], [0.5897442629837736], [0.564118048626792], [0.5512786850811322], [0.5512786850811322], [0.5384655779026414], [0.5], [0.47437378564301846], [0.47437378564301846], [0.48718689282150923], [0.564118048626792], [0.6538623116105655], [0.7051409966916977], [0.6923278895132069], [0.6025836265294334], [0.435908207740377], [0.26923278895132063], [0.15386231161056554], [0.11539673370792417], [0.1794885259675471], [0.307698366853962], [0.44872131491886774], [0.564118048626792], [0.6153967337079241], [0.5512786850811322], [0.4102557370162264], [0.2179541038701885], [0.064118048626792], [0.0], [0.05127868508113216], [0.20514099669169772], [0.37179015911358504], [0.5], [0.5], [0.4230951005618862], [0.307698366853962], [0.20514099669169772], [0.15386231161056554], [0.19232788951320695], [0.26923278895132063], [0.37179015911358504], [0.435908207740377], [0.4230951005618862], [0.3846295226592449], [0.3333508375781126], [0.32051147403245284], [0.32051147403245284], [0.37179015911358504], [0.39744262983773565], [0.39744262983773565], [0.37179015911358504], [0.3333508375781126], [0.32051147403245284], [0.3333508375781126], [0.39744262983773565], [0.44872131491886774], [0.47437378564301846], [0.47437378564301846], [0.4230951005618862], [0.3846295226592449], [0.37179015911358504], [0.39744262983773565], [0.44872131491886774], [0.5], [0.5128393635456597], [0.47437378564301846], [0.4102557370162264], [0.37179015911358504], [0.37179015911358504], [0.4102557370162264], [0.4615344220973586], [0.47437378564301846], [0.4615344220973586], [0.435908207740377], [0.4230951005618862], [0.47437378564301846], [0.564118048626792], [0.6538623116105655], [0.7307672110486793], [0.7820458961298115], [0.8076983668539621], [0.820511474032453], [0.8589770519350942], [0.8846295226592449], [0.8974426298377357], [0.8589770519350942], [0.7948852596754713], [0.679488525967547], [0.5384655779026414], [0.3846295226592449], [0.26923278895132063], [0.20514099669169772], [0.2179541038701885], [0.307698366853962], [0.4230951005618862], [0.5256524707241507], [0.6025836265294334], [0.6538623116105655], [0.679488525967547], [0.7179541038701884], [0.7564196817728299], [0.820511474032453], [0.8589770519350942], [0.8717901591135849], [0.8333508375781127], [0.7436065745943391], [0.6666754187890563], [0.6025836265294334]], "masks": [[1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1]], "evals": [[0.8461639447566034], [0.820511474032453], [0.7692327889513206], [0.7051409966916977], [0.6410229480649057], [0.5769311558052828], [0.5256524707241507], [0.5128393635456597], [0.5384655779026414], [0.5897442629837736], [0.628209840886415], [0.6410229480649057], [0.628209840886415], [0.6025836265294334], [0.5769311558052828], [0.5769311558052828], [0.6025836265294334], [0.628209840886415], [0.628209840886415], [0.6025836265294334], [0.564118048626792], [0.5128393635456597], [0.4615344220973586], [0.4615344220973586], [0.48718689282150923], [0.564118048626792], [0.6538623116105655], [0.7307672110486793], [0.7948852596754713], [0.7820458961298115], [0.7436065745943391], [0.679488525967547], [0.628209840886415], [0.6025836265294334], [0.6153967337079241], [0.628209840886415], [0.6538623116105655], [0.679488525967547], [0.679488525967547], [0.679488525967547], [0.6538623116105655], [0.6025836265294334], [0.5384655779026414], [0.47437378564301846], [0.44872131491886774], [0.47437378564301846], [0.5512786850811322], [0.6153967337079241], [0.6538623116105655], [0.6153967337079241], [0.5384655779026414], [0.44872131491886774], [0.4230951005618862], [0.4615344220973586], [0.5897442629837736], [0.7307672110486793], [0.8333508375781127], [0.8717901591135849], [0.8589770519350942], [0.820511474032453], [0.8076983668539621], [0.8461639447566034], [0.9230951005618862], [0.9743737856430185], [0.9743737856430185], [0.8846295226592449], [0.7692327889513206], [0.6538623116105655], [0.5897442629837736], [0.5897442629837736], [0.628209840886415], [0.679488525967547], [0.6923278895132069], [0.6666754187890563], [0.6153967337079241], [0.564118048626792], [0.5897442629837736], [0.6410229480649057], [0.7436065745943391], [0.7948852596754713], [0.7820458961298115], [0.679488525967547], [0.5512786850811322], [0.4615344220973586], [0.4615344220973586], [0.5769311558052828], [0.7436065745943391], [0.9102557370162264], [1.0], [0.9871868928215092], [0.8717901591135849], [0.7179541038701884], [0.5769311558052828], [0.5128393635456597], [0.5256524707241507], [0.6153967337079241], [0.7051409966916977], [0.7564196817728299], [0.7564196817728299], [0.7051409966916977], [0.6538623116105655], [0.628209840886415], [0.6538623116105655], [0.7051409966916977], [0.7692327889513206], [0.7948852596754713], [0.7820458961298115], [0.7051409966916977], [0.628209840886415], [0.5384655779026414], [0.5128393635456597], [0.5128393635456597], [0.564118048626792], [0.6153967337079241], [0.6538623116105655], [0.6923278895132069], [0.7179541038701884], [0.7307672110486793], [0.7436065745943391], [0.7179541038701884], [0.679488525967547], [0.6410229480649057], [0.6410229480649057], [0.6923278895132069], [0.7692327889513206], [0.8717901591135849], [0.935908207740377], [0.935908207740377], [0.8974426298377357], [0.820511474032453], [0.7564196817728299], [0.7436065745943391], [0.7692327889513206], [0.8333508375781127], [0.9102557370162264], [0.9615344220973585], [0.9743737856430185], [0.9487213149188678], [0.8846295226592449], [0.8333508375781127], [0.7692327889513206], [0.7307672110486793], [0.6923278895132069], [0.6538623116105655], [0.6410229480649057], [0.628209840886415], [0.628209840886415], [0.628209840886415], [0.6153967337079241], [0.5897442629837736], [0.564118048626792], [0.5512786850811322], [0.5512786850811322], [0.5384655779026414], [0.5], [0.47437378564301846], [0.47437378564301846], [0.48718689282150923], [0.564118048626792], [0.6538623116105655], [0.7051409966916977], [0.6923278895132069], [0.6025836265294334], [0.435908207740377], [0.26923278895132063], [0.15386231161056554], [0.11539673370792417], [0.1794885259675471], [0.307698366853962], [0.44872131491886774], [0.564118048626792], [0.6153967337079241], [0.5512786850811322], [0.4102557370162264], [0.2179541038701885], [0.064118048626792], [0.0], [0.05127868508113216], [0.20514099669169772], [0.37179015911358504], [0.5], [0.5], [0.4230951005618862], [0.307698366853962], [0.20514099669169772], [0.15386231161056554], [0.19232788951320695], [0.26923278895132063], [0.37179015911358504], [0.435908207740377], [0.4230951005618862], [0.3846295226592449], [0.3333508375781126], [0.32051147403245284], [0.32051147403245284], [0.37179015911358504], [0.39744262983773565], [0.39744262983773565], [0.37179015911358504], [0.3333508375781126], [0.32051147403245284], [0.3333508375781126], [0.39744262983773565], [0.44872131491886774], [0.47437378564301846], [0.47437378564301846], [0.4230951005618862], [0.3846295226592449], [0.37179015911358504], [0.39744262983773565], [0.44872131491886774], [0.5], [0.5128393635456597], [0.47437378564301846], [0.4102557370162264], [0.37179015911358504], [0.37179015911358504], [0.4102557370162264], [0.4615344220973586], [0.47437378564301846], [0.4615344220973586], [0.435908207740377], [0.4230951005618862], [0.47437378564301846], [0.564118048626792], [0.6538623116105655], [0.7307672110486793], [0.7820458961298115], [0.8076983668539621], [0.820511474032453], [0.8589770519350942], [0.8846295226592449], [0.8974426298377357], [0.8589770519350942], [0.7948852596754713], [0.679488525967547], [0.5384655779026414], [0.3846295226592449], [0.26923278895132063], [0.20514099669169772], [0.2179541038701885], [0.307698366853962], [0.4230951005618862], [0.5256524707241507], [0.6025836265294334], [0.6538623116105655], [0.679488525967547], [0.7179541038701884], [0.7564196817728299], [0.820511474032453], [0.8589770519350942], [0.8717901591135849], [0.8333508375781127], [0.7436065745943391], [0.6666754187890563], [0.6025836265294334]], "eval_masks": [[0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0]], "forwards": [[0.8461639447566034], [0.820511474032453], [0.7692327889513206], [0.7051409966916977], [0.6410229480649057], [0.5769311558052828], [0.5256524707241507], [0.5128393635456597], [0.5384655779026414], [0.5897442629837736], [0.628209840886415], [0.6410229480649057], [0.628209840886415], [0.6025836265294334], [0.5769311558052828], [0.5769311558052828], [0.6025836265294334], [0.628209840886415], [0.628209840886415], [0.6025836265294334], [0.564118048626792], [0.5128393635456597], [0.4615344220973586], [0.4615344220973586], [0.48718689282150923], [0.564118048626792], [0.6538623116105655], [0.7307672110486793], [0.7948852596754713], [0.7820458961298115], [0.7436065745943391], [0.679488525967547], [0.628209840886415], [0.6025836265294334], [0.6153967337079241], [0.628209840886415], [0.6538623116105655], [0.679488525967547], [0.679488525967547], [0.679488525967547], [0.6538623116105655], [0.6025836265294334], [0.5384655779026414], [0.47437378564301846], [0.44872131491886774], [0.47437378564301846], [0.5512786850811322], [0.6153967337079241], [0.6538623116105655], [0.6153967337079241], [0.5384655779026414], [0.44872131491886774], [0.4230951005618862], [0.4615344220973586], [0.5897442629837736], [0.7307672110486793], [0.8333508375781127], [0.8717901591135849], [0.8589770519350942], [0.820511474032453], [0.8076983668539621], [0.8461639447566034], [0.9230951005618862], [0.9743737856430185], [0.9743737856430185], [0.8846295226592449], [0.7692327889513206], [0.6538623116105655], [0.5897442629837736], [0.5897442629837736], [0.628209840886415], [0.679488525967547], [0.6923278895132069], [0.6666754187890563], [0.6153967337079241], [0.564118048626792], [0.5897442629837736], [0.6410229480649057], [0.7436065745943391], [0.7948852596754713], [0.7820458961298115], [0.679488525967547], [0.5512786850811322], [0.4615344220973586], [0.4615344220973586], [0.5769311558052828], [0.7436065745943391], [0.9102557370162264], [1.0], [0.9871868928215092], [0.8717901591135849], [0.7179541038701884], [0.5769311558052828], [0.5128393635456597], [0.5256524707241507], [0.6153967337079241], [0.7051409966916977], [0.7564196817728299], [0.7564196817728299], [0.7051409966916977], [0.6538623116105655], [0.628209840886415], [0.6538623116105655], [0.7051409966916977], [0.7692327889513206], [0.7948852596754713], [0.7820458961298115], [0.7051409966916977], [0.628209840886415], [0.5384655779026414], [0.5128393635456597], [0.5128393635456597], [0.564118048626792], [0.6153967337079241], [0.6538623116105655], [0.6923278895132069], [0.7179541038701884], [0.7307672110486793], [0.7436065745943391], [0.7179541038701884], [0.679488525967547], [0.6410229480649057], [0.6410229480649057], [0.6923278895132069], [0.7692327889513206], [0.8717901591135849], [0.935908207740377], [0.935908207740377], [0.8974426298377357], [0.820511474032453], [0.7564196817728299], [0.7436065745943391], [0.7692327889513206], [0.8333508375781127], [0.9102557370162264], [0.9615344220973585], [0.9743737856430185], [0.9487213149188678], [0.8846295226592449], [0.8333508375781127], [0.7692327889513206], [0.7307672110486793], [0.6923278895132069], [0.6538623116105655], [0.6410229480649057], [0.628209840886415], [0.628209840886415], [0.628209840886415], [0.6153967337079241], [0.5897442629837736], [0.564118048626792], [0.5512786850811322], [0.5512786850811322], [0.5384655779026414], [0.5], [0.47437378564301846], [0.47437378564301846], [0.48718689282150923], [0.564118048626792], [0.6538623116105655], [0.7051409966916977], [0.6923278895132069], [0.6025836265294334], [0.435908207740377], [0.26923278895132063], [0.15386231161056554], [0.11539673370792417], [0.1794885259675471], [0.307698366853962], [0.44872131491886774], [0.564118048626792], [0.6153967337079241], [0.5512786850811322], [0.4102557370162264], [0.2179541038701885], [0.064118048626792], [0.0], [0.05127868508113216], [0.20514099669169772], [0.37179015911358504], [0.5], [0.5], [0.4230951005618862], [0.307698366853962], [0.20514099669169772], [0.15386231161056554], [0.19232788951320695], [0.26923278895132063], [0.37179015911358504], [0.435908207740377], [0.4230951005618862], [0.3846295226592449], [0.3333508375781126], [0.32051147403245284], [0.32051147403245284], [0.37179015911358504], [0.39744262983773565], [0.39744262983773565], [0.37179015911358504], [0.3333508375781126], [0.32051147403245284], [0.3333508375781126], [0.39744262983773565], [0.44872131491886774], [0.47437378564301846], [0.47437378564301846], [0.4230951005618862], [0.3846295226592449], [0.37179015911358504], [0.39744262983773565], [0.44872131491886774], [0.5], [0.5128393635456597], [0.47437378564301846], [0.4102557370162264], [0.37179015911358504], [0.37179015911358504], [0.4102557370162264], [0.4615344220973586], [0.47437378564301846], [0.4615344220973586], [0.435908207740377], [0.4230951005618862], [0.47437378564301846], [0.564118048626792], [0.6538623116105655], [0.7307672110486793], [0.7820458961298115], [0.8076983668539621], [0.820511474032453], [0.8589770519350942], [0.8846295226592449], [0.8974426298377357], [0.8589770519350942], [0.7948852596754713], [0.679488525967547], [0.5384655779026414], [0.3846295226592449], [0.26923278895132063], [0.20514099669169772], [0.2179541038701885], [0.307698366853962], [0.4230951005618862], [0.5256524707241507], [0.6025836265294334], [0.6538623116105655], [0.679488525967547], [0.7179541038701884], [0.7564196817728299], [0.820511474032453], [0.8589770519350942], [0.8717901591135849], [0.8333508375781127], [0.7436065745943391], [0.6666754187890563], [0.6025836265294334]], "deltas": [[1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0]]}} -{"label": 0, "forward": {"values": [[0.611951704111264], [0.7014825003820877], [0.8059605685465383], [0.88060522696011], [0.8955219318355494], [0.8358245453156045], [0.7462631820265934], [0.6567018187375822], [0.5970044322176372], [0.5671710224667584], [0.5671710224667584], [0.5373070456976923], [0.49252636405318667], [0.4029955677823628], [0.29851749961791224], [0.2089561363289011], [0.1940394314534617], [0.2537368179734067], [0.3880482958887361], [0.5522237505731317], [0.731346477151154], [0.8656579550664834], [0.9552193183554946], [0.970136023230934], [0.9403026134800552], [0.88060522696011], [0.8208772734219777], [0.7761271587956595], [0.731346477151154], [0.6567018187375822], [0.5522237505731317], [0.41791227265780223], [0.3134342044933517], [0.2537368179734067], [0.2686535228488461], [0.3283509093687911], [0.3731315910132967], [0.4029955677823628], [0.3880482958887361], [0.3731315910132967], [0.3880482958887361], [0.4328289775332416], [0.49252636405318667], [0.5223903408222529], [0.5074736359468134], [0.44774568240868107], [0.4029955677823628], [0.3880482958887361], [0.44774568240868107], [0.5074736359468134], [0.5671710224667584], [0.5671710224667584], [0.5223903408222529], [0.44774568240868107], [0.4029955677823628], [0.3880482958887361], [0.41791227265780223], [0.4776096591777473], [0.5074736359468134], [0.5074736359468134], [0.46269295430230784], [0.4328289775332416], [0.44774568240868107], [0.49252636405318667], [0.5820877273421978], [0.6567018187375822], [0.6567018187375822], [0.5671710224667584], [0.41791227265780223], [0.29851749961791224], [0.2537368179734067], [0.3134342044933517], [0.4328289775332416], [0.5671710224667584], [0.6567018187375822], [0.611951704111264], [0.46269295430230784], [0.2537368179734067], [0.05969738651994497], [0.0], [0.05969738651994497], [0.2537368179734067], [0.4776096591777473], [0.6567018187375822], [0.731346477151154], [0.6865657955066483], [0.5373070456976923], [0.3582148861378573], [0.2089561363289011], [0.14925874980895612], [0.1940394314534617], [0.3134342044933517], [0.4776096591777473], [0.6268684089867034], [0.7014825003820877], [0.6865657955066483], [0.611951704111264], [0.5373070456976923], [0.49252636405318667], [0.49252636405318667], [0.5223903408222529], [0.5522237505731317], [0.5820877273421978], [0.5970044322176372], [0.6268684089867034], [0.6716490906312089], [0.7163992052575271], [0.7462631820265934], [0.7761271587956595], [0.7910438636710989], [0.7910438636710989], [0.8208772734219777], [0.8358245453156045], [0.850741250191044], [0.850741250191044], [0.88060522696011], [0.9104386367109888], [0.9552193183554946], [0.9850832951245606], [1.0], [0.9850832951245606], [0.9403026134800552], [0.8656579550664834], [0.8059605685465383], [0.7761271587956595], [0.7910438636710989], [0.850741250191044], [0.9104386367109888], [0.9403026134800552], [0.9104386367109888], [0.8358245453156045], [0.731346477151154], [0.6567018187375822], [0.6417851138621428], [0.6865657955066483], [0.7462631820265934], [0.7761271587956595], [0.7761271587956595], [0.7462631820265934], [0.7014825003820877], [0.6716490906312089], [0.6417851138621428], [0.5970044322176372], [0.5373070456976923], [0.4776096591777473], [0.44774568240868107], [0.4776096591777473], [0.5820877273421978], [0.6865657955066483], [0.7761271587956595], [0.8059605685465383], [0.7611798869020328], [0.7014825003820877], [0.6567018187375822], [0.6268684089867034], [0.6567018187375822], [0.7014825003820877], [0.731346477151154], [0.7462631820265934], [0.7014825003820877], [0.611951704111264], [0.5074736359468134], [0.4776096591777473], [0.5074736359468134], [0.6417851138621428], [0.7910438636710989], [0.9253553415864282], [0.970136023230934], [0.9104386367109888], [0.7462631820265934], [0.5671710224667584], [0.44774568240868107], [0.44774568240868107], [0.5373070456976923], [0.6716490906312089], [0.7910438636710989], [0.8059605685465383], [0.731346477151154], [0.6417851138621428], [0.5522237505731317], [0.5373070456976923], [0.5970044322176372], [0.6716490906312089], [0.731346477151154], [0.731346477151154], [0.6865657955066483], [0.6417851138621428], [0.6268684089867034], [0.6865657955066483], [0.7761271587956595], [0.88060522696011], [0.9403026134800552], [0.9253553415864282], [0.850741250191044], [0.7910438636710989], [0.7761271587956595], [0.8358245453156045], [0.9253553415864282], [1.0], [0.970136023230934], [0.850741250191044], [0.6716490906312089], [0.5074736359468134], [0.4029955677823628], [0.3880482958887361], [0.4328289775332416], [0.49252636405318667], [0.5223903408222529], [0.5074736359468134], [0.46269295430230784], [0.4328289775332416], [0.44774568240868107], [0.49252636405318667], [0.5522237505731317], [0.5970044322176372], [0.6417851138621428], [0.6716490906312089], [0.7014825003820877], [0.7014825003820877], [0.6865657955066483], [0.6417851138621428], [0.5820877273421978], [0.5522237505731317], [0.5522237505731317], [0.6268684089867034], [0.7163992052575271], [0.7910438636710989], [0.8059605685465383], [0.731346477151154], [0.611951704111264], [0.49252636405318667], [0.41791227265780223], [0.4029955677823628], [0.46269295430230784], [0.5373070456976923], [0.611951704111264], [0.6417851138621428], [0.611951704111264], [0.5373070456976923], [0.44774568240868107], [0.4029955677823628], [0.4029955677823628], [0.46269295430230784], [0.5522237505731317], [0.611951704111264], [0.611951704111264], [0.5671710224667584], [0.5074736359468134], [0.4776096591777473], [0.5223903408222529], [0.611951704111264], [0.7163992052575271], [0.8208772734219777], [0.850741250191044], [0.8358245453156045], [0.7611798869020328]], "masks": [[1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1]], "evals": [[0.611951704111264], [0.7014825003820877], [0.8059605685465383], [0.88060522696011], [0.8955219318355494], [0.8358245453156045], [0.7462631820265934], [0.6567018187375822], [0.5970044322176372], [0.5671710224667584], [0.5671710224667584], [0.5373070456976923], [0.49252636405318667], [0.4029955677823628], [0.29851749961791224], [0.2089561363289011], [0.1940394314534617], [0.2537368179734067], [0.3880482958887361], [0.5522237505731317], [0.731346477151154], [0.8656579550664834], [0.9552193183554946], [0.970136023230934], [0.9403026134800552], [0.88060522696011], [0.8208772734219777], [0.7761271587956595], [0.731346477151154], [0.6567018187375822], [0.5522237505731317], [0.41791227265780223], [0.3134342044933517], [0.2537368179734067], [0.2686535228488461], [0.3283509093687911], [0.3731315910132967], [0.4029955677823628], [0.3880482958887361], [0.3731315910132967], [0.3880482958887361], [0.4328289775332416], [0.49252636405318667], [0.5223903408222529], [0.5074736359468134], [0.44774568240868107], [0.4029955677823628], [0.3880482958887361], [0.44774568240868107], [0.5074736359468134], [0.5671710224667584], [0.5671710224667584], [0.5223903408222529], [0.44774568240868107], [0.4029955677823628], [0.3880482958887361], [0.41791227265780223], [0.4776096591777473], [0.5074736359468134], [0.5074736359468134], [0.46269295430230784], [0.4328289775332416], [0.44774568240868107], [0.49252636405318667], [0.5820877273421978], [0.6567018187375822], [0.6567018187375822], [0.5671710224667584], [0.41791227265780223], [0.29851749961791224], [0.2537368179734067], [0.3134342044933517], [0.4328289775332416], [0.5671710224667584], [0.6567018187375822], [0.611951704111264], [0.46269295430230784], [0.2537368179734067], [0.05969738651994497], [0.0], [0.05969738651994497], [0.2537368179734067], [0.4776096591777473], [0.6567018187375822], [0.731346477151154], [0.6865657955066483], [0.5373070456976923], [0.3582148861378573], [0.2089561363289011], [0.14925874980895612], [0.1940394314534617], [0.3134342044933517], [0.4776096591777473], [0.6268684089867034], [0.7014825003820877], [0.6865657955066483], [0.611951704111264], [0.5373070456976923], [0.49252636405318667], [0.49252636405318667], [0.5223903408222529], [0.5522237505731317], [0.5820877273421978], [0.5970044322176372], [0.6268684089867034], [0.6716490906312089], [0.7163992052575271], [0.7462631820265934], [0.7761271587956595], [0.7910438636710989], [0.7910438636710989], [0.8208772734219777], [0.8358245453156045], [0.850741250191044], [0.850741250191044], [0.88060522696011], [0.9104386367109888], [0.9552193183554946], [0.9850832951245606], [1.0], [0.9850832951245606], [0.9403026134800552], [0.8656579550664834], [0.8059605685465383], [0.7761271587956595], [0.7910438636710989], [0.850741250191044], [0.9104386367109888], [0.9403026134800552], [0.9104386367109888], [0.8358245453156045], [0.731346477151154], [0.6567018187375822], [0.6417851138621428], [0.6865657955066483], [0.7462631820265934], [0.7761271587956595], [0.7761271587956595], [0.7462631820265934], [0.7014825003820877], [0.6716490906312089], [0.6417851138621428], [0.5970044322176372], [0.5373070456976923], [0.4776096591777473], [0.44774568240868107], [0.4776096591777473], [0.5820877273421978], [0.6865657955066483], [0.7761271587956595], [0.8059605685465383], [0.7611798869020328], [0.7014825003820877], [0.6567018187375822], [0.6268684089867034], [0.6567018187375822], [0.7014825003820877], [0.731346477151154], [0.7462631820265934], [0.7014825003820877], [0.611951704111264], [0.5074736359468134], [0.4776096591777473], [0.5074736359468134], [0.6417851138621428], [0.7910438636710989], [0.9253553415864282], [0.970136023230934], [0.9104386367109888], [0.7462631820265934], [0.5671710224667584], [0.44774568240868107], [0.44774568240868107], [0.5373070456976923], [0.6716490906312089], [0.7910438636710989], [0.8059605685465383], [0.731346477151154], [0.6417851138621428], [0.5522237505731317], [0.5373070456976923], [0.5970044322176372], [0.6716490906312089], [0.731346477151154], [0.731346477151154], [0.6865657955066483], [0.6417851138621428], [0.6268684089867034], [0.6865657955066483], [0.7761271587956595], [0.88060522696011], [0.9403026134800552], [0.9253553415864282], [0.850741250191044], [0.7910438636710989], [0.7761271587956595], [0.8358245453156045], [0.9253553415864282], [1.0], [0.970136023230934], [0.850741250191044], [0.6716490906312089], [0.5074736359468134], [0.4029955677823628], [0.3880482958887361], [0.4328289775332416], [0.49252636405318667], [0.5223903408222529], [0.5074736359468134], [0.46269295430230784], [0.4328289775332416], [0.44774568240868107], [0.49252636405318667], [0.5522237505731317], [0.5970044322176372], [0.6417851138621428], [0.6716490906312089], [0.7014825003820877], [0.7014825003820877], [0.6865657955066483], [0.6417851138621428], [0.5820877273421978], [0.5522237505731317], [0.5522237505731317], [0.6268684089867034], [0.7163992052575271], [0.7910438636710989], [0.8059605685465383], [0.731346477151154], [0.611951704111264], [0.49252636405318667], [0.41791227265780223], [0.4029955677823628], [0.46269295430230784], [0.5373070456976923], [0.611951704111264], [0.6417851138621428], [0.611951704111264], [0.5373070456976923], [0.44774568240868107], [0.4029955677823628], [0.4029955677823628], [0.46269295430230784], [0.5522237505731317], [0.611951704111264], [0.611951704111264], [0.5671710224667584], [0.5074736359468134], [0.4776096591777473], [0.5223903408222529], [0.611951704111264], [0.7163992052575271], [0.8208772734219777], [0.850741250191044], [0.8358245453156045], [0.7611798869020328]], "eval_masks": [[0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0]], "forwards": [[0.611951704111264], [0.7014825003820877], [0.8059605685465383], [0.88060522696011], [0.8955219318355494], [0.8358245453156045], [0.7462631820265934], [0.6567018187375822], [0.5970044322176372], [0.5671710224667584], [0.5671710224667584], [0.5373070456976923], [0.49252636405318667], [0.4029955677823628], [0.29851749961791224], [0.2089561363289011], [0.1940394314534617], [0.2537368179734067], [0.3880482958887361], [0.5522237505731317], [0.731346477151154], [0.8656579550664834], [0.9552193183554946], [0.970136023230934], [0.9403026134800552], [0.88060522696011], [0.8208772734219777], [0.7761271587956595], [0.731346477151154], [0.6567018187375822], [0.5522237505731317], [0.41791227265780223], [0.3134342044933517], [0.2537368179734067], [0.2686535228488461], [0.3283509093687911], [0.3731315910132967], [0.4029955677823628], [0.3880482958887361], [0.3731315910132967], [0.3880482958887361], [0.4328289775332416], [0.49252636405318667], [0.5223903408222529], [0.5074736359468134], [0.44774568240868107], [0.4029955677823628], [0.3880482958887361], [0.44774568240868107], [0.5074736359468134], [0.5671710224667584], [0.5671710224667584], [0.5223903408222529], [0.44774568240868107], [0.4029955677823628], [0.3880482958887361], [0.41791227265780223], [0.4776096591777473], [0.5074736359468134], [0.5074736359468134], [0.46269295430230784], [0.4328289775332416], [0.44774568240868107], [0.49252636405318667], [0.5820877273421978], [0.6567018187375822], [0.6567018187375822], [0.5671710224667584], [0.41791227265780223], [0.29851749961791224], [0.2537368179734067], [0.3134342044933517], [0.4328289775332416], [0.5671710224667584], [0.6567018187375822], [0.611951704111264], [0.46269295430230784], [0.2537368179734067], [0.05969738651994497], [0.0], [0.05969738651994497], [0.2537368179734067], [0.4776096591777473], [0.6567018187375822], [0.731346477151154], [0.6865657955066483], [0.5373070456976923], [0.3582148861378573], [0.2089561363289011], [0.14925874980895612], [0.1940394314534617], [0.3134342044933517], [0.4776096591777473], [0.6268684089867034], [0.7014825003820877], [0.6865657955066483], [0.611951704111264], [0.5373070456976923], [0.49252636405318667], [0.49252636405318667], [0.5223903408222529], [0.5522237505731317], [0.5820877273421978], [0.5970044322176372], [0.6268684089867034], [0.6716490906312089], [0.7163992052575271], [0.7462631820265934], [0.7761271587956595], [0.7910438636710989], [0.7910438636710989], [0.8208772734219777], [0.8358245453156045], [0.850741250191044], [0.850741250191044], [0.88060522696011], [0.9104386367109888], [0.9552193183554946], [0.9850832951245606], [1.0], [0.9850832951245606], [0.9403026134800552], [0.8656579550664834], [0.8059605685465383], [0.7761271587956595], [0.7910438636710989], [0.850741250191044], [0.9104386367109888], [0.9403026134800552], [0.9104386367109888], [0.8358245453156045], [0.731346477151154], [0.6567018187375822], [0.6417851138621428], [0.6865657955066483], [0.7462631820265934], [0.7761271587956595], [0.7761271587956595], [0.7462631820265934], [0.7014825003820877], [0.6716490906312089], [0.6417851138621428], [0.5970044322176372], [0.5373070456976923], [0.4776096591777473], [0.44774568240868107], [0.4776096591777473], [0.5820877273421978], [0.6865657955066483], [0.7761271587956595], [0.8059605685465383], [0.7611798869020328], [0.7014825003820877], [0.6567018187375822], [0.6268684089867034], [0.6567018187375822], [0.7014825003820877], [0.731346477151154], [0.7462631820265934], [0.7014825003820877], [0.611951704111264], [0.5074736359468134], [0.4776096591777473], [0.5074736359468134], [0.6417851138621428], [0.7910438636710989], [0.9253553415864282], [0.970136023230934], [0.9104386367109888], [0.7462631820265934], [0.5671710224667584], [0.44774568240868107], [0.44774568240868107], [0.5373070456976923], [0.6716490906312089], [0.7910438636710989], [0.8059605685465383], [0.731346477151154], [0.6417851138621428], [0.5522237505731317], [0.5373070456976923], [0.5970044322176372], [0.6716490906312089], [0.731346477151154], [0.731346477151154], [0.6865657955066483], [0.6417851138621428], [0.6268684089867034], [0.6865657955066483], [0.7761271587956595], [0.88060522696011], [0.9403026134800552], [0.9253553415864282], [0.850741250191044], [0.7910438636710989], [0.7761271587956595], [0.8358245453156045], [0.9253553415864282], [1.0], [0.970136023230934], [0.850741250191044], [0.6716490906312089], [0.5074736359468134], [0.4029955677823628], [0.3880482958887361], [0.4328289775332416], [0.49252636405318667], [0.5223903408222529], [0.5074736359468134], [0.46269295430230784], [0.4328289775332416], [0.44774568240868107], [0.49252636405318667], [0.5522237505731317], [0.5970044322176372], [0.6417851138621428], [0.6716490906312089], [0.7014825003820877], [0.7014825003820877], [0.6865657955066483], [0.6417851138621428], [0.5820877273421978], [0.5522237505731317], [0.5522237505731317], [0.6268684089867034], [0.7163992052575271], [0.7910438636710989], [0.8059605685465383], [0.731346477151154], [0.611951704111264], [0.49252636405318667], [0.41791227265780223], [0.4029955677823628], [0.46269295430230784], [0.5373070456976923], [0.611951704111264], [0.6417851138621428], [0.611951704111264], [0.5373070456976923], [0.44774568240868107], [0.4029955677823628], [0.4029955677823628], [0.46269295430230784], [0.5522237505731317], [0.611951704111264], [0.611951704111264], [0.5671710224667584], [0.5074736359468134], [0.4776096591777473], [0.5223903408222529], [0.611951704111264], [0.7163992052575271], [0.8208772734219777], [0.850741250191044], [0.8358245453156045], [0.7611798869020328]], "deltas": [[1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0]]}, "backward": {"values": [[0.7611798869020328], [0.8358245453156045], [0.850741250191044], [0.8208772734219777], [0.7163992052575271], [0.611951704111264], [0.5223903408222529], [0.4776096591777473], [0.5074736359468134], [0.5671710224667584], [0.611951704111264], [0.611951704111264], [0.5522237505731317], [0.46269295430230784], [0.4029955677823628], [0.4029955677823628], [0.44774568240868107], [0.5373070456976923], [0.611951704111264], [0.6417851138621428], [0.611951704111264], [0.5373070456976923], [0.46269295430230784], [0.4029955677823628], [0.41791227265780223], [0.49252636405318667], [0.611951704111264], [0.731346477151154], [0.8059605685465383], [0.7910438636710989], [0.7163992052575271], [0.6268684089867034], [0.5522237505731317], [0.5522237505731317], [0.5820877273421978], [0.6417851138621428], [0.6865657955066483], [0.7014825003820877], [0.7014825003820877], [0.6716490906312089], [0.6417851138621428], [0.5970044322176372], [0.5522237505731317], [0.49252636405318667], [0.44774568240868107], [0.4328289775332416], [0.46269295430230784], [0.5074736359468134], [0.5223903408222529], [0.49252636405318667], [0.4328289775332416], [0.3880482958887361], [0.4029955677823628], [0.5074736359468134], [0.6716490906312089], [0.850741250191044], [0.970136023230934], [1.0], [0.9253553415864282], [0.8358245453156045], [0.7761271587956595], [0.7910438636710989], [0.850741250191044], [0.9253553415864282], [0.9403026134800552], [0.88060522696011], [0.7761271587956595], [0.6865657955066483], [0.6268684089867034], [0.6417851138621428], [0.6865657955066483], [0.731346477151154], [0.731346477151154], [0.6716490906312089], [0.5970044322176372], [0.5373070456976923], [0.5522237505731317], [0.6417851138621428], [0.731346477151154], [0.8059605685465383], [0.7910438636710989], [0.6716490906312089], [0.5373070456976923], [0.44774568240868107], [0.44774568240868107], [0.5671710224667584], [0.7462631820265934], [0.9104386367109888], [0.970136023230934], [0.9253553415864282], [0.7910438636710989], [0.6417851138621428], [0.5074736359468134], [0.4776096591777473], [0.5074736359468134], [0.611951704111264], [0.7014825003820877], [0.7462631820265934], [0.731346477151154], [0.7014825003820877], [0.6567018187375822], [0.6268684089867034], [0.6567018187375822], [0.7014825003820877], [0.7611798869020328], [0.8059605685465383], [0.7761271587956595], [0.6865657955066483], [0.5820877273421978], [0.4776096591777473], [0.44774568240868107], [0.4776096591777473], [0.5373070456976923], [0.5970044322176372], [0.6417851138621428], [0.6716490906312089], [0.7014825003820877], [0.7462631820265934], [0.7761271587956595], [0.7761271587956595], [0.7462631820265934], [0.6865657955066483], [0.6417851138621428], [0.6567018187375822], [0.731346477151154], [0.8358245453156045], [0.9104386367109888], [0.9403026134800552], [0.9104386367109888], [0.850741250191044], [0.7910438636710989], [0.7761271587956595], [0.8059605685465383], [0.8656579550664834], [0.9403026134800552], [0.9850832951245606], [1.0], [0.9850832951245606], [0.9552193183554946], [0.9104386367109888], [0.88060522696011], [0.850741250191044], [0.850741250191044], [0.8358245453156045], [0.8208772734219777], [0.7910438636710989], [0.7910438636710989], [0.7761271587956595], [0.7462631820265934], [0.7163992052575271], [0.6716490906312089], [0.6268684089867034], [0.5970044322176372], [0.5820877273421978], [0.5522237505731317], [0.5223903408222529], [0.49252636405318667], [0.49252636405318667], [0.5373070456976923], [0.611951704111264], [0.6865657955066483], [0.7014825003820877], [0.6268684089867034], [0.4776096591777473], [0.3134342044933517], [0.1940394314534617], [0.14925874980895612], [0.2089561363289011], [0.3582148861378573], [0.5373070456976923], [0.6865657955066483], [0.731346477151154], [0.6567018187375822], [0.4776096591777473], [0.2537368179734067], [0.05969738651994497], [0.0], [0.05969738651994497], [0.2537368179734067], [0.46269295430230784], [0.611951704111264], [0.6567018187375822], [0.5671710224667584], [0.4328289775332416], [0.3134342044933517], [0.2537368179734067], [0.29851749961791224], [0.41791227265780223], [0.5671710224667584], [0.6567018187375822], [0.6567018187375822], [0.5820877273421978], [0.49252636405318667], [0.44774568240868107], [0.4328289775332416], [0.46269295430230784], [0.5074736359468134], [0.5074736359468134], [0.4776096591777473], [0.41791227265780223], [0.3880482958887361], [0.4029955677823628], [0.44774568240868107], [0.5223903408222529], [0.5671710224667584], [0.5671710224667584], [0.5074736359468134], [0.44774568240868107], [0.3880482958887361], [0.4029955677823628], [0.44774568240868107], [0.5074736359468134], [0.5223903408222529], [0.49252636405318667], [0.4328289775332416], [0.3880482958887361], [0.3731315910132967], [0.3880482958887361], [0.4029955677823628], [0.3731315910132967], [0.3283509093687911], [0.2686535228488461], [0.2537368179734067], [0.3134342044933517], [0.41791227265780223], [0.5522237505731317], [0.6567018187375822], [0.731346477151154], [0.7761271587956595], [0.8208772734219777], [0.88060522696011], [0.9403026134800552], [0.970136023230934], [0.9552193183554946], [0.8656579550664834], [0.731346477151154], [0.5522237505731317], [0.3880482958887361], [0.2537368179734067], [0.1940394314534617], [0.2089561363289011], [0.29851749961791224], [0.4029955677823628], [0.49252636405318667], [0.5373070456976923], [0.5671710224667584], [0.5671710224667584], [0.5970044322176372], [0.6567018187375822], [0.7462631820265934], [0.8358245453156045], [0.8955219318355494], [0.88060522696011], [0.8059605685465383], [0.7014825003820877], [0.611951704111264]], "masks": [[1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1]], "evals": [[0.7611798869020328], [0.8358245453156045], [0.850741250191044], [0.8208772734219777], [0.7163992052575271], [0.611951704111264], [0.5223903408222529], [0.4776096591777473], [0.5074736359468134], [0.5671710224667584], [0.611951704111264], [0.611951704111264], [0.5522237505731317], [0.46269295430230784], [0.4029955677823628], [0.4029955677823628], [0.44774568240868107], [0.5373070456976923], [0.611951704111264], [0.6417851138621428], [0.611951704111264], [0.5373070456976923], [0.46269295430230784], [0.4029955677823628], [0.41791227265780223], [0.49252636405318667], [0.611951704111264], [0.731346477151154], [0.8059605685465383], [0.7910438636710989], [0.7163992052575271], [0.6268684089867034], [0.5522237505731317], [0.5522237505731317], [0.5820877273421978], [0.6417851138621428], [0.6865657955066483], [0.7014825003820877], [0.7014825003820877], [0.6716490906312089], [0.6417851138621428], [0.5970044322176372], [0.5522237505731317], [0.49252636405318667], [0.44774568240868107], [0.4328289775332416], [0.46269295430230784], [0.5074736359468134], [0.5223903408222529], [0.49252636405318667], [0.4328289775332416], [0.3880482958887361], [0.4029955677823628], [0.5074736359468134], [0.6716490906312089], [0.850741250191044], [0.970136023230934], [1.0], [0.9253553415864282], [0.8358245453156045], [0.7761271587956595], [0.7910438636710989], [0.850741250191044], [0.9253553415864282], [0.9403026134800552], [0.88060522696011], [0.7761271587956595], [0.6865657955066483], [0.6268684089867034], [0.6417851138621428], [0.6865657955066483], [0.731346477151154], [0.731346477151154], [0.6716490906312089], [0.5970044322176372], [0.5373070456976923], [0.5522237505731317], [0.6417851138621428], [0.731346477151154], [0.8059605685465383], [0.7910438636710989], [0.6716490906312089], [0.5373070456976923], [0.44774568240868107], [0.44774568240868107], [0.5671710224667584], [0.7462631820265934], [0.9104386367109888], [0.970136023230934], [0.9253553415864282], [0.7910438636710989], [0.6417851138621428], [0.5074736359468134], [0.4776096591777473], [0.5074736359468134], [0.611951704111264], [0.7014825003820877], [0.7462631820265934], [0.731346477151154], [0.7014825003820877], [0.6567018187375822], [0.6268684089867034], [0.6567018187375822], [0.7014825003820877], [0.7611798869020328], [0.8059605685465383], [0.7761271587956595], [0.6865657955066483], [0.5820877273421978], [0.4776096591777473], [0.44774568240868107], [0.4776096591777473], [0.5373070456976923], [0.5970044322176372], [0.6417851138621428], [0.6716490906312089], [0.7014825003820877], [0.7462631820265934], [0.7761271587956595], [0.7761271587956595], [0.7462631820265934], [0.6865657955066483], [0.6417851138621428], [0.6567018187375822], [0.731346477151154], [0.8358245453156045], [0.9104386367109888], [0.9403026134800552], [0.9104386367109888], [0.850741250191044], [0.7910438636710989], [0.7761271587956595], [0.8059605685465383], [0.8656579550664834], [0.9403026134800552], [0.9850832951245606], [1.0], [0.9850832951245606], [0.9552193183554946], [0.9104386367109888], [0.88060522696011], [0.850741250191044], [0.850741250191044], [0.8358245453156045], [0.8208772734219777], [0.7910438636710989], [0.7910438636710989], [0.7761271587956595], [0.7462631820265934], [0.7163992052575271], [0.6716490906312089], [0.6268684089867034], [0.5970044322176372], [0.5820877273421978], [0.5522237505731317], [0.5223903408222529], [0.49252636405318667], [0.49252636405318667], [0.5373070456976923], [0.611951704111264], [0.6865657955066483], [0.7014825003820877], [0.6268684089867034], [0.4776096591777473], [0.3134342044933517], [0.1940394314534617], [0.14925874980895612], [0.2089561363289011], [0.3582148861378573], [0.5373070456976923], [0.6865657955066483], [0.731346477151154], [0.6567018187375822], [0.4776096591777473], [0.2537368179734067], [0.05969738651994497], [0.0], [0.05969738651994497], [0.2537368179734067], [0.46269295430230784], [0.611951704111264], [0.6567018187375822], [0.5671710224667584], [0.4328289775332416], [0.3134342044933517], [0.2537368179734067], [0.29851749961791224], [0.41791227265780223], [0.5671710224667584], [0.6567018187375822], [0.6567018187375822], [0.5820877273421978], [0.49252636405318667], [0.44774568240868107], [0.4328289775332416], [0.46269295430230784], [0.5074736359468134], [0.5074736359468134], [0.4776096591777473], [0.41791227265780223], [0.3880482958887361], [0.4029955677823628], [0.44774568240868107], [0.5223903408222529], [0.5671710224667584], [0.5671710224667584], [0.5074736359468134], [0.44774568240868107], [0.3880482958887361], [0.4029955677823628], [0.44774568240868107], [0.5074736359468134], [0.5223903408222529], [0.49252636405318667], [0.4328289775332416], [0.3880482958887361], [0.3731315910132967], [0.3880482958887361], [0.4029955677823628], [0.3731315910132967], [0.3283509093687911], [0.2686535228488461], [0.2537368179734067], [0.3134342044933517], [0.41791227265780223], [0.5522237505731317], [0.6567018187375822], [0.731346477151154], [0.7761271587956595], [0.8208772734219777], [0.88060522696011], [0.9403026134800552], [0.970136023230934], [0.9552193183554946], [0.8656579550664834], [0.731346477151154], [0.5522237505731317], [0.3880482958887361], [0.2537368179734067], [0.1940394314534617], [0.2089561363289011], [0.29851749961791224], [0.4029955677823628], [0.49252636405318667], [0.5373070456976923], [0.5671710224667584], [0.5671710224667584], [0.5970044322176372], [0.6567018187375822], [0.7462631820265934], [0.8358245453156045], [0.8955219318355494], [0.88060522696011], [0.8059605685465383], [0.7014825003820877], [0.611951704111264]], "eval_masks": [[0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0]], "forwards": [[0.7611798869020328], [0.8358245453156045], [0.850741250191044], [0.8208772734219777], [0.7163992052575271], [0.611951704111264], [0.5223903408222529], [0.4776096591777473], [0.5074736359468134], [0.5671710224667584], [0.611951704111264], [0.611951704111264], [0.5522237505731317], [0.46269295430230784], [0.4029955677823628], [0.4029955677823628], [0.44774568240868107], [0.5373070456976923], [0.611951704111264], [0.6417851138621428], [0.611951704111264], [0.5373070456976923], [0.46269295430230784], [0.4029955677823628], [0.41791227265780223], [0.49252636405318667], [0.611951704111264], [0.731346477151154], [0.8059605685465383], [0.7910438636710989], [0.7163992052575271], [0.6268684089867034], [0.5522237505731317], [0.5522237505731317], [0.5820877273421978], [0.6417851138621428], [0.6865657955066483], [0.7014825003820877], [0.7014825003820877], [0.6716490906312089], [0.6417851138621428], [0.5970044322176372], [0.5522237505731317], [0.49252636405318667], [0.44774568240868107], [0.4328289775332416], [0.46269295430230784], [0.5074736359468134], [0.5223903408222529], [0.49252636405318667], [0.4328289775332416], [0.3880482958887361], [0.4029955677823628], [0.5074736359468134], [0.6716490906312089], [0.850741250191044], [0.970136023230934], [1.0], [0.9253553415864282], [0.8358245453156045], [0.7761271587956595], [0.7910438636710989], [0.850741250191044], [0.9253553415864282], [0.9403026134800552], [0.88060522696011], [0.7761271587956595], [0.6865657955066483], [0.6268684089867034], [0.6417851138621428], [0.6865657955066483], [0.731346477151154], [0.731346477151154], [0.6716490906312089], [0.5970044322176372], [0.5373070456976923], [0.5522237505731317], [0.6417851138621428], [0.731346477151154], [0.8059605685465383], [0.7910438636710989], [0.6716490906312089], [0.5373070456976923], [0.44774568240868107], [0.44774568240868107], [0.5671710224667584], [0.7462631820265934], [0.9104386367109888], [0.970136023230934], [0.9253553415864282], [0.7910438636710989], [0.6417851138621428], [0.5074736359468134], [0.4776096591777473], [0.5074736359468134], [0.611951704111264], [0.7014825003820877], [0.7462631820265934], [0.731346477151154], [0.7014825003820877], [0.6567018187375822], [0.6268684089867034], [0.6567018187375822], [0.7014825003820877], [0.7611798869020328], [0.8059605685465383], [0.7761271587956595], [0.6865657955066483], [0.5820877273421978], [0.4776096591777473], [0.44774568240868107], [0.4776096591777473], [0.5373070456976923], [0.5970044322176372], [0.6417851138621428], [0.6716490906312089], [0.7014825003820877], [0.7462631820265934], [0.7761271587956595], [0.7761271587956595], [0.7462631820265934], [0.6865657955066483], [0.6417851138621428], [0.6567018187375822], [0.731346477151154], [0.8358245453156045], [0.9104386367109888], [0.9403026134800552], [0.9104386367109888], [0.850741250191044], [0.7910438636710989], [0.7761271587956595], [0.8059605685465383], [0.8656579550664834], [0.9403026134800552], [0.9850832951245606], [1.0], [0.9850832951245606], [0.9552193183554946], [0.9104386367109888], [0.88060522696011], [0.850741250191044], [0.850741250191044], [0.8358245453156045], [0.8208772734219777], [0.7910438636710989], [0.7910438636710989], [0.7761271587956595], [0.7462631820265934], [0.7163992052575271], [0.6716490906312089], [0.6268684089867034], [0.5970044322176372], [0.5820877273421978], [0.5522237505731317], [0.5223903408222529], [0.49252636405318667], [0.49252636405318667], [0.5373070456976923], [0.611951704111264], [0.6865657955066483], [0.7014825003820877], [0.6268684089867034], [0.4776096591777473], [0.3134342044933517], [0.1940394314534617], [0.14925874980895612], [0.2089561363289011], [0.3582148861378573], [0.5373070456976923], [0.6865657955066483], [0.731346477151154], [0.6567018187375822], [0.4776096591777473], [0.2537368179734067], [0.05969738651994497], [0.0], [0.05969738651994497], [0.2537368179734067], [0.46269295430230784], [0.611951704111264], [0.6567018187375822], [0.5671710224667584], [0.4328289775332416], [0.3134342044933517], [0.2537368179734067], [0.29851749961791224], [0.41791227265780223], [0.5671710224667584], [0.6567018187375822], [0.6567018187375822], [0.5820877273421978], [0.49252636405318667], [0.44774568240868107], [0.4328289775332416], [0.46269295430230784], [0.5074736359468134], [0.5074736359468134], [0.4776096591777473], [0.41791227265780223], [0.3880482958887361], [0.4029955677823628], [0.44774568240868107], [0.5223903408222529], [0.5671710224667584], [0.5671710224667584], [0.5074736359468134], [0.44774568240868107], [0.3880482958887361], [0.4029955677823628], [0.44774568240868107], [0.5074736359468134], [0.5223903408222529], [0.49252636405318667], [0.4328289775332416], [0.3880482958887361], [0.3731315910132967], [0.3880482958887361], [0.4029955677823628], [0.3731315910132967], [0.3283509093687911], [0.2686535228488461], [0.2537368179734067], [0.3134342044933517], [0.41791227265780223], [0.5522237505731317], [0.6567018187375822], [0.731346477151154], [0.7761271587956595], [0.8208772734219777], [0.88060522696011], [0.9403026134800552], [0.970136023230934], [0.9552193183554946], [0.8656579550664834], [0.731346477151154], [0.5522237505731317], [0.3880482958887361], [0.2537368179734067], [0.1940394314534617], [0.2089561363289011], [0.29851749961791224], [0.4029955677823628], [0.49252636405318667], [0.5373070456976923], [0.5671710224667584], [0.5671710224667584], [0.5970044322176372], [0.6567018187375822], [0.7462631820265934], [0.8358245453156045], [0.8955219318355494], [0.88060522696011], [0.8059605685465383], [0.7014825003820877], [0.611951704111264]], "deltas": [[1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0]]}} -{"label": 0, "forward": {"values": [[0.6067376947327243], [0.651701682122558], [0.7191016407023034], [0.7977541017557586], [0.8202360954506754], [0.7977541017557586], [0.7528131256184275], [0.6966426582598891], [0.651701682122558], [0.6404491796488483], [0.6292196884276411], [0.6067376947327243], [0.5617967185953932], [0.48314425754193807], [0.4157442989621925], [0.37078031157235886], [0.35955082035115177], [0.40449179648848294], [0.49439676001564764], [0.617990197206434], [0.7415836343972203], [0.8426950778930897], [0.8876360540304208], [0.8876360540304208], [0.8314655866718826], [0.7640426168396346], [0.7191016407023034], [0.6966426582598891], [0.6853901557861795], [0.651701682122558], [0.58427871229031], [0.48314425754193807], [0.3932623052672758], [0.38203281404606854], [0.3932623052672758], [0.42697379018339965], [0.44943277262581405], [0.4157442989621925], [0.34832132912994457], [0.31460984421382054], [0.31460984421382054], [0.35955082035115177], [0.4157442989621925], [0.44943277262581405], [0.43820328140460685], [0.3932623052672758], [0.34832132912994457], [0.33709183790873737], [0.35955082035115177], [0.3932623052672758], [0.42697379018339965], [0.43820328140460685], [0.42697379018339965], [0.38203281404606854], [0.33709183790873737], [0.32583933543502774], [0.34832132912994457], [0.38203281404606854], [0.42697379018339965], [0.43820328140460685], [0.4157442989621925], [0.3932623052672758], [0.40449179648848294], [0.46068527509952373], [0.5280852336792692], [0.5730492210691028], [0.5505672273741861], [0.47191476632073087], [0.34832132912994457], [0.2584393768552823], [0.2247278919391583], [0.26966886807648943], [0.37078031157235886], [0.48314425754193807], [0.5505672273741861], [0.516855742458062], [0.3932623052672758], [0.2247278919391583], [0.0561934786110408], [0.0], [0.0561934786110408], [0.2247278919391583], [0.42697379018339965], [0.58427871229031], [0.6292196884276411], [0.5730492210691028], [0.43820328140460685], [0.29215086177140626], [0.17978691580182715], [0.14607543088570316], [0.1910164070230343], [0.3033803529926134], [0.43820328140460685], [0.5617967185953932], [0.6292196884276411], [0.651701682122558], [0.617990197206434], [0.5730492210691028], [0.5280852336792692], [0.516855742458062], [0.5393377361529789], [0.5617967185953932], [0.5730492210691028], [0.5730492210691028], [0.5617967185953932], [0.5505672273741861], [0.5393377361529789], [0.5280852336792692], [0.516855742458062], [0.516855742458062], [0.5280852336792692], [0.5505672273741861], [0.5730492210691028], [0.6067376947327243], [0.6292196884276411], [0.651701682122558], [0.6741606645649723], [0.7303311319235106], [0.7865246105345514], [0.8202360954506754], [0.8202360954506754], [0.7865246105345514], [0.7303311319235106], [0.6853901557861795], [0.651701682122558], [0.6741606645649723], [0.7303311319235106], [0.7977541017557586], [0.8426950778930897], [0.8314655866718826], [0.7640426168396346], [0.6741606645649723], [0.58427871229031], [0.5505672273741861], [0.5617967185953932], [0.6067376947327243], [0.6404491796488483], [0.651701682122558], [0.6292196884276411], [0.5955082035115171], [0.5617967185953932], [0.5280852336792692], [0.48314425754193807], [0.43820328140460685], [0.3932623052672758], [0.37078031157235886], [0.40449179648848294], [0.48314425754193807], [0.58427871229031], [0.6629311733437652], [0.6966426582598891], [0.6629311733437652], [0.6067376947327243], [0.5505672273741861], [0.5393377361529789], [0.5617967185953932], [0.6067376947327243], [0.6404491796488483], [0.6292196884276411], [0.58427871229031], [0.49439676001564764], [0.4157442989621925], [0.40449179648848294], [0.46068527509952373], [0.5955082035115171], [0.7528131256184275], [0.8651770715880065], [0.8876360540304208], [0.7977541017557586], [0.6404491796488483], [0.46068527509952373], [0.37078031157235886], [0.38203281404606854], [0.48314425754193807], [0.617990197206434], [0.7191016407023034], [0.7415836343972203], [0.6853901557861795], [0.6067376947327243], [0.5505672273741861], [0.5393377361529789], [0.5617967185953932], [0.58427871229031], [0.5955082035115171], [0.58427871229031], [0.5505672273741861], [0.5505672273741861], [0.58427871229031], [0.6741606645649723], [0.7977541017557586], [0.9213475389465449], [1.0], [1.0], [0.9213475389465449], [0.8426950778930897], [0.7865246105345514], [0.7865246105345514], [0.8089835929769656], [0.8314655866718826], [0.7865246105345514], [0.6853901557861795], [0.5617967185953932], [0.43820328140460685], [0.3932623052672758], [0.4157442989621925], [0.49439676001564764], [0.5730492210691028], [0.617990197206434], [0.6067376947327243], [0.5393377361529789], [0.48314425754193807], [0.44943277262581405], [0.48314425754193807], [0.5617967185953932], [0.6404491796488483], [0.7078721494810962], [0.7415836343972203], [0.7415836343972203], [0.7191016407023034], [0.6853901557861795], [0.6404491796488483], [0.5955082035115171], [0.5730492210691028], [0.5730492210691028], [0.617990197206434], [0.6853901557861795], [0.7415836343972203], [0.7528131256184275], [0.7191016407023034], [0.6404491796488483], [0.5617967185953932], [0.516855742458062], [0.49439676001564764], [0.5056262512368548], [0.5393377361529789], [0.5617967185953932], [0.5730492210691028], [0.5617967185953932], [0.5505672273741861], [0.5393377361529789], [0.5393377361529789], [0.5617967185953932], [0.5955082035115171], [0.6292196884276411], [0.6404491796488483], [0.6292196884276411], [0.5955082035115171], [0.5505672273741861], [0.5393377361529789], [0.5393377361529789], [0.5730492210691028], [0.617990197206434], [0.6629311733437652], [0.7078721494810962], [0.7415836343972203], [0.7528131256184275]], "masks": [[1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1]], "evals": [[0.6067376947327243], [0.651701682122558], [0.7191016407023034], [0.7977541017557586], [0.8202360954506754], [0.7977541017557586], [0.7528131256184275], [0.6966426582598891], [0.651701682122558], [0.6404491796488483], [0.6292196884276411], [0.6067376947327243], [0.5617967185953932], [0.48314425754193807], [0.4157442989621925], [0.37078031157235886], [0.35955082035115177], [0.40449179648848294], [0.49439676001564764], [0.617990197206434], [0.7415836343972203], [0.8426950778930897], [0.8876360540304208], [0.8876360540304208], [0.8314655866718826], [0.7640426168396346], [0.7191016407023034], [0.6966426582598891], [0.6853901557861795], [0.651701682122558], [0.58427871229031], [0.48314425754193807], [0.3932623052672758], [0.38203281404606854], [0.3932623052672758], [0.42697379018339965], [0.44943277262581405], [0.4157442989621925], [0.34832132912994457], [0.31460984421382054], [0.31460984421382054], [0.35955082035115177], [0.4157442989621925], [0.44943277262581405], [0.43820328140460685], [0.3932623052672758], [0.34832132912994457], [0.33709183790873737], [0.35955082035115177], [0.3932623052672758], [0.42697379018339965], [0.43820328140460685], [0.42697379018339965], [0.38203281404606854], [0.33709183790873737], [0.32583933543502774], [0.34832132912994457], [0.38203281404606854], [0.42697379018339965], [0.43820328140460685], [0.4157442989621925], [0.3932623052672758], [0.40449179648848294], [0.46068527509952373], [0.5280852336792692], [0.5730492210691028], [0.5505672273741861], [0.47191476632073087], [0.34832132912994457], [0.2584393768552823], [0.2247278919391583], [0.26966886807648943], [0.37078031157235886], [0.48314425754193807], [0.5505672273741861], [0.516855742458062], [0.3932623052672758], [0.2247278919391583], [0.0561934786110408], [0.0], [0.0561934786110408], [0.2247278919391583], [0.42697379018339965], [0.58427871229031], [0.6292196884276411], [0.5730492210691028], [0.43820328140460685], [0.29215086177140626], [0.17978691580182715], [0.14607543088570316], [0.1910164070230343], [0.3033803529926134], [0.43820328140460685], [0.5617967185953932], [0.6292196884276411], [0.651701682122558], [0.617990197206434], [0.5730492210691028], [0.5280852336792692], [0.516855742458062], [0.5393377361529789], [0.5617967185953932], [0.5730492210691028], [0.5730492210691028], [0.5617967185953932], [0.5505672273741861], [0.5393377361529789], [0.5280852336792692], [0.516855742458062], [0.516855742458062], [0.5280852336792692], [0.5505672273741861], [0.5730492210691028], [0.6067376947327243], [0.6292196884276411], [0.651701682122558], [0.6741606645649723], [0.7303311319235106], [0.7865246105345514], [0.8202360954506754], [0.8202360954506754], [0.7865246105345514], [0.7303311319235106], [0.6853901557861795], [0.651701682122558], [0.6741606645649723], [0.7303311319235106], [0.7977541017557586], [0.8426950778930897], [0.8314655866718826], [0.7640426168396346], [0.6741606645649723], [0.58427871229031], [0.5505672273741861], [0.5617967185953932], [0.6067376947327243], [0.6404491796488483], [0.651701682122558], [0.6292196884276411], [0.5955082035115171], [0.5617967185953932], [0.5280852336792692], [0.48314425754193807], [0.43820328140460685], [0.3932623052672758], [0.37078031157235886], [0.40449179648848294], [0.48314425754193807], [0.58427871229031], [0.6629311733437652], [0.6966426582598891], [0.6629311733437652], [0.6067376947327243], [0.5505672273741861], [0.5393377361529789], [0.5617967185953932], [0.6067376947327243], [0.6404491796488483], [0.6292196884276411], [0.58427871229031], [0.49439676001564764], [0.4157442989621925], [0.40449179648848294], [0.46068527509952373], [0.5955082035115171], [0.7528131256184275], [0.8651770715880065], [0.8876360540304208], [0.7977541017557586], [0.6404491796488483], [0.46068527509952373], [0.37078031157235886], [0.38203281404606854], [0.48314425754193807], [0.617990197206434], [0.7191016407023034], [0.7415836343972203], [0.6853901557861795], [0.6067376947327243], [0.5505672273741861], [0.5393377361529789], [0.5617967185953932], [0.58427871229031], [0.5955082035115171], [0.58427871229031], [0.5505672273741861], [0.5505672273741861], [0.58427871229031], [0.6741606645649723], [0.7977541017557586], [0.9213475389465449], [1.0], [1.0], [0.9213475389465449], [0.8426950778930897], [0.7865246105345514], [0.7865246105345514], [0.8089835929769656], [0.8314655866718826], [0.7865246105345514], [0.6853901557861795], [0.5617967185953932], [0.43820328140460685], [0.3932623052672758], [0.4157442989621925], [0.49439676001564764], [0.5730492210691028], [0.617990197206434], [0.6067376947327243], [0.5393377361529789], [0.48314425754193807], [0.44943277262581405], [0.48314425754193807], [0.5617967185953932], [0.6404491796488483], [0.7078721494810962], [0.7415836343972203], [0.7415836343972203], [0.7191016407023034], [0.6853901557861795], [0.6404491796488483], [0.5955082035115171], [0.5730492210691028], [0.5730492210691028], [0.617990197206434], [0.6853901557861795], [0.7415836343972203], [0.7528131256184275], [0.7191016407023034], [0.6404491796488483], [0.5617967185953932], [0.516855742458062], [0.49439676001564764], [0.5056262512368548], [0.5393377361529789], [0.5617967185953932], [0.5730492210691028], [0.5617967185953932], [0.5505672273741861], [0.5393377361529789], [0.5393377361529789], [0.5617967185953932], [0.5955082035115171], [0.6292196884276411], [0.6404491796488483], [0.6292196884276411], [0.5955082035115171], [0.5505672273741861], [0.5393377361529789], [0.5393377361529789], [0.5730492210691028], [0.617990197206434], [0.6629311733437652], [0.7078721494810962], [0.7415836343972203], [0.7528131256184275]], "eval_masks": [[0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0]], "forwards": [[0.6067376947327243], [0.651701682122558], [0.7191016407023034], [0.7977541017557586], [0.8202360954506754], [0.7977541017557586], [0.7528131256184275], [0.6966426582598891], [0.651701682122558], [0.6404491796488483], [0.6292196884276411], [0.6067376947327243], [0.5617967185953932], [0.48314425754193807], [0.4157442989621925], [0.37078031157235886], [0.35955082035115177], [0.40449179648848294], [0.49439676001564764], [0.617990197206434], [0.7415836343972203], [0.8426950778930897], [0.8876360540304208], [0.8876360540304208], [0.8314655866718826], [0.7640426168396346], [0.7191016407023034], [0.6966426582598891], [0.6853901557861795], [0.651701682122558], [0.58427871229031], [0.48314425754193807], [0.3932623052672758], [0.38203281404606854], [0.3932623052672758], [0.42697379018339965], [0.44943277262581405], [0.4157442989621925], [0.34832132912994457], [0.31460984421382054], [0.31460984421382054], [0.35955082035115177], [0.4157442989621925], [0.44943277262581405], [0.43820328140460685], [0.3932623052672758], [0.34832132912994457], [0.33709183790873737], [0.35955082035115177], [0.3932623052672758], [0.42697379018339965], [0.43820328140460685], [0.42697379018339965], [0.38203281404606854], [0.33709183790873737], [0.32583933543502774], [0.34832132912994457], [0.38203281404606854], [0.42697379018339965], [0.43820328140460685], [0.4157442989621925], [0.3932623052672758], [0.40449179648848294], [0.46068527509952373], [0.5280852336792692], [0.5730492210691028], [0.5505672273741861], [0.47191476632073087], [0.34832132912994457], [0.2584393768552823], [0.2247278919391583], [0.26966886807648943], [0.37078031157235886], [0.48314425754193807], [0.5505672273741861], [0.516855742458062], [0.3932623052672758], [0.2247278919391583], [0.0561934786110408], [0.0], [0.0561934786110408], [0.2247278919391583], [0.42697379018339965], [0.58427871229031], [0.6292196884276411], [0.5730492210691028], [0.43820328140460685], [0.29215086177140626], [0.17978691580182715], [0.14607543088570316], [0.1910164070230343], [0.3033803529926134], [0.43820328140460685], [0.5617967185953932], [0.6292196884276411], [0.651701682122558], [0.617990197206434], [0.5730492210691028], [0.5280852336792692], [0.516855742458062], [0.5393377361529789], [0.5617967185953932], [0.5730492210691028], [0.5730492210691028], [0.5617967185953932], [0.5505672273741861], [0.5393377361529789], [0.5280852336792692], [0.516855742458062], [0.516855742458062], [0.5280852336792692], [0.5505672273741861], [0.5730492210691028], [0.6067376947327243], [0.6292196884276411], [0.651701682122558], [0.6741606645649723], [0.7303311319235106], [0.7865246105345514], [0.8202360954506754], [0.8202360954506754], [0.7865246105345514], [0.7303311319235106], [0.6853901557861795], [0.651701682122558], [0.6741606645649723], [0.7303311319235106], [0.7977541017557586], [0.8426950778930897], [0.8314655866718826], [0.7640426168396346], [0.6741606645649723], [0.58427871229031], [0.5505672273741861], [0.5617967185953932], [0.6067376947327243], [0.6404491796488483], [0.651701682122558], [0.6292196884276411], [0.5955082035115171], [0.5617967185953932], [0.5280852336792692], [0.48314425754193807], [0.43820328140460685], [0.3932623052672758], [0.37078031157235886], [0.40449179648848294], [0.48314425754193807], [0.58427871229031], [0.6629311733437652], [0.6966426582598891], [0.6629311733437652], [0.6067376947327243], [0.5505672273741861], [0.5393377361529789], [0.5617967185953932], [0.6067376947327243], [0.6404491796488483], [0.6292196884276411], [0.58427871229031], [0.49439676001564764], [0.4157442989621925], [0.40449179648848294], [0.46068527509952373], [0.5955082035115171], [0.7528131256184275], [0.8651770715880065], [0.8876360540304208], [0.7977541017557586], [0.6404491796488483], [0.46068527509952373], [0.37078031157235886], [0.38203281404606854], [0.48314425754193807], [0.617990197206434], [0.7191016407023034], [0.7415836343972203], [0.6853901557861795], [0.6067376947327243], [0.5505672273741861], [0.5393377361529789], [0.5617967185953932], [0.58427871229031], [0.5955082035115171], [0.58427871229031], [0.5505672273741861], [0.5505672273741861], [0.58427871229031], [0.6741606645649723], [0.7977541017557586], [0.9213475389465449], [1.0], [1.0], [0.9213475389465449], [0.8426950778930897], [0.7865246105345514], [0.7865246105345514], [0.8089835929769656], [0.8314655866718826], [0.7865246105345514], [0.6853901557861795], [0.5617967185953932], [0.43820328140460685], [0.3932623052672758], [0.4157442989621925], [0.49439676001564764], [0.5730492210691028], [0.617990197206434], [0.6067376947327243], [0.5393377361529789], [0.48314425754193807], [0.44943277262581405], [0.48314425754193807], [0.5617967185953932], [0.6404491796488483], [0.7078721494810962], [0.7415836343972203], [0.7415836343972203], [0.7191016407023034], [0.6853901557861795], [0.6404491796488483], [0.5955082035115171], [0.5730492210691028], [0.5730492210691028], [0.617990197206434], [0.6853901557861795], [0.7415836343972203], [0.7528131256184275], [0.7191016407023034], [0.6404491796488483], [0.5617967185953932], [0.516855742458062], [0.49439676001564764], [0.5056262512368548], [0.5393377361529789], [0.5617967185953932], [0.5730492210691028], [0.5617967185953932], [0.5505672273741861], [0.5393377361529789], [0.5393377361529789], [0.5617967185953932], [0.5955082035115171], [0.6292196884276411], [0.6404491796488483], [0.6292196884276411], [0.5955082035115171], [0.5505672273741861], [0.5393377361529789], [0.5393377361529789], [0.5730492210691028], [0.617990197206434], [0.6629311733437652], [0.7078721494810962], [0.7415836343972203], [0.7528131256184275]], "deltas": [[1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0]]}, "backward": {"values": [[0.7528131256184275], [0.7415836343972203], [0.7078721494810962], [0.6629311733437652], [0.617990197206434], [0.5730492210691028], [0.5393377361529789], [0.5393377361529789], [0.5505672273741861], [0.5955082035115171], [0.6292196884276411], [0.6404491796488483], [0.6292196884276411], [0.5955082035115171], [0.5617967185953932], [0.5393377361529789], [0.5393377361529789], [0.5505672273741861], [0.5617967185953932], [0.5730492210691028], [0.5617967185953932], [0.5393377361529789], [0.5056262512368548], [0.49439676001564764], [0.516855742458062], [0.5617967185953932], [0.6404491796488483], [0.7191016407023034], [0.7528131256184275], [0.7415836343972203], [0.6853901557861795], [0.617990197206434], [0.5730492210691028], [0.5730492210691028], [0.5955082035115171], [0.6404491796488483], [0.6853901557861795], [0.7191016407023034], [0.7415836343972203], [0.7415836343972203], [0.7078721494810962], [0.6404491796488483], [0.5617967185953932], [0.48314425754193807], [0.44943277262581405], [0.48314425754193807], [0.5393377361529789], [0.6067376947327243], [0.617990197206434], [0.5730492210691028], [0.49439676001564764], [0.4157442989621925], [0.3932623052672758], [0.43820328140460685], [0.5617967185953932], [0.6853901557861795], [0.7865246105345514], [0.8314655866718826], [0.8089835929769656], [0.7865246105345514], [0.7865246105345514], [0.8426950778930897], [0.9213475389465449], [1.0], [1.0], [0.9213475389465449], [0.7977541017557586], [0.6741606645649723], [0.58427871229031], [0.5505672273741861], [0.5505672273741861], [0.58427871229031], [0.5955082035115171], [0.58427871229031], [0.5617967185953932], [0.5393377361529789], [0.5505672273741861], [0.6067376947327243], [0.6853901557861795], [0.7415836343972203], [0.7191016407023034], [0.617990197206434], [0.48314425754193807], [0.38203281404606854], [0.37078031157235886], [0.46068527509952373], [0.6404491796488483], [0.7977541017557586], [0.8876360540304208], [0.8651770715880065], [0.7528131256184275], [0.5955082035115171], [0.46068527509952373], [0.40449179648848294], [0.4157442989621925], [0.49439676001564764], [0.58427871229031], [0.6292196884276411], [0.6404491796488483], [0.6067376947327243], [0.5617967185953932], [0.5393377361529789], [0.5505672273741861], [0.6067376947327243], [0.6629311733437652], [0.6966426582598891], [0.6629311733437652], [0.58427871229031], [0.48314425754193807], [0.40449179648848294], [0.37078031157235886], [0.3932623052672758], [0.43820328140460685], [0.48314425754193807], [0.5280852336792692], [0.5617967185953932], [0.5955082035115171], [0.6292196884276411], [0.651701682122558], [0.6404491796488483], [0.6067376947327243], [0.5617967185953932], [0.5505672273741861], [0.58427871229031], [0.6741606645649723], [0.7640426168396346], [0.8314655866718826], [0.8426950778930897], [0.7977541017557586], [0.7303311319235106], [0.6741606645649723], [0.651701682122558], [0.6853901557861795], [0.7303311319235106], [0.7865246105345514], [0.8202360954506754], [0.8202360954506754], [0.7865246105345514], [0.7303311319235106], [0.6741606645649723], [0.651701682122558], [0.6292196884276411], [0.6067376947327243], [0.5730492210691028], [0.5505672273741861], [0.5280852336792692], [0.516855742458062], [0.516855742458062], [0.5280852336792692], [0.5393377361529789], [0.5505672273741861], [0.5617967185953932], [0.5730492210691028], [0.5730492210691028], [0.5617967185953932], [0.5393377361529789], [0.516855742458062], [0.5280852336792692], [0.5730492210691028], [0.617990197206434], [0.651701682122558], [0.6292196884276411], [0.5617967185953932], [0.43820328140460685], [0.3033803529926134], [0.1910164070230343], [0.14607543088570316], [0.17978691580182715], [0.29215086177140626], [0.43820328140460685], [0.5730492210691028], [0.6292196884276411], [0.58427871229031], [0.42697379018339965], [0.2247278919391583], [0.0561934786110408], [0.0], [0.0561934786110408], [0.2247278919391583], [0.3932623052672758], [0.516855742458062], [0.5505672273741861], [0.48314425754193807], [0.37078031157235886], [0.26966886807648943], [0.2247278919391583], [0.2584393768552823], [0.34832132912994457], [0.47191476632073087], [0.5505672273741861], [0.5730492210691028], [0.5280852336792692], [0.46068527509952373], [0.40449179648848294], [0.3932623052672758], [0.4157442989621925], [0.43820328140460685], [0.42697379018339965], [0.38203281404606854], [0.34832132912994457], [0.32583933543502774], [0.33709183790873737], [0.38203281404606854], [0.42697379018339965], [0.43820328140460685], [0.42697379018339965], [0.3932623052672758], [0.35955082035115177], [0.33709183790873737], [0.34832132912994457], [0.3932623052672758], [0.43820328140460685], [0.44943277262581405], [0.4157442989621925], [0.35955082035115177], [0.31460984421382054], [0.31460984421382054], [0.34832132912994457], [0.4157442989621925], [0.44943277262581405], [0.42697379018339965], [0.3932623052672758], [0.38203281404606854], [0.3932623052672758], [0.48314425754193807], [0.58427871229031], [0.651701682122558], [0.6853901557861795], [0.6966426582598891], [0.7191016407023034], [0.7640426168396346], [0.8314655866718826], [0.8876360540304208], [0.8876360540304208], [0.8426950778930897], [0.7415836343972203], [0.617990197206434], [0.49439676001564764], [0.40449179648848294], [0.35955082035115177], [0.37078031157235886], [0.4157442989621925], [0.48314425754193807], [0.5617967185953932], [0.6067376947327243], [0.6292196884276411], [0.6404491796488483], [0.651701682122558], [0.6966426582598891], [0.7528131256184275], [0.7977541017557586], [0.8202360954506754], [0.7977541017557586], [0.7191016407023034], [0.651701682122558], [0.6067376947327243]], "masks": [[1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1]], "evals": [[0.7528131256184275], [0.7415836343972203], [0.7078721494810962], [0.6629311733437652], [0.617990197206434], [0.5730492210691028], [0.5393377361529789], [0.5393377361529789], [0.5505672273741861], [0.5955082035115171], [0.6292196884276411], [0.6404491796488483], [0.6292196884276411], [0.5955082035115171], [0.5617967185953932], [0.5393377361529789], [0.5393377361529789], [0.5505672273741861], [0.5617967185953932], [0.5730492210691028], [0.5617967185953932], [0.5393377361529789], [0.5056262512368548], [0.49439676001564764], [0.516855742458062], [0.5617967185953932], [0.6404491796488483], [0.7191016407023034], [0.7528131256184275], [0.7415836343972203], [0.6853901557861795], [0.617990197206434], [0.5730492210691028], [0.5730492210691028], [0.5955082035115171], [0.6404491796488483], [0.6853901557861795], [0.7191016407023034], [0.7415836343972203], [0.7415836343972203], [0.7078721494810962], [0.6404491796488483], [0.5617967185953932], [0.48314425754193807], [0.44943277262581405], [0.48314425754193807], [0.5393377361529789], [0.6067376947327243], [0.617990197206434], [0.5730492210691028], [0.49439676001564764], [0.4157442989621925], [0.3932623052672758], [0.43820328140460685], [0.5617967185953932], [0.6853901557861795], [0.7865246105345514], [0.8314655866718826], [0.8089835929769656], [0.7865246105345514], [0.7865246105345514], [0.8426950778930897], [0.9213475389465449], [1.0], [1.0], [0.9213475389465449], [0.7977541017557586], [0.6741606645649723], [0.58427871229031], [0.5505672273741861], [0.5505672273741861], [0.58427871229031], [0.5955082035115171], [0.58427871229031], [0.5617967185953932], [0.5393377361529789], [0.5505672273741861], [0.6067376947327243], [0.6853901557861795], [0.7415836343972203], [0.7191016407023034], [0.617990197206434], [0.48314425754193807], [0.38203281404606854], [0.37078031157235886], [0.46068527509952373], [0.6404491796488483], [0.7977541017557586], [0.8876360540304208], [0.8651770715880065], [0.7528131256184275], [0.5955082035115171], [0.46068527509952373], [0.40449179648848294], [0.4157442989621925], [0.49439676001564764], [0.58427871229031], [0.6292196884276411], [0.6404491796488483], [0.6067376947327243], [0.5617967185953932], [0.5393377361529789], [0.5505672273741861], [0.6067376947327243], [0.6629311733437652], [0.6966426582598891], [0.6629311733437652], [0.58427871229031], [0.48314425754193807], [0.40449179648848294], [0.37078031157235886], [0.3932623052672758], [0.43820328140460685], [0.48314425754193807], [0.5280852336792692], [0.5617967185953932], [0.5955082035115171], [0.6292196884276411], [0.651701682122558], [0.6404491796488483], [0.6067376947327243], [0.5617967185953932], [0.5505672273741861], [0.58427871229031], [0.6741606645649723], [0.7640426168396346], [0.8314655866718826], [0.8426950778930897], [0.7977541017557586], [0.7303311319235106], [0.6741606645649723], [0.651701682122558], [0.6853901557861795], [0.7303311319235106], [0.7865246105345514], [0.8202360954506754], [0.8202360954506754], [0.7865246105345514], [0.7303311319235106], [0.6741606645649723], [0.651701682122558], [0.6292196884276411], [0.6067376947327243], [0.5730492210691028], [0.5505672273741861], [0.5280852336792692], [0.516855742458062], [0.516855742458062], [0.5280852336792692], [0.5393377361529789], [0.5505672273741861], [0.5617967185953932], [0.5730492210691028], [0.5730492210691028], [0.5617967185953932], [0.5393377361529789], [0.516855742458062], [0.5280852336792692], [0.5730492210691028], [0.617990197206434], [0.651701682122558], [0.6292196884276411], [0.5617967185953932], [0.43820328140460685], [0.3033803529926134], [0.1910164070230343], [0.14607543088570316], [0.17978691580182715], [0.29215086177140626], [0.43820328140460685], [0.5730492210691028], [0.6292196884276411], [0.58427871229031], [0.42697379018339965], [0.2247278919391583], [0.0561934786110408], [0.0], [0.0561934786110408], [0.2247278919391583], [0.3932623052672758], [0.516855742458062], [0.5505672273741861], [0.48314425754193807], [0.37078031157235886], [0.26966886807648943], [0.2247278919391583], [0.2584393768552823], [0.34832132912994457], [0.47191476632073087], [0.5505672273741861], [0.5730492210691028], [0.5280852336792692], [0.46068527509952373], [0.40449179648848294], [0.3932623052672758], [0.4157442989621925], [0.43820328140460685], [0.42697379018339965], [0.38203281404606854], [0.34832132912994457], [0.32583933543502774], [0.33709183790873737], [0.38203281404606854], [0.42697379018339965], [0.43820328140460685], [0.42697379018339965], [0.3932623052672758], [0.35955082035115177], [0.33709183790873737], [0.34832132912994457], [0.3932623052672758], [0.43820328140460685], [0.44943277262581405], [0.4157442989621925], [0.35955082035115177], [0.31460984421382054], [0.31460984421382054], [0.34832132912994457], [0.4157442989621925], [0.44943277262581405], [0.42697379018339965], [0.3932623052672758], [0.38203281404606854], [0.3932623052672758], [0.48314425754193807], [0.58427871229031], [0.651701682122558], [0.6853901557861795], [0.6966426582598891], [0.7191016407023034], [0.7640426168396346], [0.8314655866718826], [0.8876360540304208], [0.8876360540304208], [0.8426950778930897], [0.7415836343972203], [0.617990197206434], [0.49439676001564764], [0.40449179648848294], [0.35955082035115177], [0.37078031157235886], [0.4157442989621925], [0.48314425754193807], [0.5617967185953932], [0.6067376947327243], [0.6292196884276411], [0.6404491796488483], [0.651701682122558], [0.6966426582598891], [0.7528131256184275], [0.7977541017557586], [0.8202360954506754], [0.7977541017557586], [0.7191016407023034], [0.651701682122558], [0.6067376947327243]], "eval_masks": [[0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0]], "forwards": [[0.7528131256184275], [0.7415836343972203], [0.7078721494810962], [0.6629311733437652], [0.617990197206434], [0.5730492210691028], [0.5393377361529789], [0.5393377361529789], [0.5505672273741861], [0.5955082035115171], [0.6292196884276411], [0.6404491796488483], [0.6292196884276411], [0.5955082035115171], [0.5617967185953932], [0.5393377361529789], [0.5393377361529789], [0.5505672273741861], [0.5617967185953932], [0.5730492210691028], [0.5617967185953932], [0.5393377361529789], [0.5056262512368548], [0.49439676001564764], [0.516855742458062], [0.5617967185953932], [0.6404491796488483], [0.7191016407023034], [0.7528131256184275], [0.7415836343972203], [0.6853901557861795], [0.617990197206434], [0.5730492210691028], [0.5730492210691028], [0.5955082035115171], [0.6404491796488483], [0.6853901557861795], [0.7191016407023034], [0.7415836343972203], [0.7415836343972203], [0.7078721494810962], [0.6404491796488483], [0.5617967185953932], [0.48314425754193807], [0.44943277262581405], [0.48314425754193807], [0.5393377361529789], [0.6067376947327243], [0.617990197206434], [0.5730492210691028], [0.49439676001564764], [0.4157442989621925], [0.3932623052672758], [0.43820328140460685], [0.5617967185953932], [0.6853901557861795], [0.7865246105345514], [0.8314655866718826], [0.8089835929769656], [0.7865246105345514], [0.7865246105345514], [0.8426950778930897], [0.9213475389465449], [1.0], [1.0], [0.9213475389465449], [0.7977541017557586], [0.6741606645649723], [0.58427871229031], [0.5505672273741861], [0.5505672273741861], [0.58427871229031], [0.5955082035115171], [0.58427871229031], [0.5617967185953932], [0.5393377361529789], [0.5505672273741861], [0.6067376947327243], [0.6853901557861795], [0.7415836343972203], [0.7191016407023034], [0.617990197206434], [0.48314425754193807], [0.38203281404606854], [0.37078031157235886], [0.46068527509952373], [0.6404491796488483], [0.7977541017557586], [0.8876360540304208], [0.8651770715880065], [0.7528131256184275], [0.5955082035115171], [0.46068527509952373], [0.40449179648848294], [0.4157442989621925], [0.49439676001564764], [0.58427871229031], [0.6292196884276411], [0.6404491796488483], [0.6067376947327243], [0.5617967185953932], [0.5393377361529789], [0.5505672273741861], [0.6067376947327243], [0.6629311733437652], [0.6966426582598891], [0.6629311733437652], [0.58427871229031], [0.48314425754193807], [0.40449179648848294], [0.37078031157235886], [0.3932623052672758], [0.43820328140460685], [0.48314425754193807], [0.5280852336792692], [0.5617967185953932], [0.5955082035115171], [0.6292196884276411], [0.651701682122558], [0.6404491796488483], [0.6067376947327243], [0.5617967185953932], [0.5505672273741861], [0.58427871229031], [0.6741606645649723], [0.7640426168396346], [0.8314655866718826], [0.8426950778930897], [0.7977541017557586], [0.7303311319235106], [0.6741606645649723], [0.651701682122558], [0.6853901557861795], [0.7303311319235106], [0.7865246105345514], [0.8202360954506754], [0.8202360954506754], [0.7865246105345514], [0.7303311319235106], [0.6741606645649723], [0.651701682122558], [0.6292196884276411], [0.6067376947327243], [0.5730492210691028], [0.5505672273741861], [0.5280852336792692], [0.516855742458062], [0.516855742458062], [0.5280852336792692], [0.5393377361529789], [0.5505672273741861], [0.5617967185953932], [0.5730492210691028], [0.5730492210691028], [0.5617967185953932], [0.5393377361529789], [0.516855742458062], [0.5280852336792692], [0.5730492210691028], [0.617990197206434], [0.651701682122558], [0.6292196884276411], [0.5617967185953932], [0.43820328140460685], [0.3033803529926134], [0.1910164070230343], [0.14607543088570316], [0.17978691580182715], [0.29215086177140626], [0.43820328140460685], [0.5730492210691028], [0.6292196884276411], [0.58427871229031], [0.42697379018339965], [0.2247278919391583], [0.0561934786110408], [0.0], [0.0561934786110408], [0.2247278919391583], [0.3932623052672758], [0.516855742458062], [0.5505672273741861], [0.48314425754193807], [0.37078031157235886], [0.26966886807648943], [0.2247278919391583], [0.2584393768552823], [0.34832132912994457], [0.47191476632073087], [0.5505672273741861], [0.5730492210691028], [0.5280852336792692], [0.46068527509952373], [0.40449179648848294], [0.3932623052672758], [0.4157442989621925], [0.43820328140460685], [0.42697379018339965], [0.38203281404606854], [0.34832132912994457], [0.32583933543502774], [0.33709183790873737], [0.38203281404606854], [0.42697379018339965], [0.43820328140460685], [0.42697379018339965], [0.3932623052672758], [0.35955082035115177], [0.33709183790873737], [0.34832132912994457], [0.3932623052672758], [0.43820328140460685], [0.44943277262581405], [0.4157442989621925], [0.35955082035115177], [0.31460984421382054], [0.31460984421382054], [0.34832132912994457], [0.4157442989621925], [0.44943277262581405], [0.42697379018339965], [0.3932623052672758], [0.38203281404606854], [0.3932623052672758], [0.48314425754193807], [0.58427871229031], [0.651701682122558], [0.6853901557861795], [0.6966426582598891], [0.7191016407023034], [0.7640426168396346], [0.8314655866718826], [0.8876360540304208], [0.8876360540304208], [0.8426950778930897], [0.7415836343972203], [0.617990197206434], [0.49439676001564764], [0.40449179648848294], [0.35955082035115177], [0.37078031157235886], [0.4157442989621925], [0.48314425754193807], [0.5617967185953932], [0.6067376947327243], [0.6292196884276411], [0.6404491796488483], [0.651701682122558], [0.6966426582598891], [0.7528131256184275], [0.7977541017557586], [0.8202360954506754], [0.7977541017557586], [0.7191016407023034], [0.651701682122558], [0.6067376947327243]], "deltas": [[1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0]]}} -{"label": 0, "forward": {"values": [[0.6125134401720342], [0.6750038400491527], [0.7625057600737289], [0.8375147201884185], [0.8500076800983054], [0.8125032000409605], [0.7250012800163843], [0.650017920229379], [0.5875019200245764], [0.5499974399672316], [0.5499974399672316], [0.5499974399672316], [0.5375044800573449], [0.5000000000000001], [0.4375096001228817], [0.3875121601556501], [0.36250064000819215], [0.3875121601556501], [0.47501408018022634], [0.6125134401720342], [0.7625057600737289], [0.8750192002457632], [0.9375096001228816], [0.9250166402129949], [0.8750192002457632], [0.8000102401310737], [0.7374942399262711], [0.7000153601966106], [0.6625108801392658], [0.6125134401720342], [0.525011520147458], [0.4000051200655369], [0.30001024013107375], [0.25001280016384214], [0.262505760073729], [0.31250320004096055], [0.36250064000819215], [0.36250064000819215], [0.32499615995084746], [0.31250320004096055], [0.32499615995084746], [0.374993599918079], [0.4375096001228817], [0.46249551994265536], [0.4500025600327685], [0.4124980799754237], [0.374993599918079], [0.374993599918079], [0.4124980799754237], [0.46249551994265536], [0.5000000000000001], [0.5000000000000001], [0.46249551994265536], [0.4124980799754237], [0.374993599918079], [0.374993599918079], [0.4000051200655369], [0.4500025600327685], [0.47501408018022634], [0.48750704009011314], [0.47501408018022634], [0.46249551994265536], [0.5000000000000001], [0.5750089601146896], [0.650017920229379], [0.7000153601966106], [0.6874967999590396], [0.5750089601146896], [0.4249910398853106], [0.31250320004096055], [0.262505760073729], [0.32499615995084746], [0.46249551994265536], [0.5999948799344632], [0.6625108801392658], [0.5999948799344632], [0.4375096001228817], [0.23749423992627108], [0.0624903998771185], [0.0], [0.07500896011468947], [0.262505760073729], [0.5000000000000001], [0.6750038400491527], [0.7374942399262711], [0.6750038400491527], [0.5375044800573449], [0.36250064000819215], [0.22500128001638425], [0.18749679995903953], [0.23749423992627108], [0.3500076800983053], [0.48750704009011314], [0.5999948799344632], [0.650017920229379], [0.637499359991808], [0.6125134401720342], [0.5625160002048027], [0.5375044800573449], [0.525011520147458], [0.5375044800573449], [0.5625160002048027], [0.5999948799344632], [0.6250064000819211], [0.650017920229379], [0.6625108801392658], [0.6750038400491527], [0.6874967999590396], [0.6874967999590396], [0.7125083201064975], [0.7374942399262711], [0.7500128001638422], [0.7625057600737289], [0.7625057600737289], [0.7625057600737289], [0.7625057600737289], [0.7749987199836159], [0.8125032000409605], [0.8500076800983054], [0.8625006400081923], [0.8625006400081923], [0.8249961599508474], [0.7749987199836159], [0.7250012800163843], [0.6874967999590396], [0.6874967999590396], [0.7374942399262711], [0.7875172802211869], [0.8249961599508474], [0.8000102401310737], [0.7374942399262711], [0.637499359991808], [0.5625160002048027], [0.5499974399672316], [0.5875019200245764], [0.650017920229379], [0.6874967999590396], [0.6874967999590396], [0.6625108801392658], [0.6125134401720342], [0.5750089601146896], [0.5375044800573449], [0.48750704009011314], [0.4249910398853106], [0.3875121601556501], [0.3875121601556501], [0.4375096001228817], [0.525011520147458], [0.6250064000819211], [0.7000153601966106], [0.7250012800163843], [0.7000153601966106], [0.6625108801392658], [0.5999948799344632], [0.5750089601146896], [0.5875019200245764], [0.6250064000819211], [0.6625108801392658], [0.6750038400491527], [0.6250064000819211], [0.5375044800573449], [0.4500025600327685], [0.4124980799754237], [0.46249551994265536], [0.5750089601146896], [0.7250012800163843], [0.8375147201884185], [0.8750192002457632], [0.8375147201884185], [0.7125083201064975], [0.5625160002048027], [0.4375096001228817], [0.4124980799754237], [0.48750704009011314], [0.6250064000819211], [0.7500128001638422], [0.7875172802211869], [0.7250012800163843], [0.6250064000819211], [0.5625160002048027], [0.5375044800573449], [0.5750089601146896], [0.637499359991808], [0.6625108801392658], [0.6750038400491527], [0.6625108801392658], [0.6625108801392658], [0.7000153601966106], [0.7749987199836159], [0.8750192002457632], [0.9625211202703395], [1.0], [0.9750140801802263], [0.9124980799754239], [0.8249961599508474], [0.7875172802211869], [0.8249961599508474], [0.9000051200655369], [0.9625211202703395], [0.9500025600327685], [0.8500076800983054], [0.7000153601966106], [0.5499974399672316], [0.4500025600327685], [0.4249910398853106], [0.47501408018022634], [0.512492959909887], [0.5499974399672316], [0.5375044800573449], [0.5000000000000001], [0.46249551994265536], [0.47501408018022634], [0.525011520147458], [0.5875019200245764], [0.637499359991808], [0.6874967999590396], [0.7125083201064975], [0.7374942399262711], [0.7374942399262711], [0.7125083201064975], [0.6625108801392658], [0.5999948799344632], [0.5499974399672316], [0.5499974399672316], [0.6125134401720342], [0.7000153601966106], [0.7875172802211869], [0.8125032000409605], [0.7625057600737289], [0.650017920229379], [0.5499974399672316], [0.47501408018022634], [0.46249551994265536], [0.512492959909887], [0.5875019200245764], [0.637499359991808], [0.650017920229379], [0.6125134401720342], [0.5375044800573449], [0.46249551994265536], [0.4249910398853106], [0.46249551994265536], [0.5375044800573449], [0.6250064000819211], [0.6750038400491527], [0.6750038400491527], [0.637499359991808], [0.5750089601146896], [0.5375044800573449], [0.5625160002048027], [0.637499359991808], [0.7250012800163843], [0.8000102401310737], [0.8375147201884185], [0.8125032000409605], [0.7374942399262711]], "masks": [[1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1]], "evals": [[0.6125134401720342], [0.6750038400491527], [0.7625057600737289], [0.8375147201884185], [0.8500076800983054], [0.8125032000409605], [0.7250012800163843], [0.650017920229379], [0.5875019200245764], [0.5499974399672316], [0.5499974399672316], [0.5499974399672316], [0.5375044800573449], [0.5000000000000001], [0.4375096001228817], [0.3875121601556501], [0.36250064000819215], [0.3875121601556501], [0.47501408018022634], [0.6125134401720342], [0.7625057600737289], [0.8750192002457632], [0.9375096001228816], [0.9250166402129949], [0.8750192002457632], [0.8000102401310737], [0.7374942399262711], [0.7000153601966106], [0.6625108801392658], [0.6125134401720342], [0.525011520147458], [0.4000051200655369], [0.30001024013107375], [0.25001280016384214], [0.262505760073729], [0.31250320004096055], [0.36250064000819215], [0.36250064000819215], [0.32499615995084746], [0.31250320004096055], [0.32499615995084746], [0.374993599918079], [0.4375096001228817], [0.46249551994265536], [0.4500025600327685], [0.4124980799754237], [0.374993599918079], [0.374993599918079], [0.4124980799754237], [0.46249551994265536], [0.5000000000000001], [0.5000000000000001], [0.46249551994265536], [0.4124980799754237], [0.374993599918079], [0.374993599918079], [0.4000051200655369], [0.4500025600327685], [0.47501408018022634], [0.48750704009011314], [0.47501408018022634], [0.46249551994265536], [0.5000000000000001], [0.5750089601146896], [0.650017920229379], [0.7000153601966106], [0.6874967999590396], [0.5750089601146896], [0.4249910398853106], [0.31250320004096055], [0.262505760073729], [0.32499615995084746], [0.46249551994265536], [0.5999948799344632], [0.6625108801392658], [0.5999948799344632], [0.4375096001228817], [0.23749423992627108], [0.0624903998771185], [0.0], [0.07500896011468947], [0.262505760073729], [0.5000000000000001], [0.6750038400491527], [0.7374942399262711], [0.6750038400491527], [0.5375044800573449], [0.36250064000819215], [0.22500128001638425], [0.18749679995903953], [0.23749423992627108], [0.3500076800983053], [0.48750704009011314], [0.5999948799344632], [0.650017920229379], [0.637499359991808], [0.6125134401720342], [0.5625160002048027], [0.5375044800573449], [0.525011520147458], [0.5375044800573449], [0.5625160002048027], [0.5999948799344632], [0.6250064000819211], [0.650017920229379], [0.6625108801392658], [0.6750038400491527], [0.6874967999590396], [0.6874967999590396], [0.7125083201064975], [0.7374942399262711], [0.7500128001638422], [0.7625057600737289], [0.7625057600737289], [0.7625057600737289], [0.7625057600737289], [0.7749987199836159], [0.8125032000409605], [0.8500076800983054], [0.8625006400081923], [0.8625006400081923], [0.8249961599508474], [0.7749987199836159], [0.7250012800163843], [0.6874967999590396], [0.6874967999590396], [0.7374942399262711], [0.7875172802211869], [0.8249961599508474], [0.8000102401310737], [0.7374942399262711], [0.637499359991808], [0.5625160002048027], [0.5499974399672316], [0.5875019200245764], [0.650017920229379], [0.6874967999590396], [0.6874967999590396], [0.6625108801392658], [0.6125134401720342], [0.5750089601146896], [0.5375044800573449], [0.48750704009011314], [0.4249910398853106], [0.3875121601556501], [0.3875121601556501], [0.4375096001228817], [0.525011520147458], [0.6250064000819211], [0.7000153601966106], [0.7250012800163843], [0.7000153601966106], [0.6625108801392658], [0.5999948799344632], [0.5750089601146896], [0.5875019200245764], [0.6250064000819211], [0.6625108801392658], [0.6750038400491527], [0.6250064000819211], [0.5375044800573449], [0.4500025600327685], [0.4124980799754237], [0.46249551994265536], [0.5750089601146896], [0.7250012800163843], [0.8375147201884185], [0.8750192002457632], [0.8375147201884185], [0.7125083201064975], [0.5625160002048027], [0.4375096001228817], [0.4124980799754237], [0.48750704009011314], [0.6250064000819211], [0.7500128001638422], [0.7875172802211869], [0.7250012800163843], [0.6250064000819211], [0.5625160002048027], [0.5375044800573449], [0.5750089601146896], [0.637499359991808], [0.6625108801392658], [0.6750038400491527], [0.6625108801392658], [0.6625108801392658], [0.7000153601966106], [0.7749987199836159], [0.8750192002457632], [0.9625211202703395], [1.0], [0.9750140801802263], [0.9124980799754239], [0.8249961599508474], [0.7875172802211869], [0.8249961599508474], [0.9000051200655369], [0.9625211202703395], [0.9500025600327685], [0.8500076800983054], [0.7000153601966106], [0.5499974399672316], [0.4500025600327685], [0.4249910398853106], [0.47501408018022634], [0.512492959909887], [0.5499974399672316], [0.5375044800573449], [0.5000000000000001], [0.46249551994265536], [0.47501408018022634], [0.525011520147458], [0.5875019200245764], [0.637499359991808], [0.6874967999590396], [0.7125083201064975], [0.7374942399262711], [0.7374942399262711], [0.7125083201064975], [0.6625108801392658], [0.5999948799344632], [0.5499974399672316], [0.5499974399672316], [0.6125134401720342], [0.7000153601966106], [0.7875172802211869], [0.8125032000409605], [0.7625057600737289], [0.650017920229379], [0.5499974399672316], [0.47501408018022634], [0.46249551994265536], [0.512492959909887], [0.5875019200245764], [0.637499359991808], [0.650017920229379], [0.6125134401720342], [0.5375044800573449], [0.46249551994265536], [0.4249910398853106], [0.46249551994265536], [0.5375044800573449], [0.6250064000819211], [0.6750038400491527], [0.6750038400491527], [0.637499359991808], [0.5750089601146896], [0.5375044800573449], [0.5625160002048027], [0.637499359991808], [0.7250012800163843], [0.8000102401310737], [0.8375147201884185], [0.8125032000409605], [0.7374942399262711]], "eval_masks": [[0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0]], "forwards": [[0.6125134401720342], [0.6750038400491527], [0.7625057600737289], [0.8375147201884185], [0.8500076800983054], [0.8125032000409605], [0.7250012800163843], [0.650017920229379], [0.5875019200245764], [0.5499974399672316], [0.5499974399672316], [0.5499974399672316], [0.5375044800573449], [0.5000000000000001], [0.4375096001228817], [0.3875121601556501], [0.36250064000819215], [0.3875121601556501], [0.47501408018022634], [0.6125134401720342], [0.7625057600737289], [0.8750192002457632], [0.9375096001228816], [0.9250166402129949], [0.8750192002457632], [0.8000102401310737], [0.7374942399262711], [0.7000153601966106], [0.6625108801392658], [0.6125134401720342], [0.525011520147458], [0.4000051200655369], [0.30001024013107375], [0.25001280016384214], [0.262505760073729], [0.31250320004096055], [0.36250064000819215], [0.36250064000819215], [0.32499615995084746], [0.31250320004096055], [0.32499615995084746], [0.374993599918079], [0.4375096001228817], [0.46249551994265536], [0.4500025600327685], [0.4124980799754237], [0.374993599918079], [0.374993599918079], [0.4124980799754237], [0.46249551994265536], [0.5000000000000001], [0.5000000000000001], [0.46249551994265536], [0.4124980799754237], [0.374993599918079], [0.374993599918079], [0.4000051200655369], [0.4500025600327685], [0.47501408018022634], [0.48750704009011314], [0.47501408018022634], [0.46249551994265536], [0.5000000000000001], [0.5750089601146896], [0.650017920229379], [0.7000153601966106], [0.6874967999590396], [0.5750089601146896], [0.4249910398853106], [0.31250320004096055], [0.262505760073729], [0.32499615995084746], [0.46249551994265536], [0.5999948799344632], [0.6625108801392658], [0.5999948799344632], [0.4375096001228817], [0.23749423992627108], [0.0624903998771185], [0.0], [0.07500896011468947], [0.262505760073729], [0.5000000000000001], [0.6750038400491527], [0.7374942399262711], [0.6750038400491527], [0.5375044800573449], [0.36250064000819215], [0.22500128001638425], [0.18749679995903953], [0.23749423992627108], [0.3500076800983053], [0.48750704009011314], [0.5999948799344632], [0.650017920229379], [0.637499359991808], [0.6125134401720342], [0.5625160002048027], [0.5375044800573449], [0.525011520147458], [0.5375044800573449], [0.5625160002048027], [0.5999948799344632], [0.6250064000819211], [0.650017920229379], [0.6625108801392658], [0.6750038400491527], [0.6874967999590396], [0.6874967999590396], [0.7125083201064975], [0.7374942399262711], [0.7500128001638422], [0.7625057600737289], [0.7625057600737289], [0.7625057600737289], [0.7625057600737289], [0.7749987199836159], [0.8125032000409605], [0.8500076800983054], [0.8625006400081923], [0.8625006400081923], [0.8249961599508474], [0.7749987199836159], [0.7250012800163843], [0.6874967999590396], [0.6874967999590396], [0.7374942399262711], [0.7875172802211869], [0.8249961599508474], [0.8000102401310737], [0.7374942399262711], [0.637499359991808], [0.5625160002048027], [0.5499974399672316], [0.5875019200245764], [0.650017920229379], [0.6874967999590396], [0.6874967999590396], [0.6625108801392658], [0.6125134401720342], [0.5750089601146896], [0.5375044800573449], [0.48750704009011314], [0.4249910398853106], [0.3875121601556501], [0.3875121601556501], [0.4375096001228817], [0.525011520147458], [0.6250064000819211], [0.7000153601966106], [0.7250012800163843], [0.7000153601966106], [0.6625108801392658], [0.5999948799344632], [0.5750089601146896], [0.5875019200245764], [0.6250064000819211], [0.6625108801392658], [0.6750038400491527], [0.6250064000819211], [0.5375044800573449], [0.4500025600327685], [0.4124980799754237], [0.46249551994265536], [0.5750089601146896], [0.7250012800163843], [0.8375147201884185], [0.8750192002457632], [0.8375147201884185], [0.7125083201064975], [0.5625160002048027], [0.4375096001228817], [0.4124980799754237], [0.48750704009011314], [0.6250064000819211], [0.7500128001638422], [0.7875172802211869], [0.7250012800163843], [0.6250064000819211], [0.5625160002048027], [0.5375044800573449], [0.5750089601146896], [0.637499359991808], [0.6625108801392658], [0.6750038400491527], [0.6625108801392658], [0.6625108801392658], [0.7000153601966106], [0.7749987199836159], [0.8750192002457632], [0.9625211202703395], [1.0], [0.9750140801802263], [0.9124980799754239], [0.8249961599508474], [0.7875172802211869], [0.8249961599508474], [0.9000051200655369], [0.9625211202703395], [0.9500025600327685], [0.8500076800983054], [0.7000153601966106], [0.5499974399672316], [0.4500025600327685], [0.4249910398853106], [0.47501408018022634], [0.512492959909887], [0.5499974399672316], [0.5375044800573449], [0.5000000000000001], [0.46249551994265536], [0.47501408018022634], [0.525011520147458], [0.5875019200245764], [0.637499359991808], [0.6874967999590396], [0.7125083201064975], [0.7374942399262711], [0.7374942399262711], [0.7125083201064975], [0.6625108801392658], [0.5999948799344632], [0.5499974399672316], [0.5499974399672316], [0.6125134401720342], [0.7000153601966106], [0.7875172802211869], [0.8125032000409605], [0.7625057600737289], [0.650017920229379], [0.5499974399672316], [0.47501408018022634], [0.46249551994265536], [0.512492959909887], [0.5875019200245764], [0.637499359991808], [0.650017920229379], [0.6125134401720342], [0.5375044800573449], [0.46249551994265536], [0.4249910398853106], [0.46249551994265536], [0.5375044800573449], [0.6250064000819211], [0.6750038400491527], [0.6750038400491527], [0.637499359991808], [0.5750089601146896], [0.5375044800573449], [0.5625160002048027], [0.637499359991808], [0.7250012800163843], [0.8000102401310737], [0.8375147201884185], [0.8125032000409605], [0.7374942399262711]], "deltas": [[1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0]]}, "backward": {"values": [[0.7374942399262711], [0.8125032000409605], [0.8375147201884185], [0.8000102401310737], [0.7250012800163843], [0.637499359991808], [0.5625160002048027], [0.5375044800573449], [0.5750089601146896], [0.637499359991808], [0.6750038400491527], [0.6750038400491527], [0.6250064000819211], [0.5375044800573449], [0.46249551994265536], [0.4249910398853106], [0.46249551994265536], [0.5375044800573449], [0.6125134401720342], [0.650017920229379], [0.637499359991808], [0.5875019200245764], [0.512492959909887], [0.46249551994265536], [0.47501408018022634], [0.5499974399672316], [0.650017920229379], [0.7625057600737289], [0.8125032000409605], [0.7875172802211869], [0.7000153601966106], [0.6125134401720342], [0.5499974399672316], [0.5499974399672316], [0.5999948799344632], [0.6625108801392658], [0.7125083201064975], [0.7374942399262711], [0.7374942399262711], [0.7125083201064975], [0.6874967999590396], [0.637499359991808], [0.5875019200245764], [0.525011520147458], [0.47501408018022634], [0.46249551994265536], [0.5000000000000001], [0.5375044800573449], [0.5499974399672316], [0.512492959909887], [0.47501408018022634], [0.4249910398853106], [0.4500025600327685], [0.5499974399672316], [0.7000153601966106], [0.8500076800983054], [0.9500025600327685], [0.9625211202703395], [0.9000051200655369], [0.8249961599508474], [0.7875172802211869], [0.8249961599508474], [0.9124980799754239], [0.9750140801802263], [1.0], [0.9625211202703395], [0.8750192002457632], [0.7749987199836159], [0.7000153601966106], [0.6625108801392658], [0.6625108801392658], [0.6750038400491527], [0.6625108801392658], [0.637499359991808], [0.5750089601146896], [0.5375044800573449], [0.5625160002048027], [0.6250064000819211], [0.7250012800163843], [0.7875172802211869], [0.7500128001638422], [0.6250064000819211], [0.48750704009011314], [0.4124980799754237], [0.4375096001228817], [0.5625160002048027], [0.7125083201064975], [0.8375147201884185], [0.8750192002457632], [0.8375147201884185], [0.7250012800163843], [0.5750089601146896], [0.46249551994265536], [0.4124980799754237], [0.4500025600327685], [0.5375044800573449], [0.6250064000819211], [0.6750038400491527], [0.6625108801392658], [0.6250064000819211], [0.5875019200245764], [0.5750089601146896], [0.5999948799344632], [0.6625108801392658], [0.7000153601966106], [0.7250012800163843], [0.7000153601966106], [0.6250064000819211], [0.525011520147458], [0.4375096001228817], [0.3875121601556501], [0.3875121601556501], [0.4249910398853106], [0.48750704009011314], [0.5375044800573449], [0.5750089601146896], [0.6125134401720342], [0.6625108801392658], [0.6874967999590396], [0.6874967999590396], [0.650017920229379], [0.5875019200245764], [0.5499974399672316], [0.5625160002048027], [0.637499359991808], [0.7374942399262711], [0.8000102401310737], [0.8249961599508474], [0.7875172802211869], [0.7374942399262711], [0.6874967999590396], [0.6874967999590396], [0.7250012800163843], [0.7749987199836159], [0.8249961599508474], [0.8625006400081923], [0.8625006400081923], [0.8500076800983054], [0.8125032000409605], [0.7749987199836159], [0.7625057600737289], [0.7625057600737289], [0.7625057600737289], [0.7625057600737289], [0.7500128001638422], [0.7374942399262711], [0.7125083201064975], [0.6874967999590396], [0.6874967999590396], [0.6750038400491527], [0.6625108801392658], [0.650017920229379], [0.6250064000819211], [0.5999948799344632], [0.5625160002048027], [0.5375044800573449], [0.525011520147458], [0.5375044800573449], [0.5625160002048027], [0.6125134401720342], [0.637499359991808], [0.650017920229379], [0.5999948799344632], [0.48750704009011314], [0.3500076800983053], [0.23749423992627108], [0.18749679995903953], [0.22500128001638425], [0.36250064000819215], [0.5375044800573449], [0.6750038400491527], [0.7374942399262711], [0.6750038400491527], [0.5000000000000001], [0.262505760073729], [0.07500896011468947], [0.0], [0.0624903998771185], [0.23749423992627108], [0.4375096001228817], [0.5999948799344632], [0.6625108801392658], [0.5999948799344632], [0.46249551994265536], [0.32499615995084746], [0.262505760073729], [0.31250320004096055], [0.4249910398853106], [0.5750089601146896], [0.6874967999590396], [0.7000153601966106], [0.650017920229379], [0.5750089601146896], [0.5000000000000001], [0.46249551994265536], [0.47501408018022634], [0.48750704009011314], [0.47501408018022634], [0.4500025600327685], [0.4000051200655369], [0.374993599918079], [0.374993599918079], [0.4124980799754237], [0.46249551994265536], [0.5000000000000001], [0.5000000000000001], [0.46249551994265536], [0.4124980799754237], [0.374993599918079], [0.374993599918079], [0.4124980799754237], [0.4500025600327685], [0.46249551994265536], [0.4375096001228817], [0.374993599918079], [0.32499615995084746], [0.31250320004096055], [0.32499615995084746], [0.36250064000819215], [0.36250064000819215], [0.31250320004096055], [0.262505760073729], [0.25001280016384214], [0.30001024013107375], [0.4000051200655369], [0.525011520147458], [0.6125134401720342], [0.6625108801392658], [0.7000153601966106], [0.7374942399262711], [0.8000102401310737], [0.8750192002457632], [0.9250166402129949], [0.9375096001228816], [0.8750192002457632], [0.7625057600737289], [0.6125134401720342], [0.47501408018022634], [0.3875121601556501], [0.36250064000819215], [0.3875121601556501], [0.4375096001228817], [0.5000000000000001], [0.5375044800573449], [0.5499974399672316], [0.5499974399672316], [0.5499974399672316], [0.5875019200245764], [0.650017920229379], [0.7250012800163843], [0.8125032000409605], [0.8500076800983054], [0.8375147201884185], [0.7625057600737289], [0.6750038400491527], [0.6125134401720342]], "masks": [[1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1]], "evals": [[0.7374942399262711], [0.8125032000409605], [0.8375147201884185], [0.8000102401310737], [0.7250012800163843], [0.637499359991808], [0.5625160002048027], [0.5375044800573449], [0.5750089601146896], [0.637499359991808], [0.6750038400491527], [0.6750038400491527], [0.6250064000819211], [0.5375044800573449], [0.46249551994265536], [0.4249910398853106], [0.46249551994265536], [0.5375044800573449], [0.6125134401720342], [0.650017920229379], [0.637499359991808], [0.5875019200245764], [0.512492959909887], [0.46249551994265536], [0.47501408018022634], [0.5499974399672316], [0.650017920229379], [0.7625057600737289], [0.8125032000409605], [0.7875172802211869], [0.7000153601966106], [0.6125134401720342], [0.5499974399672316], [0.5499974399672316], [0.5999948799344632], [0.6625108801392658], [0.7125083201064975], [0.7374942399262711], [0.7374942399262711], [0.7125083201064975], [0.6874967999590396], [0.637499359991808], [0.5875019200245764], [0.525011520147458], [0.47501408018022634], [0.46249551994265536], [0.5000000000000001], [0.5375044800573449], [0.5499974399672316], [0.512492959909887], [0.47501408018022634], [0.4249910398853106], [0.4500025600327685], [0.5499974399672316], [0.7000153601966106], [0.8500076800983054], [0.9500025600327685], [0.9625211202703395], [0.9000051200655369], [0.8249961599508474], [0.7875172802211869], [0.8249961599508474], [0.9124980799754239], [0.9750140801802263], [1.0], [0.9625211202703395], [0.8750192002457632], [0.7749987199836159], [0.7000153601966106], [0.6625108801392658], [0.6625108801392658], [0.6750038400491527], [0.6625108801392658], [0.637499359991808], [0.5750089601146896], [0.5375044800573449], [0.5625160002048027], [0.6250064000819211], [0.7250012800163843], [0.7875172802211869], [0.7500128001638422], [0.6250064000819211], [0.48750704009011314], [0.4124980799754237], [0.4375096001228817], [0.5625160002048027], [0.7125083201064975], [0.8375147201884185], [0.8750192002457632], [0.8375147201884185], [0.7250012800163843], [0.5750089601146896], [0.46249551994265536], [0.4124980799754237], [0.4500025600327685], [0.5375044800573449], [0.6250064000819211], [0.6750038400491527], [0.6625108801392658], [0.6250064000819211], [0.5875019200245764], [0.5750089601146896], [0.5999948799344632], [0.6625108801392658], [0.7000153601966106], [0.7250012800163843], [0.7000153601966106], [0.6250064000819211], [0.525011520147458], [0.4375096001228817], [0.3875121601556501], [0.3875121601556501], [0.4249910398853106], [0.48750704009011314], [0.5375044800573449], [0.5750089601146896], [0.6125134401720342], [0.6625108801392658], [0.6874967999590396], [0.6874967999590396], [0.650017920229379], [0.5875019200245764], [0.5499974399672316], [0.5625160002048027], [0.637499359991808], [0.7374942399262711], [0.8000102401310737], [0.8249961599508474], [0.7875172802211869], [0.7374942399262711], [0.6874967999590396], [0.6874967999590396], [0.7250012800163843], [0.7749987199836159], [0.8249961599508474], [0.8625006400081923], [0.8625006400081923], [0.8500076800983054], [0.8125032000409605], [0.7749987199836159], [0.7625057600737289], [0.7625057600737289], [0.7625057600737289], [0.7625057600737289], [0.7500128001638422], [0.7374942399262711], [0.7125083201064975], [0.6874967999590396], [0.6874967999590396], [0.6750038400491527], [0.6625108801392658], [0.650017920229379], [0.6250064000819211], [0.5999948799344632], [0.5625160002048027], [0.5375044800573449], [0.525011520147458], [0.5375044800573449], [0.5625160002048027], [0.6125134401720342], [0.637499359991808], [0.650017920229379], [0.5999948799344632], [0.48750704009011314], [0.3500076800983053], [0.23749423992627108], [0.18749679995903953], [0.22500128001638425], [0.36250064000819215], [0.5375044800573449], [0.6750038400491527], [0.7374942399262711], [0.6750038400491527], [0.5000000000000001], [0.262505760073729], [0.07500896011468947], [0.0], [0.0624903998771185], [0.23749423992627108], [0.4375096001228817], [0.5999948799344632], [0.6625108801392658], [0.5999948799344632], [0.46249551994265536], [0.32499615995084746], [0.262505760073729], [0.31250320004096055], [0.4249910398853106], [0.5750089601146896], [0.6874967999590396], [0.7000153601966106], [0.650017920229379], [0.5750089601146896], [0.5000000000000001], [0.46249551994265536], [0.47501408018022634], [0.48750704009011314], [0.47501408018022634], [0.4500025600327685], [0.4000051200655369], [0.374993599918079], [0.374993599918079], [0.4124980799754237], [0.46249551994265536], [0.5000000000000001], [0.5000000000000001], [0.46249551994265536], [0.4124980799754237], [0.374993599918079], [0.374993599918079], [0.4124980799754237], [0.4500025600327685], [0.46249551994265536], [0.4375096001228817], [0.374993599918079], [0.32499615995084746], [0.31250320004096055], [0.32499615995084746], [0.36250064000819215], [0.36250064000819215], [0.31250320004096055], [0.262505760073729], [0.25001280016384214], [0.30001024013107375], [0.4000051200655369], [0.525011520147458], [0.6125134401720342], [0.6625108801392658], [0.7000153601966106], [0.7374942399262711], [0.8000102401310737], [0.8750192002457632], [0.9250166402129949], [0.9375096001228816], [0.8750192002457632], [0.7625057600737289], [0.6125134401720342], [0.47501408018022634], [0.3875121601556501], [0.36250064000819215], [0.3875121601556501], [0.4375096001228817], [0.5000000000000001], [0.5375044800573449], [0.5499974399672316], [0.5499974399672316], [0.5499974399672316], [0.5875019200245764], [0.650017920229379], [0.7250012800163843], [0.8125032000409605], [0.8500076800983054], [0.8375147201884185], [0.7625057600737289], [0.6750038400491527], [0.6125134401720342]], "eval_masks": [[0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0]], "forwards": [[0.7374942399262711], [0.8125032000409605], [0.8375147201884185], [0.8000102401310737], [0.7250012800163843], [0.637499359991808], [0.5625160002048027], [0.5375044800573449], [0.5750089601146896], [0.637499359991808], [0.6750038400491527], [0.6750038400491527], [0.6250064000819211], [0.5375044800573449], [0.46249551994265536], [0.4249910398853106], [0.46249551994265536], [0.5375044800573449], [0.6125134401720342], [0.650017920229379], [0.637499359991808], [0.5875019200245764], [0.512492959909887], [0.46249551994265536], [0.47501408018022634], [0.5499974399672316], [0.650017920229379], [0.7625057600737289], [0.8125032000409605], [0.7875172802211869], [0.7000153601966106], [0.6125134401720342], [0.5499974399672316], [0.5499974399672316], [0.5999948799344632], [0.6625108801392658], [0.7125083201064975], [0.7374942399262711], [0.7374942399262711], [0.7125083201064975], [0.6874967999590396], [0.637499359991808], [0.5875019200245764], [0.525011520147458], [0.47501408018022634], [0.46249551994265536], [0.5000000000000001], [0.5375044800573449], [0.5499974399672316], [0.512492959909887], [0.47501408018022634], [0.4249910398853106], [0.4500025600327685], [0.5499974399672316], [0.7000153601966106], [0.8500076800983054], [0.9500025600327685], [0.9625211202703395], [0.9000051200655369], [0.8249961599508474], [0.7875172802211869], [0.8249961599508474], [0.9124980799754239], [0.9750140801802263], [1.0], [0.9625211202703395], [0.8750192002457632], [0.7749987199836159], [0.7000153601966106], [0.6625108801392658], [0.6625108801392658], [0.6750038400491527], [0.6625108801392658], [0.637499359991808], [0.5750089601146896], [0.5375044800573449], [0.5625160002048027], [0.6250064000819211], [0.7250012800163843], [0.7875172802211869], [0.7500128001638422], [0.6250064000819211], [0.48750704009011314], [0.4124980799754237], [0.4375096001228817], [0.5625160002048027], [0.7125083201064975], [0.8375147201884185], [0.8750192002457632], [0.8375147201884185], [0.7250012800163843], [0.5750089601146896], [0.46249551994265536], [0.4124980799754237], [0.4500025600327685], [0.5375044800573449], [0.6250064000819211], [0.6750038400491527], [0.6625108801392658], [0.6250064000819211], [0.5875019200245764], [0.5750089601146896], [0.5999948799344632], [0.6625108801392658], [0.7000153601966106], [0.7250012800163843], [0.7000153601966106], [0.6250064000819211], [0.525011520147458], [0.4375096001228817], [0.3875121601556501], [0.3875121601556501], [0.4249910398853106], [0.48750704009011314], [0.5375044800573449], [0.5750089601146896], [0.6125134401720342], [0.6625108801392658], [0.6874967999590396], [0.6874967999590396], [0.650017920229379], [0.5875019200245764], [0.5499974399672316], [0.5625160002048027], [0.637499359991808], [0.7374942399262711], [0.8000102401310737], [0.8249961599508474], [0.7875172802211869], [0.7374942399262711], [0.6874967999590396], [0.6874967999590396], [0.7250012800163843], [0.7749987199836159], [0.8249961599508474], [0.8625006400081923], [0.8625006400081923], [0.8500076800983054], [0.8125032000409605], [0.7749987199836159], [0.7625057600737289], [0.7625057600737289], [0.7625057600737289], [0.7625057600737289], [0.7500128001638422], [0.7374942399262711], [0.7125083201064975], [0.6874967999590396], [0.6874967999590396], [0.6750038400491527], [0.6625108801392658], [0.650017920229379], [0.6250064000819211], [0.5999948799344632], [0.5625160002048027], [0.5375044800573449], [0.525011520147458], [0.5375044800573449], [0.5625160002048027], [0.6125134401720342], [0.637499359991808], [0.650017920229379], [0.5999948799344632], [0.48750704009011314], [0.3500076800983053], [0.23749423992627108], [0.18749679995903953], [0.22500128001638425], [0.36250064000819215], [0.5375044800573449], [0.6750038400491527], [0.7374942399262711], [0.6750038400491527], [0.5000000000000001], [0.262505760073729], [0.07500896011468947], [0.0], [0.0624903998771185], [0.23749423992627108], [0.4375096001228817], [0.5999948799344632], [0.6625108801392658], [0.5999948799344632], [0.46249551994265536], [0.32499615995084746], [0.262505760073729], [0.31250320004096055], [0.4249910398853106], [0.5750089601146896], [0.6874967999590396], [0.7000153601966106], [0.650017920229379], [0.5750089601146896], [0.5000000000000001], [0.46249551994265536], [0.47501408018022634], [0.48750704009011314], [0.47501408018022634], [0.4500025600327685], [0.4000051200655369], [0.374993599918079], [0.374993599918079], [0.4124980799754237], [0.46249551994265536], [0.5000000000000001], [0.5000000000000001], [0.46249551994265536], [0.4124980799754237], [0.374993599918079], [0.374993599918079], [0.4124980799754237], [0.4500025600327685], [0.46249551994265536], [0.4375096001228817], [0.374993599918079], [0.32499615995084746], [0.31250320004096055], [0.32499615995084746], [0.36250064000819215], [0.36250064000819215], [0.31250320004096055], [0.262505760073729], [0.25001280016384214], [0.30001024013107375], [0.4000051200655369], [0.525011520147458], [0.6125134401720342], [0.6625108801392658], [0.7000153601966106], [0.7374942399262711], [0.8000102401310737], [0.8750192002457632], [0.9250166402129949], [0.9375096001228816], [0.8750192002457632], [0.7625057600737289], [0.6125134401720342], [0.47501408018022634], [0.3875121601556501], [0.36250064000819215], [0.3875121601556501], [0.4375096001228817], [0.5000000000000001], [0.5375044800573449], [0.5499974399672316], [0.5499974399672316], [0.5499974399672316], [0.5875019200245764], [0.650017920229379], [0.7250012800163843], [0.8125032000409605], [0.8500076800983054], [0.8375147201884185], [0.7625057600737289], [0.6750038400491527], [0.6125134401720342]], "deltas": [[1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0]]}} -{"label": 0, "forward": {"values": [[1.0], [0.959684212264852], [0.9354881331857896], [0.9274282788577469], [0.9193519084347697], [0.911292054106727], [0.9193519084347697], [0.9354881331857896], [0.9354881331857896], [0.911292054106727], [0.8467801872925166], [0.7741919500553288], [0.7257997918972038], [0.733876162320181], [0.7822518043833715], [0.8467801872925166], [0.870976266371579], [0.8467801872925166], [0.7822518043833715], [0.7177399375691611], [0.7096800832411184], [0.733876162320181], [0.7822518043833715], [0.8145242538854113], [0.8064478834624341], [0.7741919500553288], [0.733876162320181], [0.7096800832411184], [0.7177399375691611], [0.7580722413992436], [0.8064478834624341], [0.8548400416205593], [0.911292054106727], [0.9354881331857896], [0.9354881331857896], [0.911292054106727], [0.870976266371579], [0.8387038168695394], [0.8467801872925166], [0.8951558293557071], [0.9274282788577469], [0.9274282788577469], [0.8790361206996218], [0.8064478834624341], [0.7661320957272862], [0.7741919500553288], [0.8064478834624341], [0.8387038168695394], [0.8306439625414967], [0.7983880291343914], [0.7661320957272862], [0.7661320957272862], [0.7741919500553288], [0.7741919500553288], [0.7580722413992436], [0.7177399375691611], [0.6935438584900986], [0.6774241498340133], [0.6693642955059707], [0.6532280707549507], [0.645168216426908], [0.6532280707549507], [0.7016202289130757], [0.7903281748063488], [0.8628998959486018], [0.8870959750276645], [0.8548400416205593], [0.7822518043833715], [0.7177399375691611], [0.7016202289130757], [0.7419360166482237], [0.8064478834624341], [0.8790361206996218], [0.9354881331857896], [0.9435479875138323], [0.870976266371579], [0.7177399375691611], [0.5161279667035527], [0.33871207491700667], [0.2903199167588816], [0.40322394173121706], [0.6290319916758881], [0.8548400416205593], [0.951607841841875], [0.870976266371579], [0.6693642955059707], [0.46773580854542757], [0.3548482996680265], [0.3548482996680265], [0.41130031215419427], [0.46773580854542757], [0.46773580854542757], [0.41936016648223695], [0.37902786265215455], [0.3629081539960692], [0.3951640874031744], [0.4354798751383223], [0.4596759542173849], [0.44355624556129947], [0.40322394173121706], [0.3629081539960692], [0.330652220588964], [0.3225758501659868], [0.30645614150990136], [0.2822600624308389], [0.26612383767981895], [0.25806398335177627], [0.2822600624308389], [0.33871207491700667], [0.3951640874031744], [0.42742002081027963], [0.42742002081027963], [0.3951640874031744], [0.3467719292450493], [0.3145159958379441], [0.2983962871818587], [0.2983962871818587], [0.3145159958379441], [0.3225758501659868], [0.33871207491700667], [0.330652220588964], [0.2903199167588816], [0.22580804994467113], [0.1612961831304607], [0.12904024972335543], [0.1371001040513981], [0.1854922622095232], [0.2338679042727138], [0.24194427469569094], [0.19355211653756588], [0.11290402497233562], [0.032255933407105274], [0.0], [0.04839215815812509], [0.1612961831304607], [0.2903199167588816], [0.37902786265215455], [0.3951640874031744], [0.330652220588964], [0.24194427469569094], [0.1854922622095232], [0.1612961831304607], [0.17741589178654604], [0.20161197086560853], [0.20161197086560853], [0.20161197086560853], [0.2338679042727138], [0.2983962871818587], [0.37902786265215455], [0.41936016648223695], [0.38710423307513175], [0.30645614150990136], [0.21774819561662848], [0.17741589178654604], [0.21774819561662848], [0.3145159958379441], [0.41130031215419427], [0.45161609988934215], [0.42742002081027963], [0.3629081539960692], [0.2822600624308389], [0.21774819561662848], [0.1693560374585034], [0.15323632880241805], [0.17741589178654604], [0.25000412902373365], [0.37902786265215455], [0.50806811237551], [0.5887162039407403], [0.5887162039407403], [0.5000082580474673], [0.38710423307513175], [0.30645614150990136], [0.3145159958379441], [0.40322394173121706], [0.5161279667035527], [0.6129122830198027], [0.645168216426908], [0.6129122830198027], [0.5564602705336351], [0.5241878210315953], [0.5161279667035527], [0.5403240457826152], [0.5564602705336351], [0.5403240457826152], [0.5161279667035527], [0.5000082580474673], [0.50806811237551], [0.5241878210315953], [0.5322641914545725], [0.5161279667035527], [0.4919318876244901], [0.46773580854542757], [0.4596759542173849], [0.4758121789684048], [0.4919318876244901], [0.5161279667035527], [0.5403240457826152], [0.5645201248616778], [0.5806398335177632], [0.5645201248616778], [0.50806811237551], [0.45161609988934215], [0.42742002081027963], [0.4919318876244901], [0.6048359125968256], [0.7177399375691611], [0.7741919500553288], [0.7096800832411184], [0.5806398335177632], [0.4596759542173849], [0.41130031215419427], [0.4354798751383223], [0.50806811237551], [0.5725799791897205], [0.6048359125968256], [0.6129122830198027], [0.6290319916758881], [0.6532280707549507], [0.6693642955059707], [0.6693642955059707], [0.6370918460039309], [0.5887162039407403], [0.5645201248616778], [0.5806398335177632], [0.645168216426908], [0.7419360166482237], [0.8306439625414967], [0.8790361206996218], [0.870976266371579], [0.8145242538854113], [0.7661320957272862], [0.7499958709762664], [0.7822518043833715], [0.8306439625414967], [0.8467801872925166], [0.822584108213454], [0.7661320957272862], [0.7096800832411184], [0.6935438584900986], [0.7016202289130757], [0.7257997918972038], [0.7257997918972038], [0.7016202289130757], [0.6774241498340133], [0.6612879250829934], [0.6370918460039309], [0.5967760582687829], [0.5483839001106579], [0.5241878210315953], [0.5483839001106579], [0.6370918460039309], [0.7580722413992436], [0.8306439625414967], [0.822584108213454], [0.7177399375691611]], "masks": [[1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1]], "evals": [[1.0], [0.959684212264852], [0.9354881331857896], [0.9274282788577469], [0.9193519084347697], [0.911292054106727], [0.9193519084347697], [0.9354881331857896], [0.9354881331857896], [0.911292054106727], [0.8467801872925166], [0.7741919500553288], [0.7257997918972038], [0.733876162320181], [0.7822518043833715], [0.8467801872925166], [0.870976266371579], [0.8467801872925166], [0.7822518043833715], [0.7177399375691611], [0.7096800832411184], [0.733876162320181], [0.7822518043833715], [0.8145242538854113], [0.8064478834624341], [0.7741919500553288], [0.733876162320181], [0.7096800832411184], [0.7177399375691611], [0.7580722413992436], [0.8064478834624341], [0.8548400416205593], [0.911292054106727], [0.9354881331857896], [0.9354881331857896], [0.911292054106727], [0.870976266371579], [0.8387038168695394], [0.8467801872925166], [0.8951558293557071], [0.9274282788577469], [0.9274282788577469], [0.8790361206996218], [0.8064478834624341], [0.7661320957272862], [0.7741919500553288], [0.8064478834624341], [0.8387038168695394], [0.8306439625414967], [0.7983880291343914], [0.7661320957272862], [0.7661320957272862], [0.7741919500553288], [0.7741919500553288], [0.7580722413992436], [0.7177399375691611], [0.6935438584900986], [0.6774241498340133], [0.6693642955059707], [0.6532280707549507], [0.645168216426908], [0.6532280707549507], [0.7016202289130757], [0.7903281748063488], [0.8628998959486018], [0.8870959750276645], [0.8548400416205593], [0.7822518043833715], [0.7177399375691611], [0.7016202289130757], [0.7419360166482237], [0.8064478834624341], [0.8790361206996218], [0.9354881331857896], [0.9435479875138323], [0.870976266371579], [0.7177399375691611], [0.5161279667035527], [0.33871207491700667], [0.2903199167588816], [0.40322394173121706], [0.6290319916758881], [0.8548400416205593], [0.951607841841875], [0.870976266371579], [0.6693642955059707], [0.46773580854542757], [0.3548482996680265], [0.3548482996680265], [0.41130031215419427], [0.46773580854542757], [0.46773580854542757], [0.41936016648223695], [0.37902786265215455], [0.3629081539960692], [0.3951640874031744], [0.4354798751383223], [0.4596759542173849], [0.44355624556129947], [0.40322394173121706], [0.3629081539960692], [0.330652220588964], [0.3225758501659868], [0.30645614150990136], [0.2822600624308389], [0.26612383767981895], [0.25806398335177627], [0.2822600624308389], [0.33871207491700667], [0.3951640874031744], [0.42742002081027963], [0.42742002081027963], [0.3951640874031744], [0.3467719292450493], [0.3145159958379441], [0.2983962871818587], [0.2983962871818587], [0.3145159958379441], [0.3225758501659868], [0.33871207491700667], [0.330652220588964], [0.2903199167588816], [0.22580804994467113], [0.1612961831304607], [0.12904024972335543], [0.1371001040513981], [0.1854922622095232], [0.2338679042727138], [0.24194427469569094], [0.19355211653756588], [0.11290402497233562], [0.032255933407105274], [0.0], [0.04839215815812509], [0.1612961831304607], [0.2903199167588816], [0.37902786265215455], [0.3951640874031744], [0.330652220588964], [0.24194427469569094], [0.1854922622095232], [0.1612961831304607], [0.17741589178654604], [0.20161197086560853], [0.20161197086560853], [0.20161197086560853], [0.2338679042727138], [0.2983962871818587], [0.37902786265215455], [0.41936016648223695], [0.38710423307513175], [0.30645614150990136], [0.21774819561662848], [0.17741589178654604], [0.21774819561662848], [0.3145159958379441], [0.41130031215419427], [0.45161609988934215], [0.42742002081027963], [0.3629081539960692], [0.2822600624308389], [0.21774819561662848], [0.1693560374585034], [0.15323632880241805], [0.17741589178654604], [0.25000412902373365], [0.37902786265215455], [0.50806811237551], [0.5887162039407403], [0.5887162039407403], [0.5000082580474673], [0.38710423307513175], [0.30645614150990136], [0.3145159958379441], [0.40322394173121706], [0.5161279667035527], [0.6129122830198027], [0.645168216426908], [0.6129122830198027], [0.5564602705336351], [0.5241878210315953], [0.5161279667035527], [0.5403240457826152], [0.5564602705336351], [0.5403240457826152], [0.5161279667035527], [0.5000082580474673], [0.50806811237551], [0.5241878210315953], [0.5322641914545725], [0.5161279667035527], [0.4919318876244901], [0.46773580854542757], [0.4596759542173849], [0.4758121789684048], [0.4919318876244901], [0.5161279667035527], [0.5403240457826152], [0.5645201248616778], [0.5806398335177632], [0.5645201248616778], [0.50806811237551], [0.45161609988934215], [0.42742002081027963], [0.4919318876244901], [0.6048359125968256], [0.7177399375691611], [0.7741919500553288], [0.7096800832411184], [0.5806398335177632], [0.4596759542173849], [0.41130031215419427], [0.4354798751383223], [0.50806811237551], [0.5725799791897205], [0.6048359125968256], [0.6129122830198027], [0.6290319916758881], [0.6532280707549507], [0.6693642955059707], [0.6693642955059707], [0.6370918460039309], [0.5887162039407403], [0.5645201248616778], [0.5806398335177632], [0.645168216426908], [0.7419360166482237], [0.8306439625414967], [0.8790361206996218], [0.870976266371579], [0.8145242538854113], [0.7661320957272862], [0.7499958709762664], [0.7822518043833715], [0.8306439625414967], [0.8467801872925166], [0.822584108213454], [0.7661320957272862], [0.7096800832411184], [0.6935438584900986], [0.7016202289130757], [0.7257997918972038], [0.7257997918972038], [0.7016202289130757], [0.6774241498340133], [0.6612879250829934], [0.6370918460039309], [0.5967760582687829], [0.5483839001106579], [0.5241878210315953], [0.5483839001106579], [0.6370918460039309], [0.7580722413992436], [0.8306439625414967], [0.822584108213454], [0.7177399375691611]], "eval_masks": [[0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0]], "forwards": [[1.0], [0.959684212264852], [0.9354881331857896], [0.9274282788577469], [0.9193519084347697], [0.911292054106727], [0.9193519084347697], [0.9354881331857896], [0.9354881331857896], [0.911292054106727], [0.8467801872925166], [0.7741919500553288], [0.7257997918972038], [0.733876162320181], [0.7822518043833715], [0.8467801872925166], [0.870976266371579], [0.8467801872925166], [0.7822518043833715], [0.7177399375691611], [0.7096800832411184], [0.733876162320181], [0.7822518043833715], [0.8145242538854113], [0.8064478834624341], [0.7741919500553288], [0.733876162320181], [0.7096800832411184], [0.7177399375691611], [0.7580722413992436], [0.8064478834624341], [0.8548400416205593], [0.911292054106727], [0.9354881331857896], [0.9354881331857896], [0.911292054106727], [0.870976266371579], [0.8387038168695394], [0.8467801872925166], [0.8951558293557071], [0.9274282788577469], [0.9274282788577469], [0.8790361206996218], [0.8064478834624341], [0.7661320957272862], [0.7741919500553288], [0.8064478834624341], [0.8387038168695394], [0.8306439625414967], [0.7983880291343914], [0.7661320957272862], [0.7661320957272862], [0.7741919500553288], [0.7741919500553288], [0.7580722413992436], [0.7177399375691611], [0.6935438584900986], [0.6774241498340133], [0.6693642955059707], [0.6532280707549507], [0.645168216426908], [0.6532280707549507], [0.7016202289130757], [0.7903281748063488], [0.8628998959486018], [0.8870959750276645], [0.8548400416205593], [0.7822518043833715], [0.7177399375691611], [0.7016202289130757], [0.7419360166482237], [0.8064478834624341], [0.8790361206996218], [0.9354881331857896], [0.9435479875138323], [0.870976266371579], [0.7177399375691611], [0.5161279667035527], [0.33871207491700667], [0.2903199167588816], [0.40322394173121706], [0.6290319916758881], [0.8548400416205593], [0.951607841841875], [0.870976266371579], [0.6693642955059707], [0.46773580854542757], [0.3548482996680265], [0.3548482996680265], [0.41130031215419427], [0.46773580854542757], [0.46773580854542757], [0.41936016648223695], [0.37902786265215455], [0.3629081539960692], [0.3951640874031744], [0.4354798751383223], [0.4596759542173849], [0.44355624556129947], [0.40322394173121706], [0.3629081539960692], [0.330652220588964], [0.3225758501659868], [0.30645614150990136], [0.2822600624308389], [0.26612383767981895], [0.25806398335177627], [0.2822600624308389], [0.33871207491700667], [0.3951640874031744], [0.42742002081027963], [0.42742002081027963], [0.3951640874031744], [0.3467719292450493], [0.3145159958379441], [0.2983962871818587], [0.2983962871818587], [0.3145159958379441], [0.3225758501659868], [0.33871207491700667], [0.330652220588964], [0.2903199167588816], [0.22580804994467113], [0.1612961831304607], [0.12904024972335543], [0.1371001040513981], [0.1854922622095232], [0.2338679042727138], [0.24194427469569094], [0.19355211653756588], [0.11290402497233562], [0.032255933407105274], [0.0], [0.04839215815812509], [0.1612961831304607], [0.2903199167588816], [0.37902786265215455], [0.3951640874031744], [0.330652220588964], [0.24194427469569094], [0.1854922622095232], [0.1612961831304607], [0.17741589178654604], [0.20161197086560853], [0.20161197086560853], [0.20161197086560853], [0.2338679042727138], [0.2983962871818587], [0.37902786265215455], [0.41936016648223695], [0.38710423307513175], [0.30645614150990136], [0.21774819561662848], [0.17741589178654604], [0.21774819561662848], [0.3145159958379441], [0.41130031215419427], [0.45161609988934215], [0.42742002081027963], [0.3629081539960692], [0.2822600624308389], [0.21774819561662848], [0.1693560374585034], [0.15323632880241805], [0.17741589178654604], [0.25000412902373365], [0.37902786265215455], [0.50806811237551], [0.5887162039407403], [0.5887162039407403], [0.5000082580474673], [0.38710423307513175], [0.30645614150990136], [0.3145159958379441], [0.40322394173121706], [0.5161279667035527], [0.6129122830198027], [0.645168216426908], [0.6129122830198027], [0.5564602705336351], [0.5241878210315953], [0.5161279667035527], [0.5403240457826152], [0.5564602705336351], [0.5403240457826152], [0.5161279667035527], [0.5000082580474673], [0.50806811237551], [0.5241878210315953], [0.5322641914545725], [0.5161279667035527], [0.4919318876244901], [0.46773580854542757], [0.4596759542173849], [0.4758121789684048], [0.4919318876244901], [0.5161279667035527], [0.5403240457826152], [0.5645201248616778], [0.5806398335177632], [0.5645201248616778], [0.50806811237551], [0.45161609988934215], [0.42742002081027963], [0.4919318876244901], [0.6048359125968256], [0.7177399375691611], [0.7741919500553288], [0.7096800832411184], [0.5806398335177632], [0.4596759542173849], [0.41130031215419427], [0.4354798751383223], [0.50806811237551], [0.5725799791897205], [0.6048359125968256], [0.6129122830198027], [0.6290319916758881], [0.6532280707549507], [0.6693642955059707], [0.6693642955059707], [0.6370918460039309], [0.5887162039407403], [0.5645201248616778], [0.5806398335177632], [0.645168216426908], [0.7419360166482237], [0.8306439625414967], [0.8790361206996218], [0.870976266371579], [0.8145242538854113], [0.7661320957272862], [0.7499958709762664], [0.7822518043833715], [0.8306439625414967], [0.8467801872925166], [0.822584108213454], [0.7661320957272862], [0.7096800832411184], [0.6935438584900986], [0.7016202289130757], [0.7257997918972038], [0.7257997918972038], [0.7016202289130757], [0.6774241498340133], [0.6612879250829934], [0.6370918460039309], [0.5967760582687829], [0.5483839001106579], [0.5241878210315953], [0.5483839001106579], [0.6370918460039309], [0.7580722413992436], [0.8306439625414967], [0.822584108213454], [0.7177399375691611]], "deltas": [[1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0]]}, "backward": {"values": [[0.7177399375691611], [0.822584108213454], [0.8306439625414967], [0.7580722413992436], [0.6370918460039309], [0.5483839001106579], [0.5241878210315953], [0.5483839001106579], [0.5967760582687829], [0.6370918460039309], [0.6612879250829934], [0.6774241498340133], [0.7016202289130757], [0.7257997918972038], [0.7257997918972038], [0.7016202289130757], [0.6935438584900986], [0.7096800832411184], [0.7661320957272862], [0.822584108213454], [0.8467801872925166], [0.8306439625414967], [0.7822518043833715], [0.7499958709762664], [0.7661320957272862], [0.8145242538854113], [0.870976266371579], [0.8790361206996218], [0.8306439625414967], [0.7419360166482237], [0.645168216426908], [0.5806398335177632], [0.5645201248616778], [0.5887162039407403], [0.6370918460039309], [0.6693642955059707], [0.6693642955059707], [0.6532280707549507], [0.6290319916758881], [0.6129122830198027], [0.6048359125968256], [0.5725799791897205], [0.50806811237551], [0.4354798751383223], [0.41130031215419427], [0.4596759542173849], [0.5806398335177632], [0.7096800832411184], [0.7741919500553288], [0.7177399375691611], [0.6048359125968256], [0.4919318876244901], [0.42742002081027963], [0.45161609988934215], [0.50806811237551], [0.5645201248616778], [0.5806398335177632], [0.5645201248616778], [0.5403240457826152], [0.5161279667035527], [0.4919318876244901], [0.4758121789684048], [0.4596759542173849], [0.46773580854542757], [0.4919318876244901], [0.5161279667035527], [0.5322641914545725], [0.5241878210315953], [0.50806811237551], [0.5000082580474673], [0.5161279667035527], [0.5403240457826152], [0.5564602705336351], [0.5403240457826152], [0.5161279667035527], [0.5241878210315953], [0.5564602705336351], [0.6129122830198027], [0.645168216426908], [0.6129122830198027], [0.5161279667035527], [0.40322394173121706], [0.3145159958379441], [0.30645614150990136], [0.38710423307513175], [0.5000082580474673], [0.5887162039407403], [0.5887162039407403], [0.50806811237551], [0.37902786265215455], [0.25000412902373365], [0.17741589178654604], [0.15323632880241805], [0.1693560374585034], [0.21774819561662848], [0.2822600624308389], [0.3629081539960692], [0.42742002081027963], [0.45161609988934215], [0.41130031215419427], [0.3145159958379441], [0.21774819561662848], [0.17741589178654604], [0.21774819561662848], [0.30645614150990136], [0.38710423307513175], [0.41936016648223695], [0.37902786265215455], [0.2983962871818587], [0.2338679042727138], [0.20161197086560853], [0.20161197086560853], [0.20161197086560853], [0.17741589178654604], [0.1612961831304607], [0.1854922622095232], [0.24194427469569094], [0.330652220588964], [0.3951640874031744], [0.37902786265215455], [0.2903199167588816], [0.1612961831304607], [0.04839215815812509], [0.0], [0.032255933407105274], [0.11290402497233562], [0.19355211653756588], [0.24194427469569094], [0.2338679042727138], [0.1854922622095232], [0.1371001040513981], [0.12904024972335543], [0.1612961831304607], [0.22580804994467113], [0.2903199167588816], [0.330652220588964], [0.33871207491700667], [0.3225758501659868], [0.3145159958379441], [0.2983962871818587], [0.2983962871818587], [0.3145159958379441], [0.3467719292450493], [0.3951640874031744], [0.42742002081027963], [0.42742002081027963], [0.3951640874031744], [0.33871207491700667], [0.2822600624308389], [0.25806398335177627], [0.26612383767981895], [0.2822600624308389], [0.30645614150990136], [0.3225758501659868], [0.330652220588964], [0.3629081539960692], [0.40322394173121706], [0.44355624556129947], [0.4596759542173849], [0.4354798751383223], [0.3951640874031744], [0.3629081539960692], [0.37902786265215455], [0.41936016648223695], [0.46773580854542757], [0.46773580854542757], [0.41130031215419427], [0.3548482996680265], [0.3548482996680265], [0.46773580854542757], [0.6693642955059707], [0.870976266371579], [0.951607841841875], [0.8548400416205593], [0.6290319916758881], [0.40322394173121706], [0.2903199167588816], [0.33871207491700667], [0.5161279667035527], [0.7177399375691611], [0.870976266371579], [0.9435479875138323], [0.9354881331857896], [0.8790361206996218], [0.8064478834624341], [0.7419360166482237], [0.7016202289130757], [0.7177399375691611], [0.7822518043833715], [0.8548400416205593], [0.8870959750276645], [0.8628998959486018], [0.7903281748063488], [0.7016202289130757], [0.6532280707549507], [0.645168216426908], [0.6532280707549507], [0.6693642955059707], [0.6774241498340133], [0.6935438584900986], [0.7177399375691611], [0.7580722413992436], [0.7741919500553288], [0.7741919500553288], [0.7661320957272862], [0.7661320957272862], [0.7983880291343914], [0.8306439625414967], [0.8387038168695394], [0.8064478834624341], [0.7741919500553288], [0.7661320957272862], [0.8064478834624341], [0.8790361206996218], [0.9274282788577469], [0.9274282788577469], [0.8951558293557071], [0.8467801872925166], [0.8387038168695394], [0.870976266371579], [0.911292054106727], [0.9354881331857896], [0.9354881331857896], [0.911292054106727], [0.8548400416205593], [0.8064478834624341], [0.7580722413992436], [0.7177399375691611], [0.7096800832411184], [0.733876162320181], [0.7741919500553288], [0.8064478834624341], [0.8145242538854113], [0.7822518043833715], [0.733876162320181], [0.7096800832411184], [0.7177399375691611], [0.7822518043833715], [0.8467801872925166], [0.870976266371579], [0.8467801872925166], [0.7822518043833715], [0.733876162320181], [0.7257997918972038], [0.7741919500553288], [0.8467801872925166], [0.911292054106727], [0.9354881331857896], [0.9354881331857896], [0.9193519084347697], [0.911292054106727], [0.9193519084347697], [0.9274282788577469], [0.9354881331857896], [0.959684212264852], [1.0]], "masks": [[1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1]], "evals": [[0.7177399375691611], [0.822584108213454], [0.8306439625414967], [0.7580722413992436], [0.6370918460039309], [0.5483839001106579], [0.5241878210315953], [0.5483839001106579], [0.5967760582687829], [0.6370918460039309], [0.6612879250829934], [0.6774241498340133], [0.7016202289130757], [0.7257997918972038], [0.7257997918972038], [0.7016202289130757], [0.6935438584900986], [0.7096800832411184], [0.7661320957272862], [0.822584108213454], [0.8467801872925166], [0.8306439625414967], [0.7822518043833715], [0.7499958709762664], [0.7661320957272862], [0.8145242538854113], [0.870976266371579], [0.8790361206996218], [0.8306439625414967], [0.7419360166482237], [0.645168216426908], [0.5806398335177632], [0.5645201248616778], [0.5887162039407403], [0.6370918460039309], [0.6693642955059707], [0.6693642955059707], [0.6532280707549507], [0.6290319916758881], [0.6129122830198027], [0.6048359125968256], [0.5725799791897205], [0.50806811237551], [0.4354798751383223], [0.41130031215419427], [0.4596759542173849], [0.5806398335177632], [0.7096800832411184], [0.7741919500553288], [0.7177399375691611], [0.6048359125968256], [0.4919318876244901], [0.42742002081027963], [0.45161609988934215], [0.50806811237551], [0.5645201248616778], [0.5806398335177632], [0.5645201248616778], [0.5403240457826152], [0.5161279667035527], [0.4919318876244901], [0.4758121789684048], [0.4596759542173849], [0.46773580854542757], [0.4919318876244901], [0.5161279667035527], [0.5322641914545725], [0.5241878210315953], [0.50806811237551], [0.5000082580474673], [0.5161279667035527], [0.5403240457826152], [0.5564602705336351], [0.5403240457826152], [0.5161279667035527], [0.5241878210315953], [0.5564602705336351], [0.6129122830198027], [0.645168216426908], [0.6129122830198027], [0.5161279667035527], [0.40322394173121706], [0.3145159958379441], [0.30645614150990136], [0.38710423307513175], [0.5000082580474673], [0.5887162039407403], [0.5887162039407403], [0.50806811237551], [0.37902786265215455], [0.25000412902373365], [0.17741589178654604], [0.15323632880241805], [0.1693560374585034], [0.21774819561662848], [0.2822600624308389], [0.3629081539960692], [0.42742002081027963], [0.45161609988934215], [0.41130031215419427], [0.3145159958379441], [0.21774819561662848], [0.17741589178654604], [0.21774819561662848], [0.30645614150990136], [0.38710423307513175], [0.41936016648223695], [0.37902786265215455], [0.2983962871818587], [0.2338679042727138], [0.20161197086560853], [0.20161197086560853], [0.20161197086560853], [0.17741589178654604], [0.1612961831304607], [0.1854922622095232], [0.24194427469569094], [0.330652220588964], [0.3951640874031744], [0.37902786265215455], [0.2903199167588816], [0.1612961831304607], [0.04839215815812509], [0.0], [0.032255933407105274], [0.11290402497233562], [0.19355211653756588], [0.24194427469569094], [0.2338679042727138], [0.1854922622095232], [0.1371001040513981], [0.12904024972335543], [0.1612961831304607], [0.22580804994467113], [0.2903199167588816], [0.330652220588964], [0.33871207491700667], [0.3225758501659868], [0.3145159958379441], [0.2983962871818587], [0.2983962871818587], [0.3145159958379441], [0.3467719292450493], [0.3951640874031744], [0.42742002081027963], [0.42742002081027963], [0.3951640874031744], [0.33871207491700667], [0.2822600624308389], [0.25806398335177627], [0.26612383767981895], [0.2822600624308389], [0.30645614150990136], [0.3225758501659868], [0.330652220588964], [0.3629081539960692], [0.40322394173121706], [0.44355624556129947], [0.4596759542173849], [0.4354798751383223], [0.3951640874031744], [0.3629081539960692], [0.37902786265215455], [0.41936016648223695], [0.46773580854542757], [0.46773580854542757], [0.41130031215419427], [0.3548482996680265], [0.3548482996680265], [0.46773580854542757], [0.6693642955059707], [0.870976266371579], [0.951607841841875], [0.8548400416205593], [0.6290319916758881], [0.40322394173121706], [0.2903199167588816], [0.33871207491700667], [0.5161279667035527], [0.7177399375691611], [0.870976266371579], [0.9435479875138323], [0.9354881331857896], [0.8790361206996218], [0.8064478834624341], [0.7419360166482237], [0.7016202289130757], [0.7177399375691611], [0.7822518043833715], [0.8548400416205593], [0.8870959750276645], [0.8628998959486018], [0.7903281748063488], [0.7016202289130757], [0.6532280707549507], [0.645168216426908], [0.6532280707549507], [0.6693642955059707], [0.6774241498340133], [0.6935438584900986], [0.7177399375691611], [0.7580722413992436], [0.7741919500553288], [0.7741919500553288], [0.7661320957272862], [0.7661320957272862], [0.7983880291343914], [0.8306439625414967], [0.8387038168695394], [0.8064478834624341], [0.7741919500553288], [0.7661320957272862], [0.8064478834624341], [0.8790361206996218], [0.9274282788577469], [0.9274282788577469], [0.8951558293557071], [0.8467801872925166], [0.8387038168695394], [0.870976266371579], [0.911292054106727], [0.9354881331857896], [0.9354881331857896], [0.911292054106727], [0.8548400416205593], [0.8064478834624341], [0.7580722413992436], [0.7177399375691611], [0.7096800832411184], [0.733876162320181], [0.7741919500553288], [0.8064478834624341], [0.8145242538854113], [0.7822518043833715], [0.733876162320181], [0.7096800832411184], [0.7177399375691611], [0.7822518043833715], [0.8467801872925166], [0.870976266371579], [0.8467801872925166], [0.7822518043833715], [0.733876162320181], [0.7257997918972038], [0.7741919500553288], [0.8467801872925166], [0.911292054106727], [0.9354881331857896], [0.9354881331857896], [0.9193519084347697], [0.911292054106727], [0.9193519084347697], [0.9274282788577469], [0.9354881331857896], [0.959684212264852], [1.0]], "eval_masks": [[0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0]], "forwards": [[0.7177399375691611], [0.822584108213454], [0.8306439625414967], [0.7580722413992436], [0.6370918460039309], [0.5483839001106579], [0.5241878210315953], [0.5483839001106579], [0.5967760582687829], [0.6370918460039309], [0.6612879250829934], [0.6774241498340133], [0.7016202289130757], [0.7257997918972038], [0.7257997918972038], [0.7016202289130757], [0.6935438584900986], [0.7096800832411184], [0.7661320957272862], [0.822584108213454], [0.8467801872925166], [0.8306439625414967], [0.7822518043833715], [0.7499958709762664], [0.7661320957272862], [0.8145242538854113], [0.870976266371579], [0.8790361206996218], [0.8306439625414967], [0.7419360166482237], [0.645168216426908], [0.5806398335177632], [0.5645201248616778], [0.5887162039407403], [0.6370918460039309], [0.6693642955059707], [0.6693642955059707], [0.6532280707549507], [0.6290319916758881], [0.6129122830198027], [0.6048359125968256], [0.5725799791897205], [0.50806811237551], [0.4354798751383223], [0.41130031215419427], [0.4596759542173849], [0.5806398335177632], [0.7096800832411184], [0.7741919500553288], [0.7177399375691611], [0.6048359125968256], [0.4919318876244901], [0.42742002081027963], [0.45161609988934215], [0.50806811237551], [0.5645201248616778], [0.5806398335177632], [0.5645201248616778], [0.5403240457826152], [0.5161279667035527], [0.4919318876244901], [0.4758121789684048], [0.4596759542173849], [0.46773580854542757], [0.4919318876244901], [0.5161279667035527], [0.5322641914545725], [0.5241878210315953], [0.50806811237551], [0.5000082580474673], [0.5161279667035527], [0.5403240457826152], [0.5564602705336351], [0.5403240457826152], [0.5161279667035527], [0.5241878210315953], [0.5564602705336351], [0.6129122830198027], [0.645168216426908], [0.6129122830198027], [0.5161279667035527], [0.40322394173121706], [0.3145159958379441], [0.30645614150990136], [0.38710423307513175], [0.5000082580474673], [0.5887162039407403], [0.5887162039407403], [0.50806811237551], [0.37902786265215455], [0.25000412902373365], [0.17741589178654604], [0.15323632880241805], [0.1693560374585034], [0.21774819561662848], [0.2822600624308389], [0.3629081539960692], [0.42742002081027963], [0.45161609988934215], [0.41130031215419427], [0.3145159958379441], [0.21774819561662848], [0.17741589178654604], [0.21774819561662848], [0.30645614150990136], [0.38710423307513175], [0.41936016648223695], [0.37902786265215455], [0.2983962871818587], [0.2338679042727138], [0.20161197086560853], [0.20161197086560853], [0.20161197086560853], [0.17741589178654604], [0.1612961831304607], [0.1854922622095232], [0.24194427469569094], [0.330652220588964], [0.3951640874031744], [0.37902786265215455], [0.2903199167588816], [0.1612961831304607], [0.04839215815812509], [0.0], [0.032255933407105274], [0.11290402497233562], [0.19355211653756588], [0.24194427469569094], [0.2338679042727138], [0.1854922622095232], [0.1371001040513981], [0.12904024972335543], [0.1612961831304607], [0.22580804994467113], [0.2903199167588816], [0.330652220588964], [0.33871207491700667], [0.3225758501659868], [0.3145159958379441], [0.2983962871818587], [0.2983962871818587], [0.3145159958379441], [0.3467719292450493], [0.3951640874031744], [0.42742002081027963], [0.42742002081027963], [0.3951640874031744], [0.33871207491700667], [0.2822600624308389], [0.25806398335177627], [0.26612383767981895], [0.2822600624308389], [0.30645614150990136], [0.3225758501659868], [0.330652220588964], [0.3629081539960692], [0.40322394173121706], [0.44355624556129947], [0.4596759542173849], [0.4354798751383223], [0.3951640874031744], [0.3629081539960692], [0.37902786265215455], [0.41936016648223695], [0.46773580854542757], [0.46773580854542757], [0.41130031215419427], [0.3548482996680265], [0.3548482996680265], [0.46773580854542757], [0.6693642955059707], [0.870976266371579], [0.951607841841875], [0.8548400416205593], [0.6290319916758881], [0.40322394173121706], [0.2903199167588816], [0.33871207491700667], [0.5161279667035527], [0.7177399375691611], [0.870976266371579], [0.9435479875138323], [0.9354881331857896], [0.8790361206996218], [0.8064478834624341], [0.7419360166482237], [0.7016202289130757], [0.7177399375691611], [0.7822518043833715], [0.8548400416205593], [0.8870959750276645], [0.8628998959486018], [0.7903281748063488], [0.7016202289130757], [0.6532280707549507], [0.645168216426908], [0.6532280707549507], [0.6693642955059707], [0.6774241498340133], [0.6935438584900986], [0.7177399375691611], [0.7580722413992436], [0.7741919500553288], [0.7741919500553288], [0.7661320957272862], [0.7661320957272862], [0.7983880291343914], [0.8306439625414967], [0.8387038168695394], [0.8064478834624341], [0.7741919500553288], [0.7661320957272862], [0.8064478834624341], [0.8790361206996218], [0.9274282788577469], [0.9274282788577469], [0.8951558293557071], [0.8467801872925166], [0.8387038168695394], [0.870976266371579], [0.911292054106727], [0.9354881331857896], [0.9354881331857896], [0.911292054106727], [0.8548400416205593], [0.8064478834624341], [0.7580722413992436], [0.7177399375691611], [0.7096800832411184], [0.733876162320181], [0.7741919500553288], [0.8064478834624341], [0.8145242538854113], [0.7822518043833715], [0.733876162320181], [0.7096800832411184], [0.7177399375691611], [0.7822518043833715], [0.8467801872925166], [0.870976266371579], [0.8467801872925166], [0.7822518043833715], [0.733876162320181], [0.7257997918972038], [0.7741919500553288], [0.8467801872925166], [0.911292054106727], [0.9354881331857896], [0.9354881331857896], [0.9193519084347697], [0.911292054106727], [0.9193519084347697], [0.9274282788577469], [0.9354881331857896], [0.959684212264852], [1.0]], "deltas": [[1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0]]}} -{"label": 0, "forward": {"values": [[0.5764745566692366], [0.5882324595219738], [0.6235302621434078], [0.6588280647648419], [0.6588280647648419], [0.6352881649961449], [0.6117482652274479], [0.5999903623747108], [0.5764745566692366], [0.5646925597532767], [0.5529346569005397], [0.5764745566692366], [0.6235302621434078], [0.6823438704703161], [0.7176416730917502], [0.6823438704703161], [0.5764745566692366], [0.48233905165767155], [0.41176754047802616], [0.41176754047802616], [0.4352833461835004], [0.4352833461835004], [0.37646973785659216], [0.2823583269082498], [0.22352062451811874], [0.22352062451811874], [0.2941162297609869], [0.3882276407093292], [0.48233905165767155], [0.5293947571318427], [0.5646925597532767], [0.5882324595219738], [0.6352881649961449], [0.6705859676175789], [0.6941017733230531], [0.6941017733230531], [0.6588280647648419], [0.6235302621434078], [0.5999903623747108], [0.5764745566692366], [0.5529346569005397], [0.5176368542791057], [0.47058114880493446], [0.45882324595219737], [0.4941210485736315], [0.5764745566692366], [0.647046067848882], [0.6705859676175789], [0.6352881649961449], [0.5529346569005397], [0.47058114880493446], [0.4235254433307633], [0.39998554356206634], [0.3882276407093292], [0.3882276407093292], [0.41176754047802616], [0.47058114880493446], [0.5529346569005397], [0.5999903623747108], [0.5882324595219738], [0.5176368542791057], [0.45882324595219737], [0.45882324595219737], [0.5646925597532767], [0.6941017733230531], [0.7764552814186584], [0.7646973785659212], [0.6823438704703161], [0.5999903623747108], [0.5999903623747108], [0.6941017733230531], [0.8352929838087896], [0.9529442945258287], [1.0], [0.9764601002313029], [0.8705907864302236], [0.7176416730917502], [0.5529346569005397], [0.39998554356206634], [0.32941403238242095], [0.39998554356206634], [0.5529346569005397], [0.7176416730917502], [0.7882372783346183], [0.705883770239013], [0.5293947571318427], [0.35292983808789513], [0.2823583269082498], [0.3058741326137239], [0.37646973785659216], [0.3882276407093292], [0.32941403238242095], [0.2352785273708558], [0.12940921356977642], [0.09411141094834233], [0.10586931380107945], [0.1411671164225135], [0.1647070161912105], [0.1647070161912105], [0.1764649190439476], [0.1764649190439476], [0.1529250192752506], [0.11765131071703933], [0.05881360832690826], [0.011757902852737116], [0.0], [0.035297802621434116], [0.09411141094834233], [0.1764649190439476], [0.22352062451811874], [0.25881842713955283], [0.27057632999228987], [0.27057632999228987], [0.25881842713955283], [0.25881842713955283], [0.24706052428681574], [0.25881842713955283], [0.2941162297609869], [0.34117193523515804], [0.39998554356206634], [0.4235254433307633], [0.3882276407093292], [0.31763203546646107], [0.22352062451811874], [0.1764649190439476], [0.18822282189668466], [0.2352785273708558], [0.2823583269082498], [0.2941162297609869], [0.24706052428681574], [0.1764649190439476], [0.11765131071703933], [0.09411141094834233], [0.12940921356977642], [0.18822282189668466], [0.25881842713955283], [0.3058741326137239], [0.32941403238242095], [0.31763203546646107], [0.2823583269082498], [0.22352062451811874], [0.1647070161912105], [0.11765131071703933], [0.09411141094834233], [0.10586931380107945], [0.1647070161912105], [0.24706052428681574], [0.32941403238242095], [0.37646973785659216], [0.35292983808789513], [0.27057632999228987], [0.18822282189668466], [0.11765131071703933], [0.10586931380107945], [0.1529250192752506], [0.22352062451811874], [0.2941162297609869], [0.31763203546646107], [0.3058741326137239], [0.25881842713955283], [0.2000048188126446], [0.1529250192752506], [0.12940921356977642], [0.1529250192752506], [0.21176272166538165], [0.2941162297609869], [0.37646973785659216], [0.4352833461835004], [0.4352833461835004], [0.37646973785659216], [0.2823583269082498], [0.2000048188126446], [0.1647070161912105], [0.2000048188126446], [0.2823583269082498], [0.39998554356206634], [0.5058789514263685], [0.5646925597532767], [0.5882324595219738], [0.5764745566692366], [0.5411767540478026], [0.5058789514263685], [0.47058114880493446], [0.4352833461835004], [0.41176754047802616], [0.4235254433307633], [0.4470412490362375], [0.48233905165767155], [0.5058789514263685], [0.4941210485736315], [0.47058114880493446], [0.4235254433307633], [0.39998554356206634], [0.39998554356206634], [0.41176754047802616], [0.4235254433307633], [0.4235254433307633], [0.4352833461835004], [0.45882324595219737], [0.4941210485736315], [0.5176368542791057], [0.5176368542791057], [0.48233905165767155], [0.45882324595219737], [0.47058114880493446], [0.5293947571318427], [0.5999903623747108], [0.6235302621434078], [0.5764745566692366], [0.48233905165767155], [0.41176754047802616], [0.39998554356206634], [0.4352833461835004], [0.5058789514263685], [0.5411767540478026], [0.5411767540478026], [0.5293947571318427], [0.5176368542791057], [0.5293947571318427], [0.5411767540478026], [0.5293947571318427], [0.4941210485736315], [0.4470412490362375], [0.41176754047802616], [0.4470412490362375], [0.5529346569005397], [0.6941017733230531], [0.7882372783346183], [0.7999951811873555], [0.7293995759444872], [0.5999903623747108], [0.5293947571318427], [0.5293947571318427], [0.5882324595219738], [0.647046067848882], [0.6352881649961449], [0.5646925597532767], [0.4941210485736315], [0.45882324595219737], [0.5176368542791057], [0.6352881649961449], [0.7293995759444872], [0.7764552814186584], [0.7646973785659212], [0.7176416730917502], [0.6588280647648419], [0.5882324595219738], [0.5058789514263685], [0.45882324595219737], [0.47058114880493446], [0.5764745566692366], [0.7411574787972244], [0.9058644949884348], [0.9764601002313029], [0.8823486892829606], [0.6588280647648419]], "masks": [[1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1]], "evals": [[0.5764745566692366], [0.5882324595219738], [0.6235302621434078], [0.6588280647648419], [0.6588280647648419], [0.6352881649961449], [0.6117482652274479], [0.5999903623747108], [0.5764745566692366], [0.5646925597532767], [0.5529346569005397], [0.5764745566692366], [0.6235302621434078], [0.6823438704703161], [0.7176416730917502], [0.6823438704703161], [0.5764745566692366], [0.48233905165767155], [0.41176754047802616], [0.41176754047802616], [0.4352833461835004], [0.4352833461835004], [0.37646973785659216], [0.2823583269082498], [0.22352062451811874], [0.22352062451811874], [0.2941162297609869], [0.3882276407093292], [0.48233905165767155], [0.5293947571318427], [0.5646925597532767], [0.5882324595219738], [0.6352881649961449], [0.6705859676175789], [0.6941017733230531], [0.6941017733230531], [0.6588280647648419], [0.6235302621434078], [0.5999903623747108], [0.5764745566692366], [0.5529346569005397], [0.5176368542791057], [0.47058114880493446], [0.45882324595219737], [0.4941210485736315], [0.5764745566692366], [0.647046067848882], [0.6705859676175789], [0.6352881649961449], [0.5529346569005397], [0.47058114880493446], [0.4235254433307633], [0.39998554356206634], [0.3882276407093292], [0.3882276407093292], [0.41176754047802616], [0.47058114880493446], [0.5529346569005397], [0.5999903623747108], [0.5882324595219738], [0.5176368542791057], [0.45882324595219737], [0.45882324595219737], [0.5646925597532767], [0.6941017733230531], [0.7764552814186584], [0.7646973785659212], [0.6823438704703161], [0.5999903623747108], [0.5999903623747108], [0.6941017733230531], [0.8352929838087896], [0.9529442945258287], [1.0], [0.9764601002313029], [0.8705907864302236], [0.7176416730917502], [0.5529346569005397], [0.39998554356206634], [0.32941403238242095], [0.39998554356206634], [0.5529346569005397], [0.7176416730917502], [0.7882372783346183], [0.705883770239013], [0.5293947571318427], [0.35292983808789513], [0.2823583269082498], [0.3058741326137239], [0.37646973785659216], [0.3882276407093292], [0.32941403238242095], [0.2352785273708558], [0.12940921356977642], [0.09411141094834233], [0.10586931380107945], [0.1411671164225135], [0.1647070161912105], [0.1647070161912105], [0.1764649190439476], [0.1764649190439476], [0.1529250192752506], [0.11765131071703933], [0.05881360832690826], [0.011757902852737116], [0.0], [0.035297802621434116], [0.09411141094834233], [0.1764649190439476], [0.22352062451811874], [0.25881842713955283], [0.27057632999228987], [0.27057632999228987], [0.25881842713955283], [0.25881842713955283], [0.24706052428681574], [0.25881842713955283], [0.2941162297609869], [0.34117193523515804], [0.39998554356206634], [0.4235254433307633], [0.3882276407093292], [0.31763203546646107], [0.22352062451811874], [0.1764649190439476], [0.18822282189668466], [0.2352785273708558], [0.2823583269082498], [0.2941162297609869], [0.24706052428681574], [0.1764649190439476], [0.11765131071703933], [0.09411141094834233], [0.12940921356977642], [0.18822282189668466], [0.25881842713955283], [0.3058741326137239], [0.32941403238242095], [0.31763203546646107], [0.2823583269082498], [0.22352062451811874], [0.1647070161912105], [0.11765131071703933], [0.09411141094834233], [0.10586931380107945], [0.1647070161912105], [0.24706052428681574], [0.32941403238242095], [0.37646973785659216], [0.35292983808789513], [0.27057632999228987], [0.18822282189668466], [0.11765131071703933], [0.10586931380107945], [0.1529250192752506], [0.22352062451811874], [0.2941162297609869], [0.31763203546646107], [0.3058741326137239], [0.25881842713955283], [0.2000048188126446], [0.1529250192752506], [0.12940921356977642], [0.1529250192752506], [0.21176272166538165], [0.2941162297609869], [0.37646973785659216], [0.4352833461835004], [0.4352833461835004], [0.37646973785659216], [0.2823583269082498], [0.2000048188126446], [0.1647070161912105], [0.2000048188126446], [0.2823583269082498], [0.39998554356206634], [0.5058789514263685], [0.5646925597532767], [0.5882324595219738], [0.5764745566692366], [0.5411767540478026], [0.5058789514263685], [0.47058114880493446], [0.4352833461835004], [0.41176754047802616], [0.4235254433307633], [0.4470412490362375], [0.48233905165767155], [0.5058789514263685], [0.4941210485736315], [0.47058114880493446], [0.4235254433307633], [0.39998554356206634], [0.39998554356206634], [0.41176754047802616], [0.4235254433307633], [0.4235254433307633], [0.4352833461835004], [0.45882324595219737], [0.4941210485736315], [0.5176368542791057], [0.5176368542791057], [0.48233905165767155], [0.45882324595219737], [0.47058114880493446], [0.5293947571318427], [0.5999903623747108], [0.6235302621434078], [0.5764745566692366], [0.48233905165767155], [0.41176754047802616], [0.39998554356206634], [0.4352833461835004], [0.5058789514263685], [0.5411767540478026], [0.5411767540478026], [0.5293947571318427], [0.5176368542791057], [0.5293947571318427], [0.5411767540478026], [0.5293947571318427], [0.4941210485736315], [0.4470412490362375], [0.41176754047802616], [0.4470412490362375], [0.5529346569005397], [0.6941017733230531], [0.7882372783346183], [0.7999951811873555], [0.7293995759444872], [0.5999903623747108], [0.5293947571318427], [0.5293947571318427], [0.5882324595219738], [0.647046067848882], [0.6352881649961449], [0.5646925597532767], [0.4941210485736315], [0.45882324595219737], [0.5176368542791057], [0.6352881649961449], [0.7293995759444872], [0.7764552814186584], [0.7646973785659212], [0.7176416730917502], [0.6588280647648419], [0.5882324595219738], [0.5058789514263685], [0.45882324595219737], [0.47058114880493446], [0.5764745566692366], [0.7411574787972244], [0.9058644949884348], [0.9764601002313029], [0.8823486892829606], [0.6588280647648419]], "eval_masks": [[0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0]], "forwards": [[0.5764745566692366], [0.5882324595219738], [0.6235302621434078], [0.6588280647648419], [0.6588280647648419], [0.6352881649961449], [0.6117482652274479], [0.5999903623747108], [0.5764745566692366], [0.5646925597532767], [0.5529346569005397], [0.5764745566692366], [0.6235302621434078], [0.6823438704703161], [0.7176416730917502], [0.6823438704703161], [0.5764745566692366], [0.48233905165767155], [0.41176754047802616], [0.41176754047802616], [0.4352833461835004], [0.4352833461835004], [0.37646973785659216], [0.2823583269082498], [0.22352062451811874], [0.22352062451811874], [0.2941162297609869], [0.3882276407093292], [0.48233905165767155], [0.5293947571318427], [0.5646925597532767], [0.5882324595219738], [0.6352881649961449], [0.6705859676175789], [0.6941017733230531], [0.6941017733230531], [0.6588280647648419], [0.6235302621434078], [0.5999903623747108], [0.5764745566692366], [0.5529346569005397], [0.5176368542791057], [0.47058114880493446], [0.45882324595219737], [0.4941210485736315], [0.5764745566692366], [0.647046067848882], [0.6705859676175789], [0.6352881649961449], [0.5529346569005397], [0.47058114880493446], [0.4235254433307633], [0.39998554356206634], [0.3882276407093292], [0.3882276407093292], [0.41176754047802616], [0.47058114880493446], [0.5529346569005397], [0.5999903623747108], [0.5882324595219738], [0.5176368542791057], [0.45882324595219737], [0.45882324595219737], [0.5646925597532767], [0.6941017733230531], [0.7764552814186584], [0.7646973785659212], [0.6823438704703161], [0.5999903623747108], [0.5999903623747108], [0.6941017733230531], [0.8352929838087896], [0.9529442945258287], [1.0], [0.9764601002313029], [0.8705907864302236], [0.7176416730917502], [0.5529346569005397], [0.39998554356206634], [0.32941403238242095], [0.39998554356206634], [0.5529346569005397], [0.7176416730917502], [0.7882372783346183], [0.705883770239013], [0.5293947571318427], [0.35292983808789513], [0.2823583269082498], [0.3058741326137239], [0.37646973785659216], [0.3882276407093292], [0.32941403238242095], [0.2352785273708558], [0.12940921356977642], [0.09411141094834233], [0.10586931380107945], [0.1411671164225135], [0.1647070161912105], [0.1647070161912105], [0.1764649190439476], [0.1764649190439476], [0.1529250192752506], [0.11765131071703933], [0.05881360832690826], [0.011757902852737116], [0.0], [0.035297802621434116], [0.09411141094834233], [0.1764649190439476], [0.22352062451811874], [0.25881842713955283], [0.27057632999228987], [0.27057632999228987], [0.25881842713955283], [0.25881842713955283], [0.24706052428681574], [0.25881842713955283], [0.2941162297609869], [0.34117193523515804], [0.39998554356206634], [0.4235254433307633], [0.3882276407093292], [0.31763203546646107], [0.22352062451811874], [0.1764649190439476], [0.18822282189668466], [0.2352785273708558], [0.2823583269082498], [0.2941162297609869], [0.24706052428681574], [0.1764649190439476], [0.11765131071703933], [0.09411141094834233], [0.12940921356977642], [0.18822282189668466], [0.25881842713955283], [0.3058741326137239], [0.32941403238242095], [0.31763203546646107], [0.2823583269082498], [0.22352062451811874], [0.1647070161912105], [0.11765131071703933], [0.09411141094834233], [0.10586931380107945], [0.1647070161912105], [0.24706052428681574], [0.32941403238242095], [0.37646973785659216], [0.35292983808789513], [0.27057632999228987], [0.18822282189668466], [0.11765131071703933], [0.10586931380107945], [0.1529250192752506], [0.22352062451811874], [0.2941162297609869], [0.31763203546646107], [0.3058741326137239], [0.25881842713955283], [0.2000048188126446], [0.1529250192752506], [0.12940921356977642], [0.1529250192752506], [0.21176272166538165], [0.2941162297609869], [0.37646973785659216], [0.4352833461835004], [0.4352833461835004], [0.37646973785659216], [0.2823583269082498], [0.2000048188126446], [0.1647070161912105], [0.2000048188126446], [0.2823583269082498], [0.39998554356206634], [0.5058789514263685], [0.5646925597532767], [0.5882324595219738], [0.5764745566692366], [0.5411767540478026], [0.5058789514263685], [0.47058114880493446], [0.4352833461835004], [0.41176754047802616], [0.4235254433307633], [0.4470412490362375], [0.48233905165767155], [0.5058789514263685], [0.4941210485736315], [0.47058114880493446], [0.4235254433307633], [0.39998554356206634], [0.39998554356206634], [0.41176754047802616], [0.4235254433307633], [0.4235254433307633], [0.4352833461835004], [0.45882324595219737], [0.4941210485736315], [0.5176368542791057], [0.5176368542791057], [0.48233905165767155], [0.45882324595219737], [0.47058114880493446], [0.5293947571318427], [0.5999903623747108], [0.6235302621434078], [0.5764745566692366], [0.48233905165767155], [0.41176754047802616], [0.39998554356206634], [0.4352833461835004], [0.5058789514263685], [0.5411767540478026], [0.5411767540478026], [0.5293947571318427], [0.5176368542791057], [0.5293947571318427], [0.5411767540478026], [0.5293947571318427], [0.4941210485736315], [0.4470412490362375], [0.41176754047802616], [0.4470412490362375], [0.5529346569005397], [0.6941017733230531], [0.7882372783346183], [0.7999951811873555], [0.7293995759444872], [0.5999903623747108], [0.5293947571318427], [0.5293947571318427], [0.5882324595219738], [0.647046067848882], [0.6352881649961449], [0.5646925597532767], [0.4941210485736315], [0.45882324595219737], [0.5176368542791057], [0.6352881649961449], [0.7293995759444872], [0.7764552814186584], [0.7646973785659212], [0.7176416730917502], [0.6588280647648419], [0.5882324595219738], [0.5058789514263685], [0.45882324595219737], [0.47058114880493446], [0.5764745566692366], [0.7411574787972244], [0.9058644949884348], [0.9764601002313029], [0.8823486892829606], [0.6588280647648419]], "deltas": [[1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0]]}, "backward": {"values": [[0.6588280647648419], [0.8823486892829606], [0.9764601002313029], [0.9058644949884348], [0.7411574787972244], [0.5764745566692366], [0.47058114880493446], [0.45882324595219737], [0.5058789514263685], [0.5882324595219738], [0.6588280647648419], [0.7176416730917502], [0.7646973785659212], [0.7764552814186584], [0.7293995759444872], [0.6352881649961449], [0.5176368542791057], [0.45882324595219737], [0.4941210485736315], [0.5646925597532767], [0.6352881649961449], [0.647046067848882], [0.5882324595219738], [0.5293947571318427], [0.5293947571318427], [0.5999903623747108], [0.7293995759444872], [0.7999951811873555], [0.7882372783346183], [0.6941017733230531], [0.5529346569005397], [0.4470412490362375], [0.41176754047802616], [0.4470412490362375], [0.4941210485736315], [0.5293947571318427], [0.5411767540478026], [0.5293947571318427], [0.5176368542791057], [0.5293947571318427], [0.5411767540478026], [0.5411767540478026], [0.5058789514263685], [0.4352833461835004], [0.39998554356206634], [0.41176754047802616], [0.48233905165767155], [0.5764745566692366], [0.6235302621434078], [0.5999903623747108], [0.5293947571318427], [0.47058114880493446], [0.45882324595219737], [0.48233905165767155], [0.5176368542791057], [0.5176368542791057], [0.4941210485736315], [0.45882324595219737], [0.4352833461835004], [0.4235254433307633], [0.4235254433307633], [0.41176754047802616], [0.39998554356206634], [0.39998554356206634], [0.4235254433307633], [0.47058114880493446], [0.4941210485736315], [0.5058789514263685], [0.48233905165767155], [0.4470412490362375], [0.4235254433307633], [0.41176754047802616], [0.4352833461835004], [0.47058114880493446], [0.5058789514263685], [0.5411767540478026], [0.5764745566692366], [0.5882324595219738], [0.5646925597532767], [0.5058789514263685], [0.39998554356206634], [0.2823583269082498], [0.2000048188126446], [0.1647070161912105], [0.2000048188126446], [0.2823583269082498], [0.37646973785659216], [0.4352833461835004], [0.4352833461835004], [0.37646973785659216], [0.2941162297609869], [0.21176272166538165], [0.1529250192752506], [0.12940921356977642], [0.1529250192752506], [0.2000048188126446], [0.25881842713955283], [0.3058741326137239], [0.31763203546646107], [0.2941162297609869], [0.22352062451811874], [0.1529250192752506], [0.10586931380107945], [0.11765131071703933], [0.18822282189668466], [0.27057632999228987], [0.35292983808789513], [0.37646973785659216], [0.32941403238242095], [0.24706052428681574], [0.1647070161912105], [0.10586931380107945], [0.09411141094834233], [0.11765131071703933], [0.1647070161912105], [0.22352062451811874], [0.2823583269082498], [0.31763203546646107], [0.32941403238242095], [0.3058741326137239], [0.25881842713955283], [0.18822282189668466], [0.12940921356977642], [0.09411141094834233], [0.11765131071703933], [0.1764649190439476], [0.24706052428681574], [0.2941162297609869], [0.2823583269082498], [0.2352785273708558], [0.18822282189668466], [0.1764649190439476], [0.22352062451811874], [0.31763203546646107], [0.3882276407093292], [0.4235254433307633], [0.39998554356206634], [0.34117193523515804], [0.2941162297609869], [0.25881842713955283], [0.24706052428681574], [0.25881842713955283], [0.25881842713955283], [0.27057632999228987], [0.27057632999228987], [0.25881842713955283], [0.22352062451811874], [0.1764649190439476], [0.09411141094834233], [0.035297802621434116], [0.0], [0.011757902852737116], [0.05881360832690826], [0.11765131071703933], [0.1529250192752506], [0.1764649190439476], [0.1764649190439476], [0.1647070161912105], [0.1647070161912105], [0.1411671164225135], [0.10586931380107945], [0.09411141094834233], [0.12940921356977642], [0.2352785273708558], [0.32941403238242095], [0.3882276407093292], [0.37646973785659216], [0.3058741326137239], [0.2823583269082498], [0.35292983808789513], [0.5293947571318427], [0.705883770239013], [0.7882372783346183], [0.7176416730917502], [0.5529346569005397], [0.39998554356206634], [0.32941403238242095], [0.39998554356206634], [0.5529346569005397], [0.7176416730917502], [0.8705907864302236], [0.9764601002313029], [1.0], [0.9529442945258287], [0.8352929838087896], [0.6941017733230531], [0.5999903623747108], [0.5999903623747108], [0.6823438704703161], [0.7646973785659212], [0.7764552814186584], [0.6941017733230531], [0.5646925597532767], [0.45882324595219737], [0.45882324595219737], [0.5176368542791057], [0.5882324595219738], [0.5999903623747108], [0.5529346569005397], [0.47058114880493446], [0.41176754047802616], [0.3882276407093292], [0.3882276407093292], [0.39998554356206634], [0.4235254433307633], [0.47058114880493446], [0.5529346569005397], [0.6352881649961449], [0.6705859676175789], [0.647046067848882], [0.5764745566692366], [0.4941210485736315], [0.45882324595219737], [0.47058114880493446], [0.5176368542791057], [0.5529346569005397], [0.5764745566692366], [0.5999903623747108], [0.6235302621434078], [0.6588280647648419], [0.6941017733230531], [0.6941017733230531], [0.6705859676175789], [0.6352881649961449], [0.5882324595219738], [0.5646925597532767], [0.5293947571318427], [0.48233905165767155], [0.3882276407093292], [0.2941162297609869], [0.22352062451811874], [0.22352062451811874], [0.2823583269082498], [0.37646973785659216], [0.4352833461835004], [0.4352833461835004], [0.41176754047802616], [0.41176754047802616], [0.48233905165767155], [0.5764745566692366], [0.6823438704703161], [0.7176416730917502], [0.6823438704703161], [0.6235302621434078], [0.5764745566692366], [0.5529346569005397], [0.5646925597532767], [0.5764745566692366], [0.5999903623747108], [0.6117482652274479], [0.6352881649961449], [0.6588280647648419], [0.6588280647648419], [0.6235302621434078], [0.5882324595219738], [0.5764745566692366]], "masks": [[1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1]], "evals": [[0.6588280647648419], [0.8823486892829606], [0.9764601002313029], [0.9058644949884348], [0.7411574787972244], [0.5764745566692366], [0.47058114880493446], [0.45882324595219737], [0.5058789514263685], [0.5882324595219738], [0.6588280647648419], [0.7176416730917502], [0.7646973785659212], [0.7764552814186584], [0.7293995759444872], [0.6352881649961449], [0.5176368542791057], [0.45882324595219737], [0.4941210485736315], [0.5646925597532767], [0.6352881649961449], [0.647046067848882], [0.5882324595219738], [0.5293947571318427], [0.5293947571318427], [0.5999903623747108], [0.7293995759444872], [0.7999951811873555], [0.7882372783346183], [0.6941017733230531], [0.5529346569005397], [0.4470412490362375], [0.41176754047802616], [0.4470412490362375], [0.4941210485736315], [0.5293947571318427], [0.5411767540478026], [0.5293947571318427], [0.5176368542791057], [0.5293947571318427], [0.5411767540478026], [0.5411767540478026], [0.5058789514263685], [0.4352833461835004], [0.39998554356206634], [0.41176754047802616], [0.48233905165767155], [0.5764745566692366], [0.6235302621434078], [0.5999903623747108], [0.5293947571318427], [0.47058114880493446], [0.45882324595219737], [0.48233905165767155], [0.5176368542791057], [0.5176368542791057], [0.4941210485736315], [0.45882324595219737], [0.4352833461835004], [0.4235254433307633], [0.4235254433307633], [0.41176754047802616], [0.39998554356206634], [0.39998554356206634], [0.4235254433307633], [0.47058114880493446], [0.4941210485736315], [0.5058789514263685], [0.48233905165767155], [0.4470412490362375], [0.4235254433307633], [0.41176754047802616], [0.4352833461835004], [0.47058114880493446], [0.5058789514263685], [0.5411767540478026], [0.5764745566692366], [0.5882324595219738], [0.5646925597532767], [0.5058789514263685], [0.39998554356206634], [0.2823583269082498], [0.2000048188126446], [0.1647070161912105], [0.2000048188126446], [0.2823583269082498], [0.37646973785659216], [0.4352833461835004], [0.4352833461835004], [0.37646973785659216], [0.2941162297609869], [0.21176272166538165], [0.1529250192752506], [0.12940921356977642], [0.1529250192752506], [0.2000048188126446], [0.25881842713955283], [0.3058741326137239], [0.31763203546646107], [0.2941162297609869], [0.22352062451811874], [0.1529250192752506], [0.10586931380107945], [0.11765131071703933], [0.18822282189668466], [0.27057632999228987], [0.35292983808789513], [0.37646973785659216], [0.32941403238242095], [0.24706052428681574], [0.1647070161912105], [0.10586931380107945], [0.09411141094834233], [0.11765131071703933], [0.1647070161912105], [0.22352062451811874], [0.2823583269082498], [0.31763203546646107], [0.32941403238242095], [0.3058741326137239], [0.25881842713955283], [0.18822282189668466], [0.12940921356977642], [0.09411141094834233], [0.11765131071703933], [0.1764649190439476], [0.24706052428681574], [0.2941162297609869], [0.2823583269082498], [0.2352785273708558], [0.18822282189668466], [0.1764649190439476], [0.22352062451811874], [0.31763203546646107], [0.3882276407093292], [0.4235254433307633], [0.39998554356206634], [0.34117193523515804], [0.2941162297609869], [0.25881842713955283], [0.24706052428681574], [0.25881842713955283], [0.25881842713955283], [0.27057632999228987], [0.27057632999228987], [0.25881842713955283], [0.22352062451811874], [0.1764649190439476], [0.09411141094834233], [0.035297802621434116], [0.0], [0.011757902852737116], [0.05881360832690826], [0.11765131071703933], [0.1529250192752506], [0.1764649190439476], [0.1764649190439476], [0.1647070161912105], [0.1647070161912105], [0.1411671164225135], [0.10586931380107945], [0.09411141094834233], [0.12940921356977642], [0.2352785273708558], [0.32941403238242095], [0.3882276407093292], [0.37646973785659216], [0.3058741326137239], [0.2823583269082498], [0.35292983808789513], [0.5293947571318427], [0.705883770239013], [0.7882372783346183], [0.7176416730917502], [0.5529346569005397], [0.39998554356206634], [0.32941403238242095], [0.39998554356206634], [0.5529346569005397], [0.7176416730917502], [0.8705907864302236], [0.9764601002313029], [1.0], [0.9529442945258287], [0.8352929838087896], [0.6941017733230531], [0.5999903623747108], [0.5999903623747108], [0.6823438704703161], [0.7646973785659212], [0.7764552814186584], [0.6941017733230531], [0.5646925597532767], [0.45882324595219737], [0.45882324595219737], [0.5176368542791057], [0.5882324595219738], [0.5999903623747108], [0.5529346569005397], [0.47058114880493446], [0.41176754047802616], [0.3882276407093292], [0.3882276407093292], [0.39998554356206634], [0.4235254433307633], [0.47058114880493446], [0.5529346569005397], [0.6352881649961449], [0.6705859676175789], [0.647046067848882], [0.5764745566692366], [0.4941210485736315], [0.45882324595219737], [0.47058114880493446], [0.5176368542791057], [0.5529346569005397], [0.5764745566692366], [0.5999903623747108], [0.6235302621434078], [0.6588280647648419], [0.6941017733230531], [0.6941017733230531], [0.6705859676175789], [0.6352881649961449], [0.5882324595219738], [0.5646925597532767], [0.5293947571318427], [0.48233905165767155], [0.3882276407093292], [0.2941162297609869], [0.22352062451811874], [0.22352062451811874], [0.2823583269082498], [0.37646973785659216], [0.4352833461835004], [0.4352833461835004], [0.41176754047802616], [0.41176754047802616], [0.48233905165767155], [0.5764745566692366], [0.6823438704703161], [0.7176416730917502], [0.6823438704703161], [0.6235302621434078], [0.5764745566692366], [0.5529346569005397], [0.5646925597532767], [0.5764745566692366], [0.5999903623747108], [0.6117482652274479], [0.6352881649961449], [0.6588280647648419], [0.6588280647648419], [0.6235302621434078], [0.5882324595219738], [0.5764745566692366]], "eval_masks": [[0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0]], "forwards": [[0.6588280647648419], [0.8823486892829606], [0.9764601002313029], [0.9058644949884348], [0.7411574787972244], [0.5764745566692366], [0.47058114880493446], [0.45882324595219737], [0.5058789514263685], [0.5882324595219738], [0.6588280647648419], [0.7176416730917502], [0.7646973785659212], [0.7764552814186584], [0.7293995759444872], [0.6352881649961449], [0.5176368542791057], [0.45882324595219737], [0.4941210485736315], [0.5646925597532767], [0.6352881649961449], [0.647046067848882], [0.5882324595219738], [0.5293947571318427], [0.5293947571318427], [0.5999903623747108], [0.7293995759444872], [0.7999951811873555], [0.7882372783346183], [0.6941017733230531], [0.5529346569005397], [0.4470412490362375], [0.41176754047802616], [0.4470412490362375], [0.4941210485736315], [0.5293947571318427], [0.5411767540478026], [0.5293947571318427], [0.5176368542791057], [0.5293947571318427], [0.5411767540478026], [0.5411767540478026], [0.5058789514263685], [0.4352833461835004], [0.39998554356206634], [0.41176754047802616], [0.48233905165767155], [0.5764745566692366], [0.6235302621434078], [0.5999903623747108], [0.5293947571318427], [0.47058114880493446], [0.45882324595219737], [0.48233905165767155], [0.5176368542791057], [0.5176368542791057], [0.4941210485736315], [0.45882324595219737], [0.4352833461835004], [0.4235254433307633], [0.4235254433307633], [0.41176754047802616], [0.39998554356206634], [0.39998554356206634], [0.4235254433307633], [0.47058114880493446], [0.4941210485736315], [0.5058789514263685], [0.48233905165767155], [0.4470412490362375], [0.4235254433307633], [0.41176754047802616], [0.4352833461835004], [0.47058114880493446], [0.5058789514263685], [0.5411767540478026], [0.5764745566692366], [0.5882324595219738], [0.5646925597532767], [0.5058789514263685], [0.39998554356206634], [0.2823583269082498], [0.2000048188126446], [0.1647070161912105], [0.2000048188126446], [0.2823583269082498], [0.37646973785659216], [0.4352833461835004], [0.4352833461835004], [0.37646973785659216], [0.2941162297609869], [0.21176272166538165], [0.1529250192752506], [0.12940921356977642], [0.1529250192752506], [0.2000048188126446], [0.25881842713955283], [0.3058741326137239], [0.31763203546646107], [0.2941162297609869], [0.22352062451811874], [0.1529250192752506], [0.10586931380107945], [0.11765131071703933], [0.18822282189668466], [0.27057632999228987], [0.35292983808789513], [0.37646973785659216], [0.32941403238242095], [0.24706052428681574], [0.1647070161912105], [0.10586931380107945], [0.09411141094834233], [0.11765131071703933], [0.1647070161912105], [0.22352062451811874], [0.2823583269082498], [0.31763203546646107], [0.32941403238242095], [0.3058741326137239], [0.25881842713955283], [0.18822282189668466], [0.12940921356977642], [0.09411141094834233], [0.11765131071703933], [0.1764649190439476], [0.24706052428681574], [0.2941162297609869], [0.2823583269082498], [0.2352785273708558], [0.18822282189668466], [0.1764649190439476], [0.22352062451811874], [0.31763203546646107], [0.3882276407093292], [0.4235254433307633], [0.39998554356206634], [0.34117193523515804], [0.2941162297609869], [0.25881842713955283], [0.24706052428681574], [0.25881842713955283], [0.25881842713955283], [0.27057632999228987], [0.27057632999228987], [0.25881842713955283], [0.22352062451811874], [0.1764649190439476], [0.09411141094834233], [0.035297802621434116], [0.0], [0.011757902852737116], [0.05881360832690826], [0.11765131071703933], [0.1529250192752506], [0.1764649190439476], [0.1764649190439476], [0.1647070161912105], [0.1647070161912105], [0.1411671164225135], [0.10586931380107945], [0.09411141094834233], [0.12940921356977642], [0.2352785273708558], [0.32941403238242095], [0.3882276407093292], [0.37646973785659216], [0.3058741326137239], [0.2823583269082498], [0.35292983808789513], [0.5293947571318427], [0.705883770239013], [0.7882372783346183], [0.7176416730917502], [0.5529346569005397], [0.39998554356206634], [0.32941403238242095], [0.39998554356206634], [0.5529346569005397], [0.7176416730917502], [0.8705907864302236], [0.9764601002313029], [1.0], [0.9529442945258287], [0.8352929838087896], [0.6941017733230531], [0.5999903623747108], [0.5999903623747108], [0.6823438704703161], [0.7646973785659212], [0.7764552814186584], [0.6941017733230531], [0.5646925597532767], [0.45882324595219737], [0.45882324595219737], [0.5176368542791057], [0.5882324595219738], [0.5999903623747108], [0.5529346569005397], [0.47058114880493446], [0.41176754047802616], [0.3882276407093292], [0.3882276407093292], [0.39998554356206634], [0.4235254433307633], [0.47058114880493446], [0.5529346569005397], [0.6352881649961449], [0.6705859676175789], [0.647046067848882], [0.5764745566692366], [0.4941210485736315], [0.45882324595219737], [0.47058114880493446], [0.5176368542791057], [0.5529346569005397], [0.5764745566692366], [0.5999903623747108], [0.6235302621434078], [0.6588280647648419], [0.6941017733230531], [0.6941017733230531], [0.6705859676175789], [0.6352881649961449], [0.5882324595219738], [0.5646925597532767], [0.5293947571318427], [0.48233905165767155], [0.3882276407093292], [0.2941162297609869], [0.22352062451811874], [0.22352062451811874], [0.2823583269082498], [0.37646973785659216], [0.4352833461835004], [0.4352833461835004], [0.41176754047802616], [0.41176754047802616], [0.48233905165767155], [0.5764745566692366], [0.6823438704703161], [0.7176416730917502], [0.6823438704703161], [0.6235302621434078], [0.5764745566692366], [0.5529346569005397], [0.5646925597532767], [0.5764745566692366], [0.5999903623747108], [0.6117482652274479], [0.6352881649961449], [0.6588280647648419], [0.6588280647648419], [0.6235302621434078], [0.5882324595219738], [0.5764745566692366]], "deltas": [[1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0]]}} -{"label": 0, "forward": {"values": [[1.0], [0.986119012401866], [0.986119012401866], [0.972238024803732], [0.9305666173626125], [0.8750142223233588], [0.8194333826373876], [0.8194333826373876], [0.8472238024803732], [0.9166571851177608], [0.9305666173626125], [0.9027761975196268], [0.8333428148822392], [0.75], [0.6805666173626125], [0.6666571851177608], [0.6944476049607464], [0.763880987598134], [0.8472238024803732], [0.9166571851177608], [0.9305666173626125], [0.8750142223233588], [0.763880987598134], [0.6250142223233587], [0.5277904198429856], [0.5138809875981342], [0.5416714074411195], [0.6111047900785073], [0.6527761975196269], [0.6805666173626125], [0.6944476049607464], [0.722238024803732], [0.763880987598134], [0.7777904198429856], [0.7777904198429856], [0.7777904198429856], [0.7777904198429856], [0.7916714074411196], [0.7916714074411196], [0.763880987598134], [0.722238024803732], [0.6805666173626125], [0.6805666173626125], [0.7083285925588805], [0.763880987598134], [0.7777904198429856], [0.763880987598134], [0.722238024803732], [0.6805666173626125], [0.6944476049607464], [0.7361190124018661], [0.763880987598134], [0.75], [0.6666571851177608], [0.5694333826373877], [0.5000000000000001], [0.48611901240186606], [0.5416714074411195], [0.6111047900785073], [0.6388952099214928], [0.5972238024803733], [0.5416714074411195], [0.5138809875981342], [0.5277904198429856], [0.5833428148822393], [0.6527761975196269], [0.6944476049607464], [0.6944476049607464], [0.6805666173626125], [0.6666571851177608], [0.6527761975196269], [0.6527761975196269], [0.6388952099214928], [0.6388952099214928], [0.5972238024803733], [0.5416714074411195], [0.4444476049607464], [0.3472238024803732], [0.29167140744111963], [0.3333428148822392], [0.5000000000000001], [0.7083285925588805], [0.8472238024803732], [0.8333428148822392], [0.6527761975196269], [0.3888952099214928], [0.20832859255888048], [0.19444760496074645], [0.3333428148822392], [0.5416714074411195], [0.722238024803732], [0.7916714074411196], [0.7777904198429856], [0.6944476049607464], [0.5694333826373877], [0.41665718511776084], [0.2222095801570145], [0.06943338263738771], [0.0], [0.055552395039253695], [0.23611901240186603], [0.41665718511776084], [0.5416714074411195], [0.5694333826373877], [0.5416714074411195], [0.5000000000000001], [0.5000000000000001], [0.5138809875981342], [0.5277904198429856], [0.48611901240186606], [0.41665718511776084], [0.36110479007850727], [0.36110479007850727], [0.41665718511776084], [0.5000000000000001], [0.5694333826373877], [0.5972238024803733], [0.6111047900785073], [0.6111047900785073], [0.6111047900785073], [0.5833428148822393], [0.5138809875981342], [0.3888952099214928], [0.26388098759813405], [0.18056661736261242], [0.18056661736261242], [0.25000000000000006], [0.3472238024803732], [0.4444476049607464], [0.47220958015701453], [0.4583285925588804], [0.40277619751962684], [0.3333428148822392], [0.29167140744111963], [0.25000000000000006], [0.25000000000000006], [0.27779041984298564], [0.3333428148822392], [0.3888952099214928], [0.41665718511776084], [0.43056661736261237], [0.40277619751962684], [0.37498577767664126], [0.3472238024803732], [0.3333428148822392], [0.36110479007850727], [0.41665718511776084], [0.5000000000000001], [0.5555523950392536], [0.5694333826373877], [0.5416714074411195], [0.48611901240186606], [0.4444476049607464], [0.4583285925588804], [0.5416714074411195], [0.6388952099214928], [0.7083285925588805], [0.722238024803732], [0.6666571851177608], [0.5694333826373877], [0.48611901240186606], [0.43056661736261237], [0.41665718511776084], [0.47220958015701453], [0.5416714074411195], [0.6388952099214928], [0.7361190124018661], [0.7916714074411196], [0.8333428148822392], [0.8055523950392537], [0.722238024803732], [0.6250142223233587], [0.5555523950392536], [0.5555523950392536], [0.6250142223233587], [0.7361190124018661], [0.8333428148822392], [0.8611047900785074], [0.8472238024803732], [0.8055523950392537], [0.7916714074411196], [0.7916714074411196], [0.7916714074411196], [0.75], [0.6805666173626125], [0.6111047900785073], [0.5833428148822393], [0.5972238024803733], [0.6250142223233587], [0.6527761975196269], [0.6666571851177608], [0.6527761975196269], [0.6666571851177608], [0.7083285925588805], [0.763880987598134], [0.8055523950392537], [0.7916714074411196], [0.763880987598134], [0.6944476049607464], [0.6527761975196269], [0.6388952099214928], [0.6388952099214928], [0.6805666173626125], [0.7361190124018661], [0.8194333826373876], [0.8888952099214928], [0.9305666173626125], [0.8888952099214928], [0.763880987598134], [0.6250142223233587], [0.5277904198429856], [0.5416714074411195], [0.6666571851177608], [0.8194333826373876], [0.9444476049607465], [0.9444476049607465], [0.8750142223233588], [0.75], [0.6666571851177608], [0.6527761975196269], [0.6666571851177608], [0.7083285925588805], [0.6805666173626125], [0.6388952099214928], [0.5833428148822393], [0.5694333826373877], [0.6111047900785073], [0.7083285925588805], [0.8333428148822392], [0.9305666173626125], [0.9583285925588805], [0.9444476049607465], [0.9027761975196268], [0.8750142223233588], [0.8472238024803732], [0.8333428148822392], [0.8194333826373876], [0.7777904198429856], [0.75], [0.75], [0.7777904198429856], [0.8055523950392537], [0.8194333826373876], [0.8194333826373876], [0.7777904198429856], [0.763880987598134], [0.75], [0.763880987598134], [0.7916714074411196], [0.8055523950392537], [0.8055523950392537], [0.8055523950392537], [0.8055523950392537], [0.7916714074411196], [0.763880987598134], [0.722238024803732]], "masks": [[1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1]], "evals": [[1.0], [0.986119012401866], [0.986119012401866], [0.972238024803732], [0.9305666173626125], [0.8750142223233588], [0.8194333826373876], [0.8194333826373876], [0.8472238024803732], [0.9166571851177608], [0.9305666173626125], [0.9027761975196268], [0.8333428148822392], [0.75], [0.6805666173626125], [0.6666571851177608], [0.6944476049607464], [0.763880987598134], [0.8472238024803732], [0.9166571851177608], [0.9305666173626125], [0.8750142223233588], [0.763880987598134], [0.6250142223233587], [0.5277904198429856], [0.5138809875981342], [0.5416714074411195], [0.6111047900785073], [0.6527761975196269], [0.6805666173626125], [0.6944476049607464], [0.722238024803732], [0.763880987598134], [0.7777904198429856], [0.7777904198429856], [0.7777904198429856], [0.7777904198429856], [0.7916714074411196], [0.7916714074411196], [0.763880987598134], [0.722238024803732], [0.6805666173626125], [0.6805666173626125], [0.7083285925588805], [0.763880987598134], [0.7777904198429856], [0.763880987598134], [0.722238024803732], [0.6805666173626125], [0.6944476049607464], [0.7361190124018661], [0.763880987598134], [0.75], [0.6666571851177608], [0.5694333826373877], [0.5000000000000001], [0.48611901240186606], [0.5416714074411195], [0.6111047900785073], [0.6388952099214928], [0.5972238024803733], [0.5416714074411195], [0.5138809875981342], [0.5277904198429856], [0.5833428148822393], [0.6527761975196269], [0.6944476049607464], [0.6944476049607464], [0.6805666173626125], [0.6666571851177608], [0.6527761975196269], [0.6527761975196269], [0.6388952099214928], [0.6388952099214928], [0.5972238024803733], [0.5416714074411195], [0.4444476049607464], [0.3472238024803732], [0.29167140744111963], [0.3333428148822392], [0.5000000000000001], [0.7083285925588805], [0.8472238024803732], [0.8333428148822392], [0.6527761975196269], [0.3888952099214928], [0.20832859255888048], [0.19444760496074645], [0.3333428148822392], [0.5416714074411195], [0.722238024803732], [0.7916714074411196], [0.7777904198429856], [0.6944476049607464], [0.5694333826373877], [0.41665718511776084], [0.2222095801570145], [0.06943338263738771], [0.0], [0.055552395039253695], [0.23611901240186603], [0.41665718511776084], [0.5416714074411195], [0.5694333826373877], [0.5416714074411195], [0.5000000000000001], [0.5000000000000001], [0.5138809875981342], [0.5277904198429856], [0.48611901240186606], [0.41665718511776084], [0.36110479007850727], [0.36110479007850727], [0.41665718511776084], [0.5000000000000001], [0.5694333826373877], [0.5972238024803733], [0.6111047900785073], [0.6111047900785073], [0.6111047900785073], [0.5833428148822393], [0.5138809875981342], [0.3888952099214928], [0.26388098759813405], [0.18056661736261242], [0.18056661736261242], [0.25000000000000006], [0.3472238024803732], [0.4444476049607464], [0.47220958015701453], [0.4583285925588804], [0.40277619751962684], [0.3333428148822392], [0.29167140744111963], [0.25000000000000006], [0.25000000000000006], [0.27779041984298564], [0.3333428148822392], [0.3888952099214928], [0.41665718511776084], [0.43056661736261237], [0.40277619751962684], [0.37498577767664126], [0.3472238024803732], [0.3333428148822392], [0.36110479007850727], [0.41665718511776084], [0.5000000000000001], [0.5555523950392536], [0.5694333826373877], [0.5416714074411195], [0.48611901240186606], [0.4444476049607464], [0.4583285925588804], [0.5416714074411195], [0.6388952099214928], [0.7083285925588805], [0.722238024803732], [0.6666571851177608], [0.5694333826373877], [0.48611901240186606], [0.43056661736261237], [0.41665718511776084], [0.47220958015701453], [0.5416714074411195], [0.6388952099214928], [0.7361190124018661], [0.7916714074411196], [0.8333428148822392], [0.8055523950392537], [0.722238024803732], [0.6250142223233587], [0.5555523950392536], [0.5555523950392536], [0.6250142223233587], [0.7361190124018661], [0.8333428148822392], [0.8611047900785074], [0.8472238024803732], [0.8055523950392537], [0.7916714074411196], [0.7916714074411196], [0.7916714074411196], [0.75], [0.6805666173626125], [0.6111047900785073], [0.5833428148822393], [0.5972238024803733], [0.6250142223233587], [0.6527761975196269], [0.6666571851177608], [0.6527761975196269], [0.6666571851177608], [0.7083285925588805], [0.763880987598134], [0.8055523950392537], [0.7916714074411196], [0.763880987598134], [0.6944476049607464], [0.6527761975196269], [0.6388952099214928], [0.6388952099214928], [0.6805666173626125], [0.7361190124018661], [0.8194333826373876], [0.8888952099214928], [0.9305666173626125], [0.8888952099214928], [0.763880987598134], [0.6250142223233587], [0.5277904198429856], [0.5416714074411195], [0.6666571851177608], [0.8194333826373876], [0.9444476049607465], [0.9444476049607465], [0.8750142223233588], [0.75], [0.6666571851177608], [0.6527761975196269], [0.6666571851177608], [0.7083285925588805], [0.6805666173626125], [0.6388952099214928], [0.5833428148822393], [0.5694333826373877], [0.6111047900785073], [0.7083285925588805], [0.8333428148822392], [0.9305666173626125], [0.9583285925588805], [0.9444476049607465], [0.9027761975196268], [0.8750142223233588], [0.8472238024803732], [0.8333428148822392], [0.8194333826373876], [0.7777904198429856], [0.75], [0.75], [0.7777904198429856], [0.8055523950392537], [0.8194333826373876], [0.8194333826373876], [0.7777904198429856], [0.763880987598134], [0.75], [0.763880987598134], [0.7916714074411196], [0.8055523950392537], [0.8055523950392537], [0.8055523950392537], [0.8055523950392537], [0.7916714074411196], [0.763880987598134], [0.722238024803732]], "eval_masks": [[0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0]], "forwards": [[1.0], [0.986119012401866], [0.986119012401866], [0.972238024803732], [0.9305666173626125], [0.8750142223233588], [0.8194333826373876], [0.8194333826373876], [0.8472238024803732], [0.9166571851177608], [0.9305666173626125], [0.9027761975196268], [0.8333428148822392], [0.75], [0.6805666173626125], [0.6666571851177608], [0.6944476049607464], [0.763880987598134], [0.8472238024803732], [0.9166571851177608], [0.9305666173626125], [0.8750142223233588], [0.763880987598134], [0.6250142223233587], [0.5277904198429856], [0.5138809875981342], [0.5416714074411195], [0.6111047900785073], [0.6527761975196269], [0.6805666173626125], [0.6944476049607464], [0.722238024803732], [0.763880987598134], [0.7777904198429856], [0.7777904198429856], [0.7777904198429856], [0.7777904198429856], [0.7916714074411196], [0.7916714074411196], [0.763880987598134], [0.722238024803732], [0.6805666173626125], [0.6805666173626125], [0.7083285925588805], [0.763880987598134], [0.7777904198429856], [0.763880987598134], [0.722238024803732], [0.6805666173626125], [0.6944476049607464], [0.7361190124018661], [0.763880987598134], [0.75], [0.6666571851177608], [0.5694333826373877], [0.5000000000000001], [0.48611901240186606], [0.5416714074411195], [0.6111047900785073], [0.6388952099214928], [0.5972238024803733], [0.5416714074411195], [0.5138809875981342], [0.5277904198429856], [0.5833428148822393], [0.6527761975196269], [0.6944476049607464], [0.6944476049607464], [0.6805666173626125], [0.6666571851177608], [0.6527761975196269], [0.6527761975196269], [0.6388952099214928], [0.6388952099214928], [0.5972238024803733], [0.5416714074411195], [0.4444476049607464], [0.3472238024803732], [0.29167140744111963], [0.3333428148822392], [0.5000000000000001], [0.7083285925588805], [0.8472238024803732], [0.8333428148822392], [0.6527761975196269], [0.3888952099214928], [0.20832859255888048], [0.19444760496074645], [0.3333428148822392], [0.5416714074411195], [0.722238024803732], [0.7916714074411196], [0.7777904198429856], [0.6944476049607464], [0.5694333826373877], [0.41665718511776084], [0.2222095801570145], [0.06943338263738771], [0.0], [0.055552395039253695], [0.23611901240186603], [0.41665718511776084], [0.5416714074411195], [0.5694333826373877], [0.5416714074411195], [0.5000000000000001], [0.5000000000000001], [0.5138809875981342], [0.5277904198429856], [0.48611901240186606], [0.41665718511776084], [0.36110479007850727], [0.36110479007850727], [0.41665718511776084], [0.5000000000000001], [0.5694333826373877], [0.5972238024803733], [0.6111047900785073], [0.6111047900785073], [0.6111047900785073], [0.5833428148822393], [0.5138809875981342], [0.3888952099214928], [0.26388098759813405], [0.18056661736261242], [0.18056661736261242], [0.25000000000000006], [0.3472238024803732], [0.4444476049607464], [0.47220958015701453], [0.4583285925588804], [0.40277619751962684], [0.3333428148822392], [0.29167140744111963], [0.25000000000000006], [0.25000000000000006], [0.27779041984298564], [0.3333428148822392], [0.3888952099214928], [0.41665718511776084], [0.43056661736261237], [0.40277619751962684], [0.37498577767664126], [0.3472238024803732], [0.3333428148822392], [0.36110479007850727], [0.41665718511776084], [0.5000000000000001], [0.5555523950392536], [0.5694333826373877], [0.5416714074411195], [0.48611901240186606], [0.4444476049607464], [0.4583285925588804], [0.5416714074411195], [0.6388952099214928], [0.7083285925588805], [0.722238024803732], [0.6666571851177608], [0.5694333826373877], [0.48611901240186606], [0.43056661736261237], [0.41665718511776084], [0.47220958015701453], [0.5416714074411195], [0.6388952099214928], [0.7361190124018661], [0.7916714074411196], [0.8333428148822392], [0.8055523950392537], [0.722238024803732], [0.6250142223233587], [0.5555523950392536], [0.5555523950392536], [0.6250142223233587], [0.7361190124018661], [0.8333428148822392], [0.8611047900785074], [0.8472238024803732], [0.8055523950392537], [0.7916714074411196], [0.7916714074411196], [0.7916714074411196], [0.75], [0.6805666173626125], [0.6111047900785073], [0.5833428148822393], [0.5972238024803733], [0.6250142223233587], [0.6527761975196269], [0.6666571851177608], [0.6527761975196269], [0.6666571851177608], [0.7083285925588805], [0.763880987598134], [0.8055523950392537], [0.7916714074411196], [0.763880987598134], [0.6944476049607464], [0.6527761975196269], [0.6388952099214928], [0.6388952099214928], [0.6805666173626125], [0.7361190124018661], [0.8194333826373876], [0.8888952099214928], [0.9305666173626125], [0.8888952099214928], [0.763880987598134], [0.6250142223233587], [0.5277904198429856], [0.5416714074411195], [0.6666571851177608], [0.8194333826373876], [0.9444476049607465], [0.9444476049607465], [0.8750142223233588], [0.75], [0.6666571851177608], [0.6527761975196269], [0.6666571851177608], [0.7083285925588805], [0.6805666173626125], [0.6388952099214928], [0.5833428148822393], [0.5694333826373877], [0.6111047900785073], [0.7083285925588805], [0.8333428148822392], [0.9305666173626125], [0.9583285925588805], [0.9444476049607465], [0.9027761975196268], [0.8750142223233588], [0.8472238024803732], [0.8333428148822392], [0.8194333826373876], [0.7777904198429856], [0.75], [0.75], [0.7777904198429856], [0.8055523950392537], [0.8194333826373876], [0.8194333826373876], [0.7777904198429856], [0.763880987598134], [0.75], [0.763880987598134], [0.7916714074411196], [0.8055523950392537], [0.8055523950392537], [0.8055523950392537], [0.8055523950392537], [0.7916714074411196], [0.763880987598134], [0.722238024803732]], "deltas": [[1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0]]}, "backward": {"values": [[0.722238024803732], [0.763880987598134], [0.7916714074411196], [0.8055523950392537], [0.8055523950392537], [0.8055523950392537], [0.8055523950392537], [0.7916714074411196], [0.763880987598134], [0.75], [0.763880987598134], [0.7777904198429856], [0.8194333826373876], [0.8194333826373876], [0.8055523950392537], [0.7777904198429856], [0.75], [0.75], [0.7777904198429856], [0.8194333826373876], [0.8333428148822392], [0.8472238024803732], [0.8750142223233588], [0.9027761975196268], [0.9444476049607465], [0.9583285925588805], [0.9305666173626125], [0.8333428148822392], [0.7083285925588805], [0.6111047900785073], [0.5694333826373877], [0.5833428148822393], [0.6388952099214928], [0.6805666173626125], [0.7083285925588805], [0.6666571851177608], [0.6527761975196269], [0.6666571851177608], [0.75], [0.8750142223233588], [0.9444476049607465], [0.9444476049607465], [0.8194333826373876], [0.6666571851177608], [0.5416714074411195], [0.5277904198429856], [0.6250142223233587], [0.763880987598134], [0.8888952099214928], [0.9305666173626125], [0.8888952099214928], [0.8194333826373876], [0.7361190124018661], [0.6805666173626125], [0.6388952099214928], [0.6388952099214928], [0.6527761975196269], [0.6944476049607464], [0.763880987598134], [0.7916714074411196], [0.8055523950392537], [0.763880987598134], [0.7083285925588805], [0.6666571851177608], [0.6527761975196269], [0.6666571851177608], [0.6527761975196269], [0.6250142223233587], [0.5972238024803733], [0.5833428148822393], [0.6111047900785073], [0.6805666173626125], [0.75], [0.7916714074411196], [0.7916714074411196], [0.7916714074411196], [0.8055523950392537], [0.8472238024803732], [0.8611047900785074], [0.8333428148822392], [0.7361190124018661], [0.6250142223233587], [0.5555523950392536], [0.5555523950392536], [0.6250142223233587], [0.722238024803732], [0.8055523950392537], [0.8333428148822392], [0.7916714074411196], [0.7361190124018661], [0.6388952099214928], [0.5416714074411195], [0.47220958015701453], [0.41665718511776084], [0.43056661736261237], [0.48611901240186606], [0.5694333826373877], [0.6666571851177608], [0.722238024803732], [0.7083285925588805], [0.6388952099214928], [0.5416714074411195], [0.4583285925588804], [0.4444476049607464], [0.48611901240186606], [0.5416714074411195], [0.5694333826373877], [0.5555523950392536], [0.5000000000000001], [0.41665718511776084], [0.36110479007850727], [0.3333428148822392], [0.3472238024803732], [0.37498577767664126], [0.40277619751962684], [0.43056661736261237], [0.41665718511776084], [0.3888952099214928], [0.3333428148822392], [0.27779041984298564], [0.25000000000000006], [0.25000000000000006], [0.29167140744111963], [0.3333428148822392], [0.40277619751962684], [0.4583285925588804], [0.47220958015701453], [0.4444476049607464], [0.3472238024803732], [0.25000000000000006], [0.18056661736261242], [0.18056661736261242], [0.26388098759813405], [0.3888952099214928], [0.5138809875981342], [0.5833428148822393], [0.6111047900785073], [0.6111047900785073], [0.6111047900785073], [0.5972238024803733], [0.5694333826373877], [0.5000000000000001], [0.41665718511776084], [0.36110479007850727], [0.36110479007850727], [0.41665718511776084], [0.48611901240186606], [0.5277904198429856], [0.5138809875981342], [0.5000000000000001], [0.5000000000000001], [0.5416714074411195], [0.5694333826373877], [0.5416714074411195], [0.41665718511776084], [0.23611901240186603], [0.055552395039253695], [0.0], [0.06943338263738771], [0.2222095801570145], [0.41665718511776084], [0.5694333826373877], [0.6944476049607464], [0.7777904198429856], [0.7916714074411196], [0.722238024803732], [0.5416714074411195], [0.3333428148822392], [0.19444760496074645], [0.20832859255888048], [0.3888952099214928], [0.6527761975196269], [0.8333428148822392], [0.8472238024803732], [0.7083285925588805], [0.5000000000000001], [0.3333428148822392], [0.29167140744111963], [0.3472238024803732], [0.4444476049607464], [0.5416714074411195], [0.5972238024803733], [0.6388952099214928], [0.6388952099214928], [0.6527761975196269], [0.6527761975196269], [0.6666571851177608], [0.6805666173626125], [0.6944476049607464], [0.6944476049607464], [0.6527761975196269], [0.5833428148822393], [0.5277904198429856], [0.5138809875981342], [0.5416714074411195], [0.5972238024803733], [0.6388952099214928], [0.6111047900785073], [0.5416714074411195], [0.48611901240186606], [0.5000000000000001], [0.5694333826373877], [0.6666571851177608], [0.75], [0.763880987598134], [0.7361190124018661], [0.6944476049607464], [0.6805666173626125], [0.722238024803732], [0.763880987598134], [0.7777904198429856], [0.763880987598134], [0.7083285925588805], [0.6805666173626125], [0.6805666173626125], [0.722238024803732], [0.763880987598134], [0.7916714074411196], [0.7916714074411196], [0.7777904198429856], [0.7777904198429856], [0.7777904198429856], [0.7777904198429856], [0.763880987598134], [0.722238024803732], [0.6944476049607464], [0.6805666173626125], [0.6527761975196269], [0.6111047900785073], [0.5416714074411195], [0.5138809875981342], [0.5277904198429856], [0.6250142223233587], [0.763880987598134], [0.8750142223233588], [0.9305666173626125], [0.9166571851177608], [0.8472238024803732], [0.763880987598134], [0.6944476049607464], [0.6666571851177608], [0.6805666173626125], [0.75], [0.8333428148822392], [0.9027761975196268], [0.9305666173626125], [0.9166571851177608], [0.8472238024803732], [0.8194333826373876], [0.8194333826373876], [0.8750142223233588], [0.9305666173626125], [0.972238024803732], [0.986119012401866], [0.986119012401866], [1.0]], "masks": [[1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1]], "evals": [[0.722238024803732], [0.763880987598134], [0.7916714074411196], [0.8055523950392537], [0.8055523950392537], [0.8055523950392537], [0.8055523950392537], [0.7916714074411196], [0.763880987598134], [0.75], [0.763880987598134], [0.7777904198429856], [0.8194333826373876], [0.8194333826373876], [0.8055523950392537], [0.7777904198429856], [0.75], [0.75], [0.7777904198429856], [0.8194333826373876], [0.8333428148822392], [0.8472238024803732], [0.8750142223233588], [0.9027761975196268], [0.9444476049607465], [0.9583285925588805], [0.9305666173626125], [0.8333428148822392], [0.7083285925588805], [0.6111047900785073], [0.5694333826373877], [0.5833428148822393], [0.6388952099214928], [0.6805666173626125], [0.7083285925588805], [0.6666571851177608], [0.6527761975196269], [0.6666571851177608], [0.75], [0.8750142223233588], [0.9444476049607465], [0.9444476049607465], [0.8194333826373876], [0.6666571851177608], [0.5416714074411195], [0.5277904198429856], [0.6250142223233587], [0.763880987598134], [0.8888952099214928], [0.9305666173626125], [0.8888952099214928], [0.8194333826373876], [0.7361190124018661], [0.6805666173626125], [0.6388952099214928], [0.6388952099214928], [0.6527761975196269], [0.6944476049607464], [0.763880987598134], [0.7916714074411196], [0.8055523950392537], [0.763880987598134], [0.7083285925588805], [0.6666571851177608], [0.6527761975196269], [0.6666571851177608], [0.6527761975196269], [0.6250142223233587], [0.5972238024803733], [0.5833428148822393], [0.6111047900785073], [0.6805666173626125], [0.75], [0.7916714074411196], [0.7916714074411196], [0.7916714074411196], [0.8055523950392537], [0.8472238024803732], [0.8611047900785074], [0.8333428148822392], [0.7361190124018661], [0.6250142223233587], [0.5555523950392536], [0.5555523950392536], [0.6250142223233587], [0.722238024803732], [0.8055523950392537], [0.8333428148822392], [0.7916714074411196], [0.7361190124018661], [0.6388952099214928], [0.5416714074411195], [0.47220958015701453], [0.41665718511776084], [0.43056661736261237], [0.48611901240186606], [0.5694333826373877], [0.6666571851177608], [0.722238024803732], [0.7083285925588805], [0.6388952099214928], [0.5416714074411195], [0.4583285925588804], [0.4444476049607464], [0.48611901240186606], [0.5416714074411195], [0.5694333826373877], [0.5555523950392536], [0.5000000000000001], [0.41665718511776084], [0.36110479007850727], [0.3333428148822392], [0.3472238024803732], [0.37498577767664126], [0.40277619751962684], [0.43056661736261237], [0.41665718511776084], [0.3888952099214928], [0.3333428148822392], [0.27779041984298564], [0.25000000000000006], [0.25000000000000006], [0.29167140744111963], [0.3333428148822392], [0.40277619751962684], [0.4583285925588804], [0.47220958015701453], [0.4444476049607464], [0.3472238024803732], [0.25000000000000006], [0.18056661736261242], [0.18056661736261242], [0.26388098759813405], [0.3888952099214928], [0.5138809875981342], [0.5833428148822393], [0.6111047900785073], [0.6111047900785073], [0.6111047900785073], [0.5972238024803733], [0.5694333826373877], [0.5000000000000001], [0.41665718511776084], [0.36110479007850727], [0.36110479007850727], [0.41665718511776084], [0.48611901240186606], [0.5277904198429856], [0.5138809875981342], [0.5000000000000001], [0.5000000000000001], [0.5416714074411195], [0.5694333826373877], [0.5416714074411195], [0.41665718511776084], [0.23611901240186603], [0.055552395039253695], [0.0], [0.06943338263738771], [0.2222095801570145], [0.41665718511776084], [0.5694333826373877], [0.6944476049607464], [0.7777904198429856], [0.7916714074411196], [0.722238024803732], [0.5416714074411195], [0.3333428148822392], [0.19444760496074645], [0.20832859255888048], [0.3888952099214928], [0.6527761975196269], [0.8333428148822392], [0.8472238024803732], [0.7083285925588805], [0.5000000000000001], [0.3333428148822392], [0.29167140744111963], [0.3472238024803732], [0.4444476049607464], [0.5416714074411195], [0.5972238024803733], [0.6388952099214928], [0.6388952099214928], [0.6527761975196269], [0.6527761975196269], [0.6666571851177608], [0.6805666173626125], [0.6944476049607464], [0.6944476049607464], [0.6527761975196269], [0.5833428148822393], [0.5277904198429856], [0.5138809875981342], [0.5416714074411195], [0.5972238024803733], [0.6388952099214928], [0.6111047900785073], [0.5416714074411195], [0.48611901240186606], [0.5000000000000001], [0.5694333826373877], [0.6666571851177608], [0.75], [0.763880987598134], [0.7361190124018661], [0.6944476049607464], [0.6805666173626125], [0.722238024803732], [0.763880987598134], [0.7777904198429856], [0.763880987598134], [0.7083285925588805], [0.6805666173626125], [0.6805666173626125], [0.722238024803732], [0.763880987598134], [0.7916714074411196], [0.7916714074411196], [0.7777904198429856], [0.7777904198429856], [0.7777904198429856], [0.7777904198429856], [0.763880987598134], [0.722238024803732], [0.6944476049607464], [0.6805666173626125], [0.6527761975196269], [0.6111047900785073], [0.5416714074411195], [0.5138809875981342], [0.5277904198429856], [0.6250142223233587], [0.763880987598134], [0.8750142223233588], [0.9305666173626125], [0.9166571851177608], [0.8472238024803732], [0.763880987598134], [0.6944476049607464], [0.6666571851177608], [0.6805666173626125], [0.75], [0.8333428148822392], [0.9027761975196268], [0.9305666173626125], [0.9166571851177608], [0.8472238024803732], [0.8194333826373876], [0.8194333826373876], [0.8750142223233588], [0.9305666173626125], [0.972238024803732], [0.986119012401866], [0.986119012401866], [1.0]], "eval_masks": [[0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0]], "forwards": [[0.722238024803732], [0.763880987598134], [0.7916714074411196], [0.8055523950392537], [0.8055523950392537], [0.8055523950392537], [0.8055523950392537], [0.7916714074411196], [0.763880987598134], [0.75], [0.763880987598134], [0.7777904198429856], [0.8194333826373876], [0.8194333826373876], [0.8055523950392537], [0.7777904198429856], [0.75], [0.75], [0.7777904198429856], [0.8194333826373876], [0.8333428148822392], [0.8472238024803732], [0.8750142223233588], [0.9027761975196268], [0.9444476049607465], [0.9583285925588805], [0.9305666173626125], [0.8333428148822392], [0.7083285925588805], [0.6111047900785073], [0.5694333826373877], [0.5833428148822393], [0.6388952099214928], [0.6805666173626125], [0.7083285925588805], [0.6666571851177608], [0.6527761975196269], [0.6666571851177608], [0.75], [0.8750142223233588], [0.9444476049607465], [0.9444476049607465], [0.8194333826373876], [0.6666571851177608], [0.5416714074411195], [0.5277904198429856], [0.6250142223233587], [0.763880987598134], [0.8888952099214928], [0.9305666173626125], [0.8888952099214928], [0.8194333826373876], [0.7361190124018661], [0.6805666173626125], [0.6388952099214928], [0.6388952099214928], [0.6527761975196269], [0.6944476049607464], [0.763880987598134], [0.7916714074411196], [0.8055523950392537], [0.763880987598134], [0.7083285925588805], [0.6666571851177608], [0.6527761975196269], [0.6666571851177608], [0.6527761975196269], [0.6250142223233587], [0.5972238024803733], [0.5833428148822393], [0.6111047900785073], [0.6805666173626125], [0.75], [0.7916714074411196], [0.7916714074411196], [0.7916714074411196], [0.8055523950392537], [0.8472238024803732], [0.8611047900785074], [0.8333428148822392], [0.7361190124018661], [0.6250142223233587], [0.5555523950392536], [0.5555523950392536], [0.6250142223233587], [0.722238024803732], [0.8055523950392537], [0.8333428148822392], [0.7916714074411196], [0.7361190124018661], [0.6388952099214928], [0.5416714074411195], [0.47220958015701453], [0.41665718511776084], [0.43056661736261237], [0.48611901240186606], [0.5694333826373877], [0.6666571851177608], [0.722238024803732], [0.7083285925588805], [0.6388952099214928], [0.5416714074411195], [0.4583285925588804], [0.4444476049607464], [0.48611901240186606], [0.5416714074411195], [0.5694333826373877], [0.5555523950392536], [0.5000000000000001], [0.41665718511776084], [0.36110479007850727], [0.3333428148822392], [0.3472238024803732], [0.37498577767664126], [0.40277619751962684], [0.43056661736261237], [0.41665718511776084], [0.3888952099214928], [0.3333428148822392], [0.27779041984298564], [0.25000000000000006], [0.25000000000000006], [0.29167140744111963], [0.3333428148822392], [0.40277619751962684], [0.4583285925588804], [0.47220958015701453], [0.4444476049607464], [0.3472238024803732], [0.25000000000000006], [0.18056661736261242], [0.18056661736261242], [0.26388098759813405], [0.3888952099214928], [0.5138809875981342], [0.5833428148822393], [0.6111047900785073], [0.6111047900785073], [0.6111047900785073], [0.5972238024803733], [0.5694333826373877], [0.5000000000000001], [0.41665718511776084], [0.36110479007850727], [0.36110479007850727], [0.41665718511776084], [0.48611901240186606], [0.5277904198429856], [0.5138809875981342], [0.5000000000000001], [0.5000000000000001], [0.5416714074411195], [0.5694333826373877], [0.5416714074411195], [0.41665718511776084], [0.23611901240186603], [0.055552395039253695], [0.0], [0.06943338263738771], [0.2222095801570145], [0.41665718511776084], [0.5694333826373877], [0.6944476049607464], [0.7777904198429856], [0.7916714074411196], [0.722238024803732], [0.5416714074411195], [0.3333428148822392], [0.19444760496074645], [0.20832859255888048], [0.3888952099214928], [0.6527761975196269], [0.8333428148822392], [0.8472238024803732], [0.7083285925588805], [0.5000000000000001], [0.3333428148822392], [0.29167140744111963], [0.3472238024803732], [0.4444476049607464], [0.5416714074411195], [0.5972238024803733], [0.6388952099214928], [0.6388952099214928], [0.6527761975196269], [0.6527761975196269], [0.6666571851177608], [0.6805666173626125], [0.6944476049607464], [0.6944476049607464], [0.6527761975196269], [0.5833428148822393], [0.5277904198429856], [0.5138809875981342], [0.5416714074411195], [0.5972238024803733], [0.6388952099214928], [0.6111047900785073], [0.5416714074411195], [0.48611901240186606], [0.5000000000000001], [0.5694333826373877], [0.6666571851177608], [0.75], [0.763880987598134], [0.7361190124018661], [0.6944476049607464], [0.6805666173626125], [0.722238024803732], [0.763880987598134], [0.7777904198429856], [0.763880987598134], [0.7083285925588805], [0.6805666173626125], [0.6805666173626125], [0.722238024803732], [0.763880987598134], [0.7916714074411196], [0.7916714074411196], [0.7777904198429856], [0.7777904198429856], [0.7777904198429856], [0.7777904198429856], [0.763880987598134], [0.722238024803732], [0.6944476049607464], [0.6805666173626125], [0.6527761975196269], [0.6111047900785073], [0.5416714074411195], [0.5138809875981342], [0.5277904198429856], [0.6250142223233587], [0.763880987598134], [0.8750142223233588], [0.9305666173626125], [0.9166571851177608], [0.8472238024803732], [0.763880987598134], [0.6944476049607464], [0.6666571851177608], [0.6805666173626125], [0.75], [0.8333428148822392], [0.9027761975196268], [0.9305666173626125], [0.9166571851177608], [0.8472238024803732], [0.8194333826373876], [0.8194333826373876], [0.8750142223233588], [0.9305666173626125], [0.972238024803732], [0.986119012401866], [0.986119012401866], [1.0]], "deltas": [[1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0]]}} -{"label": 0, "forward": {"values": [[0.6470564613284073], [0.6470564613284073], [0.666653280860975], [0.6862501003935426], [0.666653280860975], [0.6078226648461971], [0.5097984097662839], [0.4313709742189383], [0.39213717773672796], [0.4117339972692956], [0.4509677937515059], [0.5293952292988515], [0.6078226648461971], [0.6862501003935426], [0.7254838968757529], [0.7450807164083206], [0.7254838968757529], [0.6862501003935426], [0.666653280860975], [0.6470564613284073], [0.6274596417958397], [0.5686290257810618], [0.4902015902337162], [0.3529435386715926], [0.27451610312424707], [0.23528230664203678], [0.31370974218938236], [0.4117339972692956], [0.5097984097662839], [0.5489920488314192], [0.5097984097662839], [0.4117339972692956], [0.3725403582041603], [0.39213717773672796], [0.4902015902337162], [0.6078226648461971], [0.7254838968757529], [0.7647176933579631], [0.7647176933579631], [0.7254838968757529], [0.6470564613284073], [0.5489920488314192], [0.4509677937515059], [0.4313709742189383], [0.47056461328407356], [0.6078226648461971], [0.7450807164083206], [0.8627419484378765], [0.8627419484378765], [0.8039113324230984], [0.7058870773431852], [0.6274596417958397], [0.5686290257810618], [0.5489920488314192], [0.5293952292988515], [0.5489920488314192], [0.5882258453136294], [0.6274596417958397], [0.6470564613284073], [0.6078226648461971], [0.5489920488314192], [0.5097984097662839], [0.5293952292988515], [0.6274596417958397], [0.7647176933579631], [0.8431451289053087], [0.8627419484378765], [0.8039113324230984], [0.7254838968757529], [0.6862501003935426], [0.7058870773431852], [0.7647176933579631], [0.8039113324230984], [0.8431451289053087], [0.8431451289053087], [0.7843145128905308], [0.6862501003935426], [0.5489920488314192], [0.39213717773672796], [0.31370974218938236], [0.3725403582041603], [0.5489920488314192], [0.7450807164083206], [0.8431451289053087], [0.7843145128905308], [0.6274596417958397], [0.4902015902337162], [0.47056461328407356], [0.5686290257810618], [0.7450807164083206], [0.8235081519556661], [0.8039113324230984], [0.6862501003935426], [0.5489920488314192], [0.47056461328407356], [0.4509677937515059], [0.47056461328407356], [0.5097984097662839], [0.5686290257810618], [0.6470564613284073], [0.7450807164083206], [0.8039113324230984], [0.7450807164083206], [0.6274596417958397], [0.4509677937515059], [0.33330656172195006], [0.31370974218938236], [0.4117339972692956], [0.5686290257810618], [0.7450807164083206], [0.8823387679704442], [0.9607662035177897], [0.9607662035177897], [0.8627419484378765], [0.7058870773431852], [0.5489920488314192], [0.4313709742189383], [0.4117339972692956], [0.4313709742189383], [0.4902015902337162], [0.5293952292988515], [0.5489920488314192], [0.5293952292988515], [0.4902015902337162], [0.4509677937515059], [0.3725403582041603], [0.27451610312424707], [0.17645169062725885], [0.09802425507991329], [0.07842743554734556], [0.09802425507991329], [0.1568548710946912], [0.21568548710946914], [0.27451610312424707], [0.3529435386715926], [0.47056461328407356], [0.5882258453136294], [0.666653280860975], [0.666653280860975], [0.5686290257810618], [0.4117339972692956], [0.27451610312424707], [0.21568548710946914], [0.23528230664203678], [0.2941129226568147], [0.39213717773672796], [0.4902015902337162], [0.5489920488314192], [0.5882258453136294], [0.5686290257810618], [0.5293952292988515], [0.47056461328407356], [0.4313709742189383], [0.4509677937515059], [0.5489920488314192], [0.6862501003935426], [0.7843145128905308], [0.8235081519556661], [0.8039113324230984], [0.7058870773431852], [0.6078226648461971], [0.47056461328407356], [0.33330656172195006], [0.23528230664203678], [0.21568548710946914], [0.2941129226568147], [0.4313709742189383], [0.5882258453136294], [0.6862501003935426], [0.6470564613284073], [0.5097984097662839], [0.3529435386715926], [0.23528230664203678], [0.21568548710946914], [0.31370974218938236], [0.5097984097662839], [0.6862501003935426], [0.7843145128905308], [0.7254838968757529], [0.5882258453136294], [0.39213717773672796], [0.27451610312424707], [0.23528230664203678], [0.2941129226568147], [0.4117339972692956], [0.5097984097662839], [0.5489920488314192], [0.5097984097662839], [0.4313709742189383], [0.33330656172195006], [0.2941129226568147], [0.31370974218938236], [0.39213717773672796], [0.47056461328407356], [0.4902015902337162], [0.47056461328407356], [0.4313709742189383], [0.4117339972692956], [0.4313709742189383], [0.5097984097662839], [0.5686290257810618], [0.6078226648461971], [0.6078226648461971], [0.5882258453136294], [0.5686290257810618], [0.6078226648461971], [0.666653280860975], [0.7647176933579631], [0.8039113324230984], [0.8039113324230984], [0.7450807164083206], [0.6274596417958397], [0.5293952292988515], [0.4509677937515059], [0.4313709742189383], [0.5097984097662839], [0.6470564613284073], [0.7843145128905308], [0.8823387679704442], [0.8235081519556661], [0.666653280860975], [0.4313709742189383], [0.23528230664203678], [0.1568548710946912], [0.27451610312424707], [0.5293952292988515], [0.8039113324230984], [0.9804031804674324], [0.941169383985222], [0.7254838968757529], [0.4117339972692956], [0.17645169062725885], [0.13725805156212348], [0.2941129226568147], [0.5489920488314192], [0.7647176933579631], [0.8235081519556661], [0.7058870773431852], [0.5293952292988515], [0.3529435386715926], [0.33330656172195006], [0.4117339972692956], [0.5882258453136294], [0.7647176933579631], [0.8235081519556661], [0.7450807164083206], [0.5097984097662839], [0.23528230664203678], [0.039193639065135295], [0.0], [0.1960485101598265], [0.5293952292988515], [0.8431451289053087], [1.0], [0.9019757449200867], [0.5489920488314192]], "masks": [[1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1]], "evals": [[0.6470564613284073], [0.6470564613284073], [0.666653280860975], [0.6862501003935426], [0.666653280860975], [0.6078226648461971], [0.5097984097662839], [0.4313709742189383], [0.39213717773672796], [0.4117339972692956], [0.4509677937515059], [0.5293952292988515], [0.6078226648461971], [0.6862501003935426], [0.7254838968757529], [0.7450807164083206], [0.7254838968757529], [0.6862501003935426], [0.666653280860975], [0.6470564613284073], [0.6274596417958397], [0.5686290257810618], [0.4902015902337162], [0.3529435386715926], [0.27451610312424707], [0.23528230664203678], [0.31370974218938236], [0.4117339972692956], [0.5097984097662839], [0.5489920488314192], [0.5097984097662839], [0.4117339972692956], [0.3725403582041603], [0.39213717773672796], [0.4902015902337162], [0.6078226648461971], [0.7254838968757529], [0.7647176933579631], [0.7647176933579631], [0.7254838968757529], [0.6470564613284073], [0.5489920488314192], [0.4509677937515059], [0.4313709742189383], [0.47056461328407356], [0.6078226648461971], [0.7450807164083206], [0.8627419484378765], [0.8627419484378765], [0.8039113324230984], [0.7058870773431852], [0.6274596417958397], [0.5686290257810618], [0.5489920488314192], [0.5293952292988515], [0.5489920488314192], [0.5882258453136294], [0.6274596417958397], [0.6470564613284073], [0.6078226648461971], [0.5489920488314192], [0.5097984097662839], [0.5293952292988515], [0.6274596417958397], [0.7647176933579631], [0.8431451289053087], [0.8627419484378765], [0.8039113324230984], [0.7254838968757529], [0.6862501003935426], [0.7058870773431852], [0.7647176933579631], [0.8039113324230984], [0.8431451289053087], [0.8431451289053087], [0.7843145128905308], [0.6862501003935426], [0.5489920488314192], [0.39213717773672796], [0.31370974218938236], [0.3725403582041603], [0.5489920488314192], [0.7450807164083206], [0.8431451289053087], [0.7843145128905308], [0.6274596417958397], [0.4902015902337162], [0.47056461328407356], [0.5686290257810618], [0.7450807164083206], [0.8235081519556661], [0.8039113324230984], [0.6862501003935426], [0.5489920488314192], [0.47056461328407356], [0.4509677937515059], [0.47056461328407356], [0.5097984097662839], [0.5686290257810618], [0.6470564613284073], [0.7450807164083206], [0.8039113324230984], [0.7450807164083206], [0.6274596417958397], [0.4509677937515059], [0.33330656172195006], [0.31370974218938236], [0.4117339972692956], [0.5686290257810618], [0.7450807164083206], [0.8823387679704442], [0.9607662035177897], [0.9607662035177897], [0.8627419484378765], [0.7058870773431852], [0.5489920488314192], [0.4313709742189383], [0.4117339972692956], [0.4313709742189383], [0.4902015902337162], [0.5293952292988515], [0.5489920488314192], [0.5293952292988515], [0.4902015902337162], [0.4509677937515059], [0.3725403582041603], [0.27451610312424707], [0.17645169062725885], [0.09802425507991329], [0.07842743554734556], [0.09802425507991329], [0.1568548710946912], [0.21568548710946914], [0.27451610312424707], [0.3529435386715926], [0.47056461328407356], [0.5882258453136294], [0.666653280860975], [0.666653280860975], [0.5686290257810618], [0.4117339972692956], [0.27451610312424707], [0.21568548710946914], [0.23528230664203678], [0.2941129226568147], [0.39213717773672796], [0.4902015902337162], [0.5489920488314192], [0.5882258453136294], [0.5686290257810618], [0.5293952292988515], [0.47056461328407356], [0.4313709742189383], [0.4509677937515059], [0.5489920488314192], [0.6862501003935426], [0.7843145128905308], [0.8235081519556661], [0.8039113324230984], [0.7058870773431852], [0.6078226648461971], [0.47056461328407356], [0.33330656172195006], [0.23528230664203678], [0.21568548710946914], [0.2941129226568147], [0.4313709742189383], [0.5882258453136294], [0.6862501003935426], [0.6470564613284073], [0.5097984097662839], [0.3529435386715926], [0.23528230664203678], [0.21568548710946914], [0.31370974218938236], [0.5097984097662839], [0.6862501003935426], [0.7843145128905308], [0.7254838968757529], [0.5882258453136294], [0.39213717773672796], [0.27451610312424707], [0.23528230664203678], [0.2941129226568147], [0.4117339972692956], [0.5097984097662839], [0.5489920488314192], [0.5097984097662839], [0.4313709742189383], [0.33330656172195006], [0.2941129226568147], [0.31370974218938236], [0.39213717773672796], [0.47056461328407356], [0.4902015902337162], [0.47056461328407356], [0.4313709742189383], [0.4117339972692956], [0.4313709742189383], [0.5097984097662839], [0.5686290257810618], [0.6078226648461971], [0.6078226648461971], [0.5882258453136294], [0.5686290257810618], [0.6078226648461971], [0.666653280860975], [0.7647176933579631], [0.8039113324230984], [0.8039113324230984], [0.7450807164083206], [0.6274596417958397], [0.5293952292988515], [0.4509677937515059], [0.4313709742189383], [0.5097984097662839], [0.6470564613284073], [0.7843145128905308], [0.8823387679704442], [0.8235081519556661], [0.666653280860975], [0.4313709742189383], [0.23528230664203678], [0.1568548710946912], [0.27451610312424707], [0.5293952292988515], [0.8039113324230984], [0.9804031804674324], [0.941169383985222], [0.7254838968757529], [0.4117339972692956], [0.17645169062725885], [0.13725805156212348], [0.2941129226568147], [0.5489920488314192], [0.7647176933579631], [0.8235081519556661], [0.7058870773431852], [0.5293952292988515], [0.3529435386715926], [0.33330656172195006], [0.4117339972692956], [0.5882258453136294], [0.7647176933579631], [0.8235081519556661], [0.7450807164083206], [0.5097984097662839], [0.23528230664203678], [0.039193639065135295], [0.0], [0.1960485101598265], [0.5293952292988515], [0.8431451289053087], [1.0], [0.9019757449200867], [0.5489920488314192]], "eval_masks": [[0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0]], "forwards": [[0.6470564613284073], [0.6470564613284073], [0.666653280860975], [0.6862501003935426], [0.666653280860975], [0.6078226648461971], [0.5097984097662839], [0.4313709742189383], [0.39213717773672796], [0.4117339972692956], [0.4509677937515059], [0.5293952292988515], [0.6078226648461971], [0.6862501003935426], [0.7254838968757529], [0.7450807164083206], [0.7254838968757529], [0.6862501003935426], [0.666653280860975], [0.6470564613284073], [0.6274596417958397], [0.5686290257810618], [0.4902015902337162], [0.3529435386715926], [0.27451610312424707], [0.23528230664203678], [0.31370974218938236], [0.4117339972692956], [0.5097984097662839], [0.5489920488314192], [0.5097984097662839], [0.4117339972692956], [0.3725403582041603], [0.39213717773672796], [0.4902015902337162], [0.6078226648461971], [0.7254838968757529], [0.7647176933579631], [0.7647176933579631], [0.7254838968757529], [0.6470564613284073], [0.5489920488314192], [0.4509677937515059], [0.4313709742189383], [0.47056461328407356], [0.6078226648461971], [0.7450807164083206], [0.8627419484378765], [0.8627419484378765], [0.8039113324230984], [0.7058870773431852], [0.6274596417958397], [0.5686290257810618], [0.5489920488314192], [0.5293952292988515], [0.5489920488314192], [0.5882258453136294], [0.6274596417958397], [0.6470564613284073], [0.6078226648461971], [0.5489920488314192], [0.5097984097662839], [0.5293952292988515], [0.6274596417958397], [0.7647176933579631], [0.8431451289053087], [0.8627419484378765], [0.8039113324230984], [0.7254838968757529], [0.6862501003935426], [0.7058870773431852], [0.7647176933579631], [0.8039113324230984], [0.8431451289053087], [0.8431451289053087], [0.7843145128905308], [0.6862501003935426], [0.5489920488314192], [0.39213717773672796], [0.31370974218938236], [0.3725403582041603], [0.5489920488314192], [0.7450807164083206], [0.8431451289053087], [0.7843145128905308], [0.6274596417958397], [0.4902015902337162], [0.47056461328407356], [0.5686290257810618], [0.7450807164083206], [0.8235081519556661], [0.8039113324230984], [0.6862501003935426], [0.5489920488314192], [0.47056461328407356], [0.4509677937515059], [0.47056461328407356], [0.5097984097662839], [0.5686290257810618], [0.6470564613284073], [0.7450807164083206], [0.8039113324230984], [0.7450807164083206], [0.6274596417958397], [0.4509677937515059], [0.33330656172195006], [0.31370974218938236], [0.4117339972692956], [0.5686290257810618], [0.7450807164083206], [0.8823387679704442], [0.9607662035177897], [0.9607662035177897], [0.8627419484378765], [0.7058870773431852], [0.5489920488314192], [0.4313709742189383], [0.4117339972692956], [0.4313709742189383], [0.4902015902337162], [0.5293952292988515], [0.5489920488314192], [0.5293952292988515], [0.4902015902337162], [0.4509677937515059], [0.3725403582041603], [0.27451610312424707], [0.17645169062725885], [0.09802425507991329], [0.07842743554734556], [0.09802425507991329], [0.1568548710946912], [0.21568548710946914], [0.27451610312424707], [0.3529435386715926], [0.47056461328407356], [0.5882258453136294], [0.666653280860975], [0.666653280860975], [0.5686290257810618], [0.4117339972692956], [0.27451610312424707], [0.21568548710946914], [0.23528230664203678], [0.2941129226568147], [0.39213717773672796], [0.4902015902337162], [0.5489920488314192], [0.5882258453136294], [0.5686290257810618], [0.5293952292988515], [0.47056461328407356], [0.4313709742189383], [0.4509677937515059], [0.5489920488314192], [0.6862501003935426], [0.7843145128905308], [0.8235081519556661], [0.8039113324230984], [0.7058870773431852], [0.6078226648461971], [0.47056461328407356], [0.33330656172195006], [0.23528230664203678], [0.21568548710946914], [0.2941129226568147], [0.4313709742189383], [0.5882258453136294], [0.6862501003935426], [0.6470564613284073], [0.5097984097662839], [0.3529435386715926], [0.23528230664203678], [0.21568548710946914], [0.31370974218938236], [0.5097984097662839], [0.6862501003935426], [0.7843145128905308], [0.7254838968757529], [0.5882258453136294], [0.39213717773672796], [0.27451610312424707], [0.23528230664203678], [0.2941129226568147], [0.4117339972692956], [0.5097984097662839], [0.5489920488314192], [0.5097984097662839], [0.4313709742189383], [0.33330656172195006], [0.2941129226568147], [0.31370974218938236], [0.39213717773672796], [0.47056461328407356], [0.4902015902337162], [0.47056461328407356], [0.4313709742189383], [0.4117339972692956], [0.4313709742189383], [0.5097984097662839], [0.5686290257810618], [0.6078226648461971], [0.6078226648461971], [0.5882258453136294], [0.5686290257810618], [0.6078226648461971], [0.666653280860975], [0.7647176933579631], [0.8039113324230984], [0.8039113324230984], [0.7450807164083206], [0.6274596417958397], [0.5293952292988515], [0.4509677937515059], [0.4313709742189383], [0.5097984097662839], [0.6470564613284073], [0.7843145128905308], [0.8823387679704442], [0.8235081519556661], [0.666653280860975], [0.4313709742189383], [0.23528230664203678], [0.1568548710946912], [0.27451610312424707], [0.5293952292988515], [0.8039113324230984], [0.9804031804674324], [0.941169383985222], [0.7254838968757529], [0.4117339972692956], [0.17645169062725885], [0.13725805156212348], [0.2941129226568147], [0.5489920488314192], [0.7647176933579631], [0.8235081519556661], [0.7058870773431852], [0.5293952292988515], [0.3529435386715926], [0.33330656172195006], [0.4117339972692956], [0.5882258453136294], [0.7647176933579631], [0.8235081519556661], [0.7450807164083206], [0.5097984097662839], [0.23528230664203678], [0.039193639065135295], [0.0], [0.1960485101598265], [0.5293952292988515], [0.8431451289053087], [1.0], [0.9019757449200867], [0.5489920488314192]], "deltas": [[1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0]]}, "backward": {"values": [[0.5489920488314192], [0.9019757449200867], [1.0], [0.8431451289053087], [0.5293952292988515], [0.1960485101598265], [0.0], [0.039193639065135295], [0.23528230664203678], [0.5097984097662839], [0.7450807164083206], [0.8235081519556661], [0.7647176933579631], [0.5882258453136294], [0.4117339972692956], [0.33330656172195006], [0.3529435386715926], [0.5293952292988515], [0.7058870773431852], [0.8235081519556661], [0.7647176933579631], [0.5489920488314192], [0.2941129226568147], [0.13725805156212348], [0.17645169062725885], [0.4117339972692956], [0.7254838968757529], [0.941169383985222], [0.9804031804674324], [0.8039113324230984], [0.5293952292988515], [0.27451610312424707], [0.1568548710946912], [0.23528230664203678], [0.4313709742189383], [0.666653280860975], [0.8235081519556661], [0.8823387679704442], [0.7843145128905308], [0.6470564613284073], [0.5097984097662839], [0.4313709742189383], [0.4509677937515059], [0.5293952292988515], [0.6274596417958397], [0.7450807164083206], [0.8039113324230984], [0.8039113324230984], [0.7647176933579631], [0.666653280860975], [0.6078226648461971], [0.5686290257810618], [0.5882258453136294], [0.6078226648461971], [0.6078226648461971], [0.5686290257810618], [0.5097984097662839], [0.4313709742189383], [0.4117339972692956], [0.4313709742189383], [0.47056461328407356], [0.4902015902337162], [0.47056461328407356], [0.39213717773672796], [0.31370974218938236], [0.2941129226568147], [0.33330656172195006], [0.4313709742189383], [0.5097984097662839], [0.5489920488314192], [0.5097984097662839], [0.4117339972692956], [0.2941129226568147], [0.23528230664203678], [0.27451610312424707], [0.39213717773672796], [0.5882258453136294], [0.7254838968757529], [0.7843145128905308], [0.6862501003935426], [0.5097984097662839], [0.31370974218938236], [0.21568548710946914], [0.23528230664203678], [0.3529435386715926], [0.5097984097662839], [0.6470564613284073], [0.6862501003935426], [0.5882258453136294], [0.4313709742189383], [0.2941129226568147], [0.21568548710946914], [0.23528230664203678], [0.33330656172195006], [0.47056461328407356], [0.6078226648461971], [0.7058870773431852], [0.8039113324230984], [0.8235081519556661], [0.7843145128905308], [0.6862501003935426], [0.5489920488314192], [0.4509677937515059], [0.4313709742189383], [0.47056461328407356], [0.5293952292988515], [0.5686290257810618], [0.5882258453136294], [0.5489920488314192], [0.4902015902337162], [0.39213717773672796], [0.2941129226568147], [0.23528230664203678], [0.21568548710946914], [0.27451610312424707], [0.4117339972692956], [0.5686290257810618], [0.666653280860975], [0.666653280860975], [0.5882258453136294], [0.47056461328407356], [0.3529435386715926], [0.27451610312424707], [0.21568548710946914], [0.1568548710946912], [0.09802425507991329], [0.07842743554734556], [0.09802425507991329], [0.17645169062725885], [0.27451610312424707], [0.3725403582041603], [0.4509677937515059], [0.4902015902337162], [0.5293952292988515], [0.5489920488314192], [0.5293952292988515], [0.4902015902337162], [0.4313709742189383], [0.4117339972692956], [0.4313709742189383], [0.5489920488314192], [0.7058870773431852], [0.8627419484378765], [0.9607662035177897], [0.9607662035177897], [0.8823387679704442], [0.7450807164083206], [0.5686290257810618], [0.4117339972692956], [0.31370974218938236], [0.33330656172195006], [0.4509677937515059], [0.6274596417958397], [0.7450807164083206], [0.8039113324230984], [0.7450807164083206], [0.6470564613284073], [0.5686290257810618], [0.5097984097662839], [0.47056461328407356], [0.4509677937515059], [0.47056461328407356], [0.5489920488314192], [0.6862501003935426], [0.8039113324230984], [0.8235081519556661], [0.7450807164083206], [0.5686290257810618], [0.47056461328407356], [0.4902015902337162], [0.6274596417958397], [0.7843145128905308], [0.8431451289053087], [0.7450807164083206], [0.5489920488314192], [0.3725403582041603], [0.31370974218938236], [0.39213717773672796], [0.5489920488314192], [0.6862501003935426], [0.7843145128905308], [0.8431451289053087], [0.8431451289053087], [0.8039113324230984], [0.7647176933579631], [0.7058870773431852], [0.6862501003935426], [0.7254838968757529], [0.8039113324230984], [0.8627419484378765], [0.8431451289053087], [0.7647176933579631], [0.6274596417958397], [0.5293952292988515], [0.5097984097662839], [0.5489920488314192], [0.6078226648461971], [0.6470564613284073], [0.6274596417958397], [0.5882258453136294], [0.5489920488314192], [0.5293952292988515], [0.5489920488314192], [0.5686290257810618], [0.6274596417958397], [0.7058870773431852], [0.8039113324230984], [0.8627419484378765], [0.8627419484378765], [0.7450807164083206], [0.6078226648461971], [0.47056461328407356], [0.4313709742189383], [0.4509677937515059], [0.5489920488314192], [0.6470564613284073], [0.7254838968757529], [0.7647176933579631], [0.7647176933579631], [0.7254838968757529], [0.6078226648461971], [0.4902015902337162], [0.39213717773672796], [0.3725403582041603], [0.4117339972692956], [0.5097984097662839], [0.5489920488314192], [0.5097984097662839], [0.4117339972692956], [0.31370974218938236], [0.23528230664203678], [0.27451610312424707], [0.3529435386715926], [0.4902015902337162], [0.5686290257810618], [0.6274596417958397], [0.6470564613284073], [0.666653280860975], [0.6862501003935426], [0.7254838968757529], [0.7450807164083206], [0.7254838968757529], [0.6862501003935426], [0.6078226648461971], [0.5293952292988515], [0.4509677937515059], [0.4117339972692956], [0.39213717773672796], [0.4313709742189383], [0.5097984097662839], [0.6078226648461971], [0.666653280860975], [0.6862501003935426], [0.666653280860975], [0.6470564613284073], [0.6470564613284073]], "masks": [[1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1]], "evals": [[0.5489920488314192], [0.9019757449200867], [1.0], [0.8431451289053087], [0.5293952292988515], [0.1960485101598265], [0.0], [0.039193639065135295], [0.23528230664203678], [0.5097984097662839], [0.7450807164083206], [0.8235081519556661], [0.7647176933579631], [0.5882258453136294], [0.4117339972692956], [0.33330656172195006], [0.3529435386715926], [0.5293952292988515], [0.7058870773431852], [0.8235081519556661], [0.7647176933579631], [0.5489920488314192], [0.2941129226568147], [0.13725805156212348], [0.17645169062725885], [0.4117339972692956], [0.7254838968757529], [0.941169383985222], [0.9804031804674324], [0.8039113324230984], [0.5293952292988515], [0.27451610312424707], [0.1568548710946912], [0.23528230664203678], [0.4313709742189383], [0.666653280860975], [0.8235081519556661], [0.8823387679704442], [0.7843145128905308], [0.6470564613284073], [0.5097984097662839], [0.4313709742189383], [0.4509677937515059], [0.5293952292988515], [0.6274596417958397], [0.7450807164083206], [0.8039113324230984], [0.8039113324230984], [0.7647176933579631], [0.666653280860975], [0.6078226648461971], [0.5686290257810618], [0.5882258453136294], [0.6078226648461971], [0.6078226648461971], [0.5686290257810618], [0.5097984097662839], [0.4313709742189383], [0.4117339972692956], [0.4313709742189383], [0.47056461328407356], [0.4902015902337162], [0.47056461328407356], [0.39213717773672796], [0.31370974218938236], [0.2941129226568147], [0.33330656172195006], [0.4313709742189383], [0.5097984097662839], [0.5489920488314192], [0.5097984097662839], [0.4117339972692956], [0.2941129226568147], [0.23528230664203678], [0.27451610312424707], [0.39213717773672796], [0.5882258453136294], [0.7254838968757529], [0.7843145128905308], [0.6862501003935426], [0.5097984097662839], [0.31370974218938236], [0.21568548710946914], [0.23528230664203678], [0.3529435386715926], [0.5097984097662839], [0.6470564613284073], [0.6862501003935426], [0.5882258453136294], [0.4313709742189383], [0.2941129226568147], [0.21568548710946914], [0.23528230664203678], [0.33330656172195006], [0.47056461328407356], [0.6078226648461971], [0.7058870773431852], [0.8039113324230984], [0.8235081519556661], [0.7843145128905308], [0.6862501003935426], [0.5489920488314192], [0.4509677937515059], [0.4313709742189383], [0.47056461328407356], [0.5293952292988515], [0.5686290257810618], [0.5882258453136294], [0.5489920488314192], [0.4902015902337162], [0.39213717773672796], [0.2941129226568147], [0.23528230664203678], [0.21568548710946914], [0.27451610312424707], [0.4117339972692956], [0.5686290257810618], [0.666653280860975], [0.666653280860975], [0.5882258453136294], [0.47056461328407356], [0.3529435386715926], [0.27451610312424707], [0.21568548710946914], [0.1568548710946912], [0.09802425507991329], [0.07842743554734556], [0.09802425507991329], [0.17645169062725885], [0.27451610312424707], [0.3725403582041603], [0.4509677937515059], [0.4902015902337162], [0.5293952292988515], [0.5489920488314192], [0.5293952292988515], [0.4902015902337162], [0.4313709742189383], [0.4117339972692956], [0.4313709742189383], [0.5489920488314192], [0.7058870773431852], [0.8627419484378765], [0.9607662035177897], [0.9607662035177897], [0.8823387679704442], [0.7450807164083206], [0.5686290257810618], [0.4117339972692956], [0.31370974218938236], [0.33330656172195006], [0.4509677937515059], [0.6274596417958397], [0.7450807164083206], [0.8039113324230984], [0.7450807164083206], [0.6470564613284073], [0.5686290257810618], [0.5097984097662839], [0.47056461328407356], [0.4509677937515059], [0.47056461328407356], [0.5489920488314192], [0.6862501003935426], [0.8039113324230984], [0.8235081519556661], [0.7450807164083206], [0.5686290257810618], [0.47056461328407356], [0.4902015902337162], [0.6274596417958397], [0.7843145128905308], [0.8431451289053087], [0.7450807164083206], [0.5489920488314192], [0.3725403582041603], [0.31370974218938236], [0.39213717773672796], [0.5489920488314192], [0.6862501003935426], [0.7843145128905308], [0.8431451289053087], [0.8431451289053087], [0.8039113324230984], [0.7647176933579631], [0.7058870773431852], [0.6862501003935426], [0.7254838968757529], [0.8039113324230984], [0.8627419484378765], [0.8431451289053087], [0.7647176933579631], [0.6274596417958397], [0.5293952292988515], [0.5097984097662839], [0.5489920488314192], [0.6078226648461971], [0.6470564613284073], [0.6274596417958397], [0.5882258453136294], [0.5489920488314192], [0.5293952292988515], [0.5489920488314192], [0.5686290257810618], [0.6274596417958397], [0.7058870773431852], [0.8039113324230984], [0.8627419484378765], [0.8627419484378765], [0.7450807164083206], [0.6078226648461971], [0.47056461328407356], [0.4313709742189383], [0.4509677937515059], [0.5489920488314192], [0.6470564613284073], [0.7254838968757529], [0.7647176933579631], [0.7647176933579631], [0.7254838968757529], [0.6078226648461971], [0.4902015902337162], [0.39213717773672796], [0.3725403582041603], [0.4117339972692956], [0.5097984097662839], [0.5489920488314192], [0.5097984097662839], [0.4117339972692956], [0.31370974218938236], [0.23528230664203678], [0.27451610312424707], [0.3529435386715926], [0.4902015902337162], [0.5686290257810618], [0.6274596417958397], [0.6470564613284073], [0.666653280860975], [0.6862501003935426], [0.7254838968757529], [0.7450807164083206], [0.7254838968757529], [0.6862501003935426], [0.6078226648461971], [0.5293952292988515], [0.4509677937515059], [0.4117339972692956], [0.39213717773672796], [0.4313709742189383], [0.5097984097662839], [0.6078226648461971], [0.666653280860975], [0.6862501003935426], [0.666653280860975], [0.6470564613284073], [0.6470564613284073]], "eval_masks": [[0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0]], "forwards": [[0.5489920488314192], [0.9019757449200867], [1.0], [0.8431451289053087], [0.5293952292988515], [0.1960485101598265], [0.0], [0.039193639065135295], [0.23528230664203678], [0.5097984097662839], [0.7450807164083206], [0.8235081519556661], [0.7647176933579631], [0.5882258453136294], [0.4117339972692956], [0.33330656172195006], [0.3529435386715926], [0.5293952292988515], [0.7058870773431852], [0.8235081519556661], [0.7647176933579631], [0.5489920488314192], [0.2941129226568147], [0.13725805156212348], [0.17645169062725885], [0.4117339972692956], [0.7254838968757529], [0.941169383985222], [0.9804031804674324], [0.8039113324230984], [0.5293952292988515], [0.27451610312424707], [0.1568548710946912], [0.23528230664203678], [0.4313709742189383], [0.666653280860975], [0.8235081519556661], [0.8823387679704442], [0.7843145128905308], [0.6470564613284073], [0.5097984097662839], [0.4313709742189383], [0.4509677937515059], [0.5293952292988515], [0.6274596417958397], [0.7450807164083206], [0.8039113324230984], [0.8039113324230984], [0.7647176933579631], [0.666653280860975], [0.6078226648461971], [0.5686290257810618], [0.5882258453136294], [0.6078226648461971], [0.6078226648461971], [0.5686290257810618], [0.5097984097662839], [0.4313709742189383], [0.4117339972692956], [0.4313709742189383], [0.47056461328407356], [0.4902015902337162], [0.47056461328407356], [0.39213717773672796], [0.31370974218938236], [0.2941129226568147], [0.33330656172195006], [0.4313709742189383], [0.5097984097662839], [0.5489920488314192], [0.5097984097662839], [0.4117339972692956], [0.2941129226568147], [0.23528230664203678], [0.27451610312424707], [0.39213717773672796], [0.5882258453136294], [0.7254838968757529], [0.7843145128905308], [0.6862501003935426], [0.5097984097662839], [0.31370974218938236], [0.21568548710946914], [0.23528230664203678], [0.3529435386715926], [0.5097984097662839], [0.6470564613284073], [0.6862501003935426], [0.5882258453136294], [0.4313709742189383], [0.2941129226568147], [0.21568548710946914], [0.23528230664203678], [0.33330656172195006], [0.47056461328407356], [0.6078226648461971], [0.7058870773431852], [0.8039113324230984], [0.8235081519556661], [0.7843145128905308], [0.6862501003935426], [0.5489920488314192], [0.4509677937515059], [0.4313709742189383], [0.47056461328407356], [0.5293952292988515], [0.5686290257810618], [0.5882258453136294], [0.5489920488314192], [0.4902015902337162], [0.39213717773672796], [0.2941129226568147], [0.23528230664203678], [0.21568548710946914], [0.27451610312424707], [0.4117339972692956], [0.5686290257810618], [0.666653280860975], [0.666653280860975], [0.5882258453136294], [0.47056461328407356], [0.3529435386715926], [0.27451610312424707], [0.21568548710946914], [0.1568548710946912], [0.09802425507991329], [0.07842743554734556], [0.09802425507991329], [0.17645169062725885], [0.27451610312424707], [0.3725403582041603], [0.4509677937515059], [0.4902015902337162], [0.5293952292988515], [0.5489920488314192], [0.5293952292988515], [0.4902015902337162], [0.4313709742189383], [0.4117339972692956], [0.4313709742189383], [0.5489920488314192], [0.7058870773431852], [0.8627419484378765], [0.9607662035177897], [0.9607662035177897], [0.8823387679704442], [0.7450807164083206], [0.5686290257810618], [0.4117339972692956], [0.31370974218938236], [0.33330656172195006], [0.4509677937515059], [0.6274596417958397], [0.7450807164083206], [0.8039113324230984], [0.7450807164083206], [0.6470564613284073], [0.5686290257810618], [0.5097984097662839], [0.47056461328407356], [0.4509677937515059], [0.47056461328407356], [0.5489920488314192], [0.6862501003935426], [0.8039113324230984], [0.8235081519556661], [0.7450807164083206], [0.5686290257810618], [0.47056461328407356], [0.4902015902337162], [0.6274596417958397], [0.7843145128905308], [0.8431451289053087], [0.7450807164083206], [0.5489920488314192], [0.3725403582041603], [0.31370974218938236], [0.39213717773672796], [0.5489920488314192], [0.6862501003935426], [0.7843145128905308], [0.8431451289053087], [0.8431451289053087], [0.8039113324230984], [0.7647176933579631], [0.7058870773431852], [0.6862501003935426], [0.7254838968757529], [0.8039113324230984], [0.8627419484378765], [0.8431451289053087], [0.7647176933579631], [0.6274596417958397], [0.5293952292988515], [0.5097984097662839], [0.5489920488314192], [0.6078226648461971], [0.6470564613284073], [0.6274596417958397], [0.5882258453136294], [0.5489920488314192], [0.5293952292988515], [0.5489920488314192], [0.5686290257810618], [0.6274596417958397], [0.7058870773431852], [0.8039113324230984], [0.8627419484378765], [0.8627419484378765], [0.7450807164083206], [0.6078226648461971], [0.47056461328407356], [0.4313709742189383], [0.4509677937515059], [0.5489920488314192], [0.6470564613284073], [0.7254838968757529], [0.7647176933579631], [0.7647176933579631], [0.7254838968757529], [0.6078226648461971], [0.4902015902337162], [0.39213717773672796], [0.3725403582041603], [0.4117339972692956], [0.5097984097662839], [0.5489920488314192], [0.5097984097662839], [0.4117339972692956], [0.31370974218938236], [0.23528230664203678], [0.27451610312424707], [0.3529435386715926], [0.4902015902337162], [0.5686290257810618], [0.6274596417958397], [0.6470564613284073], [0.666653280860975], [0.6862501003935426], [0.7254838968757529], [0.7450807164083206], [0.7254838968757529], [0.6862501003935426], [0.6078226648461971], [0.5293952292988515], [0.4509677937515059], [0.4117339972692956], [0.39213717773672796], [0.4313709742189383], [0.5097984097662839], [0.6078226648461971], [0.666653280860975], [0.6862501003935426], [0.666653280860975], [0.6470564613284073], [0.6470564613284073]], "deltas": [[1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0]]}} -{"label": 0, "forward": {"values": [[0.926482546757823], [0.8970574948046862], [0.8676625606119929], [0.8088124567057193], [0.7352950034635425], [0.6764750173177122], [0.6617775502213654], [0.7058699515104057], [0.7647200554166792], [0.838237508658856], [0.8529349757552028], [0.7941149896093727], [0.7058699515104057], [0.5882299792187452], [0.5147125259765685], [0.5000150588802217], [0.5441074601692618], [0.617655031171882], [0.7205975363671957], [0.8088124567057193], [0.8235400415625094], [0.7794175225130259], [0.6764750173177122], [0.5441074601692618], [0.4558925398307382], [0.4264674878776014], [0.47059000692708486], [0.5441074601692618], [0.602927446315092], [0.6470499653645755], [0.6470499653645755], [0.6764750173177122], [0.6764750173177122], [0.6617775502213654], [0.6323524982682288], [0.617655031171882], [0.6323524982682288], [0.6764750173177122], [0.691172484414059], [0.6764750173177122], [0.6470499653645755], [0.617655031171882], [0.6470499653645755], [0.691172484414059], [0.7352950034635425], [0.7352950034635425], [0.6617775502213654], [0.5735325121223985], [0.5147125259765685], [0.5441074601692618], [0.6470499653645755], [0.7352950034635425], [0.7352950034635425], [0.6617775502213654], [0.5294099930729151], [0.44116495497394814], [0.4264674878776014], [0.5147125259765685], [0.6323524982682288], [0.7058699515104057], [0.7205975363671957], [0.6617775502213654], [0.5882299792187452], [0.5441074601692618], [0.5441074601692618], [0.5882299792187452], [0.6617775502213654], [0.7352950034635425], [0.8235400415625094], [0.8529349757552028], [0.8088124567057193], [0.691172484414059], [0.5441074601692618], [0.4117700207812547], [0.33822244977863447], [0.32352498268228774], [0.3529500346354245], [0.4117700207812547], [0.5000150588802217], [0.602927446315092], [0.7352950034635425], [0.838237508658856], [0.8235400415625094], [0.6617775502213654], [0.397072553684908], [0.11763997229166046], [0.0], [0.07351745324217698], [0.32352498268228774], [0.6323524982682288], [0.8823600277083395], [1.0], [0.9411800138541697], [0.7794175225130259], [0.5882299792187452], [0.3823449688281179], [0.2205824774869741], [0.11763997229166046], [0.10294250519531364], [0.16176249134114393], [0.29413004848959434], [0.4558925398307382], [0.5882299792187452], [0.6470499653645755], [0.6764750173177122], [0.6764750173177122], [0.6617775502213654], [0.6617775502213654], [0.6617775502213654], [0.617655031171882], [0.5441074601692618], [0.47059000692708486], [0.4264674878776014], [0.44116495497394814], [0.5147125259765685], [0.602927446315092], [0.691172484414059], [0.7352950034635425], [0.7499924705598892], [0.7499924705598892], [0.691172484414059], [0.5588350450260519], [0.3823449688281179], [0.1911875432942807], [0.05881998614583017], [0.02942505195313677], [0.11763997229166046], [0.26470499653645757], [0.4264674878776014], [0.5147125259765685], [0.5147125259765685], [0.4558925398307382], [0.36764750173177124], [0.26470499653645757], [0.1911875432942807], [0.14706502424479712], [0.16176249134114393], [0.2058850103906274], [0.27940246363280424], [0.3529500346354245], [0.397072553684908], [0.397072553684908], [0.3823449688281179], [0.3529500346354245], [0.33822244977863447], [0.33822244977863447], [0.3529500346354245], [0.36764750173177124], [0.36764750173177124], [0.36764750173177124], [0.33822244977863447], [0.32352498268228774], [0.3529500346354245], [0.4117700207812547], [0.4852874740234316], [0.5441074601692618], [0.5441074601692618], [0.5147125259765685], [0.47059000692708486], [0.4264674878776014], [0.397072553684908], [0.397072553684908], [0.4117700207812547], [0.4558925398307382], [0.5147125259765685], [0.602927446315092], [0.6764750173177122], [0.7058699515104057], [0.691172484414059], [0.6323524982682288], [0.5441074601692618], [0.47059000692708486], [0.44116495497394814], [0.4558925398307382], [0.5294099930729151], [0.6323524982682288], [0.7058699515104057], [0.7499924705598892], [0.7499924705598892], [0.7205975363671957], [0.691172484414059], [0.6470499653645755], [0.617655031171882], [0.5588350450260519], [0.5000150588802217], [0.47059000692708486], [0.44116495497394814], [0.4558925398307382], [0.47059000692708486], [0.4558925398307382], [0.4558925398307382], [0.4852874740234316], [0.5441074601692618], [0.617655031171882], [0.691172484414059], [0.7205975363671957], [0.7058699515104057], [0.6470499653645755], [0.602927446315092], [0.5735325121223985], [0.602927446315092], [0.6617775502213654], [0.7352950034635425], [0.7941149896093727], [0.8235400415625094], [0.8088124567057193], [0.7647200554166792], [0.6764750173177122], [0.602927446315092], [0.5735325121223985], [0.617655031171882], [0.7058699515104057], [0.838237508658856], [0.911754961901033], [0.911754961901033], [0.8088124567057193], [0.6764750173177122], [0.5882299792187452], [0.5588350450260519], [0.5882299792187452], [0.6323524982682288], [0.6470499653645755], [0.602927446315092], [0.5294099930729151], [0.4852874740234316], [0.5000150588802217], [0.5882299792187452], [0.691172484414059], [0.7794175225130259], [0.8088124567057193], [0.7941149896093727], [0.7647200554166792], [0.7205975363671957], [0.691172484414059], [0.6617775502213654], [0.6470499653645755], [0.617655031171882], [0.602927446315092], [0.617655031171882], [0.6323524982682288], [0.6617775502213654], [0.691172484414059], [0.7058699515104057], [0.7058699515104057], [0.7205975363671957], [0.7352950034635425], [0.7647200554166792], [0.7941149896093727], [0.8235400415625094], [0.8235400415625094], [0.838237508658856], [0.8088124567057193], [0.7794175225130259], [0.7352950034635425], [0.7058699515104057], [0.6764750173177122]], "masks": [[1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1]], "evals": [[0.926482546757823], [0.8970574948046862], [0.8676625606119929], [0.8088124567057193], [0.7352950034635425], [0.6764750173177122], [0.6617775502213654], [0.7058699515104057], [0.7647200554166792], [0.838237508658856], [0.8529349757552028], [0.7941149896093727], [0.7058699515104057], [0.5882299792187452], [0.5147125259765685], [0.5000150588802217], [0.5441074601692618], [0.617655031171882], [0.7205975363671957], [0.8088124567057193], [0.8235400415625094], [0.7794175225130259], [0.6764750173177122], [0.5441074601692618], [0.4558925398307382], [0.4264674878776014], [0.47059000692708486], [0.5441074601692618], [0.602927446315092], [0.6470499653645755], [0.6470499653645755], [0.6764750173177122], [0.6764750173177122], [0.6617775502213654], [0.6323524982682288], [0.617655031171882], [0.6323524982682288], [0.6764750173177122], [0.691172484414059], [0.6764750173177122], [0.6470499653645755], [0.617655031171882], [0.6470499653645755], [0.691172484414059], [0.7352950034635425], [0.7352950034635425], [0.6617775502213654], [0.5735325121223985], [0.5147125259765685], [0.5441074601692618], [0.6470499653645755], [0.7352950034635425], [0.7352950034635425], [0.6617775502213654], [0.5294099930729151], [0.44116495497394814], [0.4264674878776014], [0.5147125259765685], [0.6323524982682288], [0.7058699515104057], [0.7205975363671957], [0.6617775502213654], [0.5882299792187452], [0.5441074601692618], [0.5441074601692618], [0.5882299792187452], [0.6617775502213654], [0.7352950034635425], [0.8235400415625094], [0.8529349757552028], [0.8088124567057193], [0.691172484414059], [0.5441074601692618], [0.4117700207812547], [0.33822244977863447], [0.32352498268228774], [0.3529500346354245], [0.4117700207812547], [0.5000150588802217], [0.602927446315092], [0.7352950034635425], [0.838237508658856], [0.8235400415625094], [0.6617775502213654], [0.397072553684908], [0.11763997229166046], [0.0], [0.07351745324217698], [0.32352498268228774], [0.6323524982682288], [0.8823600277083395], [1.0], [0.9411800138541697], [0.7794175225130259], [0.5882299792187452], [0.3823449688281179], [0.2205824774869741], [0.11763997229166046], [0.10294250519531364], [0.16176249134114393], [0.29413004848959434], [0.4558925398307382], [0.5882299792187452], [0.6470499653645755], [0.6764750173177122], [0.6764750173177122], [0.6617775502213654], [0.6617775502213654], [0.6617775502213654], [0.617655031171882], [0.5441074601692618], [0.47059000692708486], [0.4264674878776014], [0.44116495497394814], [0.5147125259765685], [0.602927446315092], [0.691172484414059], [0.7352950034635425], [0.7499924705598892], [0.7499924705598892], [0.691172484414059], [0.5588350450260519], [0.3823449688281179], [0.1911875432942807], [0.05881998614583017], [0.02942505195313677], [0.11763997229166046], [0.26470499653645757], [0.4264674878776014], [0.5147125259765685], [0.5147125259765685], [0.4558925398307382], [0.36764750173177124], [0.26470499653645757], [0.1911875432942807], [0.14706502424479712], [0.16176249134114393], [0.2058850103906274], [0.27940246363280424], [0.3529500346354245], [0.397072553684908], [0.397072553684908], [0.3823449688281179], [0.3529500346354245], [0.33822244977863447], [0.33822244977863447], [0.3529500346354245], [0.36764750173177124], [0.36764750173177124], [0.36764750173177124], [0.33822244977863447], [0.32352498268228774], [0.3529500346354245], [0.4117700207812547], [0.4852874740234316], [0.5441074601692618], [0.5441074601692618], [0.5147125259765685], [0.47059000692708486], [0.4264674878776014], [0.397072553684908], [0.397072553684908], [0.4117700207812547], [0.4558925398307382], [0.5147125259765685], [0.602927446315092], [0.6764750173177122], [0.7058699515104057], [0.691172484414059], [0.6323524982682288], [0.5441074601692618], [0.47059000692708486], [0.44116495497394814], [0.4558925398307382], [0.5294099930729151], [0.6323524982682288], [0.7058699515104057], [0.7499924705598892], [0.7499924705598892], [0.7205975363671957], [0.691172484414059], [0.6470499653645755], [0.617655031171882], [0.5588350450260519], [0.5000150588802217], [0.47059000692708486], [0.44116495497394814], [0.4558925398307382], [0.47059000692708486], [0.4558925398307382], [0.4558925398307382], [0.4852874740234316], [0.5441074601692618], [0.617655031171882], [0.691172484414059], [0.7205975363671957], [0.7058699515104057], [0.6470499653645755], [0.602927446315092], [0.5735325121223985], [0.602927446315092], [0.6617775502213654], [0.7352950034635425], [0.7941149896093727], [0.8235400415625094], [0.8088124567057193], [0.7647200554166792], [0.6764750173177122], [0.602927446315092], [0.5735325121223985], [0.617655031171882], [0.7058699515104057], [0.838237508658856], [0.911754961901033], [0.911754961901033], [0.8088124567057193], [0.6764750173177122], [0.5882299792187452], [0.5588350450260519], [0.5882299792187452], [0.6323524982682288], [0.6470499653645755], [0.602927446315092], [0.5294099930729151], [0.4852874740234316], [0.5000150588802217], [0.5882299792187452], [0.691172484414059], [0.7794175225130259], [0.8088124567057193], [0.7941149896093727], [0.7647200554166792], [0.7205975363671957], [0.691172484414059], [0.6617775502213654], [0.6470499653645755], [0.617655031171882], [0.602927446315092], [0.617655031171882], [0.6323524982682288], [0.6617775502213654], [0.691172484414059], [0.7058699515104057], [0.7058699515104057], [0.7205975363671957], [0.7352950034635425], [0.7647200554166792], [0.7941149896093727], [0.8235400415625094], [0.8235400415625094], [0.838237508658856], [0.8088124567057193], [0.7794175225130259], [0.7352950034635425], [0.7058699515104057], [0.6764750173177122]], "eval_masks": [[0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0]], "forwards": [[0.926482546757823], [0.8970574948046862], [0.8676625606119929], [0.8088124567057193], [0.7352950034635425], [0.6764750173177122], [0.6617775502213654], [0.7058699515104057], [0.7647200554166792], [0.838237508658856], [0.8529349757552028], [0.7941149896093727], [0.7058699515104057], [0.5882299792187452], [0.5147125259765685], [0.5000150588802217], [0.5441074601692618], [0.617655031171882], [0.7205975363671957], [0.8088124567057193], [0.8235400415625094], [0.7794175225130259], [0.6764750173177122], [0.5441074601692618], [0.4558925398307382], [0.4264674878776014], [0.47059000692708486], [0.5441074601692618], [0.602927446315092], [0.6470499653645755], [0.6470499653645755], [0.6764750173177122], [0.6764750173177122], [0.6617775502213654], [0.6323524982682288], [0.617655031171882], [0.6323524982682288], [0.6764750173177122], [0.691172484414059], [0.6764750173177122], [0.6470499653645755], [0.617655031171882], [0.6470499653645755], [0.691172484414059], [0.7352950034635425], [0.7352950034635425], [0.6617775502213654], [0.5735325121223985], [0.5147125259765685], [0.5441074601692618], [0.6470499653645755], [0.7352950034635425], [0.7352950034635425], [0.6617775502213654], [0.5294099930729151], [0.44116495497394814], [0.4264674878776014], [0.5147125259765685], [0.6323524982682288], [0.7058699515104057], [0.7205975363671957], [0.6617775502213654], [0.5882299792187452], [0.5441074601692618], [0.5441074601692618], [0.5882299792187452], [0.6617775502213654], [0.7352950034635425], [0.8235400415625094], [0.8529349757552028], [0.8088124567057193], [0.691172484414059], [0.5441074601692618], [0.4117700207812547], [0.33822244977863447], [0.32352498268228774], [0.3529500346354245], [0.4117700207812547], [0.5000150588802217], [0.602927446315092], [0.7352950034635425], [0.838237508658856], [0.8235400415625094], [0.6617775502213654], [0.397072553684908], [0.11763997229166046], [0.0], [0.07351745324217698], [0.32352498268228774], [0.6323524982682288], [0.8823600277083395], [1.0], [0.9411800138541697], [0.7794175225130259], [0.5882299792187452], [0.3823449688281179], [0.2205824774869741], [0.11763997229166046], [0.10294250519531364], [0.16176249134114393], [0.29413004848959434], [0.4558925398307382], [0.5882299792187452], [0.6470499653645755], [0.6764750173177122], [0.6764750173177122], [0.6617775502213654], [0.6617775502213654], [0.6617775502213654], [0.617655031171882], [0.5441074601692618], [0.47059000692708486], [0.4264674878776014], [0.44116495497394814], [0.5147125259765685], [0.602927446315092], [0.691172484414059], [0.7352950034635425], [0.7499924705598892], [0.7499924705598892], [0.691172484414059], [0.5588350450260519], [0.3823449688281179], [0.1911875432942807], [0.05881998614583017], [0.02942505195313677], [0.11763997229166046], [0.26470499653645757], [0.4264674878776014], [0.5147125259765685], [0.5147125259765685], [0.4558925398307382], [0.36764750173177124], [0.26470499653645757], [0.1911875432942807], [0.14706502424479712], [0.16176249134114393], [0.2058850103906274], [0.27940246363280424], [0.3529500346354245], [0.397072553684908], [0.397072553684908], [0.3823449688281179], [0.3529500346354245], [0.33822244977863447], [0.33822244977863447], [0.3529500346354245], [0.36764750173177124], [0.36764750173177124], [0.36764750173177124], [0.33822244977863447], [0.32352498268228774], [0.3529500346354245], [0.4117700207812547], [0.4852874740234316], [0.5441074601692618], [0.5441074601692618], [0.5147125259765685], [0.47059000692708486], [0.4264674878776014], [0.397072553684908], [0.397072553684908], [0.4117700207812547], [0.4558925398307382], [0.5147125259765685], [0.602927446315092], [0.6764750173177122], [0.7058699515104057], [0.691172484414059], [0.6323524982682288], [0.5441074601692618], [0.47059000692708486], [0.44116495497394814], [0.4558925398307382], [0.5294099930729151], [0.6323524982682288], [0.7058699515104057], [0.7499924705598892], [0.7499924705598892], [0.7205975363671957], [0.691172484414059], [0.6470499653645755], [0.617655031171882], [0.5588350450260519], [0.5000150588802217], [0.47059000692708486], [0.44116495497394814], [0.4558925398307382], [0.47059000692708486], [0.4558925398307382], [0.4558925398307382], [0.4852874740234316], [0.5441074601692618], [0.617655031171882], [0.691172484414059], [0.7205975363671957], [0.7058699515104057], [0.6470499653645755], [0.602927446315092], [0.5735325121223985], [0.602927446315092], [0.6617775502213654], [0.7352950034635425], [0.7941149896093727], [0.8235400415625094], [0.8088124567057193], [0.7647200554166792], [0.6764750173177122], [0.602927446315092], [0.5735325121223985], [0.617655031171882], [0.7058699515104057], [0.838237508658856], [0.911754961901033], [0.911754961901033], [0.8088124567057193], [0.6764750173177122], [0.5882299792187452], [0.5588350450260519], [0.5882299792187452], [0.6323524982682288], [0.6470499653645755], [0.602927446315092], [0.5294099930729151], [0.4852874740234316], [0.5000150588802217], [0.5882299792187452], [0.691172484414059], [0.7794175225130259], [0.8088124567057193], [0.7941149896093727], [0.7647200554166792], [0.7205975363671957], [0.691172484414059], [0.6617775502213654], [0.6470499653645755], [0.617655031171882], [0.602927446315092], [0.617655031171882], [0.6323524982682288], [0.6617775502213654], [0.691172484414059], [0.7058699515104057], [0.7058699515104057], [0.7205975363671957], [0.7352950034635425], [0.7647200554166792], [0.7941149896093727], [0.8235400415625094], [0.8235400415625094], [0.838237508658856], [0.8088124567057193], [0.7794175225130259], [0.7352950034635425], [0.7058699515104057], [0.6764750173177122]], "deltas": [[1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0]]}, "backward": {"values": [[0.6764750173177122], [0.7058699515104057], [0.7352950034635425], [0.7794175225130259], [0.8088124567057193], [0.838237508658856], [0.8235400415625094], [0.8235400415625094], [0.7941149896093727], [0.7647200554166792], [0.7352950034635425], [0.7205975363671957], [0.7058699515104057], [0.7058699515104057], [0.691172484414059], [0.6617775502213654], [0.6323524982682288], [0.617655031171882], [0.602927446315092], [0.617655031171882], [0.6470499653645755], [0.6617775502213654], [0.691172484414059], [0.7205975363671957], [0.7647200554166792], [0.7941149896093727], [0.8088124567057193], [0.7794175225130259], [0.691172484414059], [0.5882299792187452], [0.5000150588802217], [0.4852874740234316], [0.5294099930729151], [0.602927446315092], [0.6470499653645755], [0.6323524982682288], [0.5882299792187452], [0.5588350450260519], [0.5882299792187452], [0.6764750173177122], [0.8088124567057193], [0.911754961901033], [0.911754961901033], [0.838237508658856], [0.7058699515104057], [0.617655031171882], [0.5735325121223985], [0.602927446315092], [0.6764750173177122], [0.7647200554166792], [0.8088124567057193], [0.8235400415625094], [0.7941149896093727], [0.7352950034635425], [0.6617775502213654], [0.602927446315092], [0.5735325121223985], [0.602927446315092], [0.6470499653645755], [0.7058699515104057], [0.7205975363671957], [0.691172484414059], [0.617655031171882], [0.5441074601692618], [0.4852874740234316], [0.4558925398307382], [0.4558925398307382], [0.47059000692708486], [0.4558925398307382], [0.44116495497394814], [0.47059000692708486], [0.5000150588802217], [0.5588350450260519], [0.617655031171882], [0.6470499653645755], [0.691172484414059], [0.7205975363671957], [0.7499924705598892], [0.7499924705598892], [0.7058699515104057], [0.6323524982682288], [0.5294099930729151], [0.4558925398307382], [0.44116495497394814], [0.47059000692708486], [0.5441074601692618], [0.6323524982682288], [0.691172484414059], [0.7058699515104057], [0.6764750173177122], [0.602927446315092], [0.5147125259765685], [0.4558925398307382], [0.4117700207812547], [0.397072553684908], [0.397072553684908], [0.4264674878776014], [0.47059000692708486], [0.5147125259765685], [0.5441074601692618], [0.5441074601692618], [0.4852874740234316], [0.4117700207812547], [0.3529500346354245], [0.32352498268228774], [0.33822244977863447], [0.36764750173177124], [0.36764750173177124], [0.36764750173177124], [0.3529500346354245], [0.33822244977863447], [0.33822244977863447], [0.3529500346354245], [0.3823449688281179], [0.397072553684908], [0.397072553684908], [0.3529500346354245], [0.27940246363280424], [0.2058850103906274], [0.16176249134114393], [0.14706502424479712], [0.1911875432942807], [0.26470499653645757], [0.36764750173177124], [0.4558925398307382], [0.5147125259765685], [0.5147125259765685], [0.4264674878776014], [0.26470499653645757], [0.11763997229166046], [0.02942505195313677], [0.05881998614583017], [0.1911875432942807], [0.3823449688281179], [0.5588350450260519], [0.691172484414059], [0.7499924705598892], [0.7499924705598892], [0.7352950034635425], [0.691172484414059], [0.602927446315092], [0.5147125259765685], [0.44116495497394814], [0.4264674878776014], [0.47059000692708486], [0.5441074601692618], [0.617655031171882], [0.6617775502213654], [0.6617775502213654], [0.6617775502213654], [0.6764750173177122], [0.6764750173177122], [0.6470499653645755], [0.5882299792187452], [0.4558925398307382], [0.29413004848959434], [0.16176249134114393], [0.10294250519531364], [0.11763997229166046], [0.2205824774869741], [0.3823449688281179], [0.5882299792187452], [0.7794175225130259], [0.9411800138541697], [1.0], [0.8823600277083395], [0.6323524982682288], [0.32352498268228774], [0.07351745324217698], [0.0], [0.11763997229166046], [0.397072553684908], [0.6617775502213654], [0.8235400415625094], [0.838237508658856], [0.7352950034635425], [0.602927446315092], [0.5000150588802217], [0.4117700207812547], [0.3529500346354245], [0.32352498268228774], [0.33822244977863447], [0.4117700207812547], [0.5441074601692618], [0.691172484414059], [0.8088124567057193], [0.8529349757552028], [0.8235400415625094], [0.7352950034635425], [0.6617775502213654], [0.5882299792187452], [0.5441074601692618], [0.5441074601692618], [0.5882299792187452], [0.6617775502213654], [0.7205975363671957], [0.7058699515104057], [0.6323524982682288], [0.5147125259765685], [0.4264674878776014], [0.44116495497394814], [0.5294099930729151], [0.6617775502213654], [0.7352950034635425], [0.7352950034635425], [0.6470499653645755], [0.5441074601692618], [0.5147125259765685], [0.5735325121223985], [0.6617775502213654], [0.7352950034635425], [0.7352950034635425], [0.691172484414059], [0.6470499653645755], [0.617655031171882], [0.6470499653645755], [0.6764750173177122], [0.691172484414059], [0.6764750173177122], [0.6323524982682288], [0.617655031171882], [0.6323524982682288], [0.6617775502213654], [0.6764750173177122], [0.6764750173177122], [0.6470499653645755], [0.6470499653645755], [0.602927446315092], [0.5441074601692618], [0.47059000692708486], [0.4264674878776014], [0.4558925398307382], [0.5441074601692618], [0.6764750173177122], [0.7794175225130259], [0.8235400415625094], [0.8088124567057193], [0.7205975363671957], [0.617655031171882], [0.5441074601692618], [0.5000150588802217], [0.5147125259765685], [0.5882299792187452], [0.7058699515104057], [0.7941149896093727], [0.8529349757552028], [0.838237508658856], [0.7647200554166792], [0.7058699515104057], [0.6617775502213654], [0.6764750173177122], [0.7352950034635425], [0.8088124567057193], [0.8676625606119929], [0.8970574948046862], [0.926482546757823]], "masks": [[1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1]], "evals": [[0.6764750173177122], [0.7058699515104057], [0.7352950034635425], [0.7794175225130259], [0.8088124567057193], [0.838237508658856], [0.8235400415625094], [0.8235400415625094], [0.7941149896093727], [0.7647200554166792], [0.7352950034635425], [0.7205975363671957], [0.7058699515104057], [0.7058699515104057], [0.691172484414059], [0.6617775502213654], [0.6323524982682288], [0.617655031171882], [0.602927446315092], [0.617655031171882], [0.6470499653645755], [0.6617775502213654], [0.691172484414059], [0.7205975363671957], [0.7647200554166792], [0.7941149896093727], [0.8088124567057193], [0.7794175225130259], [0.691172484414059], [0.5882299792187452], [0.5000150588802217], [0.4852874740234316], [0.5294099930729151], [0.602927446315092], [0.6470499653645755], [0.6323524982682288], [0.5882299792187452], [0.5588350450260519], [0.5882299792187452], [0.6764750173177122], [0.8088124567057193], [0.911754961901033], [0.911754961901033], [0.838237508658856], [0.7058699515104057], [0.617655031171882], [0.5735325121223985], [0.602927446315092], [0.6764750173177122], [0.7647200554166792], [0.8088124567057193], [0.8235400415625094], [0.7941149896093727], [0.7352950034635425], [0.6617775502213654], [0.602927446315092], [0.5735325121223985], [0.602927446315092], [0.6470499653645755], [0.7058699515104057], [0.7205975363671957], [0.691172484414059], [0.617655031171882], [0.5441074601692618], [0.4852874740234316], [0.4558925398307382], [0.4558925398307382], [0.47059000692708486], [0.4558925398307382], [0.44116495497394814], [0.47059000692708486], [0.5000150588802217], [0.5588350450260519], [0.617655031171882], [0.6470499653645755], [0.691172484414059], [0.7205975363671957], [0.7499924705598892], [0.7499924705598892], [0.7058699515104057], [0.6323524982682288], [0.5294099930729151], [0.4558925398307382], [0.44116495497394814], [0.47059000692708486], [0.5441074601692618], [0.6323524982682288], [0.691172484414059], [0.7058699515104057], [0.6764750173177122], [0.602927446315092], [0.5147125259765685], [0.4558925398307382], [0.4117700207812547], [0.397072553684908], [0.397072553684908], [0.4264674878776014], [0.47059000692708486], [0.5147125259765685], [0.5441074601692618], [0.5441074601692618], [0.4852874740234316], [0.4117700207812547], [0.3529500346354245], [0.32352498268228774], [0.33822244977863447], [0.36764750173177124], [0.36764750173177124], [0.36764750173177124], [0.3529500346354245], [0.33822244977863447], [0.33822244977863447], [0.3529500346354245], [0.3823449688281179], [0.397072553684908], [0.397072553684908], [0.3529500346354245], [0.27940246363280424], [0.2058850103906274], [0.16176249134114393], [0.14706502424479712], [0.1911875432942807], [0.26470499653645757], [0.36764750173177124], [0.4558925398307382], [0.5147125259765685], [0.5147125259765685], [0.4264674878776014], [0.26470499653645757], [0.11763997229166046], [0.02942505195313677], [0.05881998614583017], [0.1911875432942807], [0.3823449688281179], [0.5588350450260519], [0.691172484414059], [0.7499924705598892], [0.7499924705598892], [0.7352950034635425], [0.691172484414059], [0.602927446315092], [0.5147125259765685], [0.44116495497394814], [0.4264674878776014], [0.47059000692708486], [0.5441074601692618], [0.617655031171882], [0.6617775502213654], [0.6617775502213654], [0.6617775502213654], [0.6764750173177122], [0.6764750173177122], [0.6470499653645755], [0.5882299792187452], [0.4558925398307382], [0.29413004848959434], [0.16176249134114393], [0.10294250519531364], [0.11763997229166046], [0.2205824774869741], [0.3823449688281179], [0.5882299792187452], [0.7794175225130259], [0.9411800138541697], [1.0], [0.8823600277083395], [0.6323524982682288], [0.32352498268228774], [0.07351745324217698], [0.0], [0.11763997229166046], [0.397072553684908], [0.6617775502213654], [0.8235400415625094], [0.838237508658856], [0.7352950034635425], [0.602927446315092], [0.5000150588802217], [0.4117700207812547], [0.3529500346354245], [0.32352498268228774], [0.33822244977863447], [0.4117700207812547], [0.5441074601692618], [0.691172484414059], [0.8088124567057193], [0.8529349757552028], [0.8235400415625094], [0.7352950034635425], [0.6617775502213654], [0.5882299792187452], [0.5441074601692618], [0.5441074601692618], [0.5882299792187452], [0.6617775502213654], [0.7205975363671957], [0.7058699515104057], [0.6323524982682288], [0.5147125259765685], [0.4264674878776014], [0.44116495497394814], [0.5294099930729151], [0.6617775502213654], [0.7352950034635425], [0.7352950034635425], [0.6470499653645755], [0.5441074601692618], [0.5147125259765685], [0.5735325121223985], [0.6617775502213654], [0.7352950034635425], [0.7352950034635425], [0.691172484414059], [0.6470499653645755], [0.617655031171882], [0.6470499653645755], [0.6764750173177122], [0.691172484414059], [0.6764750173177122], [0.6323524982682288], [0.617655031171882], [0.6323524982682288], [0.6617775502213654], [0.6764750173177122], [0.6764750173177122], [0.6470499653645755], [0.6470499653645755], [0.602927446315092], [0.5441074601692618], [0.47059000692708486], [0.4264674878776014], [0.4558925398307382], [0.5441074601692618], [0.6764750173177122], [0.7794175225130259], [0.8235400415625094], [0.8088124567057193], [0.7205975363671957], [0.617655031171882], [0.5441074601692618], [0.5000150588802217], [0.5147125259765685], [0.5882299792187452], [0.7058699515104057], [0.7941149896093727], [0.8529349757552028], [0.838237508658856], [0.7647200554166792], [0.7058699515104057], [0.6617775502213654], [0.6764750173177122], [0.7352950034635425], [0.8088124567057193], [0.8676625606119929], [0.8970574948046862], [0.926482546757823]], "eval_masks": [[0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0]], "forwards": [[0.6764750173177122], [0.7058699515104057], [0.7352950034635425], [0.7794175225130259], [0.8088124567057193], [0.838237508658856], [0.8235400415625094], [0.8235400415625094], [0.7941149896093727], [0.7647200554166792], [0.7352950034635425], [0.7205975363671957], [0.7058699515104057], [0.7058699515104057], [0.691172484414059], [0.6617775502213654], [0.6323524982682288], [0.617655031171882], [0.602927446315092], [0.617655031171882], [0.6470499653645755], [0.6617775502213654], [0.691172484414059], [0.7205975363671957], [0.7647200554166792], [0.7941149896093727], [0.8088124567057193], [0.7794175225130259], [0.691172484414059], [0.5882299792187452], [0.5000150588802217], [0.4852874740234316], [0.5294099930729151], [0.602927446315092], [0.6470499653645755], [0.6323524982682288], [0.5882299792187452], [0.5588350450260519], [0.5882299792187452], [0.6764750173177122], [0.8088124567057193], [0.911754961901033], [0.911754961901033], [0.838237508658856], [0.7058699515104057], [0.617655031171882], [0.5735325121223985], [0.602927446315092], [0.6764750173177122], [0.7647200554166792], [0.8088124567057193], [0.8235400415625094], [0.7941149896093727], [0.7352950034635425], [0.6617775502213654], [0.602927446315092], [0.5735325121223985], [0.602927446315092], [0.6470499653645755], [0.7058699515104057], [0.7205975363671957], [0.691172484414059], [0.617655031171882], [0.5441074601692618], [0.4852874740234316], [0.4558925398307382], [0.4558925398307382], [0.47059000692708486], [0.4558925398307382], [0.44116495497394814], [0.47059000692708486], [0.5000150588802217], [0.5588350450260519], [0.617655031171882], [0.6470499653645755], [0.691172484414059], [0.7205975363671957], [0.7499924705598892], [0.7499924705598892], [0.7058699515104057], [0.6323524982682288], [0.5294099930729151], [0.4558925398307382], [0.44116495497394814], [0.47059000692708486], [0.5441074601692618], [0.6323524982682288], [0.691172484414059], [0.7058699515104057], [0.6764750173177122], [0.602927446315092], [0.5147125259765685], [0.4558925398307382], [0.4117700207812547], [0.397072553684908], [0.397072553684908], [0.4264674878776014], [0.47059000692708486], [0.5147125259765685], [0.5441074601692618], [0.5441074601692618], [0.4852874740234316], [0.4117700207812547], [0.3529500346354245], [0.32352498268228774], [0.33822244977863447], [0.36764750173177124], [0.36764750173177124], [0.36764750173177124], [0.3529500346354245], [0.33822244977863447], [0.33822244977863447], [0.3529500346354245], [0.3823449688281179], [0.397072553684908], [0.397072553684908], [0.3529500346354245], [0.27940246363280424], [0.2058850103906274], [0.16176249134114393], [0.14706502424479712], [0.1911875432942807], [0.26470499653645757], [0.36764750173177124], [0.4558925398307382], [0.5147125259765685], [0.5147125259765685], [0.4264674878776014], [0.26470499653645757], [0.11763997229166046], [0.02942505195313677], [0.05881998614583017], [0.1911875432942807], [0.3823449688281179], [0.5588350450260519], [0.691172484414059], [0.7499924705598892], [0.7499924705598892], [0.7352950034635425], [0.691172484414059], [0.602927446315092], [0.5147125259765685], [0.44116495497394814], [0.4264674878776014], [0.47059000692708486], [0.5441074601692618], [0.617655031171882], [0.6617775502213654], [0.6617775502213654], [0.6617775502213654], [0.6764750173177122], [0.6764750173177122], [0.6470499653645755], [0.5882299792187452], [0.4558925398307382], [0.29413004848959434], [0.16176249134114393], [0.10294250519531364], [0.11763997229166046], [0.2205824774869741], [0.3823449688281179], [0.5882299792187452], [0.7794175225130259], [0.9411800138541697], [1.0], [0.8823600277083395], [0.6323524982682288], [0.32352498268228774], [0.07351745324217698], [0.0], [0.11763997229166046], [0.397072553684908], [0.6617775502213654], [0.8235400415625094], [0.838237508658856], [0.7352950034635425], [0.602927446315092], [0.5000150588802217], [0.4117700207812547], [0.3529500346354245], [0.32352498268228774], [0.33822244977863447], [0.4117700207812547], [0.5441074601692618], [0.691172484414059], [0.8088124567057193], [0.8529349757552028], [0.8235400415625094], [0.7352950034635425], [0.6617775502213654], [0.5882299792187452], [0.5441074601692618], [0.5441074601692618], [0.5882299792187452], [0.6617775502213654], [0.7205975363671957], [0.7058699515104057], [0.6323524982682288], [0.5147125259765685], [0.4264674878776014], [0.44116495497394814], [0.5294099930729151], [0.6617775502213654], [0.7352950034635425], [0.7352950034635425], [0.6470499653645755], [0.5441074601692618], [0.5147125259765685], [0.5735325121223985], [0.6617775502213654], [0.7352950034635425], [0.7352950034635425], [0.691172484414059], [0.6470499653645755], [0.617655031171882], [0.6470499653645755], [0.6764750173177122], [0.691172484414059], [0.6764750173177122], [0.6323524982682288], [0.617655031171882], [0.6323524982682288], [0.6617775502213654], [0.6764750173177122], [0.6764750173177122], [0.6470499653645755], [0.6470499653645755], [0.602927446315092], [0.5441074601692618], [0.47059000692708486], [0.4264674878776014], [0.4558925398307382], [0.5441074601692618], [0.6764750173177122], [0.7794175225130259], [0.8235400415625094], [0.8088124567057193], [0.7205975363671957], [0.617655031171882], [0.5441074601692618], [0.5000150588802217], [0.5147125259765685], [0.5882299792187452], [0.7058699515104057], [0.7941149896093727], [0.8529349757552028], [0.838237508658856], [0.7647200554166792], [0.7058699515104057], [0.6617775502213654], [0.6764750173177122], [0.7352950034635425], [0.8088124567057193], [0.8676625606119929], [0.8970574948046862], [0.926482546757823]], "deltas": [[1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0]]}} -{"label": 0, "forward": {"values": [[1.0], [0.9589002665170432], [0.9452097068312527], [0.9452097068312527], [0.9452097068312527], [0.8903913592369197], [0.8493196801795484], [0.8082199466965914], [0.8082199466965914], [0.8356010660681723], [0.8767007995511293], [0.9041099733482957], [0.9178005330340862], [0.9041099733482957], [0.8630102398653389], [0.8356010660681723], [0.7945013325852154], [0.7945013325852154], [0.8219105063823818], [0.8903913592369197], [0.9452097068312527], [0.9589002665170432], [0.9178005330340862], [0.8219105063823818], [0.739711039416468], [0.6849207462477206], [0.6849207462477206], [0.7123299200448872], [0.7534296535278441], [0.7534296535278441], [0.7260204797306775], [0.6712301865619301], [0.6301304530789732], [0.6438210127647637], [0.6712301865619301], [0.7260204797306775], [0.7945013325852154], [0.8630102398653389], [0.9041099733482957], [0.9041099733482957], [0.8493196801795484], [0.7671202132136344], [0.6712301865619301], [0.6027212792818067], [0.5753401599102259], [0.5890307195960163], [0.6301304530789732], [0.6712301865619301], [0.6849207462477206], [0.6986113059335111], [0.6849207462477206], [0.6712301865619301], [0.6164398933931828], [0.5616496002244354], [0.493140692944312], [0.4520409594613551], [0.46575957357273107], [0.506859307055688], [0.5205498667414785], [0.5205498667414785], [0.4794501332585215], [0.4520409594613551], [0.4794501332585215], [0.5616496002244354], [0.6712301865619301], [0.7534296535278441], [0.7534296535278441], [0.6712301865619301], [0.5753401599102259], [0.5205498667414785], [0.534240426427269], [0.6301304530789732], [0.7534296535278441], [0.8493196801795484], [0.8630102398653389], [0.7671202132136344], [0.5616496002244354], [0.2876700799551129], [0.05479029316874736], [0.0], [0.13698976013466124], [0.4246598400897742], [0.739711039416468], [0.9314910927198765], [0.9314910927198765], [0.7671202132136344], [0.5616496002244354], [0.39725066629260763], [0.3287698134380698], [0.35615093280965077], [0.4109692804039837], [0.4794501332585215], [0.5205498667414785], [0.534240426427269], [0.506859307055688], [0.46575957357273107], [0.39725066629260763], [0.34246037312386024], [0.34246037312386024], [0.4109692804039837], [0.493140692944312], [0.5479309861130593], [0.5205498667414785], [0.4383503997755646], [0.35615093280965077], [0.3013606396409033], [0.3150792537522794], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.3835601066068172], [0.39725066629260763], [0.4383503997755646], [0.46575957357273107], [0.4794501332585215], [0.4794501332585215], [0.4794501332585215], [0.46575957357273107], [0.4383503997755646], [0.39725066629260763], [0.34246037312386024], [0.3150792537522794], [0.2876700799551129], [0.2602609061579464], [0.23287978678636553], [0.23287978678636553], [0.2602609061579464], [0.3287698134380698], [0.4246598400897742], [0.506859307055688], [0.5616496002244354], [0.5616496002244354], [0.493140692944312], [0.4246598400897742], [0.34246037312386024], [0.3013606396409033], [0.2876700799551129], [0.2876700799551129], [0.3150792537522794], [0.34246037312386024], [0.3835601066068172], [0.4520409594613551], [0.506859307055688], [0.534240426427269], [0.534240426427269], [0.506859307055688], [0.4794501332585215], [0.493140692944312], [0.534240426427269], [0.5890307195960163], [0.6164398933931828], [0.5890307195960163], [0.5205498667414785], [0.4109692804039837], [0.2876700799551129], [0.21918922710057512], [0.20547061298919903], [0.2602609061579464], [0.39725066629260763], [0.534240426427269], [0.6301304530789732], [0.6575396268761398], [0.5753401599102259], [0.4246598400897742], [0.2876700799551129], [0.21918922710057512], [0.24657034647215595], [0.36986954692102675], [0.506859307055688], [0.6164398933931828], [0.6301304530789732], [0.5753401599102259], [0.4794501332585215], [0.4109692804039837], [0.39725066629260763], [0.4109692804039837], [0.4794501332585215], [0.5479309861130593], [0.5890307195960163], [0.6027212792818067], [0.5890307195960163], [0.5616496002244354], [0.534240426427269], [0.534240426427269], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.7123299200448872], [0.6438210127647637], [0.5890307195960163], [0.6027212792818067], [0.6575396268761398], [0.7534296535278441], [0.8082199466965914], [0.7945013325852154], [0.739711039416468], [0.6575396268761398], [0.5753401599102259], [0.5205498667414785], [0.493140692944312], [0.493140692944312], [0.5479309861130593], [0.6301304530789732], [0.7260204797306775], [0.7808107728994249], [0.7808107728994249], [0.6849207462477206], [0.5479309861130593], [0.4246598400897742], [0.3835601066068172], [0.4520409594613551], [0.5890307195960163], [0.739711039416468], [0.8219105063823818], [0.7808107728994249], [0.6301304530789732], [0.4520409594613551], [0.35615093280965077], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.6986113059335111], [0.8356010660681723], [0.8219105063823818], [0.6575396268761398]], "masks": [[1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [1], [1], [1], [1]], "evals": [[1.0], [0.9589002665170432], [0.9452097068312527], [0.9452097068312527], [0.9452097068312527], [0.8903913592369197], [0.8493196801795484], [0.8082199466965914], [0.8082199466965914], [0.8356010660681723], [0.8767007995511293], [0.9041099733482957], [0.9178005330340862], [0.9041099733482957], [0.8630102398653389], [0.8356010660681723], [0.7945013325852154], [0.7945013325852154], [0.8219105063823818], [0.8903913592369197], [0.9452097068312527], [0.9589002665170432], [0.9178005330340862], [0.8219105063823818], [0.739711039416468], [0.6849207462477206], [0.6849207462477206], [0.7123299200448872], [0.7534296535278441], [0.7534296535278441], [0.7260204797306775], [0.6712301865619301], [0.6301304530789732], [0.6438210127647637], [0.6712301865619301], [0.7260204797306775], [0.7945013325852154], [0.8630102398653389], [0.9041099733482957], [0.9041099733482957], [0.8493196801795484], [0.7671202132136344], [0.6712301865619301], [0.6027212792818067], [0.5753401599102259], [0.5890307195960163], [0.6301304530789732], [0.6712301865619301], [0.6849207462477206], [0.6986113059335111], [0.6849207462477206], [0.6712301865619301], [0.6164398933931828], [0.5616496002244354], [0.493140692944312], [0.4520409594613551], [0.46575957357273107], [0.506859307055688], [0.5205498667414785], [0.5205498667414785], [0.4794501332585215], [0.4520409594613551], [0.4794501332585215], [0.5616496002244354], [0.6712301865619301], [0.7534296535278441], [0.7534296535278441], [0.6712301865619301], [0.5753401599102259], [0.5205498667414785], [0.534240426427269], [0.6301304530789732], [0.7534296535278441], [0.8493196801795484], [0.8630102398653389], [0.7671202132136344], [0.5616496002244354], [0.2876700799551129], [0.05479029316874736], [0.0], [0.13698976013466124], [0.4246598400897742], [0.739711039416468], [0.9314910927198765], [0.9314910927198765], [0.7671202132136344], [0.5616496002244354], [0.39725066629260763], [0.3287698134380698], [0.35615093280965077], [0.4109692804039837], [0.4794501332585215], [0.5205498667414785], [0.534240426427269], [0.506859307055688], [0.46575957357273107], [0.39725066629260763], [0.34246037312386024], [0.34246037312386024], [0.4109692804039837], [0.493140692944312], [0.5479309861130593], [0.5205498667414785], [0.4383503997755646], [0.35615093280965077], [0.3013606396409033], [0.3150792537522794], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.3835601066068172], [0.39725066629260763], [0.4383503997755646], [0.46575957357273107], [0.4794501332585215], [0.4794501332585215], [0.4794501332585215], [0.46575957357273107], [0.4383503997755646], [0.39725066629260763], [0.34246037312386024], [0.3150792537522794], [0.2876700799551129], [0.2602609061579464], [0.23287978678636553], [0.23287978678636553], [0.2602609061579464], [0.3287698134380698], [0.4246598400897742], [0.506859307055688], [0.5616496002244354], [0.5616496002244354], [0.493140692944312], [0.4246598400897742], [0.34246037312386024], [0.3013606396409033], [0.2876700799551129], [0.2876700799551129], [0.3150792537522794], [0.34246037312386024], [0.3835601066068172], [0.4520409594613551], [0.506859307055688], [0.534240426427269], [0.534240426427269], [0.506859307055688], [0.4794501332585215], [0.493140692944312], [0.534240426427269], [0.5890307195960163], [0.6164398933931828], [0.5890307195960163], [0.5205498667414785], [0.4109692804039837], [0.2876700799551129], [0.21918922710057512], [0.20547061298919903], [0.2602609061579464], [0.39725066629260763], [0.534240426427269], [0.6301304530789732], [0.6575396268761398], [0.5753401599102259], [0.4246598400897742], [0.2876700799551129], [0.21918922710057512], [0.24657034647215595], [0.36986954692102675], [0.506859307055688], [0.6164398933931828], [0.6301304530789732], [0.5753401599102259], [0.4794501332585215], [0.4109692804039837], [0.39725066629260763], [0.4109692804039837], [0.4794501332585215], [0.5479309861130593], [0.5890307195960163], [0.6027212792818067], [0.5890307195960163], [0.5616496002244354], [0.534240426427269], [0.534240426427269], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.7123299200448872], [0.6438210127647637], [0.5890307195960163], [0.6027212792818067], [0.6575396268761398], [0.7534296535278441], [0.8082199466965914], [0.7945013325852154], [0.739711039416468], [0.6575396268761398], [0.5753401599102259], [0.5205498667414785], [0.493140692944312], [0.493140692944312], [0.5479309861130593], [0.6301304530789732], [0.7260204797306775], [0.7808107728994249], [0.7808107728994249], [0.6849207462477206], [0.5479309861130593], [0.4246598400897742], [0.3835601066068172], [0.4520409594613551], [0.5890307195960163], [0.739711039416468], [0.8219105063823818], [0.7808107728994249], [0.6301304530789732], [0.4520409594613551], [0.35615093280965077], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.6986113059335111], [0.8356010660681723], [0.8219105063823818], [0.6575396268761398]], "eval_masks": [[0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0]], "forwards": [[1.0], [0.9589002665170432], [0.9452097068312527], [0.9452097068312527], [0.9452097068312527], [0.8903913592369197], [0.8493196801795484], [0.8082199466965914], [0.8082199466965914], [0.8356010660681723], [0.8767007995511293], [0.9041099733482957], [0.9178005330340862], [0.9041099733482957], [0.8630102398653389], [0.8356010660681723], [0.7945013325852154], [0.7945013325852154], [0.8219105063823818], [0.8903913592369197], [0.9452097068312527], [0.9589002665170432], [0.9178005330340862], [0.8219105063823818], [0.739711039416468], [0.6849207462477206], [0.6849207462477206], [0.7123299200448872], [0.7534296535278441], [0.7534296535278441], [0.7260204797306775], [0.6712301865619301], [0.6301304530789732], [0.6438210127647637], [0.6712301865619301], [0.7260204797306775], [0.7945013325852154], [0.8630102398653389], [0.9041099733482957], [0.9041099733482957], [0.8493196801795484], [0.7671202132136344], [0.6712301865619301], [0.6027212792818067], [0.5753401599102259], [0.5890307195960163], [0.6301304530789732], [0.6712301865619301], [0.6849207462477206], [0.6986113059335111], [0.6849207462477206], [0.6712301865619301], [0.6164398933931828], [0.5616496002244354], [0.493140692944312], [0.4520409594613551], [0.46575957357273107], [0.506859307055688], [0.5205498667414785], [0.5205498667414785], [0.4794501332585215], [0.4520409594613551], [0.4794501332585215], [0.5616496002244354], [0.6712301865619301], [0.7534296535278441], [0.7534296535278441], [0.6712301865619301], [0.5753401599102259], [0.5205498667414785], [0.534240426427269], [0.6301304530789732], [0.7534296535278441], [0.8493196801795484], [0.8630102398653389], [0.7671202132136344], [0.5616496002244354], [0.2876700799551129], [0.05479029316874736], [0.0], [0.13698976013466124], [0.4246598400897742], [0.739711039416468], [0.9314910927198765], [0.9314910927198765], [0.7671202132136344], [0.5616496002244354], [0.39725066629260763], [0.3287698134380698], [0.35615093280965077], [0.4109692804039837], [0.4794501332585215], [0.5205498667414785], [0.534240426427269], [0.506859307055688], [0.46575957357273107], [0.39725066629260763], [0.34246037312386024], [0.34246037312386024], [0.4109692804039837], [0.493140692944312], [0.5479309861130593], [0.5205498667414785], [0.4383503997755646], [0.35615093280965077], [0.3013606396409033], [0.3150792537522794], [0.3150792537522794], [0.3150792537522794], [0.3150792537522794], [0.3150792537522794], [0.3150792537522794], [0.3150792537522794], [0.3150792537522794], [0.3150792537522794], [0.3150792537522794], [0.3150792537522794], [0.3835601066068172], [0.39725066629260763], [0.4383503997755646], [0.46575957357273107], [0.4794501332585215], [0.4794501332585215], [0.4794501332585215], [0.46575957357273107], [0.4383503997755646], [0.39725066629260763], [0.34246037312386024], [0.3150792537522794], [0.2876700799551129], [0.2602609061579464], [0.23287978678636553], [0.23287978678636553], [0.2602609061579464], [0.3287698134380698], [0.4246598400897742], [0.506859307055688], [0.5616496002244354], [0.5616496002244354], [0.493140692944312], [0.4246598400897742], [0.34246037312386024], [0.3013606396409033], [0.2876700799551129], [0.2876700799551129], [0.3150792537522794], [0.34246037312386024], [0.3835601066068172], [0.4520409594613551], [0.506859307055688], [0.534240426427269], [0.534240426427269], [0.506859307055688], [0.4794501332585215], [0.493140692944312], [0.534240426427269], [0.5890307195960163], [0.6164398933931828], [0.5890307195960163], [0.5205498667414785], [0.4109692804039837], [0.2876700799551129], [0.21918922710057512], [0.20547061298919903], [0.2602609061579464], [0.39725066629260763], [0.534240426427269], [0.6301304530789732], [0.6575396268761398], [0.5753401599102259], [0.4246598400897742], [0.2876700799551129], [0.21918922710057512], [0.24657034647215595], [0.36986954692102675], [0.506859307055688], [0.6164398933931828], [0.6301304530789732], [0.5753401599102259], [0.4794501332585215], [0.4109692804039837], [0.39725066629260763], [0.4109692804039837], [0.4794501332585215], [0.5479309861130593], [0.5890307195960163], [0.6027212792818067], [0.5890307195960163], [0.5616496002244354], [0.534240426427269], [0.534240426427269], [0.534240426427269], [0.534240426427269], [0.534240426427269], [0.534240426427269], [0.534240426427269], [0.534240426427269], [0.534240426427269], [0.534240426427269], [0.534240426427269], [0.534240426427269], [0.7123299200448872], [0.6438210127647637], [0.5890307195960163], [0.6027212792818067], [0.6575396268761398], [0.7534296535278441], [0.8082199466965914], [0.7945013325852154], [0.739711039416468], [0.6575396268761398], [0.5753401599102259], [0.5205498667414785], [0.493140692944312], [0.493140692944312], [0.5479309861130593], [0.6301304530789732], [0.7260204797306775], [0.7808107728994249], [0.7808107728994249], [0.6849207462477206], [0.5479309861130593], [0.4246598400897742], [0.3835601066068172], [0.4520409594613551], [0.5890307195960163], [0.739711039416468], [0.8219105063823818], [0.7808107728994249], [0.6301304530789732], [0.4520409594613551], [0.35615093280965077], [0.35615093280965077], [0.35615093280965077], [0.35615093280965077], [0.35615093280965077], [0.35615093280965077], [0.35615093280965077], [0.35615093280965077], [0.35615093280965077], [0.35615093280965077], [0.35615093280965077], [0.35615093280965077], [0.35615093280965077], [0.35615093280965077], [0.35615093280965077], [0.35615093280965077], [0.35615093280965077], [0.35615093280965077], [0.35615093280965077], [0.35615093280965077], [0.35615093280965077], [0.6986113059335111], [0.8356010660681723], [0.8219105063823818], [0.6575396268761398]], "deltas": [[1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [2.0], [3.0], [4.0], [5.0], [6.0], [7.0], [8.0], [9.0], [10.0], [11.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [2.0], [3.0], [4.0], [5.0], [6.0], [7.0], [8.0], [9.0], [10.0], [11.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [2.0], [3.0], [4.0], [5.0], [6.0], [7.0], [8.0], [9.0], [10.0], [11.0], [12.0], [13.0], [14.0], [15.0], [16.0], [17.0], [18.0], [19.0], [20.0], [21.0], [1.0], [1.0], [1.0], [1.0]]}, "backward": {"values": [[0.6575396268761398], [0.8219105063823818], [0.8356010660681723], [0.6986113059335111], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.35615093280965077], [0.4520409594613551], [0.6301304530789732], [0.7808107728994249], [0.8219105063823818], [0.739711039416468], [0.5890307195960163], [0.4520409594613551], [0.3835601066068172], [0.4246598400897742], [0.5479309861130593], [0.6849207462477206], [0.7808107728994249], [0.7808107728994249], [0.7260204797306775], [0.6301304530789732], [0.5479309861130593], [0.493140692944312], [0.493140692944312], [0.5205498667414785], [0.5753401599102259], [0.6575396268761398], [0.739711039416468], [0.7945013325852154], [0.8082199466965914], [0.7534296535278441], [0.6575396268761398], [0.6027212792818067], [0.5890307195960163], [0.6438210127647637], [0.7123299200448872], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.534240426427269], [0.534240426427269], [0.5616496002244354], [0.5890307195960163], [0.6027212792818067], [0.5890307195960163], [0.5479309861130593], [0.4794501332585215], [0.4109692804039837], [0.39725066629260763], [0.4109692804039837], [0.4794501332585215], [0.5753401599102259], [0.6301304530789732], [0.6164398933931828], [0.506859307055688], [0.36986954692102675], [0.24657034647215595], [0.21918922710057512], [0.2876700799551129], [0.4246598400897742], [0.5753401599102259], [0.6575396268761398], [0.6301304530789732], [0.534240426427269], [0.39725066629260763], [0.2602609061579464], [0.20547061298919903], [0.21918922710057512], [0.2876700799551129], [0.4109692804039837], [0.5205498667414785], [0.5890307195960163], [0.6164398933931828], [0.5890307195960163], [0.534240426427269], [0.493140692944312], [0.4794501332585215], [0.506859307055688], [0.534240426427269], [0.534240426427269], [0.506859307055688], [0.4520409594613551], [0.3835601066068172], [0.34246037312386024], [0.3150792537522794], [0.2876700799551129], [0.2876700799551129], [0.3013606396409033], [0.34246037312386024], [0.4246598400897742], [0.493140692944312], [0.5616496002244354], [0.5616496002244354], [0.506859307055688], [0.4246598400897742], [0.3287698134380698], [0.2602609061579464], [0.23287978678636553], [0.23287978678636553], [0.2602609061579464], [0.2876700799551129], [0.3150792537522794], [0.34246037312386024], [0.39725066629260763], [0.4383503997755646], [0.46575957357273107], [0.4794501332585215], [0.4794501332585215], [0.4794501332585215], [0.46575957357273107], [0.4383503997755646], [0.39725066629260763], [0.3835601066068172], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.3150792537522794], [0.3013606396409033], [0.35615093280965077], [0.4383503997755646], [0.5205498667414785], [0.5479309861130593], [0.493140692944312], [0.4109692804039837], [0.34246037312386024], [0.34246037312386024], [0.39725066629260763], [0.46575957357273107], [0.506859307055688], [0.534240426427269], [0.5205498667414785], [0.4794501332585215], [0.4109692804039837], [0.35615093280965077], [0.3287698134380698], [0.39725066629260763], [0.5616496002244354], [0.7671202132136344], [0.9314910927198765], [0.9314910927198765], [0.739711039416468], [0.4246598400897742], [0.13698976013466124], [0.0], [0.05479029316874736], [0.2876700799551129], [0.5616496002244354], [0.7671202132136344], [0.8630102398653389], [0.8493196801795484], [0.7534296535278441], [0.6301304530789732], [0.534240426427269], [0.5205498667414785], [0.5753401599102259], [0.6712301865619301], [0.7534296535278441], [0.7534296535278441], [0.6712301865619301], [0.5616496002244354], [0.4794501332585215], [0.4520409594613551], [0.4794501332585215], [0.5205498667414785], [0.5205498667414785], [0.506859307055688], [0.46575957357273107], [0.4520409594613551], [0.493140692944312], [0.5616496002244354], [0.6164398933931828], [0.6712301865619301], [0.6849207462477206], [0.6986113059335111], [0.6849207462477206], [0.6712301865619301], [0.6301304530789732], [0.5890307195960163], [0.5753401599102259], [0.6027212792818067], [0.6712301865619301], [0.7671202132136344], [0.8493196801795484], [0.9041099733482957], [0.9041099733482957], [0.8630102398653389], [0.7945013325852154], [0.7260204797306775], [0.6712301865619301], [0.6438210127647637], [0.6301304530789732], [0.6712301865619301], [0.7260204797306775], [0.7534296535278441], [0.7534296535278441], [0.7123299200448872], [0.6849207462477206], [0.6849207462477206], [0.739711039416468], [0.8219105063823818], [0.9178005330340862], [0.9589002665170432], [0.9452097068312527], [0.8903913592369197], [0.8219105063823818], [0.7945013325852154], [0.7945013325852154], [0.8356010660681723], [0.8630102398653389], [0.9041099733482957], [0.9178005330340862], [0.9041099733482957], [0.8767007995511293], [0.8356010660681723], [0.8082199466965914], [0.8082199466965914], [0.8493196801795484], [0.8903913592369197], [0.9452097068312527], [0.9452097068312527], [0.9452097068312527], [0.9589002665170432], [1.0]], "masks": [[1], [1], [1], [1], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1]], "evals": [[0.6575396268761398], [0.8219105063823818], [0.8356010660681723], [0.6986113059335111], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.35615093280965077], [0.4520409594613551], [0.6301304530789732], [0.7808107728994249], [0.8219105063823818], [0.739711039416468], [0.5890307195960163], [0.4520409594613551], [0.3835601066068172], [0.4246598400897742], [0.5479309861130593], [0.6849207462477206], [0.7808107728994249], [0.7808107728994249], [0.7260204797306775], [0.6301304530789732], [0.5479309861130593], [0.493140692944312], [0.493140692944312], [0.5205498667414785], [0.5753401599102259], [0.6575396268761398], [0.739711039416468], [0.7945013325852154], [0.8082199466965914], [0.7534296535278441], [0.6575396268761398], [0.6027212792818067], [0.5890307195960163], [0.6438210127647637], [0.7123299200448872], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.534240426427269], [0.534240426427269], [0.5616496002244354], [0.5890307195960163], [0.6027212792818067], [0.5890307195960163], [0.5479309861130593], [0.4794501332585215], [0.4109692804039837], [0.39725066629260763], [0.4109692804039837], [0.4794501332585215], [0.5753401599102259], [0.6301304530789732], [0.6164398933931828], [0.506859307055688], [0.36986954692102675], [0.24657034647215595], [0.21918922710057512], [0.2876700799551129], [0.4246598400897742], [0.5753401599102259], [0.6575396268761398], [0.6301304530789732], [0.534240426427269], [0.39725066629260763], [0.2602609061579464], [0.20547061298919903], [0.21918922710057512], [0.2876700799551129], [0.4109692804039837], [0.5205498667414785], [0.5890307195960163], [0.6164398933931828], [0.5890307195960163], [0.534240426427269], [0.493140692944312], [0.4794501332585215], [0.506859307055688], [0.534240426427269], [0.534240426427269], [0.506859307055688], [0.4520409594613551], [0.3835601066068172], [0.34246037312386024], [0.3150792537522794], [0.2876700799551129], [0.2876700799551129], [0.3013606396409033], [0.34246037312386024], [0.4246598400897742], [0.493140692944312], [0.5616496002244354], [0.5616496002244354], [0.506859307055688], [0.4246598400897742], [0.3287698134380698], [0.2602609061579464], [0.23287978678636553], [0.23287978678636553], [0.2602609061579464], [0.2876700799551129], [0.3150792537522794], [0.34246037312386024], [0.39725066629260763], [0.4383503997755646], [0.46575957357273107], [0.4794501332585215], [0.4794501332585215], [0.4794501332585215], [0.46575957357273107], [0.4383503997755646], [0.39725066629260763], [0.3835601066068172], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.3150792537522794], [0.3013606396409033], [0.35615093280965077], [0.4383503997755646], [0.5205498667414785], [0.5479309861130593], [0.493140692944312], [0.4109692804039837], [0.34246037312386024], [0.34246037312386024], [0.39725066629260763], [0.46575957357273107], [0.506859307055688], [0.534240426427269], [0.5205498667414785], [0.4794501332585215], [0.4109692804039837], [0.35615093280965077], [0.3287698134380698], [0.39725066629260763], [0.5616496002244354], [0.7671202132136344], [0.9314910927198765], [0.9314910927198765], [0.739711039416468], [0.4246598400897742], [0.13698976013466124], [0.0], [0.05479029316874736], [0.2876700799551129], [0.5616496002244354], [0.7671202132136344], [0.8630102398653389], [0.8493196801795484], [0.7534296535278441], [0.6301304530789732], [0.534240426427269], [0.5205498667414785], [0.5753401599102259], [0.6712301865619301], [0.7534296535278441], [0.7534296535278441], [0.6712301865619301], [0.5616496002244354], [0.4794501332585215], [0.4520409594613551], [0.4794501332585215], [0.5205498667414785], [0.5205498667414785], [0.506859307055688], [0.46575957357273107], [0.4520409594613551], [0.493140692944312], [0.5616496002244354], [0.6164398933931828], [0.6712301865619301], [0.6849207462477206], [0.6986113059335111], [0.6849207462477206], [0.6712301865619301], [0.6301304530789732], [0.5890307195960163], [0.5753401599102259], [0.6027212792818067], [0.6712301865619301], [0.7671202132136344], [0.8493196801795484], [0.9041099733482957], [0.9041099733482957], [0.8630102398653389], [0.7945013325852154], [0.7260204797306775], [0.6712301865619301], [0.6438210127647637], [0.6301304530789732], [0.6712301865619301], [0.7260204797306775], [0.7534296535278441], [0.7534296535278441], [0.7123299200448872], [0.6849207462477206], [0.6849207462477206], [0.739711039416468], [0.8219105063823818], [0.9178005330340862], [0.9589002665170432], [0.9452097068312527], [0.8903913592369197], [0.8219105063823818], [0.7945013325852154], [0.7945013325852154], [0.8356010660681723], [0.8630102398653389], [0.9041099733482957], [0.9178005330340862], [0.9041099733482957], [0.8767007995511293], [0.8356010660681723], [0.8082199466965914], [0.8082199466965914], [0.8493196801795484], [0.8903913592369197], [0.9452097068312527], [0.9452097068312527], [0.9452097068312527], [0.9589002665170432], [1.0]], "eval_masks": [[0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0]], "forwards": [[0.6575396268761398], [0.8219105063823818], [0.8356010660681723], [0.6986113059335111], [0.6986113059335111], [0.6986113059335111], [0.6986113059335111], [0.6986113059335111], [0.6986113059335111], [0.6986113059335111], [0.6986113059335111], [0.6986113059335111], [0.6986113059335111], [0.6986113059335111], [0.6986113059335111], [0.6986113059335111], [0.6986113059335111], [0.6986113059335111], [0.6986113059335111], [0.6986113059335111], [0.6986113059335111], [0.6986113059335111], [0.6986113059335111], [0.6986113059335111], [0.35615093280965077], [0.4520409594613551], [0.6301304530789732], [0.7808107728994249], [0.8219105063823818], [0.739711039416468], [0.5890307195960163], [0.4520409594613551], [0.3835601066068172], [0.4246598400897742], [0.5479309861130593], [0.6849207462477206], [0.7808107728994249], [0.7808107728994249], [0.7260204797306775], [0.6301304530789732], [0.5479309861130593], [0.493140692944312], [0.493140692944312], [0.5205498667414785], [0.5753401599102259], [0.6575396268761398], [0.739711039416468], [0.7945013325852154], [0.8082199466965914], [0.7534296535278441], [0.6575396268761398], [0.6027212792818067], [0.5890307195960163], [0.6438210127647637], [0.7123299200448872], [0.7123299200448872], [0.7123299200448872], [0.7123299200448872], [0.7123299200448872], [0.7123299200448872], [0.7123299200448872], [0.7123299200448872], [0.7123299200448872], [0.7123299200448872], [0.7123299200448872], [0.534240426427269], [0.534240426427269], [0.5616496002244354], [0.5890307195960163], [0.6027212792818067], [0.5890307195960163], [0.5479309861130593], [0.4794501332585215], [0.4109692804039837], [0.39725066629260763], [0.4109692804039837], [0.4794501332585215], [0.5753401599102259], [0.6301304530789732], [0.6164398933931828], [0.506859307055688], [0.36986954692102675], [0.24657034647215595], [0.21918922710057512], [0.2876700799551129], [0.4246598400897742], [0.5753401599102259], [0.6575396268761398], [0.6301304530789732], [0.534240426427269], [0.39725066629260763], [0.2602609061579464], [0.20547061298919903], [0.21918922710057512], [0.2876700799551129], [0.4109692804039837], [0.5205498667414785], [0.5890307195960163], [0.6164398933931828], [0.5890307195960163], [0.534240426427269], [0.493140692944312], [0.4794501332585215], [0.506859307055688], [0.534240426427269], [0.534240426427269], [0.506859307055688], [0.4520409594613551], [0.3835601066068172], [0.34246037312386024], [0.3150792537522794], [0.2876700799551129], [0.2876700799551129], [0.3013606396409033], [0.34246037312386024], [0.4246598400897742], [0.493140692944312], [0.5616496002244354], [0.5616496002244354], [0.506859307055688], [0.4246598400897742], [0.3287698134380698], [0.2602609061579464], [0.23287978678636553], [0.23287978678636553], [0.2602609061579464], [0.2876700799551129], [0.3150792537522794], [0.34246037312386024], [0.39725066629260763], [0.4383503997755646], [0.46575957357273107], [0.4794501332585215], [0.4794501332585215], [0.4794501332585215], [0.46575957357273107], [0.4383503997755646], [0.39725066629260763], [0.3835601066068172], [0.3835601066068172], [0.3835601066068172], [0.3835601066068172], [0.3835601066068172], [0.3835601066068172], [0.3835601066068172], [0.3835601066068172], [0.3835601066068172], [0.3835601066068172], [0.3835601066068172], [0.3150792537522794], [0.3013606396409033], [0.35615093280965077], [0.4383503997755646], [0.5205498667414785], [0.5479309861130593], [0.493140692944312], [0.4109692804039837], [0.34246037312386024], [0.34246037312386024], [0.39725066629260763], [0.46575957357273107], [0.506859307055688], [0.534240426427269], [0.5205498667414785], [0.4794501332585215], [0.4109692804039837], [0.35615093280965077], [0.3287698134380698], [0.39725066629260763], [0.5616496002244354], [0.7671202132136344], [0.9314910927198765], [0.9314910927198765], [0.739711039416468], [0.4246598400897742], [0.13698976013466124], [0.0], [0.05479029316874736], [0.2876700799551129], [0.5616496002244354], [0.7671202132136344], [0.8630102398653389], [0.8493196801795484], [0.7534296535278441], [0.6301304530789732], [0.534240426427269], [0.5205498667414785], [0.5753401599102259], [0.6712301865619301], [0.7534296535278441], [0.7534296535278441], [0.6712301865619301], [0.5616496002244354], [0.4794501332585215], [0.4520409594613551], [0.4794501332585215], [0.5205498667414785], [0.5205498667414785], [0.506859307055688], [0.46575957357273107], [0.4520409594613551], [0.493140692944312], [0.5616496002244354], [0.6164398933931828], [0.6712301865619301], [0.6849207462477206], [0.6986113059335111], [0.6849207462477206], [0.6712301865619301], [0.6301304530789732], [0.5890307195960163], [0.5753401599102259], [0.6027212792818067], [0.6712301865619301], [0.7671202132136344], [0.8493196801795484], [0.9041099733482957], [0.9041099733482957], [0.8630102398653389], [0.7945013325852154], [0.7260204797306775], [0.6712301865619301], [0.6438210127647637], [0.6301304530789732], [0.6712301865619301], [0.7260204797306775], [0.7534296535278441], [0.7534296535278441], [0.7123299200448872], [0.6849207462477206], [0.6849207462477206], [0.739711039416468], [0.8219105063823818], [0.9178005330340862], [0.9589002665170432], [0.9452097068312527], [0.8903913592369197], [0.8219105063823818], [0.7945013325852154], [0.7945013325852154], [0.8356010660681723], [0.8630102398653389], [0.9041099733482957], [0.9178005330340862], [0.9041099733482957], [0.8767007995511293], [0.8356010660681723], [0.8082199466965914], [0.8082199466965914], [0.8493196801795484], [0.8903913592369197], [0.9452097068312527], [0.9452097068312527], [0.9452097068312527], [0.9589002665170432], [1.0]], "deltas": [[1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [2.0], [3.0], [4.0], [5.0], [6.0], [7.0], [8.0], [9.0], [10.0], [11.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [2.0], [3.0], [4.0], [5.0], [6.0], [7.0], [8.0], [9.0], [10.0], [11.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [2.0], [3.0], [4.0], [5.0], [6.0], [7.0], [8.0], [9.0], [10.0], [11.0], [12.0], [13.0], [14.0], [15.0], [16.0], [17.0], [18.0], [19.0], [20.0], [21.0], [1.0], [1.0], [1.0], [1.0]]}} -{"label": 0, "forward": {"values": [[1.0], [0.9701665902491211], [0.9701665902491211], [0.9552193183554943], [0.9253859086046156], [0.8507412501910439], [0.7910438636710988], [0.7910438636710988], [0.8358245453156045], [0.8955219318355494], [0.9104692037291762], [0.8507412501910439], [0.7164297722757145], [0.5373376127158795], [0.40299556778236284], [0.32838147638697845], [0.3731315910132966], [0.5074736359468135], [0.6865657955066483], [0.8507412501910439], [0.9253859086046156], [0.8955219318355494], [0.7910438636710988], [0.64181568088033], [0.5522543175913189], [0.5223903408222529], [0.5522543175913189], [0.5970349992358246], [0.6268684089867034], [0.64181568088033], [0.64181568088033], [0.6268684089867034], [0.6268684089867034], [0.611951704111264], [0.5970349992358246], [0.5970349992358246], [0.5970349992358246], [0.611951704111264], [0.5970349992358246], [0.5820877273421977], [0.5373376127158795], [0.5074736359468135], [0.5223903408222529], [0.5671710224667583], [0.5820877273421977], [0.5820877273421977], [0.5074736359468135], [0.41791227265780223], [0.3731315910132966], [0.3731315910132966], [0.41791227265780223], [0.4776096591777472], [0.49255693107137394], [0.432859544551429], [0.34329818126241785], [0.2686840898670335], [0.23882011309796733], [0.2985174996179123], [0.3731315910132966], [0.432859544551429], [0.4477762494268684], [0.432859544551429], [0.4477762494268684], [0.4776096591777472], [0.5373376127158795], [0.5671710224667583], [0.5820877273421977], [0.5522543175913189], [0.5373376127158795], [0.5373376127158795], [0.5373376127158795], [0.5223903408222529], [0.5074736359468135], [0.4776096591777472], [0.41791227265780223], [0.34329818126241785], [0.20895613632890117], [0.059727953538132365], [0.0], [0.08956136328901114], [0.35821488613785724], [0.6865657955066483], [0.940302613480055], [0.9701665902491211], [0.7761271587956594], [0.4776096591777472], [0.20895613632890117], [0.07464465841357175], [0.10447806816445063], [0.23882011309796733], [0.40299556778236284], [0.5671710224667583], [0.7313464771511539], [0.8358245453156045], [0.8656885220846706], [0.76121045392022], [0.5223903408222529], [0.25373681797340675], [0.07464465841357175], [0.029863976769066183], [0.11942534005807733], [0.2836007947424729], [0.432859544551429], [0.5223903408222529], [0.5671710224667583], [0.5970349992358246], [0.64181568088033], [0.6567323857557694], [0.64181568088033], [0.5522543175913189], [0.432859544551429], [0.35821488613785724], [0.34329818126241785], [0.38807886290692345], [0.4477762494268684], [0.5223903408222529], [0.5820877273421977], [0.6268684089867034], [0.6716490906312089], [0.6865657955066483], [0.64181568088033], [0.5223903408222529], [0.35821488613785724], [0.22390340822252797], [0.1492587498089562], [0.1791227265780224], [0.2985174996179123], [0.432859544551429], [0.5373376127158795], [0.5522543175913189], [0.5074736359468135], [0.41791227265780223], [0.32838147638697845], [0.23882011309796733], [0.19403943145346178], [0.1642060217025829], [0.1791227265780224], [0.22390340822252797], [0.2686840898670335], [0.2985174996179123], [0.2836007947424729], [0.25373681797340675], [0.22390340822252797], [0.1791227265780224], [0.1642060217025829], [0.19403943145346178], [0.23882011309796733], [0.3134342044933517], [0.3731315910132966], [0.40299556778236284], [0.38807886290692345], [0.32838147638697845], [0.2985174996179123], [0.32838147638697845], [0.41791227265780223], [0.5373376127158795], [0.6268684089867034], [0.64181568088033], [0.5820877273421977], [0.46269295430230784], [0.35821488613785724], [0.2985174996179123], [0.3134342044933517], [0.38807886290692345], [0.5223903408222529], [0.6865657955066483], [0.8209078404401651], [0.9104692037291762], [0.9253859086046156], [0.8358245453156045], [0.6716490906312089], [0.5373376127158795], [0.4477762494268684], [0.4776096591777472], [0.611951704111264], [0.7462937490447807], [0.8358245453156045], [0.8507412501910439], [0.8209078404401651], [0.7761271587956594], [0.7761271587956594], [0.7910438636710988], [0.7910438636710988], [0.7164297722757145], [0.5970349992358246], [0.46269295430230784], [0.38807886290692345], [0.40299556778236284], [0.4776096591777472], [0.5671710224667583], [0.6567323857557694], [0.6865657955066483], [0.6865657955066483], [0.6716490906312089], [0.6567323857557694], [0.6567323857557694], [0.6865657955066483], [0.7015130674002751], [0.7164297722757145], [0.7015130674002751], [0.6567323857557694], [0.5970349992358246], [0.5223903408222529], [0.4776096591777472], [0.49255693107137394], [0.5522543175913189], [0.64181568088033], [0.6716490906312089], [0.64181568088033], [0.5522543175913189], [0.49255693107137394], [0.49255693107137394], [0.5970349992358246], [0.7164297722757145], [0.8209078404401651], [0.8059911355647257], [0.7313464771511539], [0.6268684089867034], [0.5373376127158795], [0.4776096591777472], [0.46269295430230784], [0.432859544551429], [0.40299556778236284], [0.35821488613785724], [0.35821488613785724], [0.38807886290692345], [0.4776096591777472], [0.5820877273421977], [0.64181568088033], [0.6567323857557694], [0.64181568088033], [0.611951704111264], [0.5970349992358246], [0.5671710224667583], [0.5522543175913189], [0.49255693107137394], [0.432859544551429], [0.38807886290692345], [0.35821488613785724], [0.34329818126241785], [0.35821488613785724], [0.3731315910132966], [0.35821488613785724], [0.35821488613785724], [0.3731315910132966], [0.41791227265780223], [0.49255693107137394], [0.5671710224667583], [0.611951704111264], [0.611951704111264], [0.5671710224667583], [0.5074736359468135], [0.4776096591777472], [0.46269295430230784], [0.49255693107137394], [0.49255693107137394]], "masks": [[1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1]], "evals": [[1.0], [0.9701665902491211], [0.9701665902491211], [0.9552193183554943], [0.9253859086046156], [0.8507412501910439], [0.7910438636710988], [0.7910438636710988], [0.8358245453156045], [0.8955219318355494], [0.9104692037291762], [0.8507412501910439], [0.7164297722757145], [0.5373376127158795], [0.40299556778236284], [0.32838147638697845], [0.3731315910132966], [0.5074736359468135], [0.6865657955066483], [0.8507412501910439], [0.9253859086046156], [0.8955219318355494], [0.7910438636710988], [0.64181568088033], [0.5522543175913189], [0.5223903408222529], [0.5522543175913189], [0.5970349992358246], [0.6268684089867034], [0.64181568088033], [0.64181568088033], [0.6268684089867034], [0.6268684089867034], [0.611951704111264], [0.5970349992358246], [0.5970349992358246], [0.5970349992358246], [0.611951704111264], [0.5970349992358246], [0.5820877273421977], [0.5373376127158795], [0.5074736359468135], [0.5223903408222529], [0.5671710224667583], [0.5820877273421977], [0.5820877273421977], [0.5074736359468135], [0.41791227265780223], [0.3731315910132966], [0.3731315910132966], [0.41791227265780223], [0.4776096591777472], [0.49255693107137394], [0.432859544551429], [0.34329818126241785], [0.2686840898670335], [0.23882011309796733], [0.2985174996179123], [0.3731315910132966], [0.432859544551429], [0.4477762494268684], [0.432859544551429], [0.4477762494268684], [0.4776096591777472], [0.5373376127158795], [0.5671710224667583], [0.5820877273421977], [0.5522543175913189], [0.5373376127158795], [0.5373376127158795], [0.5373376127158795], [0.5223903408222529], [0.5074736359468135], [0.4776096591777472], [0.41791227265780223], [0.34329818126241785], [0.20895613632890117], [0.059727953538132365], [0.0], [0.08956136328901114], [0.35821488613785724], [0.6865657955066483], [0.940302613480055], [0.9701665902491211], [0.7761271587956594], [0.4776096591777472], [0.20895613632890117], [0.07464465841357175], [0.10447806816445063], [0.23882011309796733], [0.40299556778236284], [0.5671710224667583], [0.7313464771511539], [0.8358245453156045], [0.8656885220846706], [0.76121045392022], [0.5223903408222529], [0.25373681797340675], [0.07464465841357175], [0.029863976769066183], [0.11942534005807733], [0.2836007947424729], [0.432859544551429], [0.5223903408222529], [0.5671710224667583], [0.5970349992358246], [0.64181568088033], [0.6567323857557694], [0.64181568088033], [0.5522543175913189], [0.432859544551429], [0.35821488613785724], [0.34329818126241785], [0.38807886290692345], [0.4477762494268684], [0.5223903408222529], [0.5820877273421977], [0.6268684089867034], [0.6716490906312089], [0.6865657955066483], [0.64181568088033], [0.5223903408222529], [0.35821488613785724], [0.22390340822252797], [0.1492587498089562], [0.1791227265780224], [0.2985174996179123], [0.432859544551429], [0.5373376127158795], [0.5522543175913189], [0.5074736359468135], [0.41791227265780223], [0.32838147638697845], [0.23882011309796733], [0.19403943145346178], [0.1642060217025829], [0.1791227265780224], [0.22390340822252797], [0.2686840898670335], [0.2985174996179123], [0.2836007947424729], [0.25373681797340675], [0.22390340822252797], [0.1791227265780224], [0.1642060217025829], [0.19403943145346178], [0.23882011309796733], [0.3134342044933517], [0.3731315910132966], [0.40299556778236284], [0.38807886290692345], [0.32838147638697845], [0.2985174996179123], [0.32838147638697845], [0.41791227265780223], [0.5373376127158795], [0.6268684089867034], [0.64181568088033], [0.5820877273421977], [0.46269295430230784], [0.35821488613785724], [0.2985174996179123], [0.3134342044933517], [0.38807886290692345], [0.5223903408222529], [0.6865657955066483], [0.8209078404401651], [0.9104692037291762], [0.9253859086046156], [0.8358245453156045], [0.6716490906312089], [0.5373376127158795], [0.4477762494268684], [0.4776096591777472], [0.611951704111264], [0.7462937490447807], [0.8358245453156045], [0.8507412501910439], [0.8209078404401651], [0.7761271587956594], [0.7761271587956594], [0.7910438636710988], [0.7910438636710988], [0.7164297722757145], [0.5970349992358246], [0.46269295430230784], [0.38807886290692345], [0.40299556778236284], [0.4776096591777472], [0.5671710224667583], [0.6567323857557694], [0.6865657955066483], [0.6865657955066483], [0.6716490906312089], [0.6567323857557694], [0.6567323857557694], [0.6865657955066483], [0.7015130674002751], [0.7164297722757145], [0.7015130674002751], [0.6567323857557694], [0.5970349992358246], [0.5223903408222529], [0.4776096591777472], [0.49255693107137394], [0.5522543175913189], [0.64181568088033], [0.6716490906312089], [0.64181568088033], [0.5522543175913189], [0.49255693107137394], [0.49255693107137394], [0.5970349992358246], [0.7164297722757145], [0.8209078404401651], [0.8059911355647257], [0.7313464771511539], [0.6268684089867034], [0.5373376127158795], [0.4776096591777472], [0.46269295430230784], [0.432859544551429], [0.40299556778236284], [0.35821488613785724], [0.35821488613785724], [0.38807886290692345], [0.4776096591777472], [0.5820877273421977], [0.64181568088033], [0.6567323857557694], [0.64181568088033], [0.611951704111264], [0.5970349992358246], [0.5671710224667583], [0.5522543175913189], [0.49255693107137394], [0.432859544551429], [0.38807886290692345], [0.35821488613785724], [0.34329818126241785], [0.35821488613785724], [0.3731315910132966], [0.35821488613785724], [0.35821488613785724], [0.3731315910132966], [0.41791227265780223], [0.49255693107137394], [0.5671710224667583], [0.611951704111264], [0.611951704111264], [0.5671710224667583], [0.5074736359468135], [0.4776096591777472], [0.46269295430230784], [0.49255693107137394], [0.49255693107137394]], "eval_masks": [[0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0]], "forwards": [[1.0], [0.9701665902491211], [0.9701665902491211], [0.9552193183554943], [0.9253859086046156], [0.8507412501910439], [0.7910438636710988], [0.7910438636710988], [0.8358245453156045], [0.8955219318355494], [0.9104692037291762], [0.8507412501910439], [0.7164297722757145], [0.5373376127158795], [0.40299556778236284], [0.32838147638697845], [0.3731315910132966], [0.5074736359468135], [0.6865657955066483], [0.8507412501910439], [0.9253859086046156], [0.8955219318355494], [0.7910438636710988], [0.64181568088033], [0.5522543175913189], [0.5223903408222529], [0.5522543175913189], [0.5970349992358246], [0.6268684089867034], [0.64181568088033], [0.64181568088033], [0.6268684089867034], [0.6268684089867034], [0.611951704111264], [0.5970349992358246], [0.5970349992358246], [0.5970349992358246], [0.611951704111264], [0.5970349992358246], [0.5820877273421977], [0.5373376127158795], [0.5074736359468135], [0.5223903408222529], [0.5671710224667583], [0.5820877273421977], [0.5820877273421977], [0.5074736359468135], [0.41791227265780223], [0.3731315910132966], [0.3731315910132966], [0.41791227265780223], [0.4776096591777472], [0.49255693107137394], [0.432859544551429], [0.34329818126241785], [0.2686840898670335], [0.23882011309796733], [0.2985174996179123], [0.3731315910132966], [0.432859544551429], [0.4477762494268684], [0.432859544551429], [0.4477762494268684], [0.4776096591777472], [0.5373376127158795], [0.5671710224667583], [0.5820877273421977], [0.5522543175913189], [0.5373376127158795], [0.5373376127158795], [0.5373376127158795], [0.5223903408222529], [0.5074736359468135], [0.4776096591777472], [0.41791227265780223], [0.34329818126241785], [0.20895613632890117], [0.059727953538132365], [0.0], [0.08956136328901114], [0.35821488613785724], [0.6865657955066483], [0.940302613480055], [0.9701665902491211], [0.7761271587956594], [0.4776096591777472], [0.20895613632890117], [0.07464465841357175], [0.10447806816445063], [0.23882011309796733], [0.40299556778236284], [0.5671710224667583], [0.7313464771511539], [0.8358245453156045], [0.8656885220846706], [0.76121045392022], [0.5223903408222529], [0.25373681797340675], [0.07464465841357175], [0.029863976769066183], [0.11942534005807733], [0.2836007947424729], [0.432859544551429], [0.5223903408222529], [0.5671710224667583], [0.5970349992358246], [0.64181568088033], [0.6567323857557694], [0.64181568088033], [0.5522543175913189], [0.432859544551429], [0.35821488613785724], [0.34329818126241785], [0.38807886290692345], [0.4477762494268684], [0.5223903408222529], [0.5820877273421977], [0.6268684089867034], [0.6716490906312089], [0.6865657955066483], [0.64181568088033], [0.5223903408222529], [0.35821488613785724], [0.22390340822252797], [0.1492587498089562], [0.1791227265780224], [0.2985174996179123], [0.432859544551429], [0.5373376127158795], [0.5522543175913189], [0.5074736359468135], [0.41791227265780223], [0.32838147638697845], [0.23882011309796733], [0.19403943145346178], [0.1642060217025829], [0.1791227265780224], [0.22390340822252797], [0.2686840898670335], [0.2985174996179123], [0.2836007947424729], [0.25373681797340675], [0.22390340822252797], [0.1791227265780224], [0.1642060217025829], [0.19403943145346178], [0.23882011309796733], [0.3134342044933517], [0.3731315910132966], [0.40299556778236284], [0.38807886290692345], [0.32838147638697845], [0.2985174996179123], [0.32838147638697845], [0.41791227265780223], [0.5373376127158795], [0.6268684089867034], [0.64181568088033], [0.5820877273421977], [0.46269295430230784], [0.35821488613785724], [0.2985174996179123], [0.3134342044933517], [0.38807886290692345], [0.5223903408222529], [0.6865657955066483], [0.8209078404401651], [0.9104692037291762], [0.9253859086046156], [0.8358245453156045], [0.6716490906312089], [0.5373376127158795], [0.4477762494268684], [0.4776096591777472], [0.611951704111264], [0.7462937490447807], [0.8358245453156045], [0.8507412501910439], [0.8209078404401651], [0.7761271587956594], [0.7761271587956594], [0.7910438636710988], [0.7910438636710988], [0.7164297722757145], [0.5970349992358246], [0.46269295430230784], [0.38807886290692345], [0.40299556778236284], [0.4776096591777472], [0.5671710224667583], [0.6567323857557694], [0.6865657955066483], [0.6865657955066483], [0.6716490906312089], [0.6567323857557694], [0.6567323857557694], [0.6865657955066483], [0.7015130674002751], [0.7164297722757145], [0.7015130674002751], [0.6567323857557694], [0.5970349992358246], [0.5223903408222529], [0.4776096591777472], [0.49255693107137394], [0.5522543175913189], [0.64181568088033], [0.6716490906312089], [0.64181568088033], [0.5522543175913189], [0.49255693107137394], [0.49255693107137394], [0.5970349992358246], [0.7164297722757145], [0.8209078404401651], [0.8059911355647257], [0.7313464771511539], [0.6268684089867034], [0.5373376127158795], [0.4776096591777472], [0.46269295430230784], [0.432859544551429], [0.40299556778236284], [0.35821488613785724], [0.35821488613785724], [0.38807886290692345], [0.4776096591777472], [0.5820877273421977], [0.64181568088033], [0.6567323857557694], [0.64181568088033], [0.611951704111264], [0.5970349992358246], [0.5671710224667583], [0.5522543175913189], [0.49255693107137394], [0.432859544551429], [0.38807886290692345], [0.35821488613785724], [0.34329818126241785], [0.35821488613785724], [0.3731315910132966], [0.35821488613785724], [0.35821488613785724], [0.3731315910132966], [0.41791227265780223], [0.49255693107137394], [0.5671710224667583], [0.611951704111264], [0.611951704111264], [0.5671710224667583], [0.5074736359468135], [0.4776096591777472], [0.46269295430230784], [0.49255693107137394], [0.49255693107137394]], "deltas": [[1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0]]}, "backward": {"values": [[0.49255693107137394], [0.49255693107137394], [0.46269295430230784], [0.4776096591777472], [0.5074736359468135], [0.5671710224667583], [0.611951704111264], [0.611951704111264], [0.5671710224667583], [0.49255693107137394], [0.41791227265780223], [0.3731315910132966], [0.35821488613785724], [0.35821488613785724], [0.3731315910132966], [0.35821488613785724], [0.34329818126241785], [0.35821488613785724], [0.38807886290692345], [0.432859544551429], [0.49255693107137394], [0.5522543175913189], [0.5671710224667583], [0.5970349992358246], [0.611951704111264], [0.64181568088033], [0.6567323857557694], [0.64181568088033], [0.5820877273421977], [0.4776096591777472], [0.38807886290692345], [0.35821488613785724], [0.35821488613785724], [0.40299556778236284], [0.432859544551429], [0.46269295430230784], [0.4776096591777472], [0.5373376127158795], [0.6268684089867034], [0.7313464771511539], [0.8059911355647257], [0.8209078404401651], [0.7164297722757145], [0.5970349992358246], [0.49255693107137394], [0.49255693107137394], [0.5522543175913189], [0.64181568088033], [0.6716490906312089], [0.64181568088033], [0.5522543175913189], [0.49255693107137394], [0.4776096591777472], [0.5223903408222529], [0.5970349992358246], [0.6567323857557694], [0.7015130674002751], [0.7164297722757145], [0.7015130674002751], [0.6865657955066483], [0.6567323857557694], [0.6567323857557694], [0.6716490906312089], [0.6865657955066483], [0.6865657955066483], [0.6567323857557694], [0.5671710224667583], [0.4776096591777472], [0.40299556778236284], [0.38807886290692345], [0.46269295430230784], [0.5970349992358246], [0.7164297722757145], [0.7910438636710988], [0.7910438636710988], [0.7761271587956594], [0.7761271587956594], [0.8209078404401651], [0.8507412501910439], [0.8358245453156045], [0.7462937490447807], [0.611951704111264], [0.4776096591777472], [0.4477762494268684], [0.5373376127158795], [0.6716490906312089], [0.8358245453156045], [0.9253859086046156], [0.9104692037291762], [0.8209078404401651], [0.6865657955066483], [0.5223903408222529], [0.38807886290692345], [0.3134342044933517], [0.2985174996179123], [0.35821488613785724], [0.46269295430230784], [0.5820877273421977], [0.64181568088033], [0.6268684089867034], [0.5373376127158795], [0.41791227265780223], [0.32838147638697845], [0.2985174996179123], [0.32838147638697845], [0.38807886290692345], [0.40299556778236284], [0.3731315910132966], [0.3134342044933517], [0.23882011309796733], [0.19403943145346178], [0.1642060217025829], [0.1791227265780224], [0.22390340822252797], [0.25373681797340675], [0.2836007947424729], [0.2985174996179123], [0.2686840898670335], [0.22390340822252797], [0.1791227265780224], [0.1642060217025829], [0.19403943145346178], [0.23882011309796733], [0.32838147638697845], [0.41791227265780223], [0.5074736359468135], [0.5522543175913189], [0.5373376127158795], [0.432859544551429], [0.2985174996179123], [0.1791227265780224], [0.1492587498089562], [0.22390340822252797], [0.35821488613785724], [0.5223903408222529], [0.64181568088033], [0.6865657955066483], [0.6716490906312089], [0.6268684089867034], [0.5820877273421977], [0.5223903408222529], [0.4477762494268684], [0.38807886290692345], [0.34329818126241785], [0.35821488613785724], [0.432859544551429], [0.5522543175913189], [0.64181568088033], [0.6567323857557694], [0.64181568088033], [0.5970349992358246], [0.5671710224667583], [0.5223903408222529], [0.432859544551429], [0.2836007947424729], [0.11942534005807733], [0.029863976769066183], [0.07464465841357175], [0.25373681797340675], [0.5223903408222529], [0.76121045392022], [0.8656885220846706], [0.8358245453156045], [0.7313464771511539], [0.5671710224667583], [0.40299556778236284], [0.23882011309796733], [0.10447806816445063], [0.07464465841357175], [0.20895613632890117], [0.4776096591777472], [0.7761271587956594], [0.9701665902491211], [0.940302613480055], [0.6865657955066483], [0.35821488613785724], [0.08956136328901114], [0.0], [0.059727953538132365], [0.20895613632890117], [0.34329818126241785], [0.41791227265780223], [0.4776096591777472], [0.5074736359468135], [0.5223903408222529], [0.5373376127158795], [0.5373376127158795], [0.5373376127158795], [0.5522543175913189], [0.5820877273421977], [0.5671710224667583], [0.5373376127158795], [0.4776096591777472], [0.4477762494268684], [0.432859544551429], [0.4477762494268684], [0.432859544551429], [0.3731315910132966], [0.2985174996179123], [0.23882011309796733], [0.2686840898670335], [0.34329818126241785], [0.432859544551429], [0.49255693107137394], [0.4776096591777472], [0.41791227265780223], [0.3731315910132966], [0.3731315910132966], [0.41791227265780223], [0.5074736359468135], [0.5820877273421977], [0.5820877273421977], [0.5671710224667583], [0.5223903408222529], [0.5074736359468135], [0.5373376127158795], [0.5820877273421977], [0.5970349992358246], [0.611951704111264], [0.5970349992358246], [0.5970349992358246], [0.5970349992358246], [0.611951704111264], [0.6268684089867034], [0.6268684089867034], [0.64181568088033], [0.64181568088033], [0.6268684089867034], [0.5970349992358246], [0.5522543175913189], [0.5223903408222529], [0.5522543175913189], [0.64181568088033], [0.7910438636710988], [0.8955219318355494], [0.9253859086046156], [0.8507412501910439], [0.6865657955066483], [0.5074736359468135], [0.3731315910132966], [0.32838147638697845], [0.40299556778236284], [0.5373376127158795], [0.7164297722757145], [0.8507412501910439], [0.9104692037291762], [0.8955219318355494], [0.8358245453156045], [0.7910438636710988], [0.7910438636710988], [0.8507412501910439], [0.9253859086046156], [0.9552193183554943], [0.9701665902491211], [0.9701665902491211], [1.0]], "masks": [[1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1]], "evals": [[0.49255693107137394], [0.49255693107137394], [0.46269295430230784], [0.4776096591777472], [0.5074736359468135], [0.5671710224667583], [0.611951704111264], [0.611951704111264], [0.5671710224667583], [0.49255693107137394], [0.41791227265780223], [0.3731315910132966], [0.35821488613785724], [0.35821488613785724], [0.3731315910132966], [0.35821488613785724], [0.34329818126241785], [0.35821488613785724], [0.38807886290692345], [0.432859544551429], [0.49255693107137394], [0.5522543175913189], [0.5671710224667583], [0.5970349992358246], [0.611951704111264], [0.64181568088033], [0.6567323857557694], [0.64181568088033], [0.5820877273421977], [0.4776096591777472], [0.38807886290692345], [0.35821488613785724], [0.35821488613785724], [0.40299556778236284], [0.432859544551429], [0.46269295430230784], [0.4776096591777472], [0.5373376127158795], [0.6268684089867034], [0.7313464771511539], [0.8059911355647257], [0.8209078404401651], [0.7164297722757145], [0.5970349992358246], [0.49255693107137394], [0.49255693107137394], [0.5522543175913189], [0.64181568088033], [0.6716490906312089], [0.64181568088033], [0.5522543175913189], [0.49255693107137394], [0.4776096591777472], [0.5223903408222529], [0.5970349992358246], [0.6567323857557694], [0.7015130674002751], [0.7164297722757145], [0.7015130674002751], [0.6865657955066483], [0.6567323857557694], [0.6567323857557694], [0.6716490906312089], [0.6865657955066483], [0.6865657955066483], [0.6567323857557694], [0.5671710224667583], [0.4776096591777472], [0.40299556778236284], [0.38807886290692345], [0.46269295430230784], [0.5970349992358246], [0.7164297722757145], [0.7910438636710988], [0.7910438636710988], [0.7761271587956594], [0.7761271587956594], [0.8209078404401651], [0.8507412501910439], [0.8358245453156045], [0.7462937490447807], [0.611951704111264], [0.4776096591777472], [0.4477762494268684], [0.5373376127158795], [0.6716490906312089], [0.8358245453156045], [0.9253859086046156], [0.9104692037291762], [0.8209078404401651], [0.6865657955066483], [0.5223903408222529], [0.38807886290692345], [0.3134342044933517], [0.2985174996179123], [0.35821488613785724], [0.46269295430230784], [0.5820877273421977], [0.64181568088033], [0.6268684089867034], [0.5373376127158795], [0.41791227265780223], [0.32838147638697845], [0.2985174996179123], [0.32838147638697845], [0.38807886290692345], [0.40299556778236284], [0.3731315910132966], [0.3134342044933517], [0.23882011309796733], [0.19403943145346178], [0.1642060217025829], [0.1791227265780224], [0.22390340822252797], [0.25373681797340675], [0.2836007947424729], [0.2985174996179123], [0.2686840898670335], [0.22390340822252797], [0.1791227265780224], [0.1642060217025829], [0.19403943145346178], [0.23882011309796733], [0.32838147638697845], [0.41791227265780223], [0.5074736359468135], [0.5522543175913189], [0.5373376127158795], [0.432859544551429], [0.2985174996179123], [0.1791227265780224], [0.1492587498089562], [0.22390340822252797], [0.35821488613785724], [0.5223903408222529], [0.64181568088033], [0.6865657955066483], [0.6716490906312089], [0.6268684089867034], [0.5820877273421977], [0.5223903408222529], [0.4477762494268684], [0.38807886290692345], [0.34329818126241785], [0.35821488613785724], [0.432859544551429], [0.5522543175913189], [0.64181568088033], [0.6567323857557694], [0.64181568088033], [0.5970349992358246], [0.5671710224667583], [0.5223903408222529], [0.432859544551429], [0.2836007947424729], [0.11942534005807733], [0.029863976769066183], [0.07464465841357175], [0.25373681797340675], [0.5223903408222529], [0.76121045392022], [0.8656885220846706], [0.8358245453156045], [0.7313464771511539], [0.5671710224667583], [0.40299556778236284], [0.23882011309796733], [0.10447806816445063], [0.07464465841357175], [0.20895613632890117], [0.4776096591777472], [0.7761271587956594], [0.9701665902491211], [0.940302613480055], [0.6865657955066483], [0.35821488613785724], [0.08956136328901114], [0.0], [0.059727953538132365], [0.20895613632890117], [0.34329818126241785], [0.41791227265780223], [0.4776096591777472], [0.5074736359468135], [0.5223903408222529], [0.5373376127158795], [0.5373376127158795], [0.5373376127158795], [0.5522543175913189], [0.5820877273421977], [0.5671710224667583], [0.5373376127158795], [0.4776096591777472], [0.4477762494268684], [0.432859544551429], [0.4477762494268684], [0.432859544551429], [0.3731315910132966], [0.2985174996179123], [0.23882011309796733], [0.2686840898670335], [0.34329818126241785], [0.432859544551429], [0.49255693107137394], [0.4776096591777472], [0.41791227265780223], [0.3731315910132966], [0.3731315910132966], [0.41791227265780223], [0.5074736359468135], [0.5820877273421977], [0.5820877273421977], [0.5671710224667583], [0.5223903408222529], [0.5074736359468135], [0.5373376127158795], [0.5820877273421977], [0.5970349992358246], [0.611951704111264], [0.5970349992358246], [0.5970349992358246], [0.5970349992358246], [0.611951704111264], [0.6268684089867034], [0.6268684089867034], [0.64181568088033], [0.64181568088033], [0.6268684089867034], [0.5970349992358246], [0.5522543175913189], [0.5223903408222529], [0.5522543175913189], [0.64181568088033], [0.7910438636710988], [0.8955219318355494], [0.9253859086046156], [0.8507412501910439], [0.6865657955066483], [0.5074736359468135], [0.3731315910132966], [0.32838147638697845], [0.40299556778236284], [0.5373376127158795], [0.7164297722757145], [0.8507412501910439], [0.9104692037291762], [0.8955219318355494], [0.8358245453156045], [0.7910438636710988], [0.7910438636710988], [0.8507412501910439], [0.9253859086046156], [0.9552193183554943], [0.9701665902491211], [0.9701665902491211], [1.0]], "eval_masks": [[0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0]], "forwards": [[0.49255693107137394], [0.49255693107137394], [0.46269295430230784], [0.4776096591777472], [0.5074736359468135], [0.5671710224667583], [0.611951704111264], [0.611951704111264], [0.5671710224667583], [0.49255693107137394], [0.41791227265780223], [0.3731315910132966], [0.35821488613785724], [0.35821488613785724], [0.3731315910132966], [0.35821488613785724], [0.34329818126241785], [0.35821488613785724], [0.38807886290692345], [0.432859544551429], [0.49255693107137394], [0.5522543175913189], [0.5671710224667583], [0.5970349992358246], [0.611951704111264], [0.64181568088033], [0.6567323857557694], [0.64181568088033], [0.5820877273421977], [0.4776096591777472], [0.38807886290692345], [0.35821488613785724], [0.35821488613785724], [0.40299556778236284], [0.432859544551429], [0.46269295430230784], [0.4776096591777472], [0.5373376127158795], [0.6268684089867034], [0.7313464771511539], [0.8059911355647257], [0.8209078404401651], [0.7164297722757145], [0.5970349992358246], [0.49255693107137394], [0.49255693107137394], [0.5522543175913189], [0.64181568088033], [0.6716490906312089], [0.64181568088033], [0.5522543175913189], [0.49255693107137394], [0.4776096591777472], [0.5223903408222529], [0.5970349992358246], [0.6567323857557694], [0.7015130674002751], [0.7164297722757145], [0.7015130674002751], [0.6865657955066483], [0.6567323857557694], [0.6567323857557694], [0.6716490906312089], [0.6865657955066483], [0.6865657955066483], [0.6567323857557694], [0.5671710224667583], [0.4776096591777472], [0.40299556778236284], [0.38807886290692345], [0.46269295430230784], [0.5970349992358246], [0.7164297722757145], [0.7910438636710988], [0.7910438636710988], [0.7761271587956594], [0.7761271587956594], [0.8209078404401651], [0.8507412501910439], [0.8358245453156045], [0.7462937490447807], [0.611951704111264], [0.4776096591777472], [0.4477762494268684], [0.5373376127158795], [0.6716490906312089], [0.8358245453156045], [0.9253859086046156], [0.9104692037291762], [0.8209078404401651], [0.6865657955066483], [0.5223903408222529], [0.38807886290692345], [0.3134342044933517], [0.2985174996179123], [0.35821488613785724], [0.46269295430230784], [0.5820877273421977], [0.64181568088033], [0.6268684089867034], [0.5373376127158795], [0.41791227265780223], [0.32838147638697845], [0.2985174996179123], [0.32838147638697845], [0.38807886290692345], [0.40299556778236284], [0.3731315910132966], [0.3134342044933517], [0.23882011309796733], [0.19403943145346178], [0.1642060217025829], [0.1791227265780224], [0.22390340822252797], [0.25373681797340675], [0.2836007947424729], [0.2985174996179123], [0.2686840898670335], [0.22390340822252797], [0.1791227265780224], [0.1642060217025829], [0.19403943145346178], [0.23882011309796733], [0.32838147638697845], [0.41791227265780223], [0.5074736359468135], [0.5522543175913189], [0.5373376127158795], [0.432859544551429], [0.2985174996179123], [0.1791227265780224], [0.1492587498089562], [0.22390340822252797], [0.35821488613785724], [0.5223903408222529], [0.64181568088033], [0.6865657955066483], [0.6716490906312089], [0.6268684089867034], [0.5820877273421977], [0.5223903408222529], [0.4477762494268684], [0.38807886290692345], [0.34329818126241785], [0.35821488613785724], [0.432859544551429], [0.5522543175913189], [0.64181568088033], [0.6567323857557694], [0.64181568088033], [0.5970349992358246], [0.5671710224667583], [0.5223903408222529], [0.432859544551429], [0.2836007947424729], [0.11942534005807733], [0.029863976769066183], [0.07464465841357175], [0.25373681797340675], [0.5223903408222529], [0.76121045392022], [0.8656885220846706], [0.8358245453156045], [0.7313464771511539], [0.5671710224667583], [0.40299556778236284], [0.23882011309796733], [0.10447806816445063], [0.07464465841357175], [0.20895613632890117], [0.4776096591777472], [0.7761271587956594], [0.9701665902491211], [0.940302613480055], [0.6865657955066483], [0.35821488613785724], [0.08956136328901114], [0.0], [0.059727953538132365], [0.20895613632890117], [0.34329818126241785], [0.41791227265780223], [0.4776096591777472], [0.5074736359468135], [0.5223903408222529], [0.5373376127158795], [0.5373376127158795], [0.5373376127158795], [0.5522543175913189], [0.5820877273421977], [0.5671710224667583], [0.5373376127158795], [0.4776096591777472], [0.4477762494268684], [0.432859544551429], [0.4477762494268684], [0.432859544551429], [0.3731315910132966], [0.2985174996179123], [0.23882011309796733], [0.2686840898670335], [0.34329818126241785], [0.432859544551429], [0.49255693107137394], [0.4776096591777472], [0.41791227265780223], [0.3731315910132966], [0.3731315910132966], [0.41791227265780223], [0.5074736359468135], [0.5820877273421977], [0.5820877273421977], [0.5671710224667583], [0.5223903408222529], [0.5074736359468135], [0.5373376127158795], [0.5820877273421977], [0.5970349992358246], [0.611951704111264], [0.5970349992358246], [0.5970349992358246], [0.5970349992358246], [0.611951704111264], [0.6268684089867034], [0.6268684089867034], [0.64181568088033], [0.64181568088033], [0.6268684089867034], [0.5970349992358246], [0.5522543175913189], [0.5223903408222529], [0.5522543175913189], [0.64181568088033], [0.7910438636710988], [0.8955219318355494], [0.9253859086046156], [0.8507412501910439], [0.6865657955066483], [0.5074736359468135], [0.3731315910132966], [0.32838147638697845], [0.40299556778236284], [0.5373376127158795], [0.7164297722757145], [0.8507412501910439], [0.9104692037291762], [0.8955219318355494], [0.8358245453156045], [0.7910438636710988], [0.7910438636710988], [0.8507412501910439], [0.9253859086046156], [0.9552193183554943], [0.9701665902491211], [0.9701665902491211], [1.0]], "deltas": [[1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0]]}} -{"label": 0, "forward": {"values": [[1.0], [0.971002018283272], [0.9275198860263564], [0.8695536032292532], [0.7825893387154221], [0.7246230559183189], [0.6956547548379437], [0.7101389053781313], [0.7391072064585065], [0.7681051881752345], [0.7825893387154221], [0.7825893387154221], [0.7681051881752345], [0.7391072064585065], [0.7246230559183189], [0.7101389053781313], [0.7246230559183189], [0.7681051881752345], [0.8260714709723377], [0.8695536032292532], [0.8840377537694408], [0.8260714709723377], [0.6956547548379437], [0.5652083580671969], [0.4782440935533658], [0.4782440935533658], [0.5652083580671969], [0.6811409236614033], [0.7681051881752345], [0.7971031698919625], [0.7971031698919625], [0.7825893387154221], [0.7971031698919625], [0.8405556215125253], [0.8695536032292532], [0.8695536032292532], [0.8405556215125253], [0.7971031698919625], [0.7825893387154221], [0.7825893387154221], [0.7681051881752345], [0.7536210376350468], [0.7101389053781313], [0.6521726225810281], [0.6231746408643001], [0.6086904903241125], [0.6231746408643001], [0.6521726225810281], [0.6811409236614033], [0.7101389053781313], [0.7101389053781313], [0.6811409236614033], [0.6231746408643001], [0.5362400569868218], [0.44927579247299065], [0.434791641932803], [0.44927579247299065], [0.5217262258102814], [0.5507242075270093], [0.5362400569868218], [0.4927579247299062], [0.4782440935533658], [0.4927579247299062], [0.5652083580671969], [0.6376884720408406], [0.6811409236614033], [0.6666567731212156], [0.6231746408643001], [0.5942063397839249], [0.5942063397839249], [0.6231746408643001], [0.6666567731212156], [0.6956547548379437], [0.6956547548379437], [0.6811409236614033], [0.6231746408643001], [0.5072420752700938], [0.34782737741897185], [0.23189481182476548], [0.21738098064822514], [0.33334322687878426], [0.5507242075270093], [0.7391072064585065], [0.7825893387154221], [0.6521726225810281], [0.434791641932803], [0.24637896236495305], [0.1884126795678499], [0.24637896236495305], [0.36231152795915944], [0.44927579247299065], [0.44927579247299065], [0.3913095096758874], [0.30434524516205624], [0.21738098064822514], [0.14493054731093433], [0.08696426451383117], [0.057966282797103155], [0.08696426451383117], [0.17392852902766234], [0.2608631129051407], [0.30434524516205624], [0.2753472634453282], [0.20289683010803747], [0.11593256559420631], [0.0724801139736436], [0.08696426451383117], [0.1594146978511219], [0.21738098064822514], [0.2753472634453282], [0.30434524516205624], [0.31882939570224383], [0.31882939570224383], [0.31882939570224383], [0.31882939570224383], [0.33334322687878426], [0.33334322687878426], [0.34782737741897185], [0.36231152795915944], [0.36231152795915944], [0.34782737741897185], [0.30434524516205624], [0.23189481182476548], [0.1594146978511219], [0.10144841505401873], [0.08696426451383117], [0.11593256559420631], [0.17392852902766234], [0.21738098064822514], [0.23189481182476548], [0.1884126795678499], [0.11593256559420631], [0.043482132256915586], [0.0], [0.014484150540187568], [0.0724801139736436], [0.1594146978511219], [0.23189481182476548], [0.30434524516205624], [0.33334322687878426], [0.30434524516205624], [0.24637896236495305], [0.1884126795678499], [0.14493054731093433], [0.14493054731093433], [0.20289683010803747], [0.2898610946218687], [0.37679567849934703], [0.434791641932803], [0.434791641932803], [0.37679567849934703], [0.2898610946218687], [0.23189481182476548], [0.21738098064822514], [0.30434524516205624], [0.40579366021607505], [0.4927579247299062], [0.5362400569868218], [0.5217262258102814], [0.44927579247299065], [0.34782737741897185], [0.2608631129051407], [0.21738098064822514], [0.21738098064822514], [0.2753472634453282], [0.36231152795915944], [0.434791641932803], [0.5072420752700938], [0.5362400569868218], [0.5217262258102814], [0.4782440935533658], [0.42027781075626264], [0.3913095096758874], [0.40579366021607505], [0.5072420752700938], [0.6231746408643001], [0.7246230559183189], [0.7536210376350468], [0.7391072064585065], [0.6956547548379437], [0.6666567731212156], [0.6666567731212156], [0.6811409236614033], [0.6811409236614033], [0.6376884720408406], [0.5942063397839249], [0.5507242075270093], [0.5362400569868218], [0.5507242075270093], [0.5507242075270093], [0.5507242075270093], [0.5217262258102814], [0.5217262258102814], [0.5507242075270093], [0.5796925086073845], [0.6086904903241125], [0.6231746408643001], [0.6231746408643001], [0.6231746408643001], [0.6086904903241125], [0.5942063397839249], [0.5652083580671969], [0.5942063397839249], [0.6666567731212156], [0.7681051881752345], [0.8550694526890656], [0.8840377537694408], [0.8260714709723377], [0.6811409236614033], [0.5362400569868218], [0.44927579247299065], [0.4637599430131782], [0.5796925086073845], [0.6956547548379437], [0.7825893387154221], [0.8115873204321501], [0.7536210376350468], [0.6666567731212156], [0.6086904903241125], [0.5652083580671969], [0.5652083580671969], [0.5652083580671969], [0.5652083580671969], [0.5362400569868218], [0.5072420752700938], [0.5217262258102814], [0.6086904903241125], [0.7391072064585065], [0.8550694526890656], [0.8840377537694408], [0.8405556215125253], [0.7246230559183189], [0.6521726225810281], [0.6231746408643001], [0.6666567731212156], [0.7101389053781313], [0.7101389053781313], [0.6666567731212156], [0.5942063397839249], [0.5652083580671969], [0.5942063397839249], [0.6521726225810281], [0.7101389053781313], [0.7101389053781313], [0.6666567731212156], [0.5942063397839249], [0.5072420752700938], [0.44927579247299065], [0.42027781075626264], [0.42027781075626264], [0.44927579247299065], [0.5362400569868218], [0.6086904903241125], [0.6666567731212156], [0.6521726225810281], [0.5507242075270093]], "masks": [[1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1]], "evals": [[1.0], [0.971002018283272], [0.9275198860263564], [0.8695536032292532], [0.7825893387154221], [0.7246230559183189], [0.6956547548379437], [0.7101389053781313], [0.7391072064585065], [0.7681051881752345], [0.7825893387154221], [0.7825893387154221], [0.7681051881752345], [0.7391072064585065], [0.7246230559183189], [0.7101389053781313], [0.7246230559183189], [0.7681051881752345], [0.8260714709723377], [0.8695536032292532], [0.8840377537694408], [0.8260714709723377], [0.6956547548379437], [0.5652083580671969], [0.4782440935533658], [0.4782440935533658], [0.5652083580671969], [0.6811409236614033], [0.7681051881752345], [0.7971031698919625], [0.7971031698919625], [0.7825893387154221], [0.7971031698919625], [0.8405556215125253], [0.8695536032292532], [0.8695536032292532], [0.8405556215125253], [0.7971031698919625], [0.7825893387154221], [0.7825893387154221], [0.7681051881752345], [0.7536210376350468], [0.7101389053781313], [0.6521726225810281], [0.6231746408643001], [0.6086904903241125], [0.6231746408643001], [0.6521726225810281], [0.6811409236614033], [0.7101389053781313], [0.7101389053781313], [0.6811409236614033], [0.6231746408643001], [0.5362400569868218], [0.44927579247299065], [0.434791641932803], [0.44927579247299065], [0.5217262258102814], [0.5507242075270093], [0.5362400569868218], [0.4927579247299062], [0.4782440935533658], [0.4927579247299062], [0.5652083580671969], [0.6376884720408406], [0.6811409236614033], [0.6666567731212156], [0.6231746408643001], [0.5942063397839249], [0.5942063397839249], [0.6231746408643001], [0.6666567731212156], [0.6956547548379437], [0.6956547548379437], [0.6811409236614033], [0.6231746408643001], [0.5072420752700938], [0.34782737741897185], [0.23189481182476548], [0.21738098064822514], [0.33334322687878426], [0.5507242075270093], [0.7391072064585065], [0.7825893387154221], [0.6521726225810281], [0.434791641932803], [0.24637896236495305], [0.1884126795678499], [0.24637896236495305], [0.36231152795915944], [0.44927579247299065], [0.44927579247299065], [0.3913095096758874], [0.30434524516205624], [0.21738098064822514], [0.14493054731093433], [0.08696426451383117], [0.057966282797103155], [0.08696426451383117], [0.17392852902766234], [0.2608631129051407], [0.30434524516205624], [0.2753472634453282], [0.20289683010803747], [0.11593256559420631], [0.0724801139736436], [0.08696426451383117], [0.1594146978511219], [0.21738098064822514], [0.2753472634453282], [0.30434524516205624], [0.31882939570224383], [0.31882939570224383], [0.31882939570224383], [0.31882939570224383], [0.33334322687878426], [0.33334322687878426], [0.34782737741897185], [0.36231152795915944], [0.36231152795915944], [0.34782737741897185], [0.30434524516205624], [0.23189481182476548], [0.1594146978511219], [0.10144841505401873], [0.08696426451383117], [0.11593256559420631], [0.17392852902766234], [0.21738098064822514], [0.23189481182476548], [0.1884126795678499], [0.11593256559420631], [0.043482132256915586], [0.0], [0.014484150540187568], [0.0724801139736436], [0.1594146978511219], [0.23189481182476548], [0.30434524516205624], [0.33334322687878426], [0.30434524516205624], [0.24637896236495305], [0.1884126795678499], [0.14493054731093433], [0.14493054731093433], [0.20289683010803747], [0.2898610946218687], [0.37679567849934703], [0.434791641932803], [0.434791641932803], [0.37679567849934703], [0.2898610946218687], [0.23189481182476548], [0.21738098064822514], [0.30434524516205624], [0.40579366021607505], [0.4927579247299062], [0.5362400569868218], [0.5217262258102814], [0.44927579247299065], [0.34782737741897185], [0.2608631129051407], [0.21738098064822514], [0.21738098064822514], [0.2753472634453282], [0.36231152795915944], [0.434791641932803], [0.5072420752700938], [0.5362400569868218], [0.5217262258102814], [0.4782440935533658], [0.42027781075626264], [0.3913095096758874], [0.40579366021607505], [0.5072420752700938], [0.6231746408643001], [0.7246230559183189], [0.7536210376350468], [0.7391072064585065], [0.6956547548379437], [0.6666567731212156], [0.6666567731212156], [0.6811409236614033], [0.6811409236614033], [0.6376884720408406], [0.5942063397839249], [0.5507242075270093], [0.5362400569868218], [0.5507242075270093], [0.5507242075270093], [0.5507242075270093], [0.5217262258102814], [0.5217262258102814], [0.5507242075270093], [0.5796925086073845], [0.6086904903241125], [0.6231746408643001], [0.6231746408643001], [0.6231746408643001], [0.6086904903241125], [0.5942063397839249], [0.5652083580671969], [0.5942063397839249], [0.6666567731212156], [0.7681051881752345], [0.8550694526890656], [0.8840377537694408], [0.8260714709723377], [0.6811409236614033], [0.5362400569868218], [0.44927579247299065], [0.4637599430131782], [0.5796925086073845], [0.6956547548379437], [0.7825893387154221], [0.8115873204321501], [0.7536210376350468], [0.6666567731212156], [0.6086904903241125], [0.5652083580671969], [0.5652083580671969], [0.5652083580671969], [0.5652083580671969], [0.5362400569868218], [0.5072420752700938], [0.5217262258102814], [0.6086904903241125], [0.7391072064585065], [0.8550694526890656], [0.8840377537694408], [0.8405556215125253], [0.7246230559183189], [0.6521726225810281], [0.6231746408643001], [0.6666567731212156], [0.7101389053781313], [0.7101389053781313], [0.6666567731212156], [0.5942063397839249], [0.5652083580671969], [0.5942063397839249], [0.6521726225810281], [0.7101389053781313], [0.7101389053781313], [0.6666567731212156], [0.5942063397839249], [0.5072420752700938], [0.44927579247299065], [0.42027781075626264], [0.42027781075626264], [0.44927579247299065], [0.5362400569868218], [0.6086904903241125], [0.6666567731212156], [0.6521726225810281], [0.5507242075270093]], "eval_masks": [[0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0]], "forwards": [[1.0], [0.971002018283272], [0.9275198860263564], [0.8695536032292532], [0.7825893387154221], [0.7246230559183189], [0.6956547548379437], [0.7101389053781313], [0.7391072064585065], [0.7681051881752345], [0.7825893387154221], [0.7825893387154221], [0.7681051881752345], [0.7391072064585065], [0.7246230559183189], [0.7101389053781313], [0.7246230559183189], [0.7681051881752345], [0.8260714709723377], [0.8695536032292532], [0.8840377537694408], [0.8260714709723377], [0.6956547548379437], [0.5652083580671969], [0.4782440935533658], [0.4782440935533658], [0.5652083580671969], [0.6811409236614033], [0.7681051881752345], [0.7971031698919625], [0.7971031698919625], [0.7825893387154221], [0.7971031698919625], [0.8405556215125253], [0.8695536032292532], [0.8695536032292532], [0.8405556215125253], [0.7971031698919625], [0.7825893387154221], [0.7825893387154221], [0.7681051881752345], [0.7536210376350468], [0.7101389053781313], [0.6521726225810281], [0.6231746408643001], [0.6086904903241125], [0.6231746408643001], [0.6521726225810281], [0.6811409236614033], [0.7101389053781313], [0.7101389053781313], [0.6811409236614033], [0.6231746408643001], [0.5362400569868218], [0.44927579247299065], [0.434791641932803], [0.44927579247299065], [0.5217262258102814], [0.5507242075270093], [0.5362400569868218], [0.4927579247299062], [0.4782440935533658], [0.4927579247299062], [0.5652083580671969], [0.6376884720408406], [0.6811409236614033], [0.6666567731212156], [0.6231746408643001], [0.5942063397839249], [0.5942063397839249], [0.6231746408643001], [0.6666567731212156], [0.6956547548379437], [0.6956547548379437], [0.6811409236614033], [0.6231746408643001], [0.5072420752700938], [0.34782737741897185], [0.23189481182476548], [0.21738098064822514], [0.33334322687878426], [0.5507242075270093], [0.7391072064585065], [0.7825893387154221], [0.6521726225810281], [0.434791641932803], [0.24637896236495305], [0.1884126795678499], [0.24637896236495305], [0.36231152795915944], [0.44927579247299065], [0.44927579247299065], [0.3913095096758874], [0.30434524516205624], [0.21738098064822514], [0.14493054731093433], [0.08696426451383117], [0.057966282797103155], [0.08696426451383117], [0.17392852902766234], [0.2608631129051407], [0.30434524516205624], [0.2753472634453282], [0.20289683010803747], [0.11593256559420631], [0.0724801139736436], [0.08696426451383117], [0.1594146978511219], [0.21738098064822514], [0.2753472634453282], [0.30434524516205624], [0.31882939570224383], [0.31882939570224383], [0.31882939570224383], [0.31882939570224383], [0.33334322687878426], [0.33334322687878426], [0.34782737741897185], [0.36231152795915944], [0.36231152795915944], [0.34782737741897185], [0.30434524516205624], [0.23189481182476548], [0.1594146978511219], [0.10144841505401873], [0.08696426451383117], [0.11593256559420631], [0.17392852902766234], [0.21738098064822514], [0.23189481182476548], [0.1884126795678499], [0.11593256559420631], [0.043482132256915586], [0.0], [0.014484150540187568], [0.0724801139736436], [0.1594146978511219], [0.23189481182476548], [0.30434524516205624], [0.33334322687878426], [0.30434524516205624], [0.24637896236495305], [0.1884126795678499], [0.14493054731093433], [0.14493054731093433], [0.20289683010803747], [0.2898610946218687], [0.37679567849934703], [0.434791641932803], [0.434791641932803], [0.37679567849934703], [0.2898610946218687], [0.23189481182476548], [0.21738098064822514], [0.30434524516205624], [0.40579366021607505], [0.4927579247299062], [0.5362400569868218], [0.5217262258102814], [0.44927579247299065], [0.34782737741897185], [0.2608631129051407], [0.21738098064822514], [0.21738098064822514], [0.2753472634453282], [0.36231152795915944], [0.434791641932803], [0.5072420752700938], [0.5362400569868218], [0.5217262258102814], [0.4782440935533658], [0.42027781075626264], [0.3913095096758874], [0.40579366021607505], [0.5072420752700938], [0.6231746408643001], [0.7246230559183189], [0.7536210376350468], [0.7391072064585065], [0.6956547548379437], [0.6666567731212156], [0.6666567731212156], [0.6811409236614033], [0.6811409236614033], [0.6376884720408406], [0.5942063397839249], [0.5507242075270093], [0.5362400569868218], [0.5507242075270093], [0.5507242075270093], [0.5507242075270093], [0.5217262258102814], [0.5217262258102814], [0.5507242075270093], [0.5796925086073845], [0.6086904903241125], [0.6231746408643001], [0.6231746408643001], [0.6231746408643001], [0.6086904903241125], [0.5942063397839249], [0.5652083580671969], [0.5942063397839249], [0.6666567731212156], [0.7681051881752345], [0.8550694526890656], [0.8840377537694408], [0.8260714709723377], [0.6811409236614033], [0.5362400569868218], [0.44927579247299065], [0.4637599430131782], [0.5796925086073845], [0.6956547548379437], [0.7825893387154221], [0.8115873204321501], [0.7536210376350468], [0.6666567731212156], [0.6086904903241125], [0.5652083580671969], [0.5652083580671969], [0.5652083580671969], [0.5652083580671969], [0.5362400569868218], [0.5072420752700938], [0.5217262258102814], [0.6086904903241125], [0.7391072064585065], [0.8550694526890656], [0.8840377537694408], [0.8405556215125253], [0.7246230559183189], [0.6521726225810281], [0.6231746408643001], [0.6666567731212156], [0.7101389053781313], [0.7101389053781313], [0.6666567731212156], [0.5942063397839249], [0.5652083580671969], [0.5942063397839249], [0.6521726225810281], [0.7101389053781313], [0.7101389053781313], [0.6666567731212156], [0.5942063397839249], [0.5072420752700938], [0.44927579247299065], [0.42027781075626264], [0.42027781075626264], [0.44927579247299065], [0.5362400569868218], [0.6086904903241125], [0.6666567731212156], [0.6521726225810281], [0.5507242075270093]], "deltas": [[1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0]]}, "backward": {"values": [[0.5507242075270093], [0.6521726225810281], [0.6666567731212156], [0.6086904903241125], [0.5362400569868218], [0.44927579247299065], [0.42027781075626264], [0.42027781075626264], [0.44927579247299065], [0.5072420752700938], [0.5942063397839249], [0.6666567731212156], [0.7101389053781313], [0.7101389053781313], [0.6521726225810281], [0.5942063397839249], [0.5652083580671969], [0.5942063397839249], [0.6666567731212156], [0.7101389053781313], [0.7101389053781313], [0.6666567731212156], [0.6231746408643001], [0.6521726225810281], [0.7246230559183189], [0.8405556215125253], [0.8840377537694408], [0.8550694526890656], [0.7391072064585065], [0.6086904903241125], [0.5217262258102814], [0.5072420752700938], [0.5362400569868218], [0.5652083580671969], [0.5652083580671969], [0.5652083580671969], [0.5652083580671969], [0.6086904903241125], [0.6666567731212156], [0.7536210376350468], [0.8115873204321501], [0.7825893387154221], [0.6956547548379437], [0.5796925086073845], [0.4637599430131782], [0.44927579247299065], [0.5362400569868218], [0.6811409236614033], [0.8260714709723377], [0.8840377537694408], [0.8550694526890656], [0.7681051881752345], [0.6666567731212156], [0.5942063397839249], [0.5652083580671969], [0.5942063397839249], [0.6086904903241125], [0.6231746408643001], [0.6231746408643001], [0.6231746408643001], [0.6086904903241125], [0.5796925086073845], [0.5507242075270093], [0.5217262258102814], [0.5217262258102814], [0.5507242075270093], [0.5507242075270093], [0.5507242075270093], [0.5362400569868218], [0.5507242075270093], [0.5942063397839249], [0.6376884720408406], [0.6811409236614033], [0.6811409236614033], [0.6666567731212156], [0.6666567731212156], [0.6956547548379437], [0.7391072064585065], [0.7536210376350468], [0.7246230559183189], [0.6231746408643001], [0.5072420752700938], [0.40579366021607505], [0.3913095096758874], [0.42027781075626264], [0.4782440935533658], [0.5217262258102814], [0.5362400569868218], [0.5072420752700938], [0.434791641932803], [0.36231152795915944], [0.2753472634453282], [0.21738098064822514], [0.21738098064822514], [0.2608631129051407], [0.34782737741897185], [0.44927579247299065], [0.5217262258102814], [0.5362400569868218], [0.4927579247299062], [0.40579366021607505], [0.30434524516205624], [0.21738098064822514], [0.23189481182476548], [0.2898610946218687], [0.37679567849934703], [0.434791641932803], [0.434791641932803], [0.37679567849934703], [0.2898610946218687], [0.20289683010803747], [0.14493054731093433], [0.14493054731093433], [0.1884126795678499], [0.24637896236495305], [0.30434524516205624], [0.33334322687878426], [0.30434524516205624], [0.23189481182476548], [0.1594146978511219], [0.0724801139736436], [0.014484150540187568], [0.0], [0.043482132256915586], [0.11593256559420631], [0.1884126795678499], [0.23189481182476548], [0.21738098064822514], [0.17392852902766234], [0.11593256559420631], [0.08696426451383117], [0.10144841505401873], [0.1594146978511219], [0.23189481182476548], [0.30434524516205624], [0.34782737741897185], [0.36231152795915944], [0.36231152795915944], [0.34782737741897185], [0.33334322687878426], [0.33334322687878426], [0.31882939570224383], [0.31882939570224383], [0.31882939570224383], [0.31882939570224383], [0.30434524516205624], [0.2753472634453282], [0.21738098064822514], [0.1594146978511219], [0.08696426451383117], [0.0724801139736436], [0.11593256559420631], [0.20289683010803747], [0.2753472634453282], [0.30434524516205624], [0.2608631129051407], [0.17392852902766234], [0.08696426451383117], [0.057966282797103155], [0.08696426451383117], [0.14493054731093433], [0.21738098064822514], [0.30434524516205624], [0.3913095096758874], [0.44927579247299065], [0.44927579247299065], [0.36231152795915944], [0.24637896236495305], [0.1884126795678499], [0.24637896236495305], [0.434791641932803], [0.6521726225810281], [0.7825893387154221], [0.7391072064585065], [0.5507242075270093], [0.33334322687878426], [0.21738098064822514], [0.23189481182476548], [0.34782737741897185], [0.5072420752700938], [0.6231746408643001], [0.6811409236614033], [0.6956547548379437], [0.6956547548379437], [0.6666567731212156], [0.6231746408643001], [0.5942063397839249], [0.5942063397839249], [0.6231746408643001], [0.6666567731212156], [0.6811409236614033], [0.6376884720408406], [0.5652083580671969], [0.4927579247299062], [0.4782440935533658], [0.4927579247299062], [0.5362400569868218], [0.5507242075270093], [0.5217262258102814], [0.44927579247299065], [0.434791641932803], [0.44927579247299065], [0.5362400569868218], [0.6231746408643001], [0.6811409236614033], [0.7101389053781313], [0.7101389053781313], [0.6811409236614033], [0.6521726225810281], [0.6231746408643001], [0.6086904903241125], [0.6231746408643001], [0.6521726225810281], [0.7101389053781313], [0.7536210376350468], [0.7681051881752345], [0.7825893387154221], [0.7825893387154221], [0.7971031698919625], [0.8405556215125253], [0.8695536032292532], [0.8695536032292532], [0.8405556215125253], [0.7971031698919625], [0.7825893387154221], [0.7971031698919625], [0.7971031698919625], [0.7681051881752345], [0.6811409236614033], [0.5652083580671969], [0.4782440935533658], [0.4782440935533658], [0.5652083580671969], [0.6956547548379437], [0.8260714709723377], [0.8840377537694408], [0.8695536032292532], [0.8260714709723377], [0.7681051881752345], [0.7246230559183189], [0.7101389053781313], [0.7246230559183189], [0.7391072064585065], [0.7681051881752345], [0.7825893387154221], [0.7825893387154221], [0.7681051881752345], [0.7391072064585065], [0.7101389053781313], [0.6956547548379437], [0.7246230559183189], [0.7825893387154221], [0.8695536032292532], [0.9275198860263564], [0.971002018283272], [1.0]], "masks": [[1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1]], "evals": [[0.5507242075270093], [0.6521726225810281], [0.6666567731212156], [0.6086904903241125], [0.5362400569868218], [0.44927579247299065], [0.42027781075626264], [0.42027781075626264], [0.44927579247299065], [0.5072420752700938], [0.5942063397839249], [0.6666567731212156], [0.7101389053781313], [0.7101389053781313], [0.6521726225810281], [0.5942063397839249], [0.5652083580671969], [0.5942063397839249], [0.6666567731212156], [0.7101389053781313], [0.7101389053781313], [0.6666567731212156], [0.6231746408643001], [0.6521726225810281], [0.7246230559183189], [0.8405556215125253], [0.8840377537694408], [0.8550694526890656], [0.7391072064585065], [0.6086904903241125], [0.5217262258102814], [0.5072420752700938], [0.5362400569868218], [0.5652083580671969], [0.5652083580671969], [0.5652083580671969], [0.5652083580671969], [0.6086904903241125], [0.6666567731212156], [0.7536210376350468], [0.8115873204321501], [0.7825893387154221], [0.6956547548379437], [0.5796925086073845], [0.4637599430131782], [0.44927579247299065], [0.5362400569868218], [0.6811409236614033], [0.8260714709723377], [0.8840377537694408], [0.8550694526890656], [0.7681051881752345], [0.6666567731212156], [0.5942063397839249], [0.5652083580671969], [0.5942063397839249], [0.6086904903241125], [0.6231746408643001], [0.6231746408643001], [0.6231746408643001], [0.6086904903241125], [0.5796925086073845], [0.5507242075270093], [0.5217262258102814], [0.5217262258102814], [0.5507242075270093], [0.5507242075270093], [0.5507242075270093], [0.5362400569868218], [0.5507242075270093], [0.5942063397839249], [0.6376884720408406], [0.6811409236614033], [0.6811409236614033], [0.6666567731212156], [0.6666567731212156], [0.6956547548379437], [0.7391072064585065], [0.7536210376350468], [0.7246230559183189], [0.6231746408643001], [0.5072420752700938], [0.40579366021607505], [0.3913095096758874], [0.42027781075626264], [0.4782440935533658], [0.5217262258102814], [0.5362400569868218], [0.5072420752700938], [0.434791641932803], [0.36231152795915944], [0.2753472634453282], [0.21738098064822514], [0.21738098064822514], [0.2608631129051407], [0.34782737741897185], [0.44927579247299065], [0.5217262258102814], [0.5362400569868218], [0.4927579247299062], [0.40579366021607505], [0.30434524516205624], [0.21738098064822514], [0.23189481182476548], [0.2898610946218687], [0.37679567849934703], [0.434791641932803], [0.434791641932803], [0.37679567849934703], [0.2898610946218687], [0.20289683010803747], [0.14493054731093433], [0.14493054731093433], [0.1884126795678499], [0.24637896236495305], [0.30434524516205624], [0.33334322687878426], [0.30434524516205624], [0.23189481182476548], [0.1594146978511219], [0.0724801139736436], [0.014484150540187568], [0.0], [0.043482132256915586], [0.11593256559420631], [0.1884126795678499], [0.23189481182476548], [0.21738098064822514], [0.17392852902766234], [0.11593256559420631], [0.08696426451383117], [0.10144841505401873], [0.1594146978511219], [0.23189481182476548], [0.30434524516205624], [0.34782737741897185], [0.36231152795915944], [0.36231152795915944], [0.34782737741897185], [0.33334322687878426], [0.33334322687878426], [0.31882939570224383], [0.31882939570224383], [0.31882939570224383], [0.31882939570224383], [0.30434524516205624], [0.2753472634453282], [0.21738098064822514], [0.1594146978511219], [0.08696426451383117], [0.0724801139736436], [0.11593256559420631], [0.20289683010803747], [0.2753472634453282], [0.30434524516205624], [0.2608631129051407], [0.17392852902766234], [0.08696426451383117], [0.057966282797103155], [0.08696426451383117], [0.14493054731093433], [0.21738098064822514], [0.30434524516205624], [0.3913095096758874], [0.44927579247299065], [0.44927579247299065], [0.36231152795915944], [0.24637896236495305], [0.1884126795678499], [0.24637896236495305], [0.434791641932803], [0.6521726225810281], [0.7825893387154221], [0.7391072064585065], [0.5507242075270093], [0.33334322687878426], [0.21738098064822514], [0.23189481182476548], [0.34782737741897185], [0.5072420752700938], [0.6231746408643001], [0.6811409236614033], [0.6956547548379437], [0.6956547548379437], [0.6666567731212156], [0.6231746408643001], [0.5942063397839249], [0.5942063397839249], [0.6231746408643001], [0.6666567731212156], [0.6811409236614033], [0.6376884720408406], [0.5652083580671969], [0.4927579247299062], [0.4782440935533658], [0.4927579247299062], [0.5362400569868218], [0.5507242075270093], [0.5217262258102814], [0.44927579247299065], [0.434791641932803], [0.44927579247299065], [0.5362400569868218], [0.6231746408643001], [0.6811409236614033], [0.7101389053781313], [0.7101389053781313], [0.6811409236614033], [0.6521726225810281], [0.6231746408643001], [0.6086904903241125], [0.6231746408643001], [0.6521726225810281], [0.7101389053781313], [0.7536210376350468], [0.7681051881752345], [0.7825893387154221], [0.7825893387154221], [0.7971031698919625], [0.8405556215125253], [0.8695536032292532], [0.8695536032292532], [0.8405556215125253], [0.7971031698919625], [0.7825893387154221], [0.7971031698919625], [0.7971031698919625], [0.7681051881752345], [0.6811409236614033], [0.5652083580671969], [0.4782440935533658], [0.4782440935533658], [0.5652083580671969], [0.6956547548379437], [0.8260714709723377], [0.8840377537694408], [0.8695536032292532], [0.8260714709723377], [0.7681051881752345], [0.7246230559183189], [0.7101389053781313], [0.7246230559183189], [0.7391072064585065], [0.7681051881752345], [0.7825893387154221], [0.7825893387154221], [0.7681051881752345], [0.7391072064585065], [0.7101389053781313], [0.6956547548379437], [0.7246230559183189], [0.7825893387154221], [0.8695536032292532], [0.9275198860263564], [0.971002018283272], [1.0]], "eval_masks": [[0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0]], "forwards": [[0.5507242075270093], [0.6521726225810281], [0.6666567731212156], [0.6086904903241125], [0.5362400569868218], [0.44927579247299065], [0.42027781075626264], [0.42027781075626264], [0.44927579247299065], [0.5072420752700938], [0.5942063397839249], [0.6666567731212156], [0.7101389053781313], [0.7101389053781313], [0.6521726225810281], [0.5942063397839249], [0.5652083580671969], [0.5942063397839249], [0.6666567731212156], [0.7101389053781313], [0.7101389053781313], [0.6666567731212156], [0.6231746408643001], [0.6521726225810281], [0.7246230559183189], [0.8405556215125253], [0.8840377537694408], [0.8550694526890656], [0.7391072064585065], [0.6086904903241125], [0.5217262258102814], [0.5072420752700938], [0.5362400569868218], [0.5652083580671969], [0.5652083580671969], [0.5652083580671969], [0.5652083580671969], [0.6086904903241125], [0.6666567731212156], [0.7536210376350468], [0.8115873204321501], [0.7825893387154221], [0.6956547548379437], [0.5796925086073845], [0.4637599430131782], [0.44927579247299065], [0.5362400569868218], [0.6811409236614033], [0.8260714709723377], [0.8840377537694408], [0.8550694526890656], [0.7681051881752345], [0.6666567731212156], [0.5942063397839249], [0.5652083580671969], [0.5942063397839249], [0.6086904903241125], [0.6231746408643001], [0.6231746408643001], [0.6231746408643001], [0.6086904903241125], [0.5796925086073845], [0.5507242075270093], [0.5217262258102814], [0.5217262258102814], [0.5507242075270093], [0.5507242075270093], [0.5507242075270093], [0.5362400569868218], [0.5507242075270093], [0.5942063397839249], [0.6376884720408406], [0.6811409236614033], [0.6811409236614033], [0.6666567731212156], [0.6666567731212156], [0.6956547548379437], [0.7391072064585065], [0.7536210376350468], [0.7246230559183189], [0.6231746408643001], [0.5072420752700938], [0.40579366021607505], [0.3913095096758874], [0.42027781075626264], [0.4782440935533658], [0.5217262258102814], [0.5362400569868218], [0.5072420752700938], [0.434791641932803], [0.36231152795915944], [0.2753472634453282], [0.21738098064822514], [0.21738098064822514], [0.2608631129051407], [0.34782737741897185], [0.44927579247299065], [0.5217262258102814], [0.5362400569868218], [0.4927579247299062], [0.40579366021607505], [0.30434524516205624], [0.21738098064822514], [0.23189481182476548], [0.2898610946218687], [0.37679567849934703], [0.434791641932803], [0.434791641932803], [0.37679567849934703], [0.2898610946218687], [0.20289683010803747], [0.14493054731093433], [0.14493054731093433], [0.1884126795678499], [0.24637896236495305], [0.30434524516205624], [0.33334322687878426], [0.30434524516205624], [0.23189481182476548], [0.1594146978511219], [0.0724801139736436], [0.014484150540187568], [0.0], [0.043482132256915586], [0.11593256559420631], [0.1884126795678499], [0.23189481182476548], [0.21738098064822514], [0.17392852902766234], [0.11593256559420631], [0.08696426451383117], [0.10144841505401873], [0.1594146978511219], [0.23189481182476548], [0.30434524516205624], [0.34782737741897185], [0.36231152795915944], [0.36231152795915944], [0.34782737741897185], [0.33334322687878426], [0.33334322687878426], [0.31882939570224383], [0.31882939570224383], [0.31882939570224383], [0.31882939570224383], [0.30434524516205624], [0.2753472634453282], [0.21738098064822514], [0.1594146978511219], [0.08696426451383117], [0.0724801139736436], [0.11593256559420631], [0.20289683010803747], [0.2753472634453282], [0.30434524516205624], [0.2608631129051407], [0.17392852902766234], [0.08696426451383117], [0.057966282797103155], [0.08696426451383117], [0.14493054731093433], [0.21738098064822514], [0.30434524516205624], [0.3913095096758874], [0.44927579247299065], [0.44927579247299065], [0.36231152795915944], [0.24637896236495305], [0.1884126795678499], [0.24637896236495305], [0.434791641932803], [0.6521726225810281], [0.7825893387154221], [0.7391072064585065], [0.5507242075270093], [0.33334322687878426], [0.21738098064822514], [0.23189481182476548], [0.34782737741897185], [0.5072420752700938], [0.6231746408643001], [0.6811409236614033], [0.6956547548379437], [0.6956547548379437], [0.6666567731212156], [0.6231746408643001], [0.5942063397839249], [0.5942063397839249], [0.6231746408643001], [0.6666567731212156], [0.6811409236614033], [0.6376884720408406], [0.5652083580671969], [0.4927579247299062], [0.4782440935533658], [0.4927579247299062], [0.5362400569868218], [0.5507242075270093], [0.5217262258102814], [0.44927579247299065], [0.434791641932803], [0.44927579247299065], [0.5362400569868218], [0.6231746408643001], [0.6811409236614033], [0.7101389053781313], [0.7101389053781313], [0.6811409236614033], [0.6521726225810281], [0.6231746408643001], [0.6086904903241125], [0.6231746408643001], [0.6521726225810281], [0.7101389053781313], [0.7536210376350468], [0.7681051881752345], [0.7825893387154221], [0.7825893387154221], [0.7971031698919625], [0.8405556215125253], [0.8695536032292532], [0.8695536032292532], [0.8405556215125253], [0.7971031698919625], [0.7825893387154221], [0.7971031698919625], [0.7971031698919625], [0.7681051881752345], [0.6811409236614033], [0.5652083580671969], [0.4782440935533658], [0.4782440935533658], [0.5652083580671969], [0.6956547548379437], [0.8260714709723377], [0.8840377537694408], [0.8695536032292532], [0.8260714709723377], [0.7681051881752345], [0.7246230559183189], [0.7101389053781313], [0.7246230559183189], [0.7391072064585065], [0.7681051881752345], [0.7825893387154221], [0.7825893387154221], [0.7681051881752345], [0.7391072064585065], [0.7101389053781313], [0.6956547548379437], [0.7246230559183189], [0.7825893387154221], [0.8695536032292532], [0.9275198860263564], [0.971002018283272], [1.0]], "deltas": [[1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0]]}} -{"label": 0, "forward": {"values": [[0.7000153601966106], [0.7250012800163843], [0.7499871998361579], [0.7250012800163843], [0.6749782397214684], [0.6000204802621475], [0.5749833597870053], [0.6000204802621475], [0.6749782397214684], [0.7750243203113001], [0.7750243203113001], [0.7250012800163843], [0.6250064000819211], [0.5250115201474579], [0.42501664021299473], [0.3999795197378527], [0.42501664021299473], [0.5250115201474579], [0.6250064000819211], [0.7000153601966106], [0.7250012800163843], [0.6250064000819211], [0.47498847985254217], [0.3500076800983053], [0.2999846398033895], [0.3250217602785316], [0.42501664021299473], [0.5499974399672316], [0.6000204802621475], [0.6250064000819211], [0.6250064000819211], [0.6250064000819211], [0.6000204802621475], [0.6000204802621475], [0.6000204802621475], [0.6000204802621475], [0.5749833597870053], [0.5749833597870053], [0.5250115201474579], [0.4500025600327685], [0.3999795197378527], [0.3999795197378527], [0.4500025600327685], [0.5499974399672316], [0.6250064000819211], [0.6000204802621475], [0.5250115201474579], [0.3999795197378527], [0.3500076800983053], [0.3999795197378527], [0.5250115201474579], [0.6749782397214684], [0.7000153601966106], [0.6499923199016948], [0.5250115201474579], [0.42501664021299473], [0.42501664021299473], [0.4999743996723159], [0.6000204802621475], [0.6749782397214684], [0.6749782397214684], [0.6250064000819211], [0.6000204802621475], [0.5749833597870053], [0.5749833597870053], [0.5749833597870053], [0.6250064000819211], [0.6499923199016948], [0.7250012800163843], [0.7750243203113001], [0.7750243203113001], [0.7000153601966106], [0.5499974399672316], [0.3999795197378527], [0.2749987199836158], [0.25001280016384214], [0.2999846398033895], [0.37499359991807896], [0.47498847985254217], [0.6000204802621475], [0.7250012800163843], [0.8000102401310737], [0.7499871998361579], [0.5749833597870053], [0.3250217602785316], [0.07500896011468947], [0.0], [0.1249807997542369], [0.42501664021299473], [0.7250012800163843], [0.9500281603604527], [1.0], [0.9000051200655369], [0.7000153601966106], [0.4999743996723159], [0.3250217602785316], [0.1750038400491527], [0.09999487993446314], [0.09999487993446314], [0.1750038400491527], [0.2999846398033895], [0.42501664021299473], [0.5250115201474579], [0.5499974399672316], [0.5749833597870053], [0.5499974399672316], [0.5749833597870053], [0.6000204802621475], [0.6000204802621475], [0.5749833597870053], [0.5250115201474579], [0.47498847985254217], [0.42501664021299473], [0.42501664021299473], [0.47498847985254217], [0.5749833597870053], [0.6250064000819211], [0.7000153601966106], [0.7250012800163843], [0.7250012800163843], [0.6749782397214684], [0.5749833597870053], [0.37499359991807896], [0.19998975986892636], [0.07500896011468947], [0.04997183963954743], [0.1750038400491527], [0.3250217602785316], [0.4999743996723159], [0.5749833597870053], [0.5749833597870053], [0.5250115201474579], [0.3999795197378527], [0.3250217602785316], [0.22497567968870003], [0.19998975986892636], [0.19998975986892636], [0.25001280016384214], [0.3250217602785316], [0.37499359991807896], [0.42501664021299473], [0.42501664021299473], [0.42501664021299473], [0.37499359991807896], [0.37499359991807896], [0.3500076800983053], [0.37499359991807896], [0.3999795197378527], [0.3999795197378527], [0.42501664021299473], [0.42501664021299473], [0.42501664021299473], [0.4500025600327685], [0.4999743996723159], [0.5749833597870053], [0.6749782397214684], [0.7000153601966106], [0.6749782397214684], [0.6250064000819211], [0.5749833597870053], [0.4999743996723159], [0.47498847985254217], [0.4999743996723159], [0.5499974399672316], [0.6250064000819211], [0.7250012800163843], [0.8000102401310737], [0.8249961599508474], [0.7750243203113001], [0.7000153601966106], [0.6000204802621475], [0.5250115201474579], [0.4999743996723159], [0.5250115201474579], [0.5749833597870053], [0.6499923199016948], [0.7000153601966106], [0.7499871998361579], [0.7499871998361579], [0.7750243203113001], [0.7750243203113001], [0.7499871998361579], [0.6749782397214684], [0.5749833597870053], [0.47498847985254217], [0.3999795197378527], [0.37499359991807896], [0.3999795197378527], [0.4500025600327685], [0.47498847985254217], [0.4999743996723159], [0.5250115201474579], [0.5749833597870053], [0.6250064000819211], [0.6749782397214684], [0.7000153601966106], [0.6749782397214684], [0.6499923199016948], [0.6000204802621475], [0.5749833597870053], [0.6000204802621475], [0.6250064000819211], [0.6749782397214684], [0.7000153601966106], [0.7000153601966106], [0.7000153601966106], [0.6250064000819211], [0.5749833597870053], [0.4999743996723159], [0.4999743996723159], [0.5749833597870053], [0.6749782397214684], [0.8249961599508474], [0.9000051200655369], [0.9000051200655369], [0.7750243203113001], [0.6250064000819211], [0.4999743996723159], [0.47498847985254217], [0.47498847985254217], [0.4999743996723159], [0.47498847985254217], [0.42501664021299473], [0.3500076800983053], [0.2999846398033895], [0.3250217602785316], [0.42501664021299473], [0.5499974399672316], [0.6749782397214684], [0.7250012800163843], [0.7499871998361579], [0.7250012800163843], [0.6749782397214684], [0.6250064000819211], [0.5499974399672316], [0.47498847985254217], [0.3999795197378527], [0.37499359991807896], [0.3500076800983053], [0.3500076800983053], [0.37499359991807896], [0.3999795197378527], [0.42501664021299473], [0.47498847985254217], [0.5499974399672316], [0.6250064000819211], [0.6749782397214684], [0.7499871998361579], [0.8000102401310737], [0.8000102401310737], [0.7499871998361579], [0.6749782397214684], [0.6000204802621475], [0.5499974399672316], [0.4999743996723159], [0.47498847985254217]], "masks": [[1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1]], "evals": [[0.7000153601966106], [0.7250012800163843], [0.7499871998361579], [0.7250012800163843], [0.6749782397214684], [0.6000204802621475], [0.5749833597870053], [0.6000204802621475], [0.6749782397214684], [0.7750243203113001], [0.7750243203113001], [0.7250012800163843], [0.6250064000819211], [0.5250115201474579], [0.42501664021299473], [0.3999795197378527], [0.42501664021299473], [0.5250115201474579], [0.6250064000819211], [0.7000153601966106], [0.7250012800163843], [0.6250064000819211], [0.47498847985254217], [0.3500076800983053], [0.2999846398033895], [0.3250217602785316], [0.42501664021299473], [0.5499974399672316], [0.6000204802621475], [0.6250064000819211], [0.6250064000819211], [0.6250064000819211], [0.6000204802621475], [0.6000204802621475], [0.6000204802621475], [0.6000204802621475], [0.5749833597870053], [0.5749833597870053], [0.5250115201474579], [0.4500025600327685], [0.3999795197378527], [0.3999795197378527], [0.4500025600327685], [0.5499974399672316], [0.6250064000819211], [0.6000204802621475], [0.5250115201474579], [0.3999795197378527], [0.3500076800983053], [0.3999795197378527], [0.5250115201474579], [0.6749782397214684], [0.7000153601966106], [0.6499923199016948], [0.5250115201474579], [0.42501664021299473], [0.42501664021299473], [0.4999743996723159], [0.6000204802621475], [0.6749782397214684], [0.6749782397214684], [0.6250064000819211], [0.6000204802621475], [0.5749833597870053], [0.5749833597870053], [0.5749833597870053], [0.6250064000819211], [0.6499923199016948], [0.7250012800163843], [0.7750243203113001], [0.7750243203113001], [0.7000153601966106], [0.5499974399672316], [0.3999795197378527], [0.2749987199836158], [0.25001280016384214], [0.2999846398033895], [0.37499359991807896], [0.47498847985254217], [0.6000204802621475], [0.7250012800163843], [0.8000102401310737], [0.7499871998361579], [0.5749833597870053], [0.3250217602785316], [0.07500896011468947], [0.0], [0.1249807997542369], [0.42501664021299473], [0.7250012800163843], [0.9500281603604527], [1.0], [0.9000051200655369], [0.7000153601966106], [0.4999743996723159], [0.3250217602785316], [0.1750038400491527], [0.09999487993446314], [0.09999487993446314], [0.1750038400491527], [0.2999846398033895], [0.42501664021299473], [0.5250115201474579], [0.5499974399672316], [0.5749833597870053], [0.5499974399672316], [0.5749833597870053], [0.6000204802621475], [0.6000204802621475], [0.5749833597870053], [0.5250115201474579], [0.47498847985254217], [0.42501664021299473], [0.42501664021299473], [0.47498847985254217], [0.5749833597870053], [0.6250064000819211], [0.7000153601966106], [0.7250012800163843], [0.7250012800163843], [0.6749782397214684], [0.5749833597870053], [0.37499359991807896], [0.19998975986892636], [0.07500896011468947], [0.04997183963954743], [0.1750038400491527], [0.3250217602785316], [0.4999743996723159], [0.5749833597870053], [0.5749833597870053], [0.5250115201474579], [0.3999795197378527], [0.3250217602785316], [0.22497567968870003], [0.19998975986892636], [0.19998975986892636], [0.25001280016384214], [0.3250217602785316], [0.37499359991807896], [0.42501664021299473], [0.42501664021299473], [0.42501664021299473], [0.37499359991807896], [0.37499359991807896], [0.3500076800983053], [0.37499359991807896], [0.3999795197378527], [0.3999795197378527], [0.42501664021299473], [0.42501664021299473], [0.42501664021299473], [0.4500025600327685], [0.4999743996723159], [0.5749833597870053], [0.6749782397214684], [0.7000153601966106], [0.6749782397214684], [0.6250064000819211], [0.5749833597870053], [0.4999743996723159], [0.47498847985254217], [0.4999743996723159], [0.5499974399672316], [0.6250064000819211], [0.7250012800163843], [0.8000102401310737], [0.8249961599508474], [0.7750243203113001], [0.7000153601966106], [0.6000204802621475], [0.5250115201474579], [0.4999743996723159], [0.5250115201474579], [0.5749833597870053], [0.6499923199016948], [0.7000153601966106], [0.7499871998361579], [0.7499871998361579], [0.7750243203113001], [0.7750243203113001], [0.7499871998361579], [0.6749782397214684], [0.5749833597870053], [0.47498847985254217], [0.3999795197378527], [0.37499359991807896], [0.3999795197378527], [0.4500025600327685], [0.47498847985254217], [0.4999743996723159], [0.5250115201474579], [0.5749833597870053], [0.6250064000819211], [0.6749782397214684], [0.7000153601966106], [0.6749782397214684], [0.6499923199016948], [0.6000204802621475], [0.5749833597870053], [0.6000204802621475], [0.6250064000819211], [0.6749782397214684], [0.7000153601966106], [0.7000153601966106], [0.7000153601966106], [0.6250064000819211], [0.5749833597870053], [0.4999743996723159], [0.4999743996723159], [0.5749833597870053], [0.6749782397214684], [0.8249961599508474], [0.9000051200655369], [0.9000051200655369], [0.7750243203113001], [0.6250064000819211], [0.4999743996723159], [0.47498847985254217], [0.47498847985254217], [0.4999743996723159], [0.47498847985254217], [0.42501664021299473], [0.3500076800983053], [0.2999846398033895], [0.3250217602785316], [0.42501664021299473], [0.5499974399672316], [0.6749782397214684], [0.7250012800163843], [0.7499871998361579], [0.7250012800163843], [0.6749782397214684], [0.6250064000819211], [0.5499974399672316], [0.47498847985254217], [0.3999795197378527], [0.37499359991807896], [0.3500076800983053], [0.3500076800983053], [0.37499359991807896], [0.3999795197378527], [0.42501664021299473], [0.47498847985254217], [0.5499974399672316], [0.6250064000819211], [0.6749782397214684], [0.7499871998361579], [0.8000102401310737], [0.8000102401310737], [0.7499871998361579], [0.6749782397214684], [0.6000204802621475], [0.5499974399672316], [0.4999743996723159], [0.47498847985254217]], "eval_masks": [[0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0]], "forwards": [[0.7000153601966106], [0.7250012800163843], [0.7499871998361579], [0.7250012800163843], [0.6749782397214684], [0.6000204802621475], [0.5749833597870053], [0.6000204802621475], [0.6749782397214684], [0.7750243203113001], [0.7750243203113001], [0.7250012800163843], [0.6250064000819211], [0.5250115201474579], [0.42501664021299473], [0.3999795197378527], [0.42501664021299473], [0.5250115201474579], [0.6250064000819211], [0.7000153601966106], [0.7250012800163843], [0.6250064000819211], [0.47498847985254217], [0.3500076800983053], [0.2999846398033895], [0.3250217602785316], [0.42501664021299473], [0.5499974399672316], [0.6000204802621475], [0.6250064000819211], [0.6250064000819211], [0.6250064000819211], [0.6000204802621475], [0.6000204802621475], [0.6000204802621475], [0.6000204802621475], [0.5749833597870053], [0.5749833597870053], [0.5250115201474579], [0.4500025600327685], [0.3999795197378527], [0.3999795197378527], [0.4500025600327685], [0.5499974399672316], [0.6250064000819211], [0.6000204802621475], [0.5250115201474579], [0.3999795197378527], [0.3500076800983053], [0.3999795197378527], [0.5250115201474579], [0.6749782397214684], [0.7000153601966106], [0.6499923199016948], [0.5250115201474579], [0.42501664021299473], [0.42501664021299473], [0.4999743996723159], [0.6000204802621475], [0.6749782397214684], [0.6749782397214684], [0.6250064000819211], [0.6000204802621475], [0.5749833597870053], [0.5749833597870053], [0.5749833597870053], [0.6250064000819211], [0.6499923199016948], [0.7250012800163843], [0.7750243203113001], [0.7750243203113001], [0.7000153601966106], [0.5499974399672316], [0.3999795197378527], [0.2749987199836158], [0.25001280016384214], [0.2999846398033895], [0.37499359991807896], [0.47498847985254217], [0.6000204802621475], [0.7250012800163843], [0.8000102401310737], [0.7499871998361579], [0.5749833597870053], [0.3250217602785316], [0.07500896011468947], [0.0], [0.1249807997542369], [0.42501664021299473], [0.7250012800163843], [0.9500281603604527], [1.0], [0.9000051200655369], [0.7000153601966106], [0.4999743996723159], [0.3250217602785316], [0.1750038400491527], [0.09999487993446314], [0.09999487993446314], [0.1750038400491527], [0.2999846398033895], [0.42501664021299473], [0.5250115201474579], [0.5499974399672316], [0.5749833597870053], [0.5499974399672316], [0.5749833597870053], [0.6000204802621475], [0.6000204802621475], [0.5749833597870053], [0.5250115201474579], [0.47498847985254217], [0.42501664021299473], [0.42501664021299473], [0.47498847985254217], [0.5749833597870053], [0.6250064000819211], [0.7000153601966106], [0.7250012800163843], [0.7250012800163843], [0.6749782397214684], [0.5749833597870053], [0.37499359991807896], [0.19998975986892636], [0.07500896011468947], [0.04997183963954743], [0.1750038400491527], [0.3250217602785316], [0.4999743996723159], [0.5749833597870053], [0.5749833597870053], [0.5250115201474579], [0.3999795197378527], [0.3250217602785316], [0.22497567968870003], [0.19998975986892636], [0.19998975986892636], [0.25001280016384214], [0.3250217602785316], [0.37499359991807896], [0.42501664021299473], [0.42501664021299473], [0.42501664021299473], [0.37499359991807896], [0.37499359991807896], [0.3500076800983053], [0.37499359991807896], [0.3999795197378527], [0.3999795197378527], [0.42501664021299473], [0.42501664021299473], [0.42501664021299473], [0.4500025600327685], [0.4999743996723159], [0.5749833597870053], [0.6749782397214684], [0.7000153601966106], [0.6749782397214684], [0.6250064000819211], [0.5749833597870053], [0.4999743996723159], [0.47498847985254217], [0.4999743996723159], [0.5499974399672316], [0.6250064000819211], [0.7250012800163843], [0.8000102401310737], [0.8249961599508474], [0.7750243203113001], [0.7000153601966106], [0.6000204802621475], [0.5250115201474579], [0.4999743996723159], [0.5250115201474579], [0.5749833597870053], [0.6499923199016948], [0.7000153601966106], [0.7499871998361579], [0.7499871998361579], [0.7750243203113001], [0.7750243203113001], [0.7499871998361579], [0.6749782397214684], [0.5749833597870053], [0.47498847985254217], [0.3999795197378527], [0.37499359991807896], [0.3999795197378527], [0.4500025600327685], [0.47498847985254217], [0.4999743996723159], [0.5250115201474579], [0.5749833597870053], [0.6250064000819211], [0.6749782397214684], [0.7000153601966106], [0.6749782397214684], [0.6499923199016948], [0.6000204802621475], [0.5749833597870053], [0.6000204802621475], [0.6250064000819211], [0.6749782397214684], [0.7000153601966106], [0.7000153601966106], [0.7000153601966106], [0.6250064000819211], [0.5749833597870053], [0.4999743996723159], [0.4999743996723159], [0.5749833597870053], [0.6749782397214684], [0.8249961599508474], [0.9000051200655369], [0.9000051200655369], [0.7750243203113001], [0.6250064000819211], [0.4999743996723159], [0.47498847985254217], [0.47498847985254217], [0.4999743996723159], [0.47498847985254217], [0.42501664021299473], [0.3500076800983053], [0.2999846398033895], [0.3250217602785316], [0.42501664021299473], [0.5499974399672316], [0.6749782397214684], [0.7250012800163843], [0.7499871998361579], [0.7250012800163843], [0.6749782397214684], [0.6250064000819211], [0.5499974399672316], [0.47498847985254217], [0.3999795197378527], [0.37499359991807896], [0.3500076800983053], [0.3500076800983053], [0.37499359991807896], [0.3999795197378527], [0.42501664021299473], [0.47498847985254217], [0.5499974399672316], [0.6250064000819211], [0.6749782397214684], [0.7499871998361579], [0.8000102401310737], [0.8000102401310737], [0.7499871998361579], [0.6749782397214684], [0.6000204802621475], [0.5499974399672316], [0.4999743996723159], [0.47498847985254217]], "deltas": [[1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0]]}, "backward": {"values": [[0.47498847985254217], [0.4999743996723159], [0.5499974399672316], [0.6000204802621475], [0.6749782397214684], [0.7499871998361579], [0.8000102401310737], [0.8000102401310737], [0.7499871998361579], [0.6749782397214684], [0.6250064000819211], [0.5499974399672316], [0.47498847985254217], [0.42501664021299473], [0.3999795197378527], [0.37499359991807896], [0.3500076800983053], [0.3500076800983053], [0.37499359991807896], [0.3999795197378527], [0.47498847985254217], [0.5499974399672316], [0.6250064000819211], [0.6749782397214684], [0.7250012800163843], [0.7499871998361579], [0.7250012800163843], [0.6749782397214684], [0.5499974399672316], [0.42501664021299473], [0.3250217602785316], [0.2999846398033895], [0.3500076800983053], [0.42501664021299473], [0.47498847985254217], [0.4999743996723159], [0.47498847985254217], [0.47498847985254217], [0.4999743996723159], [0.6250064000819211], [0.7750243203113001], [0.9000051200655369], [0.9000051200655369], [0.8249961599508474], [0.6749782397214684], [0.5749833597870053], [0.4999743996723159], [0.4999743996723159], [0.5749833597870053], [0.6250064000819211], [0.7000153601966106], [0.7000153601966106], [0.7000153601966106], [0.6749782397214684], [0.6250064000819211], [0.6000204802621475], [0.5749833597870053], [0.6000204802621475], [0.6499923199016948], [0.6749782397214684], [0.7000153601966106], [0.6749782397214684], [0.6250064000819211], [0.5749833597870053], [0.5250115201474579], [0.4999743996723159], [0.47498847985254217], [0.4500025600327685], [0.3999795197378527], [0.37499359991807896], [0.3999795197378527], [0.47498847985254217], [0.5749833597870053], [0.6749782397214684], [0.7499871998361579], [0.7750243203113001], [0.7750243203113001], [0.7499871998361579], [0.7499871998361579], [0.7000153601966106], [0.6499923199016948], [0.5749833597870053], [0.5250115201474579], [0.4999743996723159], [0.5250115201474579], [0.6000204802621475], [0.7000153601966106], [0.7750243203113001], [0.8249961599508474], [0.8000102401310737], [0.7250012800163843], [0.6250064000819211], [0.5499974399672316], [0.4999743996723159], [0.47498847985254217], [0.4999743996723159], [0.5749833597870053], [0.6250064000819211], [0.6749782397214684], [0.7000153601966106], [0.6749782397214684], [0.5749833597870053], [0.4999743996723159], [0.4500025600327685], [0.42501664021299473], [0.42501664021299473], [0.42501664021299473], [0.3999795197378527], [0.3999795197378527], [0.37499359991807896], [0.3500076800983053], [0.37499359991807896], [0.37499359991807896], [0.42501664021299473], [0.42501664021299473], [0.42501664021299473], [0.37499359991807896], [0.3250217602785316], [0.25001280016384214], [0.19998975986892636], [0.19998975986892636], [0.22497567968870003], [0.3250217602785316], [0.3999795197378527], [0.5250115201474579], [0.5749833597870053], [0.5749833597870053], [0.4999743996723159], [0.3250217602785316], [0.1750038400491527], [0.04997183963954743], [0.07500896011468947], [0.19998975986892636], [0.37499359991807896], [0.5749833597870053], [0.6749782397214684], [0.7250012800163843], [0.7250012800163843], [0.7000153601966106], [0.6250064000819211], [0.5749833597870053], [0.47498847985254217], [0.42501664021299473], [0.42501664021299473], [0.47498847985254217], [0.5250115201474579], [0.5749833597870053], [0.6000204802621475], [0.6000204802621475], [0.5749833597870053], [0.5499974399672316], [0.5749833597870053], [0.5499974399672316], [0.5250115201474579], [0.42501664021299473], [0.2999846398033895], [0.1750038400491527], [0.09999487993446314], [0.09999487993446314], [0.1750038400491527], [0.3250217602785316], [0.4999743996723159], [0.7000153601966106], [0.9000051200655369], [1.0], [0.9500281603604527], [0.7250012800163843], [0.42501664021299473], [0.1249807997542369], [0.0], [0.07500896011468947], [0.3250217602785316], [0.5749833597870053], [0.7499871998361579], [0.8000102401310737], [0.7250012800163843], [0.6000204802621475], [0.47498847985254217], [0.37499359991807896], [0.2999846398033895], [0.25001280016384214], [0.2749987199836158], [0.3999795197378527], [0.5499974399672316], [0.7000153601966106], [0.7750243203113001], [0.7750243203113001], [0.7250012800163843], [0.6499923199016948], [0.6250064000819211], [0.5749833597870053], [0.5749833597870053], [0.5749833597870053], [0.6000204802621475], [0.6250064000819211], [0.6749782397214684], [0.6749782397214684], [0.6000204802621475], [0.4999743996723159], [0.42501664021299473], [0.42501664021299473], [0.5250115201474579], [0.6499923199016948], [0.7000153601966106], [0.6749782397214684], [0.5250115201474579], [0.3999795197378527], [0.3500076800983053], [0.3999795197378527], [0.5250115201474579], [0.6000204802621475], [0.6250064000819211], [0.5499974399672316], [0.4500025600327685], [0.3999795197378527], [0.3999795197378527], [0.4500025600327685], [0.5250115201474579], [0.5749833597870053], [0.5749833597870053], [0.6000204802621475], [0.6000204802621475], [0.6000204802621475], [0.6000204802621475], [0.6250064000819211], [0.6250064000819211], [0.6250064000819211], [0.6000204802621475], [0.5499974399672316], [0.42501664021299473], [0.3250217602785316], [0.2999846398033895], [0.3500076800983053], [0.47498847985254217], [0.6250064000819211], [0.7250012800163843], [0.7000153601966106], [0.6250064000819211], [0.5250115201474579], [0.42501664021299473], [0.3999795197378527], [0.42501664021299473], [0.5250115201474579], [0.6250064000819211], [0.7250012800163843], [0.7750243203113001], [0.7750243203113001], [0.6749782397214684], [0.6000204802621475], [0.5749833597870053], [0.6000204802621475], [0.6749782397214684], [0.7250012800163843], [0.7499871998361579], [0.7250012800163843], [0.7000153601966106]], "masks": [[1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1]], "evals": [[0.47498847985254217], [0.4999743996723159], [0.5499974399672316], [0.6000204802621475], [0.6749782397214684], [0.7499871998361579], [0.8000102401310737], [0.8000102401310737], [0.7499871998361579], [0.6749782397214684], [0.6250064000819211], [0.5499974399672316], [0.47498847985254217], [0.42501664021299473], [0.3999795197378527], [0.37499359991807896], [0.3500076800983053], [0.3500076800983053], [0.37499359991807896], [0.3999795197378527], [0.47498847985254217], [0.5499974399672316], [0.6250064000819211], [0.6749782397214684], [0.7250012800163843], [0.7499871998361579], [0.7250012800163843], [0.6749782397214684], [0.5499974399672316], [0.42501664021299473], [0.3250217602785316], [0.2999846398033895], [0.3500076800983053], [0.42501664021299473], [0.47498847985254217], [0.4999743996723159], [0.47498847985254217], [0.47498847985254217], [0.4999743996723159], [0.6250064000819211], [0.7750243203113001], [0.9000051200655369], [0.9000051200655369], [0.8249961599508474], [0.6749782397214684], [0.5749833597870053], [0.4999743996723159], [0.4999743996723159], [0.5749833597870053], [0.6250064000819211], [0.7000153601966106], [0.7000153601966106], [0.7000153601966106], [0.6749782397214684], [0.6250064000819211], [0.6000204802621475], [0.5749833597870053], [0.6000204802621475], [0.6499923199016948], [0.6749782397214684], [0.7000153601966106], [0.6749782397214684], [0.6250064000819211], [0.5749833597870053], [0.5250115201474579], [0.4999743996723159], [0.47498847985254217], [0.4500025600327685], [0.3999795197378527], [0.37499359991807896], [0.3999795197378527], [0.47498847985254217], [0.5749833597870053], [0.6749782397214684], [0.7499871998361579], [0.7750243203113001], [0.7750243203113001], [0.7499871998361579], [0.7499871998361579], [0.7000153601966106], [0.6499923199016948], [0.5749833597870053], [0.5250115201474579], [0.4999743996723159], [0.5250115201474579], [0.6000204802621475], [0.7000153601966106], [0.7750243203113001], [0.8249961599508474], [0.8000102401310737], [0.7250012800163843], [0.6250064000819211], [0.5499974399672316], [0.4999743996723159], [0.47498847985254217], [0.4999743996723159], [0.5749833597870053], [0.6250064000819211], [0.6749782397214684], [0.7000153601966106], [0.6749782397214684], [0.5749833597870053], [0.4999743996723159], [0.4500025600327685], [0.42501664021299473], [0.42501664021299473], [0.42501664021299473], [0.3999795197378527], [0.3999795197378527], [0.37499359991807896], [0.3500076800983053], [0.37499359991807896], [0.37499359991807896], [0.42501664021299473], [0.42501664021299473], [0.42501664021299473], [0.37499359991807896], [0.3250217602785316], [0.25001280016384214], [0.19998975986892636], [0.19998975986892636], [0.22497567968870003], [0.3250217602785316], [0.3999795197378527], [0.5250115201474579], [0.5749833597870053], [0.5749833597870053], [0.4999743996723159], [0.3250217602785316], [0.1750038400491527], [0.04997183963954743], [0.07500896011468947], [0.19998975986892636], [0.37499359991807896], [0.5749833597870053], [0.6749782397214684], [0.7250012800163843], [0.7250012800163843], [0.7000153601966106], [0.6250064000819211], [0.5749833597870053], [0.47498847985254217], [0.42501664021299473], [0.42501664021299473], [0.47498847985254217], [0.5250115201474579], [0.5749833597870053], [0.6000204802621475], [0.6000204802621475], [0.5749833597870053], [0.5499974399672316], [0.5749833597870053], [0.5499974399672316], [0.5250115201474579], [0.42501664021299473], [0.2999846398033895], [0.1750038400491527], [0.09999487993446314], [0.09999487993446314], [0.1750038400491527], [0.3250217602785316], [0.4999743996723159], [0.7000153601966106], [0.9000051200655369], [1.0], [0.9500281603604527], [0.7250012800163843], [0.42501664021299473], [0.1249807997542369], [0.0], [0.07500896011468947], [0.3250217602785316], [0.5749833597870053], [0.7499871998361579], [0.8000102401310737], [0.7250012800163843], [0.6000204802621475], [0.47498847985254217], [0.37499359991807896], [0.2999846398033895], [0.25001280016384214], [0.2749987199836158], [0.3999795197378527], [0.5499974399672316], [0.7000153601966106], [0.7750243203113001], [0.7750243203113001], [0.7250012800163843], [0.6499923199016948], [0.6250064000819211], [0.5749833597870053], [0.5749833597870053], [0.5749833597870053], [0.6000204802621475], [0.6250064000819211], [0.6749782397214684], [0.6749782397214684], [0.6000204802621475], [0.4999743996723159], [0.42501664021299473], [0.42501664021299473], [0.5250115201474579], [0.6499923199016948], [0.7000153601966106], [0.6749782397214684], [0.5250115201474579], [0.3999795197378527], [0.3500076800983053], [0.3999795197378527], [0.5250115201474579], [0.6000204802621475], [0.6250064000819211], [0.5499974399672316], [0.4500025600327685], [0.3999795197378527], [0.3999795197378527], [0.4500025600327685], [0.5250115201474579], [0.5749833597870053], [0.5749833597870053], [0.6000204802621475], [0.6000204802621475], [0.6000204802621475], [0.6000204802621475], [0.6250064000819211], [0.6250064000819211], [0.6250064000819211], [0.6000204802621475], [0.5499974399672316], [0.42501664021299473], [0.3250217602785316], [0.2999846398033895], [0.3500076800983053], [0.47498847985254217], [0.6250064000819211], [0.7250012800163843], [0.7000153601966106], [0.6250064000819211], [0.5250115201474579], [0.42501664021299473], [0.3999795197378527], [0.42501664021299473], [0.5250115201474579], [0.6250064000819211], [0.7250012800163843], [0.7750243203113001], [0.7750243203113001], [0.6749782397214684], [0.6000204802621475], [0.5749833597870053], [0.6000204802621475], [0.6749782397214684], [0.7250012800163843], [0.7499871998361579], [0.7250012800163843], [0.7000153601966106]], "eval_masks": [[0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0]], "forwards": [[0.47498847985254217], [0.4999743996723159], [0.5499974399672316], [0.6000204802621475], [0.6749782397214684], [0.7499871998361579], [0.8000102401310737], [0.8000102401310737], [0.7499871998361579], [0.6749782397214684], [0.6250064000819211], [0.5499974399672316], [0.47498847985254217], [0.42501664021299473], [0.3999795197378527], [0.37499359991807896], [0.3500076800983053], [0.3500076800983053], [0.37499359991807896], [0.3999795197378527], [0.47498847985254217], [0.5499974399672316], [0.6250064000819211], [0.6749782397214684], [0.7250012800163843], [0.7499871998361579], [0.7250012800163843], [0.6749782397214684], [0.5499974399672316], [0.42501664021299473], [0.3250217602785316], [0.2999846398033895], [0.3500076800983053], [0.42501664021299473], [0.47498847985254217], [0.4999743996723159], [0.47498847985254217], [0.47498847985254217], [0.4999743996723159], [0.6250064000819211], [0.7750243203113001], [0.9000051200655369], [0.9000051200655369], [0.8249961599508474], [0.6749782397214684], [0.5749833597870053], [0.4999743996723159], [0.4999743996723159], [0.5749833597870053], [0.6250064000819211], [0.7000153601966106], [0.7000153601966106], [0.7000153601966106], [0.6749782397214684], [0.6250064000819211], [0.6000204802621475], [0.5749833597870053], [0.6000204802621475], [0.6499923199016948], [0.6749782397214684], [0.7000153601966106], [0.6749782397214684], [0.6250064000819211], [0.5749833597870053], [0.5250115201474579], [0.4999743996723159], [0.47498847985254217], [0.4500025600327685], [0.3999795197378527], [0.37499359991807896], [0.3999795197378527], [0.47498847985254217], [0.5749833597870053], [0.6749782397214684], [0.7499871998361579], [0.7750243203113001], [0.7750243203113001], [0.7499871998361579], [0.7499871998361579], [0.7000153601966106], [0.6499923199016948], [0.5749833597870053], [0.5250115201474579], [0.4999743996723159], [0.5250115201474579], [0.6000204802621475], [0.7000153601966106], [0.7750243203113001], [0.8249961599508474], [0.8000102401310737], [0.7250012800163843], [0.6250064000819211], [0.5499974399672316], [0.4999743996723159], [0.47498847985254217], [0.4999743996723159], [0.5749833597870053], [0.6250064000819211], [0.6749782397214684], [0.7000153601966106], [0.6749782397214684], [0.5749833597870053], [0.4999743996723159], [0.4500025600327685], [0.42501664021299473], [0.42501664021299473], [0.42501664021299473], [0.3999795197378527], [0.3999795197378527], [0.37499359991807896], [0.3500076800983053], [0.37499359991807896], [0.37499359991807896], [0.42501664021299473], [0.42501664021299473], [0.42501664021299473], [0.37499359991807896], [0.3250217602785316], [0.25001280016384214], [0.19998975986892636], [0.19998975986892636], [0.22497567968870003], [0.3250217602785316], [0.3999795197378527], [0.5250115201474579], [0.5749833597870053], [0.5749833597870053], [0.4999743996723159], [0.3250217602785316], [0.1750038400491527], [0.04997183963954743], [0.07500896011468947], [0.19998975986892636], [0.37499359991807896], [0.5749833597870053], [0.6749782397214684], [0.7250012800163843], [0.7250012800163843], [0.7000153601966106], [0.6250064000819211], [0.5749833597870053], [0.47498847985254217], [0.42501664021299473], [0.42501664021299473], [0.47498847985254217], [0.5250115201474579], [0.5749833597870053], [0.6000204802621475], [0.6000204802621475], [0.5749833597870053], [0.5499974399672316], [0.5749833597870053], [0.5499974399672316], [0.5250115201474579], [0.42501664021299473], [0.2999846398033895], [0.1750038400491527], [0.09999487993446314], [0.09999487993446314], [0.1750038400491527], [0.3250217602785316], [0.4999743996723159], [0.7000153601966106], [0.9000051200655369], [1.0], [0.9500281603604527], [0.7250012800163843], [0.42501664021299473], [0.1249807997542369], [0.0], [0.07500896011468947], [0.3250217602785316], [0.5749833597870053], [0.7499871998361579], [0.8000102401310737], [0.7250012800163843], [0.6000204802621475], [0.47498847985254217], [0.37499359991807896], [0.2999846398033895], [0.25001280016384214], [0.2749987199836158], [0.3999795197378527], [0.5499974399672316], [0.7000153601966106], [0.7750243203113001], [0.7750243203113001], [0.7250012800163843], [0.6499923199016948], [0.6250064000819211], [0.5749833597870053], [0.5749833597870053], [0.5749833597870053], [0.6000204802621475], [0.6250064000819211], [0.6749782397214684], [0.6749782397214684], [0.6000204802621475], [0.4999743996723159], [0.42501664021299473], [0.42501664021299473], [0.5250115201474579], [0.6499923199016948], [0.7000153601966106], [0.6749782397214684], [0.5250115201474579], [0.3999795197378527], [0.3500076800983053], [0.3999795197378527], [0.5250115201474579], [0.6000204802621475], [0.6250064000819211], [0.5499974399672316], [0.4500025600327685], [0.3999795197378527], [0.3999795197378527], [0.4500025600327685], [0.5250115201474579], [0.5749833597870053], [0.5749833597870053], [0.6000204802621475], [0.6000204802621475], [0.6000204802621475], [0.6000204802621475], [0.6250064000819211], [0.6250064000819211], [0.6250064000819211], [0.6000204802621475], [0.5499974399672316], [0.42501664021299473], [0.3250217602785316], [0.2999846398033895], [0.3500076800983053], [0.47498847985254217], [0.6250064000819211], [0.7250012800163843], [0.7000153601966106], [0.6250064000819211], [0.5250115201474579], [0.42501664021299473], [0.3999795197378527], [0.42501664021299473], [0.5250115201474579], [0.6250064000819211], [0.7250012800163843], [0.7750243203113001], [0.7750243203113001], [0.6749782397214684], [0.6000204802621475], [0.5749833597870053], [0.6000204802621475], [0.6749782397214684], [0.7250012800163843], [0.7499871998361579], [0.7250012800163843], [0.7000153601966106]], "deltas": [[1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0]]}} -{"label": 0, "forward": {"values": [[0.7674318917889122], [0.7674318917889122], [0.8139645646789865], [0.8372070870642028], [0.8139645646789865], [0.7674318917889122], [0.6744141741284054], [0.6046389788531149], [0.5581063059630406], [0.5813964564678987], [0.6278815012383312], [0.7208992188988379], [0.7674318917889122], [0.8139645646789865], [0.8139645646789865], [0.7906744141741284], [0.7674318917889122], [0.744189369403696], [0.744189369403696], [0.7208992188988379], [0.6744141741284054], [0.6278815012383312], [0.5813964564678987], [0.5348637835778244], [0.5116212611926082], [0.5116212611926082], [0.5581063059630406], [0.6278815012383312], [0.6744141741284054], [0.6744141741284054], [0.6278815012383312], [0.5581063059630406], [0.5116212611926082], [0.4883787388073919], [0.5348637835778244], [0.6278815012383312], [0.7208992188988379], [0.8139645646789865], [0.8139645646789865], [0.744189369403696], [0.6511716517431893], [0.5116212611926082], [0.44184606591731757], [0.46508858830253386], [0.5348637835778244], [0.6511716517431893], [0.7208992188988379], [0.7208992188988379], [0.6744141741284054], [0.6046389788531149], [0.5813964564678987], [0.6046389788531149], [0.5813964564678987], [0.5581063059630406], [0.46508858830253386], [0.3953610211468851], [0.3953610211468851], [0.46508858830253386], [0.5348637835778244], [0.5348637835778244], [0.5116212611926082], [0.44184606591731757], [0.4186035435321014], [0.44184606591731757], [0.5116212611926082], [0.5581063059630406], [0.6046389788531149], [0.5813964564678987], [0.5581063059630406], [0.5813964564678987], [0.6046389788531149], [0.6511716517431893], [0.6511716517431893], [0.6046389788531149], [0.5813964564678987], [0.5348637835778244], [0.46508858830253386], [0.3953610211468851], [0.3255858258715946], [0.3255858258715946], [0.37207087064202704], [0.46508858830253386], [0.5813964564678987], [0.5813964564678987], [0.5116212611926082], [0.3953610211468851], [0.3255858258715946], [0.37207087064202704], [0.4883787388073919], [0.6278815012383312], [0.6744141741284054], [0.6278815012383312], [0.46508858830253386], [0.3022956753667365], [0.1860354353210135], [0.13950276243093926], [0.1860354353210135], [0.2790531529815203], [0.3953610211468851], [0.5348637835778244], [0.6278815012383312], [0.6511716517431893], [0.5813964564678987], [0.44184606591731757], [0.3022956753667365], [0.20927795770622978], [0.2325681082110878], [0.3255858258715946], [0.44184606591731757], [0.5348637835778244], [0.6046389788531149], [0.6278815012383312], [0.6046389788531149], [0.5581063059630406], [0.46508858830253386], [0.37207087064202704], [0.2790531529815203], [0.2325681082110878], [0.2325681082110878], [0.2558106305963041], [0.3255858258715946], [0.37207087064202704], [0.3953610211468851], [0.4186035435321014], [0.3953610211468851], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.3255858258715946], [0.3953610211468851], [0.46508858830253386], [0.46508858830253386], [0.3953610211468851], [0.2790531529815203], [0.16279291293579726], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.2558106305963041], [0.3255858258715946], [0.4186035435321014], [0.5116212611926082], [0.5813964564678987], [0.5813964564678987], [0.5348637835778244], [0.44184606591731757], [0.3255858258715946], [0.2325681082110878], [0.11626024004572295], [0.04648504477043242], [0.02324252238521621], [0.06977519527529052], [0.1860354353210135], [0.3255858258715946], [0.4186035435321014], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.3953610211468851], [0.2558106305963041], [0.1860354353210135], [0.20927795770622978], [0.3022956753667365], [0.44184606591731757], [0.5348637835778244], [0.6046389788531149], [0.5581063059630406], [0.44184606591731757], [0.3255858258715946], [0.2558106305963041], [0.2790531529815203], [0.37207087064202704], [0.4883787388073919], [0.5348637835778244], [0.5348637835778244], [0.4883787388073919], [0.4186035435321014], [0.3953610211468851], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.6976566965136217], [0.6976566965136217], [0.6511716517431893], [0.5348637835778244], [0.44184606591731757], [0.3953610211468851], [0.4186035435321014], [0.5116212611926082], [0.6511716517431893], [0.744189369403696], [0.744189369403696], [0.6278815012383312], [0.4186035435321014], [0.2325681082110878], [0.13950276243093926], [0.20927795770622978], [0.44184606591731757], [0.6744141741284054], [0.8372070870642028], [0.8139645646789865], [0.6278815012383312], [0.37207087064202704], [0.16279291293579726], [0.13950276243093926], [0.3022956753667365], [0.5116212611926082], [0.6744141741284054], [0.6744141741284054], [0.5116212611926082], [0.2790531529815203], [0.13950276243093926], [0.16279291293579726], [0.3022956753667365], [0.5116212611926082], [0.6976566965136217], [0.744189369403696], [0.6511716517431893], [0.4186035435321014], [0.16279291293579726], [0.0], [0.0], [0.2325681082110878], [0.5813964564678987], [0.860449609449419], [1.0], [0.8836921318346351], [0.5813964564678987]], "masks": [[1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [1], [1], [1], [1], [1], [1], [1], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1]], "evals": [[0.7674318917889122], [0.7674318917889122], [0.8139645646789865], [0.8372070870642028], [0.8139645646789865], [0.7674318917889122], [0.6744141741284054], [0.6046389788531149], [0.5581063059630406], [0.5813964564678987], [0.6278815012383312], [0.7208992188988379], [0.7674318917889122], [0.8139645646789865], [0.8139645646789865], [0.7906744141741284], [0.7674318917889122], [0.744189369403696], [0.744189369403696], [0.7208992188988379], [0.6744141741284054], [0.6278815012383312], [0.5813964564678987], [0.5348637835778244], [0.5116212611926082], [0.5116212611926082], [0.5581063059630406], [0.6278815012383312], [0.6744141741284054], [0.6744141741284054], [0.6278815012383312], [0.5581063059630406], [0.5116212611926082], [0.4883787388073919], [0.5348637835778244], [0.6278815012383312], [0.7208992188988379], [0.8139645646789865], [0.8139645646789865], [0.744189369403696], [0.6511716517431893], [0.5116212611926082], [0.44184606591731757], [0.46508858830253386], [0.5348637835778244], [0.6511716517431893], [0.7208992188988379], [0.7208992188988379], [0.6744141741284054], [0.6046389788531149], [0.5813964564678987], [0.6046389788531149], [0.5813964564678987], [0.5581063059630406], [0.46508858830253386], [0.3953610211468851], [0.3953610211468851], [0.46508858830253386], [0.5348637835778244], [0.5348637835778244], [0.5116212611926082], [0.44184606591731757], [0.4186035435321014], [0.44184606591731757], [0.5116212611926082], [0.5581063059630406], [0.6046389788531149], [0.5813964564678987], [0.5581063059630406], [0.5813964564678987], [0.6046389788531149], [0.6511716517431893], [0.6511716517431893], [0.6046389788531149], [0.5813964564678987], [0.5348637835778244], [0.46508858830253386], [0.3953610211468851], [0.3255858258715946], [0.3255858258715946], [0.37207087064202704], [0.46508858830253386], [0.5813964564678987], [0.5813964564678987], [0.5116212611926082], [0.3953610211468851], [0.3255858258715946], [0.37207087064202704], [0.4883787388073919], [0.6278815012383312], [0.6744141741284054], [0.6278815012383312], [0.46508858830253386], [0.3022956753667365], [0.1860354353210135], [0.13950276243093926], [0.1860354353210135], [0.2790531529815203], [0.3953610211468851], [0.5348637835778244], [0.6278815012383312], [0.6511716517431893], [0.5813964564678987], [0.44184606591731757], [0.3022956753667365], [0.20927795770622978], [0.2325681082110878], [0.3255858258715946], [0.44184606591731757], [0.5348637835778244], [0.6046389788531149], [0.6278815012383312], [0.6046389788531149], [0.5581063059630406], [0.46508858830253386], [0.37207087064202704], [0.2790531529815203], [0.2325681082110878], [0.2325681082110878], [0.2558106305963041], [0.3255858258715946], [0.37207087064202704], [0.3953610211468851], [0.4186035435321014], [0.3953610211468851], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.3255858258715946], [0.3953610211468851], [0.46508858830253386], [0.46508858830253386], [0.3953610211468851], [0.2790531529815203], [0.16279291293579726], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.2558106305963041], [0.3255858258715946], [0.4186035435321014], [0.5116212611926082], [0.5813964564678987], [0.5813964564678987], [0.5348637835778244], [0.44184606591731757], [0.3255858258715946], [0.2325681082110878], [0.11626024004572295], [0.04648504477043242], [0.02324252238521621], [0.06977519527529052], [0.1860354353210135], [0.3255858258715946], [0.4186035435321014], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.3953610211468851], [0.2558106305963041], [0.1860354353210135], [0.20927795770622978], [0.3022956753667365], [0.44184606591731757], [0.5348637835778244], [0.6046389788531149], [0.5581063059630406], [0.44184606591731757], [0.3255858258715946], [0.2558106305963041], [0.2790531529815203], [0.37207087064202704], [0.4883787388073919], [0.5348637835778244], [0.5348637835778244], [0.4883787388073919], [0.4186035435321014], [0.3953610211468851], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.6976566965136217], [0.6976566965136217], [0.6511716517431893], [0.5348637835778244], [0.44184606591731757], [0.3953610211468851], [0.4186035435321014], [0.5116212611926082], [0.6511716517431893], [0.744189369403696], [0.744189369403696], [0.6278815012383312], [0.4186035435321014], [0.2325681082110878], [0.13950276243093926], [0.20927795770622978], [0.44184606591731757], [0.6744141741284054], [0.8372070870642028], [0.8139645646789865], [0.6278815012383312], [0.37207087064202704], [0.16279291293579726], [0.13950276243093926], [0.3022956753667365], [0.5116212611926082], [0.6744141741284054], [0.6744141741284054], [0.5116212611926082], [0.2790531529815203], [0.13950276243093926], [0.16279291293579726], [0.3022956753667365], [0.5116212611926082], [0.6976566965136217], [0.744189369403696], [0.6511716517431893], [0.4186035435321014], [0.16279291293579726], [0.0], [0.0], [0.2325681082110878], [0.5813964564678987], [0.860449609449419], [1.0], [0.8836921318346351], [0.5813964564678987]], "eval_masks": [[0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0]], "forwards": [[0.7674318917889122], [0.7674318917889122], [0.8139645646789865], [0.8372070870642028], [0.8139645646789865], [0.7674318917889122], [0.6744141741284054], [0.6046389788531149], [0.5581063059630406], [0.5813964564678987], [0.6278815012383312], [0.7208992188988379], [0.7674318917889122], [0.8139645646789865], [0.8139645646789865], [0.7906744141741284], [0.7674318917889122], [0.744189369403696], [0.744189369403696], [0.7208992188988379], [0.6744141741284054], [0.6278815012383312], [0.5813964564678987], [0.5348637835778244], [0.5116212611926082], [0.5116212611926082], [0.5581063059630406], [0.6278815012383312], [0.6744141741284054], [0.6744141741284054], [0.6278815012383312], [0.5581063059630406], [0.5116212611926082], [0.4883787388073919], [0.5348637835778244], [0.6278815012383312], [0.7208992188988379], [0.8139645646789865], [0.8139645646789865], [0.744189369403696], [0.6511716517431893], [0.5116212611926082], [0.44184606591731757], [0.46508858830253386], [0.5348637835778244], [0.6511716517431893], [0.7208992188988379], [0.7208992188988379], [0.6744141741284054], [0.6046389788531149], [0.5813964564678987], [0.6046389788531149], [0.5813964564678987], [0.5581063059630406], [0.46508858830253386], [0.3953610211468851], [0.3953610211468851], [0.46508858830253386], [0.5348637835778244], [0.5348637835778244], [0.5116212611926082], [0.44184606591731757], [0.4186035435321014], [0.44184606591731757], [0.5116212611926082], [0.5581063059630406], [0.6046389788531149], [0.5813964564678987], [0.5581063059630406], [0.5813964564678987], [0.6046389788531149], [0.6511716517431893], [0.6511716517431893], [0.6046389788531149], [0.5813964564678987], [0.5348637835778244], [0.46508858830253386], [0.3953610211468851], [0.3255858258715946], [0.3255858258715946], [0.37207087064202704], [0.46508858830253386], [0.5813964564678987], [0.5813964564678987], [0.5116212611926082], [0.3953610211468851], [0.3255858258715946], [0.37207087064202704], [0.4883787388073919], [0.6278815012383312], [0.6744141741284054], [0.6278815012383312], [0.46508858830253386], [0.3022956753667365], [0.1860354353210135], [0.13950276243093926], [0.1860354353210135], [0.2790531529815203], [0.3953610211468851], [0.5348637835778244], [0.6278815012383312], [0.6511716517431893], [0.5813964564678987], [0.44184606591731757], [0.3022956753667365], [0.20927795770622978], [0.2325681082110878], [0.3255858258715946], [0.44184606591731757], [0.5348637835778244], [0.6046389788531149], [0.6278815012383312], [0.6046389788531149], [0.5581063059630406], [0.46508858830253386], [0.37207087064202704], [0.2790531529815203], [0.2325681082110878], [0.2325681082110878], [0.2558106305963041], [0.3255858258715946], [0.37207087064202704], [0.3953610211468851], [0.4186035435321014], [0.3953610211468851], [0.3953610211468851], [0.3953610211468851], [0.3953610211468851], [0.3953610211468851], [0.3953610211468851], [0.3953610211468851], [0.3953610211468851], [0.3953610211468851], [0.3953610211468851], [0.3953610211468851], [0.3255858258715946], [0.3953610211468851], [0.46508858830253386], [0.46508858830253386], [0.3953610211468851], [0.2790531529815203], [0.16279291293579726], [0.16279291293579726], [0.16279291293579726], [0.16279291293579726], [0.16279291293579726], [0.16279291293579726], [0.16279291293579726], [0.16279291293579726], [0.16279291293579726], [0.16279291293579726], [0.16279291293579726], [0.2558106305963041], [0.3255858258715946], [0.4186035435321014], [0.5116212611926082], [0.5813964564678987], [0.5813964564678987], [0.5348637835778244], [0.44184606591731757], [0.3255858258715946], [0.2325681082110878], [0.11626024004572295], [0.04648504477043242], [0.02324252238521621], [0.06977519527529052], [0.1860354353210135], [0.3255858258715946], [0.4186035435321014], [0.4186035435321014], [0.4186035435321014], [0.4186035435321014], [0.4186035435321014], [0.4186035435321014], [0.4186035435321014], [0.4186035435321014], [0.4186035435321014], [0.4186035435321014], [0.4186035435321014], [0.3953610211468851], [0.2558106305963041], [0.1860354353210135], [0.20927795770622978], [0.3022956753667365], [0.44184606591731757], [0.5348637835778244], [0.6046389788531149], [0.5581063059630406], [0.44184606591731757], [0.3255858258715946], [0.2558106305963041], [0.2790531529815203], [0.37207087064202704], [0.4883787388073919], [0.5348637835778244], [0.5348637835778244], [0.4883787388073919], [0.4186035435321014], [0.3953610211468851], [0.3953610211468851], [0.3953610211468851], [0.3953610211468851], [0.3953610211468851], [0.3953610211468851], [0.3953610211468851], [0.3953610211468851], [0.3953610211468851], [0.3953610211468851], [0.3953610211468851], [0.6976566965136217], [0.6976566965136217], [0.6511716517431893], [0.5348637835778244], [0.44184606591731757], [0.3953610211468851], [0.4186035435321014], [0.5116212611926082], [0.6511716517431893], [0.744189369403696], [0.744189369403696], [0.6278815012383312], [0.4186035435321014], [0.2325681082110878], [0.13950276243093926], [0.20927795770622978], [0.44184606591731757], [0.6744141741284054], [0.8372070870642028], [0.8139645646789865], [0.6278815012383312], [0.37207087064202704], [0.16279291293579726], [0.13950276243093926], [0.3022956753667365], [0.5116212611926082], [0.6744141741284054], [0.6744141741284054], [0.5116212611926082], [0.2790531529815203], [0.13950276243093926], [0.16279291293579726], [0.3022956753667365], [0.5116212611926082], [0.6976566965136217], [0.744189369403696], [0.6511716517431893], [0.4186035435321014], [0.16279291293579726], [0.0], [0.0], [0.2325681082110878], [0.5813964564678987], [0.860449609449419], [1.0], [0.8836921318346351], [0.5813964564678987]], "deltas": [[1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [2.0], [3.0], [4.0], [5.0], [6.0], [7.0], [8.0], [9.0], [10.0], [11.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [2.0], [3.0], [4.0], [5.0], [6.0], [7.0], [8.0], [9.0], [10.0], [11.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [2.0], [3.0], [4.0], [5.0], [6.0], [7.0], [8.0], [9.0], [10.0], [11.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [2.0], [3.0], [4.0], [5.0], [6.0], [7.0], [8.0], [9.0], [10.0], [11.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0]]}, "backward": {"values": [[0.5813964564678987], [0.8836921318346351], [1.0], [0.860449609449419], [0.5813964564678987], [0.2325681082110878], [0.0], [0.0], [0.16279291293579726], [0.4186035435321014], [0.6511716517431893], [0.744189369403696], [0.6976566965136217], [0.5116212611926082], [0.3022956753667365], [0.16279291293579726], [0.13950276243093926], [0.2790531529815203], [0.5116212611926082], [0.6744141741284054], [0.6744141741284054], [0.5116212611926082], [0.3022956753667365], [0.13950276243093926], [0.16279291293579726], [0.37207087064202704], [0.6278815012383312], [0.8139645646789865], [0.8372070870642028], [0.6744141741284054], [0.44184606591731757], [0.20927795770622978], [0.13950276243093926], [0.2325681082110878], [0.4186035435321014], [0.6278815012383312], [0.744189369403696], [0.744189369403696], [0.6511716517431893], [0.5116212611926082], [0.4186035435321014], [0.3953610211468851], [0.44184606591731757], [0.5348637835778244], [0.6511716517431893], [0.6976566965136217], [0.6976566965136217], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.3953610211468851], [0.4186035435321014], [0.4883787388073919], [0.5348637835778244], [0.5348637835778244], [0.4883787388073919], [0.37207087064202704], [0.2790531529815203], [0.2558106305963041], [0.3255858258715946], [0.44184606591731757], [0.5581063059630406], [0.6046389788531149], [0.5348637835778244], [0.44184606591731757], [0.3022956753667365], [0.20927795770622978], [0.1860354353210135], [0.2558106305963041], [0.3953610211468851], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.4186035435321014], [0.3255858258715946], [0.1860354353210135], [0.06977519527529052], [0.02324252238521621], [0.04648504477043242], [0.11626024004572295], [0.2325681082110878], [0.3255858258715946], [0.44184606591731757], [0.5348637835778244], [0.5813964564678987], [0.5813964564678987], [0.5116212611926082], [0.4186035435321014], [0.3255858258715946], [0.2558106305963041], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.16279291293579726], [0.2790531529815203], [0.3953610211468851], [0.46508858830253386], [0.46508858830253386], [0.3953610211468851], [0.3255858258715946], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.3953610211468851], [0.4186035435321014], [0.3953610211468851], [0.37207087064202704], [0.3255858258715946], [0.2558106305963041], [0.2325681082110878], [0.2325681082110878], [0.2790531529815203], [0.37207087064202704], [0.46508858830253386], [0.5581063059630406], [0.6046389788531149], [0.6278815012383312], [0.6046389788531149], [0.5348637835778244], [0.44184606591731757], [0.3255858258715946], [0.2325681082110878], [0.20927795770622978], [0.3022956753667365], [0.44184606591731757], [0.5813964564678987], [0.6511716517431893], [0.6278815012383312], [0.5348637835778244], [0.3953610211468851], [0.2790531529815203], [0.1860354353210135], [0.13950276243093926], [0.1860354353210135], [0.3022956753667365], [0.46508858830253386], [0.6278815012383312], [0.6744141741284054], [0.6278815012383312], [0.4883787388073919], [0.37207087064202704], [0.3255858258715946], [0.3953610211468851], [0.5116212611926082], [0.5813964564678987], [0.5813964564678987], [0.46508858830253386], [0.37207087064202704], [0.3255858258715946], [0.3255858258715946], [0.3953610211468851], [0.46508858830253386], [0.5348637835778244], [0.5813964564678987], [0.6046389788531149], [0.6511716517431893], [0.6511716517431893], [0.6046389788531149], [0.5813964564678987], [0.5581063059630406], [0.5813964564678987], [0.6046389788531149], [0.5581063059630406], [0.5116212611926082], [0.44184606591731757], [0.4186035435321014], [0.44184606591731757], [0.5116212611926082], [0.5348637835778244], [0.5348637835778244], [0.46508858830253386], [0.3953610211468851], [0.3953610211468851], [0.46508858830253386], [0.5581063059630406], [0.5813964564678987], [0.6046389788531149], [0.5813964564678987], [0.6046389788531149], [0.6744141741284054], [0.7208992188988379], [0.7208992188988379], [0.6511716517431893], [0.5348637835778244], [0.46508858830253386], [0.44184606591731757], [0.5116212611926082], [0.6511716517431893], [0.744189369403696], [0.8139645646789865], [0.8139645646789865], [0.7208992188988379], [0.6278815012383312], [0.5348637835778244], [0.4883787388073919], [0.5116212611926082], [0.5581063059630406], [0.6278815012383312], [0.6744141741284054], [0.6744141741284054], [0.6278815012383312], [0.5581063059630406], [0.5116212611926082], [0.5116212611926082], [0.5348637835778244], [0.5813964564678987], [0.6278815012383312], [0.6744141741284054], [0.7208992188988379], [0.744189369403696], [0.744189369403696], [0.7674318917889122], [0.7906744141741284], [0.8139645646789865], [0.8139645646789865], [0.7674318917889122], [0.7208992188988379], [0.6278815012383312], [0.5813964564678987], [0.5581063059630406], [0.6046389788531149], [0.6744141741284054], [0.7674318917889122], [0.8139645646789865], [0.8372070870642028], [0.8139645646789865], [0.7674318917889122], [0.7674318917889122]], "masks": [[1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [1], [1], [1], [1], [1], [1], [1], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1]], "evals": [[0.5813964564678987], [0.8836921318346351], [1.0], [0.860449609449419], [0.5813964564678987], [0.2325681082110878], [0.0], [0.0], [0.16279291293579726], [0.4186035435321014], [0.6511716517431893], [0.744189369403696], [0.6976566965136217], [0.5116212611926082], [0.3022956753667365], [0.16279291293579726], [0.13950276243093926], [0.2790531529815203], [0.5116212611926082], [0.6744141741284054], [0.6744141741284054], [0.5116212611926082], [0.3022956753667365], [0.13950276243093926], [0.16279291293579726], [0.37207087064202704], [0.6278815012383312], [0.8139645646789865], [0.8372070870642028], [0.6744141741284054], [0.44184606591731757], [0.20927795770622978], [0.13950276243093926], [0.2325681082110878], [0.4186035435321014], [0.6278815012383312], [0.744189369403696], [0.744189369403696], [0.6511716517431893], [0.5116212611926082], [0.4186035435321014], [0.3953610211468851], [0.44184606591731757], [0.5348637835778244], [0.6511716517431893], [0.6976566965136217], [0.6976566965136217], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.3953610211468851], [0.4186035435321014], [0.4883787388073919], [0.5348637835778244], [0.5348637835778244], [0.4883787388073919], [0.37207087064202704], [0.2790531529815203], [0.2558106305963041], [0.3255858258715946], [0.44184606591731757], [0.5581063059630406], [0.6046389788531149], [0.5348637835778244], [0.44184606591731757], [0.3022956753667365], [0.20927795770622978], [0.1860354353210135], [0.2558106305963041], [0.3953610211468851], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.4186035435321014], [0.3255858258715946], [0.1860354353210135], [0.06977519527529052], [0.02324252238521621], [0.04648504477043242], [0.11626024004572295], [0.2325681082110878], [0.3255858258715946], [0.44184606591731757], [0.5348637835778244], [0.5813964564678987], [0.5813964564678987], [0.5116212611926082], [0.4186035435321014], [0.3255858258715946], [0.2558106305963041], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.16279291293579726], [0.2790531529815203], [0.3953610211468851], [0.46508858830253386], [0.46508858830253386], [0.3953610211468851], [0.3255858258715946], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.3953610211468851], [0.4186035435321014], [0.3953610211468851], [0.37207087064202704], [0.3255858258715946], [0.2558106305963041], [0.2325681082110878], [0.2325681082110878], [0.2790531529815203], [0.37207087064202704], [0.46508858830253386], [0.5581063059630406], [0.6046389788531149], [0.6278815012383312], [0.6046389788531149], [0.5348637835778244], [0.44184606591731757], [0.3255858258715946], [0.2325681082110878], [0.20927795770622978], [0.3022956753667365], [0.44184606591731757], [0.5813964564678987], [0.6511716517431893], [0.6278815012383312], [0.5348637835778244], [0.3953610211468851], [0.2790531529815203], [0.1860354353210135], [0.13950276243093926], [0.1860354353210135], [0.3022956753667365], [0.46508858830253386], [0.6278815012383312], [0.6744141741284054], [0.6278815012383312], [0.4883787388073919], [0.37207087064202704], [0.3255858258715946], [0.3953610211468851], [0.5116212611926082], [0.5813964564678987], [0.5813964564678987], [0.46508858830253386], [0.37207087064202704], [0.3255858258715946], [0.3255858258715946], [0.3953610211468851], [0.46508858830253386], [0.5348637835778244], [0.5813964564678987], [0.6046389788531149], [0.6511716517431893], [0.6511716517431893], [0.6046389788531149], [0.5813964564678987], [0.5581063059630406], [0.5813964564678987], [0.6046389788531149], [0.5581063059630406], [0.5116212611926082], [0.44184606591731757], [0.4186035435321014], [0.44184606591731757], [0.5116212611926082], [0.5348637835778244], [0.5348637835778244], [0.46508858830253386], [0.3953610211468851], [0.3953610211468851], [0.46508858830253386], [0.5581063059630406], [0.5813964564678987], [0.6046389788531149], [0.5813964564678987], [0.6046389788531149], [0.6744141741284054], [0.7208992188988379], [0.7208992188988379], [0.6511716517431893], [0.5348637835778244], [0.46508858830253386], [0.44184606591731757], [0.5116212611926082], [0.6511716517431893], [0.744189369403696], [0.8139645646789865], [0.8139645646789865], [0.7208992188988379], [0.6278815012383312], [0.5348637835778244], [0.4883787388073919], [0.5116212611926082], [0.5581063059630406], [0.6278815012383312], [0.6744141741284054], [0.6744141741284054], [0.6278815012383312], [0.5581063059630406], [0.5116212611926082], [0.5116212611926082], [0.5348637835778244], [0.5813964564678987], [0.6278815012383312], [0.6744141741284054], [0.7208992188988379], [0.744189369403696], [0.744189369403696], [0.7674318917889122], [0.7906744141741284], [0.8139645646789865], [0.8139645646789865], [0.7674318917889122], [0.7208992188988379], [0.6278815012383312], [0.5813964564678987], [0.5581063059630406], [0.6046389788531149], [0.6744141741284054], [0.7674318917889122], [0.8139645646789865], [0.8372070870642028], [0.8139645646789865], [0.7674318917889122], [0.7674318917889122]], "eval_masks": [[0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0]], "forwards": [[0.5813964564678987], [0.8836921318346351], [1.0], [0.860449609449419], [0.5813964564678987], [0.2325681082110878], [0.0], [0.0], [0.16279291293579726], [0.4186035435321014], [0.6511716517431893], [0.744189369403696], [0.6976566965136217], [0.5116212611926082], [0.3022956753667365], [0.16279291293579726], [0.13950276243093926], [0.2790531529815203], [0.5116212611926082], [0.6744141741284054], [0.6744141741284054], [0.5116212611926082], [0.3022956753667365], [0.13950276243093926], [0.16279291293579726], [0.37207087064202704], [0.6278815012383312], [0.8139645646789865], [0.8372070870642028], [0.6744141741284054], [0.44184606591731757], [0.20927795770622978], [0.13950276243093926], [0.2325681082110878], [0.4186035435321014], [0.6278815012383312], [0.744189369403696], [0.744189369403696], [0.6511716517431893], [0.5116212611926082], [0.4186035435321014], [0.3953610211468851], [0.44184606591731757], [0.5348637835778244], [0.6511716517431893], [0.6976566965136217], [0.6976566965136217], [0.6976566965136217], [0.6976566965136217], [0.6976566965136217], [0.6976566965136217], [0.6976566965136217], [0.6976566965136217], [0.6976566965136217], [0.6976566965136217], [0.6976566965136217], [0.6976566965136217], [0.3953610211468851], [0.4186035435321014], [0.4883787388073919], [0.5348637835778244], [0.5348637835778244], [0.4883787388073919], [0.37207087064202704], [0.2790531529815203], [0.2558106305963041], [0.3255858258715946], [0.44184606591731757], [0.5581063059630406], [0.6046389788531149], [0.5348637835778244], [0.44184606591731757], [0.3022956753667365], [0.20927795770622978], [0.1860354353210135], [0.2558106305963041], [0.3953610211468851], [0.3953610211468851], [0.3953610211468851], [0.3953610211468851], [0.3953610211468851], [0.3953610211468851], [0.3953610211468851], [0.3953610211468851], [0.3953610211468851], [0.3953610211468851], [0.3953610211468851], [0.4186035435321014], [0.3255858258715946], [0.1860354353210135], [0.06977519527529052], [0.02324252238521621], [0.04648504477043242], [0.11626024004572295], [0.2325681082110878], [0.3255858258715946], [0.44184606591731757], [0.5348637835778244], [0.5813964564678987], [0.5813964564678987], [0.5116212611926082], [0.4186035435321014], [0.3255858258715946], [0.2558106305963041], [0.2558106305963041], [0.2558106305963041], [0.2558106305963041], [0.2558106305963041], [0.2558106305963041], [0.2558106305963041], [0.2558106305963041], [0.2558106305963041], [0.2558106305963041], [0.2558106305963041], [0.16279291293579726], [0.2790531529815203], [0.3953610211468851], [0.46508858830253386], [0.46508858830253386], [0.3953610211468851], [0.3255858258715946], [0.3255858258715946], [0.3255858258715946], [0.3255858258715946], [0.3255858258715946], [0.3255858258715946], [0.3255858258715946], [0.3255858258715946], [0.3255858258715946], [0.3255858258715946], [0.3255858258715946], [0.3953610211468851], [0.4186035435321014], [0.3953610211468851], [0.37207087064202704], [0.3255858258715946], [0.2558106305963041], [0.2325681082110878], [0.2325681082110878], [0.2790531529815203], [0.37207087064202704], [0.46508858830253386], [0.5581063059630406], [0.6046389788531149], [0.6278815012383312], [0.6046389788531149], [0.5348637835778244], [0.44184606591731757], [0.3255858258715946], [0.2325681082110878], [0.20927795770622978], [0.3022956753667365], [0.44184606591731757], [0.5813964564678987], [0.6511716517431893], [0.6278815012383312], [0.5348637835778244], [0.3953610211468851], [0.2790531529815203], [0.1860354353210135], [0.13950276243093926], [0.1860354353210135], [0.3022956753667365], [0.46508858830253386], [0.6278815012383312], [0.6744141741284054], [0.6278815012383312], [0.4883787388073919], [0.37207087064202704], [0.3255858258715946], [0.3953610211468851], [0.5116212611926082], [0.5813964564678987], [0.5813964564678987], [0.46508858830253386], [0.37207087064202704], [0.3255858258715946], [0.3255858258715946], [0.3953610211468851], [0.46508858830253386], [0.5348637835778244], [0.5813964564678987], [0.6046389788531149], [0.6511716517431893], [0.6511716517431893], [0.6046389788531149], [0.5813964564678987], [0.5581063059630406], [0.5813964564678987], [0.6046389788531149], [0.5581063059630406], [0.5116212611926082], [0.44184606591731757], [0.4186035435321014], [0.44184606591731757], [0.5116212611926082], [0.5348637835778244], [0.5348637835778244], [0.46508858830253386], [0.3953610211468851], [0.3953610211468851], [0.46508858830253386], [0.5581063059630406], [0.5813964564678987], [0.6046389788531149], [0.5813964564678987], [0.6046389788531149], [0.6744141741284054], [0.7208992188988379], [0.7208992188988379], [0.6511716517431893], [0.5348637835778244], [0.46508858830253386], [0.44184606591731757], [0.5116212611926082], [0.6511716517431893], [0.744189369403696], [0.8139645646789865], [0.8139645646789865], [0.7208992188988379], [0.6278815012383312], [0.5348637835778244], [0.4883787388073919], [0.5116212611926082], [0.5581063059630406], [0.6278815012383312], [0.6744141741284054], [0.6744141741284054], [0.6278815012383312], [0.5581063059630406], [0.5116212611926082], [0.5116212611926082], [0.5348637835778244], [0.5813964564678987], [0.6278815012383312], [0.6744141741284054], [0.7208992188988379], [0.744189369403696], [0.744189369403696], [0.7674318917889122], [0.7906744141741284], [0.8139645646789865], [0.8139645646789865], [0.7674318917889122], [0.7208992188988379], [0.6278815012383312], [0.5813964564678987], [0.5581063059630406], [0.6046389788531149], [0.6744141741284054], [0.7674318917889122], [0.8139645646789865], [0.8372070870642028], [0.8139645646789865], [0.7674318917889122], [0.7674318917889122]], "deltas": [[1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [2.0], [3.0], [4.0], [5.0], [6.0], [7.0], [8.0], [9.0], [10.0], [11.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [2.0], [3.0], [4.0], [5.0], [6.0], [7.0], [8.0], [9.0], [10.0], [11.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [2.0], [3.0], [4.0], [5.0], [6.0], [7.0], [8.0], [9.0], [10.0], [11.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [2.0], [3.0], [4.0], [5.0], [6.0], [7.0], [8.0], [9.0], [10.0], [11.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0]]}} -{"label": 0, "forward": {"values": [[0.5952311293153891], [0.6428223132436122], [0.7142578505948897], [0.7381022040179441], [0.7381022040179441], [0.6666666666666666], [0.6190267212795006], [0.6190267212795006], [0.6428223132436122], [0.6904622586307781], [0.6904622586307781], [0.6190267212795006], [0.452360054612834], [0.28569338794616733], [0.09523112931538916], [0.02379559196411163], [0.02379559196411163], [0.14282231324361225], [0.3571289252974449], [0.547591183928223], [0.6666666666666666], [0.6904622586307781], [0.5714355373512775], [0.42856446264872244], [0.3094889799102789], [0.3094889799102789], [0.3809245172615564], [0.5], [0.5714355373512775], [0.5952311293153891], [0.547591183928223], [0.47615564657694553], [0.42856446264872244], [0.4047688706846108], [0.42856446264872244], [0.452360054612834], [0.452360054612834], [0.3809245172615564], [0.28569338794616733], [0.19046225863077823], [0.16666666666666669], [0.21425785059488978], [0.3094889799102789], [0.4047688706846108], [0.452360054612834], [0.4047688706846108], [0.28569338794616733], [0.19046225863077823], [0.14282231324361225], [0.21425785059488978], [0.3094889799102789], [0.4047688706846108], [0.452360054612834], [0.3809245172615564], [0.26189779598205576], [0.16666666666666669], [0.16666666666666669], [0.23810220401794424], [0.3571289252974449], [0.4047688706846108], [0.42856446264872244], [0.4047688706846108], [0.4047688706846108], [0.452360054612834], [0.5], [0.5237955919641115], [0.5], [0.452360054612834], [0.42856446264872244], [0.4047688706846108], [0.4047688706846108], [0.4047688706846108], [0.3809245172615564], [0.3809245172615564], [0.3571289252974449], [0.3094889799102789], [0.23810220401794424], [0.1190267212795007], [0.04759118392822317], [0.1190267212795007], [0.28569338794616733], [0.5714355373512775], [0.7856933879461673], [0.8333333333333333], [0.6904622586307781], [0.452360054612834], [0.23810220401794424], [0.14282231324361225], [0.16666666666666669], [0.23810220401794424], [0.3571289252974449], [0.47615564657694553], [0.6190267212795006], [0.7381022040179441], [0.7856933879461673], [0.7142578505948897], [0.5237955919641115], [0.28569338794616733], [0.09523112931538916], [0.0], [0.07143553735127753], [0.19046225863077823], [0.3094889799102789], [0.42856446264872244], [0.5], [0.5714355373512775], [0.6428223132436122], [0.6904622586307781], [0.6428223132436122], [0.5714355373512775], [0.47615564657694553], [0.4047688706846108], [0.3809245172615564], [0.4047688706846108], [0.47615564657694553], [0.547591183928223], [0.5952311293153891], [0.6428223132436122], [0.7142578505948897], [0.7142578505948897], [0.6666666666666666], [0.547591183928223], [0.3571289252974449], [0.16666666666666669], [0.07143553735127753], [0.09523112931538916], [0.23810220401794424], [0.42856446264872244], [0.5952311293153891], [0.6428223132436122], [0.5952311293153891], [0.452360054612834], [0.28569338794616733], [0.16666666666666669], [0.1190267212795007], [0.14282231324361225], [0.21425785059488978], [0.26189779598205576], [0.26189779598205576], [0.28569338794616733], [0.23810220401794424], [0.21425785059488978], [0.19046225863077823], [0.16666666666666669], [0.14282231324361225], [0.1190267212795007], [0.14282231324361225], [0.19046225863077823], [0.26189779598205576], [0.3094889799102789], [0.3094889799102789], [0.28569338794616733], [0.23810220401794424], [0.23810220401794424], [0.3571289252974449], [0.47615564657694553], [0.5952311293153891], [0.6666666666666666], [0.6190267212795006], [0.5237955919641115], [0.4047688706846108], [0.28569338794616733], [0.28569338794616733], [0.4047688706846108], [0.5714355373512775], [0.7856933879461673], [0.9285644626487223], [1.0], [0.9285644626487223], [0.7618977959820556], [0.5714355373512775], [0.4047688706846108], [0.3809245172615564], [0.452360054612834], [0.6190267212795006], [0.7618977959820556], [0.8333333333333333], [0.8094889799102788], [0.7618977959820556], [0.7142578505948897], [0.7142578505948897], [0.7618977959820556], [0.7381022040179441], [0.6428223132436122], [0.5], [0.3571289252974449], [0.23810220401794424], [0.26189779598205576], [0.3809245172615564], [0.547591183928223], [0.6904622586307781], [0.7618977959820556], [0.7618977959820556], [0.7381022040179441], [0.6904622586307781], [0.6904622586307781], [0.7142578505948897], [0.7618977959820556], [0.7618977959820556], [0.7142578505948897], [0.6428223132436122], [0.5237955919641115], [0.42856446264872244], [0.3571289252974449], [0.3809245172615564], [0.452360054612834], [0.547591183928223], [0.5952311293153891], [0.5714355373512775], [0.5], [0.452360054612834], [0.47615564657694553], [0.5952311293153891], [0.7142578505948897], [0.8094889799102788], [0.7856933879461673], [0.7142578505948897], [0.5952311293153891], [0.5237955919641115], [0.452360054612834], [0.4047688706846108], [0.3333333333333333], [0.26189779598205576], [0.21425785059488978], [0.21425785059488978], [0.28569338794616733], [0.4047688706846108], [0.5237955919641115], [0.6190267212795006], [0.6428223132436122], [0.6428223132436122], [0.6428223132436122], [0.6428223132436122], [0.6190267212795006], [0.547591183928223], [0.452360054612834], [0.3333333333333333], [0.21425785059488978], [0.14282231324361225], [0.09523112931538916], [0.09523112931538916], [0.1190267212795007], [0.14282231324361225], [0.19046225863077823], [0.26189779598205576], [0.3809245172615564], [0.5237955919641115], [0.6190267212795006], [0.6904622586307781], [0.6666666666666666], [0.5714355373512775], [0.452360054612834], [0.3333333333333333], [0.26189779598205576], [0.26189779598205576], [0.26189779598205576]], "masks": [[1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1]], "evals": [[0.5952311293153891], [0.6428223132436122], [0.7142578505948897], [0.7381022040179441], [0.7381022040179441], [0.6666666666666666], [0.6190267212795006], [0.6190267212795006], [0.6428223132436122], [0.6904622586307781], [0.6904622586307781], [0.6190267212795006], [0.452360054612834], [0.28569338794616733], [0.09523112931538916], [0.02379559196411163], [0.02379559196411163], [0.14282231324361225], [0.3571289252974449], [0.547591183928223], [0.6666666666666666], [0.6904622586307781], [0.5714355373512775], [0.42856446264872244], [0.3094889799102789], [0.3094889799102789], [0.3809245172615564], [0.5], [0.5714355373512775], [0.5952311293153891], [0.547591183928223], [0.47615564657694553], [0.42856446264872244], [0.4047688706846108], [0.42856446264872244], [0.452360054612834], [0.452360054612834], [0.3809245172615564], [0.28569338794616733], [0.19046225863077823], [0.16666666666666669], [0.21425785059488978], [0.3094889799102789], [0.4047688706846108], [0.452360054612834], [0.4047688706846108], [0.28569338794616733], [0.19046225863077823], [0.14282231324361225], [0.21425785059488978], [0.3094889799102789], [0.4047688706846108], [0.452360054612834], [0.3809245172615564], [0.26189779598205576], [0.16666666666666669], [0.16666666666666669], [0.23810220401794424], [0.3571289252974449], [0.4047688706846108], [0.42856446264872244], [0.4047688706846108], [0.4047688706846108], [0.452360054612834], [0.5], [0.5237955919641115], [0.5], [0.452360054612834], [0.42856446264872244], [0.4047688706846108], [0.4047688706846108], [0.4047688706846108], [0.3809245172615564], [0.3809245172615564], [0.3571289252974449], [0.3094889799102789], [0.23810220401794424], [0.1190267212795007], [0.04759118392822317], [0.1190267212795007], [0.28569338794616733], [0.5714355373512775], [0.7856933879461673], [0.8333333333333333], [0.6904622586307781], [0.452360054612834], [0.23810220401794424], [0.14282231324361225], [0.16666666666666669], [0.23810220401794424], [0.3571289252974449], [0.47615564657694553], [0.6190267212795006], [0.7381022040179441], [0.7856933879461673], [0.7142578505948897], [0.5237955919641115], [0.28569338794616733], [0.09523112931538916], [0.0], [0.07143553735127753], [0.19046225863077823], [0.3094889799102789], [0.42856446264872244], [0.5], [0.5714355373512775], [0.6428223132436122], [0.6904622586307781], [0.6428223132436122], [0.5714355373512775], [0.47615564657694553], [0.4047688706846108], [0.3809245172615564], [0.4047688706846108], [0.47615564657694553], [0.547591183928223], [0.5952311293153891], [0.6428223132436122], [0.7142578505948897], [0.7142578505948897], [0.6666666666666666], [0.547591183928223], [0.3571289252974449], [0.16666666666666669], [0.07143553735127753], [0.09523112931538916], [0.23810220401794424], [0.42856446264872244], [0.5952311293153891], [0.6428223132436122], [0.5952311293153891], [0.452360054612834], [0.28569338794616733], [0.16666666666666669], [0.1190267212795007], [0.14282231324361225], [0.21425785059488978], [0.26189779598205576], [0.26189779598205576], [0.28569338794616733], [0.23810220401794424], [0.21425785059488978], [0.19046225863077823], [0.16666666666666669], [0.14282231324361225], [0.1190267212795007], [0.14282231324361225], [0.19046225863077823], [0.26189779598205576], [0.3094889799102789], [0.3094889799102789], [0.28569338794616733], [0.23810220401794424], [0.23810220401794424], [0.3571289252974449], [0.47615564657694553], [0.5952311293153891], [0.6666666666666666], [0.6190267212795006], [0.5237955919641115], [0.4047688706846108], [0.28569338794616733], [0.28569338794616733], [0.4047688706846108], [0.5714355373512775], [0.7856933879461673], [0.9285644626487223], [1.0], [0.9285644626487223], [0.7618977959820556], [0.5714355373512775], [0.4047688706846108], [0.3809245172615564], [0.452360054612834], [0.6190267212795006], [0.7618977959820556], [0.8333333333333333], [0.8094889799102788], [0.7618977959820556], [0.7142578505948897], [0.7142578505948897], [0.7618977959820556], [0.7381022040179441], [0.6428223132436122], [0.5], [0.3571289252974449], [0.23810220401794424], [0.26189779598205576], [0.3809245172615564], [0.547591183928223], [0.6904622586307781], [0.7618977959820556], [0.7618977959820556], [0.7381022040179441], [0.6904622586307781], [0.6904622586307781], [0.7142578505948897], [0.7618977959820556], [0.7618977959820556], [0.7142578505948897], [0.6428223132436122], [0.5237955919641115], [0.42856446264872244], [0.3571289252974449], [0.3809245172615564], [0.452360054612834], [0.547591183928223], [0.5952311293153891], [0.5714355373512775], [0.5], [0.452360054612834], [0.47615564657694553], [0.5952311293153891], [0.7142578505948897], [0.8094889799102788], [0.7856933879461673], [0.7142578505948897], [0.5952311293153891], [0.5237955919641115], [0.452360054612834], [0.4047688706846108], [0.3333333333333333], [0.26189779598205576], [0.21425785059488978], [0.21425785059488978], [0.28569338794616733], [0.4047688706846108], [0.5237955919641115], [0.6190267212795006], [0.6428223132436122], [0.6428223132436122], [0.6428223132436122], [0.6428223132436122], [0.6190267212795006], [0.547591183928223], [0.452360054612834], [0.3333333333333333], [0.21425785059488978], [0.14282231324361225], [0.09523112931538916], [0.09523112931538916], [0.1190267212795007], [0.14282231324361225], [0.19046225863077823], [0.26189779598205576], [0.3809245172615564], [0.5237955919641115], [0.6190267212795006], [0.6904622586307781], [0.6666666666666666], [0.5714355373512775], [0.452360054612834], [0.3333333333333333], [0.26189779598205576], [0.26189779598205576], [0.26189779598205576]], "eval_masks": [[0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0]], "forwards": [[0.5952311293153891], [0.6428223132436122], [0.7142578505948897], [0.7381022040179441], [0.7381022040179441], [0.6666666666666666], [0.6190267212795006], [0.6190267212795006], [0.6428223132436122], [0.6904622586307781], [0.6904622586307781], [0.6190267212795006], [0.452360054612834], [0.28569338794616733], [0.09523112931538916], [0.02379559196411163], [0.02379559196411163], [0.14282231324361225], [0.3571289252974449], [0.547591183928223], [0.6666666666666666], [0.6904622586307781], [0.5714355373512775], [0.42856446264872244], [0.3094889799102789], [0.3094889799102789], [0.3809245172615564], [0.5], [0.5714355373512775], [0.5952311293153891], [0.547591183928223], [0.47615564657694553], [0.42856446264872244], [0.4047688706846108], [0.42856446264872244], [0.452360054612834], [0.452360054612834], [0.3809245172615564], [0.28569338794616733], [0.19046225863077823], [0.16666666666666669], [0.21425785059488978], [0.3094889799102789], [0.4047688706846108], [0.452360054612834], [0.4047688706846108], [0.28569338794616733], [0.19046225863077823], [0.14282231324361225], [0.21425785059488978], [0.3094889799102789], [0.4047688706846108], [0.452360054612834], [0.3809245172615564], [0.26189779598205576], [0.16666666666666669], [0.16666666666666669], [0.23810220401794424], [0.3571289252974449], [0.4047688706846108], [0.42856446264872244], [0.4047688706846108], [0.4047688706846108], [0.452360054612834], [0.5], [0.5237955919641115], [0.5], [0.452360054612834], [0.42856446264872244], [0.4047688706846108], [0.4047688706846108], [0.4047688706846108], [0.3809245172615564], [0.3809245172615564], [0.3571289252974449], [0.3094889799102789], [0.23810220401794424], [0.1190267212795007], [0.04759118392822317], [0.1190267212795007], [0.28569338794616733], [0.5714355373512775], [0.7856933879461673], [0.8333333333333333], [0.6904622586307781], [0.452360054612834], [0.23810220401794424], [0.14282231324361225], [0.16666666666666669], [0.23810220401794424], [0.3571289252974449], [0.47615564657694553], [0.6190267212795006], [0.7381022040179441], [0.7856933879461673], [0.7142578505948897], [0.5237955919641115], [0.28569338794616733], [0.09523112931538916], [0.0], [0.07143553735127753], [0.19046225863077823], [0.3094889799102789], [0.42856446264872244], [0.5], [0.5714355373512775], [0.6428223132436122], [0.6904622586307781], [0.6428223132436122], [0.5714355373512775], [0.47615564657694553], [0.4047688706846108], [0.3809245172615564], [0.4047688706846108], [0.47615564657694553], [0.547591183928223], [0.5952311293153891], [0.6428223132436122], [0.7142578505948897], [0.7142578505948897], [0.6666666666666666], [0.547591183928223], [0.3571289252974449], [0.16666666666666669], [0.07143553735127753], [0.09523112931538916], [0.23810220401794424], [0.42856446264872244], [0.5952311293153891], [0.6428223132436122], [0.5952311293153891], [0.452360054612834], [0.28569338794616733], [0.16666666666666669], [0.1190267212795007], [0.14282231324361225], [0.21425785059488978], [0.26189779598205576], [0.26189779598205576], [0.28569338794616733], [0.23810220401794424], [0.21425785059488978], [0.19046225863077823], [0.16666666666666669], [0.14282231324361225], [0.1190267212795007], [0.14282231324361225], [0.19046225863077823], [0.26189779598205576], [0.3094889799102789], [0.3094889799102789], [0.28569338794616733], [0.23810220401794424], [0.23810220401794424], [0.3571289252974449], [0.47615564657694553], [0.5952311293153891], [0.6666666666666666], [0.6190267212795006], [0.5237955919641115], [0.4047688706846108], [0.28569338794616733], [0.28569338794616733], [0.4047688706846108], [0.5714355373512775], [0.7856933879461673], [0.9285644626487223], [1.0], [0.9285644626487223], [0.7618977959820556], [0.5714355373512775], [0.4047688706846108], [0.3809245172615564], [0.452360054612834], [0.6190267212795006], [0.7618977959820556], [0.8333333333333333], [0.8094889799102788], [0.7618977959820556], [0.7142578505948897], [0.7142578505948897], [0.7618977959820556], [0.7381022040179441], [0.6428223132436122], [0.5], [0.3571289252974449], [0.23810220401794424], [0.26189779598205576], [0.3809245172615564], [0.547591183928223], [0.6904622586307781], [0.7618977959820556], [0.7618977959820556], [0.7381022040179441], [0.6904622586307781], [0.6904622586307781], [0.7142578505948897], [0.7618977959820556], [0.7618977959820556], [0.7142578505948897], [0.6428223132436122], [0.5237955919641115], [0.42856446264872244], [0.3571289252974449], [0.3809245172615564], [0.452360054612834], [0.547591183928223], [0.5952311293153891], [0.5714355373512775], [0.5], [0.452360054612834], [0.47615564657694553], [0.5952311293153891], [0.7142578505948897], [0.8094889799102788], [0.7856933879461673], [0.7142578505948897], [0.5952311293153891], [0.5237955919641115], [0.452360054612834], [0.4047688706846108], [0.3333333333333333], [0.26189779598205576], [0.21425785059488978], [0.21425785059488978], [0.28569338794616733], [0.4047688706846108], [0.5237955919641115], [0.6190267212795006], [0.6428223132436122], [0.6428223132436122], [0.6428223132436122], [0.6428223132436122], [0.6190267212795006], [0.547591183928223], [0.452360054612834], [0.3333333333333333], [0.21425785059488978], [0.14282231324361225], [0.09523112931538916], [0.09523112931538916], [0.1190267212795007], [0.14282231324361225], [0.19046225863077823], [0.26189779598205576], [0.3809245172615564], [0.5237955919641115], [0.6190267212795006], [0.6904622586307781], [0.6666666666666666], [0.5714355373512775], [0.452360054612834], [0.3333333333333333], [0.26189779598205576], [0.26189779598205576], [0.26189779598205576]], "deltas": [[1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0]]}, "backward": {"values": [[0.26189779598205576], [0.26189779598205576], [0.26189779598205576], [0.3333333333333333], [0.452360054612834], [0.5714355373512775], [0.6666666666666666], [0.6904622586307781], [0.6190267212795006], [0.5237955919641115], [0.3809245172615564], [0.26189779598205576], [0.19046225863077823], [0.14282231324361225], [0.1190267212795007], [0.09523112931538916], [0.09523112931538916], [0.14282231324361225], [0.21425785059488978], [0.3333333333333333], [0.452360054612834], [0.547591183928223], [0.6190267212795006], [0.6428223132436122], [0.6428223132436122], [0.6428223132436122], [0.6428223132436122], [0.6190267212795006], [0.5237955919641115], [0.4047688706846108], [0.28569338794616733], [0.21425785059488978], [0.21425785059488978], [0.26189779598205576], [0.3333333333333333], [0.4047688706846108], [0.452360054612834], [0.5237955919641115], [0.5952311293153891], [0.7142578505948897], [0.7856933879461673], [0.8094889799102788], [0.7142578505948897], [0.5952311293153891], [0.47615564657694553], [0.452360054612834], [0.5], [0.5714355373512775], [0.5952311293153891], [0.547591183928223], [0.452360054612834], [0.3809245172615564], [0.3571289252974449], [0.42856446264872244], [0.5237955919641115], [0.6428223132436122], [0.7142578505948897], [0.7618977959820556], [0.7618977959820556], [0.7142578505948897], [0.6904622586307781], [0.6904622586307781], [0.7381022040179441], [0.7618977959820556], [0.7618977959820556], [0.6904622586307781], [0.547591183928223], [0.3809245172615564], [0.26189779598205576], [0.23810220401794424], [0.3571289252974449], [0.5], [0.6428223132436122], [0.7381022040179441], [0.7618977959820556], [0.7142578505948897], [0.7142578505948897], [0.7618977959820556], [0.8094889799102788], [0.8333333333333333], [0.7618977959820556], [0.6190267212795006], [0.452360054612834], [0.3809245172615564], [0.4047688706846108], [0.5714355373512775], [0.7618977959820556], [0.9285644626487223], [1.0], [0.9285644626487223], [0.7856933879461673], [0.5714355373512775], [0.4047688706846108], [0.28569338794616733], [0.28569338794616733], [0.4047688706846108], [0.5237955919641115], [0.6190267212795006], [0.6666666666666666], [0.5952311293153891], [0.47615564657694553], [0.3571289252974449], [0.23810220401794424], [0.23810220401794424], [0.28569338794616733], [0.3094889799102789], [0.3094889799102789], [0.26189779598205576], [0.19046225863077823], [0.14282231324361225], [0.1190267212795007], [0.14282231324361225], [0.16666666666666669], [0.19046225863077823], [0.21425785059488978], [0.23810220401794424], [0.28569338794616733], [0.26189779598205576], [0.26189779598205576], [0.21425785059488978], [0.14282231324361225], [0.1190267212795007], [0.16666666666666669], [0.28569338794616733], [0.452360054612834], [0.5952311293153891], [0.6428223132436122], [0.5952311293153891], [0.42856446264872244], [0.23810220401794424], [0.09523112931538916], [0.07143553735127753], [0.16666666666666669], [0.3571289252974449], [0.547591183928223], [0.6666666666666666], [0.7142578505948897], [0.7142578505948897], [0.6428223132436122], [0.5952311293153891], [0.547591183928223], [0.47615564657694553], [0.4047688706846108], [0.3809245172615564], [0.4047688706846108], [0.47615564657694553], [0.5714355373512775], [0.6428223132436122], [0.6904622586307781], [0.6428223132436122], [0.5714355373512775], [0.5], [0.42856446264872244], [0.3094889799102789], [0.19046225863077823], [0.07143553735127753], [0.0], [0.09523112931538916], [0.28569338794616733], [0.5237955919641115], [0.7142578505948897], [0.7856933879461673], [0.7381022040179441], [0.6190267212795006], [0.47615564657694553], [0.3571289252974449], [0.23810220401794424], [0.16666666666666669], [0.14282231324361225], [0.23810220401794424], [0.452360054612834], [0.6904622586307781], [0.8333333333333333], [0.7856933879461673], [0.5714355373512775], [0.28569338794616733], [0.1190267212795007], [0.04759118392822317], [0.1190267212795007], [0.23810220401794424], [0.3094889799102789], [0.3571289252974449], [0.3809245172615564], [0.3809245172615564], [0.4047688706846108], [0.4047688706846108], [0.4047688706846108], [0.42856446264872244], [0.452360054612834], [0.5], [0.5237955919641115], [0.5], [0.452360054612834], [0.4047688706846108], [0.4047688706846108], [0.42856446264872244], [0.4047688706846108], [0.3571289252974449], [0.23810220401794424], [0.16666666666666669], [0.16666666666666669], [0.26189779598205576], [0.3809245172615564], [0.452360054612834], [0.4047688706846108], [0.3094889799102789], [0.21425785059488978], [0.14282231324361225], [0.19046225863077823], [0.28569338794616733], [0.4047688706846108], [0.452360054612834], [0.4047688706846108], [0.3094889799102789], [0.21425785059488978], [0.16666666666666669], [0.19046225863077823], [0.28569338794616733], [0.3809245172615564], [0.452360054612834], [0.452360054612834], [0.42856446264872244], [0.4047688706846108], [0.42856446264872244], [0.47615564657694553], [0.547591183928223], [0.5952311293153891], [0.5714355373512775], [0.5], [0.3809245172615564], [0.3094889799102789], [0.3094889799102789], [0.42856446264872244], [0.5714355373512775], [0.6904622586307781], [0.6666666666666666], [0.547591183928223], [0.3571289252974449], [0.14282231324361225], [0.02379559196411163], [0.02379559196411163], [0.09523112931538916], [0.28569338794616733], [0.452360054612834], [0.6190267212795006], [0.6904622586307781], [0.6904622586307781], [0.6428223132436122], [0.6190267212795006], [0.6190267212795006], [0.6666666666666666], [0.7381022040179441], [0.7381022040179441], [0.7142578505948897], [0.6428223132436122], [0.5952311293153891]], "masks": [[1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1]], "evals": [[0.26189779598205576], [0.26189779598205576], [0.26189779598205576], [0.3333333333333333], [0.452360054612834], [0.5714355373512775], [0.6666666666666666], [0.6904622586307781], [0.6190267212795006], [0.5237955919641115], [0.3809245172615564], [0.26189779598205576], [0.19046225863077823], [0.14282231324361225], [0.1190267212795007], [0.09523112931538916], [0.09523112931538916], [0.14282231324361225], [0.21425785059488978], [0.3333333333333333], [0.452360054612834], [0.547591183928223], [0.6190267212795006], [0.6428223132436122], [0.6428223132436122], [0.6428223132436122], [0.6428223132436122], [0.6190267212795006], [0.5237955919641115], [0.4047688706846108], [0.28569338794616733], [0.21425785059488978], [0.21425785059488978], [0.26189779598205576], [0.3333333333333333], [0.4047688706846108], [0.452360054612834], [0.5237955919641115], [0.5952311293153891], [0.7142578505948897], [0.7856933879461673], [0.8094889799102788], [0.7142578505948897], [0.5952311293153891], [0.47615564657694553], [0.452360054612834], [0.5], [0.5714355373512775], [0.5952311293153891], [0.547591183928223], [0.452360054612834], [0.3809245172615564], [0.3571289252974449], [0.42856446264872244], [0.5237955919641115], [0.6428223132436122], [0.7142578505948897], [0.7618977959820556], [0.7618977959820556], [0.7142578505948897], [0.6904622586307781], [0.6904622586307781], [0.7381022040179441], [0.7618977959820556], [0.7618977959820556], [0.6904622586307781], [0.547591183928223], [0.3809245172615564], [0.26189779598205576], [0.23810220401794424], [0.3571289252974449], [0.5], [0.6428223132436122], [0.7381022040179441], [0.7618977959820556], [0.7142578505948897], [0.7142578505948897], [0.7618977959820556], [0.8094889799102788], [0.8333333333333333], [0.7618977959820556], [0.6190267212795006], [0.452360054612834], [0.3809245172615564], [0.4047688706846108], [0.5714355373512775], [0.7618977959820556], [0.9285644626487223], [1.0], [0.9285644626487223], [0.7856933879461673], [0.5714355373512775], [0.4047688706846108], [0.28569338794616733], [0.28569338794616733], [0.4047688706846108], [0.5237955919641115], [0.6190267212795006], [0.6666666666666666], [0.5952311293153891], [0.47615564657694553], [0.3571289252974449], [0.23810220401794424], [0.23810220401794424], [0.28569338794616733], [0.3094889799102789], [0.3094889799102789], [0.26189779598205576], [0.19046225863077823], [0.14282231324361225], [0.1190267212795007], [0.14282231324361225], [0.16666666666666669], [0.19046225863077823], [0.21425785059488978], [0.23810220401794424], [0.28569338794616733], [0.26189779598205576], [0.26189779598205576], [0.21425785059488978], [0.14282231324361225], [0.1190267212795007], [0.16666666666666669], [0.28569338794616733], [0.452360054612834], [0.5952311293153891], [0.6428223132436122], [0.5952311293153891], [0.42856446264872244], [0.23810220401794424], [0.09523112931538916], [0.07143553735127753], [0.16666666666666669], [0.3571289252974449], [0.547591183928223], [0.6666666666666666], [0.7142578505948897], [0.7142578505948897], [0.6428223132436122], [0.5952311293153891], [0.547591183928223], [0.47615564657694553], [0.4047688706846108], [0.3809245172615564], [0.4047688706846108], [0.47615564657694553], [0.5714355373512775], [0.6428223132436122], [0.6904622586307781], [0.6428223132436122], [0.5714355373512775], [0.5], [0.42856446264872244], [0.3094889799102789], [0.19046225863077823], [0.07143553735127753], [0.0], [0.09523112931538916], [0.28569338794616733], [0.5237955919641115], [0.7142578505948897], [0.7856933879461673], [0.7381022040179441], [0.6190267212795006], [0.47615564657694553], [0.3571289252974449], [0.23810220401794424], [0.16666666666666669], [0.14282231324361225], [0.23810220401794424], [0.452360054612834], [0.6904622586307781], [0.8333333333333333], [0.7856933879461673], [0.5714355373512775], [0.28569338794616733], [0.1190267212795007], [0.04759118392822317], [0.1190267212795007], [0.23810220401794424], [0.3094889799102789], [0.3571289252974449], [0.3809245172615564], [0.3809245172615564], [0.4047688706846108], [0.4047688706846108], [0.4047688706846108], [0.42856446264872244], [0.452360054612834], [0.5], [0.5237955919641115], [0.5], [0.452360054612834], [0.4047688706846108], [0.4047688706846108], [0.42856446264872244], [0.4047688706846108], [0.3571289252974449], [0.23810220401794424], [0.16666666666666669], [0.16666666666666669], [0.26189779598205576], [0.3809245172615564], [0.452360054612834], [0.4047688706846108], [0.3094889799102789], [0.21425785059488978], [0.14282231324361225], [0.19046225863077823], [0.28569338794616733], [0.4047688706846108], [0.452360054612834], [0.4047688706846108], [0.3094889799102789], [0.21425785059488978], [0.16666666666666669], [0.19046225863077823], [0.28569338794616733], [0.3809245172615564], [0.452360054612834], [0.452360054612834], [0.42856446264872244], [0.4047688706846108], [0.42856446264872244], [0.47615564657694553], [0.547591183928223], [0.5952311293153891], [0.5714355373512775], [0.5], [0.3809245172615564], [0.3094889799102789], [0.3094889799102789], [0.42856446264872244], [0.5714355373512775], [0.6904622586307781], [0.6666666666666666], [0.547591183928223], [0.3571289252974449], [0.14282231324361225], [0.02379559196411163], [0.02379559196411163], [0.09523112931538916], [0.28569338794616733], [0.452360054612834], [0.6190267212795006], [0.6904622586307781], [0.6904622586307781], [0.6428223132436122], [0.6190267212795006], [0.6190267212795006], [0.6666666666666666], [0.7381022040179441], [0.7381022040179441], [0.7142578505948897], [0.6428223132436122], [0.5952311293153891]], "eval_masks": [[0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0]], "forwards": [[0.26189779598205576], [0.26189779598205576], [0.26189779598205576], [0.3333333333333333], [0.452360054612834], [0.5714355373512775], [0.6666666666666666], [0.6904622586307781], [0.6190267212795006], [0.5237955919641115], [0.3809245172615564], [0.26189779598205576], [0.19046225863077823], [0.14282231324361225], [0.1190267212795007], [0.09523112931538916], [0.09523112931538916], [0.14282231324361225], [0.21425785059488978], [0.3333333333333333], [0.452360054612834], [0.547591183928223], [0.6190267212795006], [0.6428223132436122], [0.6428223132436122], [0.6428223132436122], [0.6428223132436122], [0.6190267212795006], [0.5237955919641115], [0.4047688706846108], [0.28569338794616733], [0.21425785059488978], [0.21425785059488978], [0.26189779598205576], [0.3333333333333333], [0.4047688706846108], [0.452360054612834], [0.5237955919641115], [0.5952311293153891], [0.7142578505948897], [0.7856933879461673], [0.8094889799102788], [0.7142578505948897], [0.5952311293153891], [0.47615564657694553], [0.452360054612834], [0.5], [0.5714355373512775], [0.5952311293153891], [0.547591183928223], [0.452360054612834], [0.3809245172615564], [0.3571289252974449], [0.42856446264872244], [0.5237955919641115], [0.6428223132436122], [0.7142578505948897], [0.7618977959820556], [0.7618977959820556], [0.7142578505948897], [0.6904622586307781], [0.6904622586307781], [0.7381022040179441], [0.7618977959820556], [0.7618977959820556], [0.6904622586307781], [0.547591183928223], [0.3809245172615564], [0.26189779598205576], [0.23810220401794424], [0.3571289252974449], [0.5], [0.6428223132436122], [0.7381022040179441], [0.7618977959820556], [0.7142578505948897], [0.7142578505948897], [0.7618977959820556], [0.8094889799102788], [0.8333333333333333], [0.7618977959820556], [0.6190267212795006], [0.452360054612834], [0.3809245172615564], [0.4047688706846108], [0.5714355373512775], [0.7618977959820556], [0.9285644626487223], [1.0], [0.9285644626487223], [0.7856933879461673], [0.5714355373512775], [0.4047688706846108], [0.28569338794616733], [0.28569338794616733], [0.4047688706846108], [0.5237955919641115], [0.6190267212795006], [0.6666666666666666], [0.5952311293153891], [0.47615564657694553], [0.3571289252974449], [0.23810220401794424], [0.23810220401794424], [0.28569338794616733], [0.3094889799102789], [0.3094889799102789], [0.26189779598205576], [0.19046225863077823], [0.14282231324361225], [0.1190267212795007], [0.14282231324361225], [0.16666666666666669], [0.19046225863077823], [0.21425785059488978], [0.23810220401794424], [0.28569338794616733], [0.26189779598205576], [0.26189779598205576], [0.21425785059488978], [0.14282231324361225], [0.1190267212795007], [0.16666666666666669], [0.28569338794616733], [0.452360054612834], [0.5952311293153891], [0.6428223132436122], [0.5952311293153891], [0.42856446264872244], [0.23810220401794424], [0.09523112931538916], [0.07143553735127753], [0.16666666666666669], [0.3571289252974449], [0.547591183928223], [0.6666666666666666], [0.7142578505948897], [0.7142578505948897], [0.6428223132436122], [0.5952311293153891], [0.547591183928223], [0.47615564657694553], [0.4047688706846108], [0.3809245172615564], [0.4047688706846108], [0.47615564657694553], [0.5714355373512775], [0.6428223132436122], [0.6904622586307781], [0.6428223132436122], [0.5714355373512775], [0.5], [0.42856446264872244], [0.3094889799102789], [0.19046225863077823], [0.07143553735127753], [0.0], [0.09523112931538916], [0.28569338794616733], [0.5237955919641115], [0.7142578505948897], [0.7856933879461673], [0.7381022040179441], [0.6190267212795006], [0.47615564657694553], [0.3571289252974449], [0.23810220401794424], [0.16666666666666669], [0.14282231324361225], [0.23810220401794424], [0.452360054612834], [0.6904622586307781], [0.8333333333333333], [0.7856933879461673], [0.5714355373512775], [0.28569338794616733], [0.1190267212795007], [0.04759118392822317], [0.1190267212795007], [0.23810220401794424], [0.3094889799102789], [0.3571289252974449], [0.3809245172615564], [0.3809245172615564], [0.4047688706846108], [0.4047688706846108], [0.4047688706846108], [0.42856446264872244], [0.452360054612834], [0.5], [0.5237955919641115], [0.5], [0.452360054612834], [0.4047688706846108], [0.4047688706846108], [0.42856446264872244], [0.4047688706846108], [0.3571289252974449], [0.23810220401794424], [0.16666666666666669], [0.16666666666666669], [0.26189779598205576], [0.3809245172615564], [0.452360054612834], [0.4047688706846108], [0.3094889799102789], [0.21425785059488978], [0.14282231324361225], [0.19046225863077823], [0.28569338794616733], [0.4047688706846108], [0.452360054612834], [0.4047688706846108], [0.3094889799102789], [0.21425785059488978], [0.16666666666666669], [0.19046225863077823], [0.28569338794616733], [0.3809245172615564], [0.452360054612834], [0.452360054612834], [0.42856446264872244], [0.4047688706846108], [0.42856446264872244], [0.47615564657694553], [0.547591183928223], [0.5952311293153891], [0.5714355373512775], [0.5], [0.3809245172615564], [0.3094889799102789], [0.3094889799102789], [0.42856446264872244], [0.5714355373512775], [0.6904622586307781], [0.6666666666666666], [0.547591183928223], [0.3571289252974449], [0.14282231324361225], [0.02379559196411163], [0.02379559196411163], [0.09523112931538916], [0.28569338794616733], [0.452360054612834], [0.6190267212795006], [0.6904622586307781], [0.6904622586307781], [0.6428223132436122], [0.6190267212795006], [0.6190267212795006], [0.6666666666666666], [0.7381022040179441], [0.7381022040179441], [0.7142578505948897], [0.6428223132436122], [0.5952311293153891]], "deltas": [[1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0]]}} -{"label": 0, "forward": {"values": [[0.909070598748883], [0.8727286267500743], [0.8908996127494787], [0.909070598748883], [0.909070598748883], [0.8545204051236223], [0.7817992254989574], [0.7090780458742925], [0.6909070598748882], [0.7090780458742925], [0.763628239499553], [0.8181784331248138], [0.8363494191242181], [0.8181784331248138], [0.763628239499553], [0.7272490318736967], [0.7090780458742925], [0.7454572535001489], [0.8181784331248138], [0.909070598748883], [0.9817917783735478], [1.0], [0.9454498063747394], [0.8363494191242181], [0.7272490318736967], [0.6545278522490318], [0.6363568662496276], [0.6545278522490318], [0.6727360738754841], [0.6545278522490318], [0.6000148942508192], [0.5272564789991063], [0.4727435210008936], [0.4727435210008936], [0.5272564789991063], [0.6181858802502234], [0.7272490318736967], [0.8181784331248138], [0.8363494191242181], [0.8181784331248138], [0.7454572535001489], [0.6545278522490318], [0.5818066726243669], [0.5454647006255585], [0.5272564789991063], [0.5272564789991063], [0.5272564789991063], [0.5636356866249628], [0.6000148942508192], [0.6363568662496276], [0.6727360738754841], [0.6727360738754841], [0.6181858802502234], [0.5272564789991063], [0.4545352993744415], [0.418193327375633], [0.4363643133750372], [0.4909145070002979], [0.5272564789991063], [0.5454647006255585], [0.5272564789991063], [0.5090854929997021], [0.5272564789991063], [0.5818066726243669], [0.6545278522490318], [0.7272490318736967], [0.7272490318736967], [0.6545278522490318], [0.5636356866249628], [0.4909145070002979], [0.4909145070002979], [0.5636356866249628], [0.7090780458742925], [0.8181784331248138], [0.8727286267500743], [0.8000074471254095], [0.6000148942508192], [0.3272639261245159], [0.1272713732499255], [0.07272117962466486], [0.19999255287459033], [0.4727435210008936], [0.763628239499553], [0.9454498063747394], [0.9454498063747394], [0.8181784331248138], [0.6363568662496276], [0.4909145070002979], [0.4363643133750372], [0.4545352993744415], [0.5454647006255585], [0.6181858802502234], [0.6545278522490318], [0.6545278522490318], [0.6363568662496276], [0.5818066726243669], [0.5090854929997021], [0.4727435210008936], [0.4909145070002979], [0.5636356866249628], [0.6545278522490318], [0.6727360738754841], [0.6363568662496276], [0.5636356866249628], [0.4727435210008936], [0.418193327375633], [0.418193327375633], [0.4727435210008936], [0.5272564789991063], [0.6000148942508192], [0.6727360738754841], [0.763628239499553], [0.8181784331248138], [0.8000074471254095], [0.7272490318736967], [0.6181858802502234], [0.5272564789991063], [0.4727435210008936], [0.4909145070002979], [0.5454647006255585], [0.5636356866249628], [0.5818066726243669], [0.5818066726243669], [0.5636356866249628], [0.5636356866249628], [0.5454647006255585], [0.5090854929997021], [0.4363643133750372], [0.39998510574918084], [0.34547214775096813], [0.3272639261245159], [0.2909219541257075], [0.2909219541257075], [0.3090929401251117], [0.3636431337503723], [0.418193327375633], [0.4909145070002979], [0.5454647006255585], [0.5454647006255585], [0.5090854929997021], [0.4363643133750372], [0.34547214775096813], [0.2727137324992553], [0.23637176050044678], [0.23637176050044678], [0.2727137324992553], [0.3272639261245159], [0.418193327375633], [0.4727435210008936], [0.5090854929997021], [0.5272564789991063], [0.5090854929997021], [0.4909145070002979], [0.4545352993744415], [0.4727435210008936], [0.5090854929997021], [0.5636356866249628], [0.6000148942508192], [0.6000148942508192], [0.5454647006255585], [0.4363643133750372], [0.3090929401251117], [0.23637176050044678], [0.21820077450104255], [0.2727137324992553], [0.418193327375633], [0.5454647006255585], [0.6545278522490318], [0.6545278522490318], [0.5636356866249628], [0.418193327375633], [0.2909219541257075], [0.21820077450104255], [0.25454274649985115], [0.3636431337503723], [0.5090854929997021], [0.6000148942508192], [0.6000148942508192], [0.5454647006255585], [0.4545352993744415], [0.3818141197497765], [0.3636431337503723], [0.39998510574918084], [0.4909145070002979], [0.5818066726243669], [0.6363568662496276], [0.6545278522490318], [0.6181858802502234], [0.5636356866249628], [0.5090854929997021], [0.5090854929997021], [0.5454647006255585], [0.5818066726243669], [0.6000148942508192], [0.5818066726243669], [0.5454647006255585], [0.5454647006255585], [0.6000148942508192], [0.6727360738754841], [0.7454572535001489], [0.7817992254989574], [0.7272490318736967], [0.6363568662496276], [0.5454647006255585], [0.5272564789991063], [0.5636356866249628], [0.6363568662496276], [0.7090780458742925], [0.7454572535001489], [0.7090780458742925], [0.6545278522490318], [0.5818066726243669], [0.5090854929997021], [0.4909145070002979], [0.4727435210008936], [0.5090854929997021], [0.5818066726243669], [0.6727360738754841], [0.7272490318736967], [0.7090780458742925], [0.6181858802502234], [0.4909145070002979], [0.3636431337503723], [0.34547214775096813], [0.418193327375633], [0.5818066726243669], [0.7454572535001489], [0.8181784331248138], [0.7454572535001489], [0.5636356866249628], [0.34547214775096813], [0.19999255287459033], [0.21820077450104255], [0.3636431337503723], [0.5636356866249628], [0.7090780458742925], [0.7090780458742925], [0.5818066726243669], [0.39998510574918084], [0.23637176050044678], [0.18182156687518614], [0.25454274649985115], [0.3818141197497765], [0.5272564789991063], [0.5636356866249628], [0.5090854929997021], [0.3272639261245159], [0.1272713732499255], [0.0], [0.036379207625856426], [0.21820077450104255], [0.5090854929997021], [0.763628239499553], [0.909070598748883], [0.8545204051236223], [0.6363568662496276]], "masks": [[1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1]], "evals": [[0.909070598748883], [0.8727286267500743], [0.8908996127494787], [0.909070598748883], [0.909070598748883], [0.8545204051236223], [0.7817992254989574], [0.7090780458742925], [0.6909070598748882], [0.7090780458742925], [0.763628239499553], [0.8181784331248138], [0.8363494191242181], [0.8181784331248138], [0.763628239499553], [0.7272490318736967], [0.7090780458742925], [0.7454572535001489], [0.8181784331248138], [0.909070598748883], [0.9817917783735478], [1.0], [0.9454498063747394], [0.8363494191242181], [0.7272490318736967], [0.6545278522490318], [0.6363568662496276], [0.6545278522490318], [0.6727360738754841], [0.6545278522490318], [0.6000148942508192], [0.5272564789991063], [0.4727435210008936], [0.4727435210008936], [0.5272564789991063], [0.6181858802502234], [0.7272490318736967], [0.8181784331248138], [0.8363494191242181], [0.8181784331248138], [0.7454572535001489], [0.6545278522490318], [0.5818066726243669], [0.5454647006255585], [0.5272564789991063], [0.5272564789991063], [0.5272564789991063], [0.5636356866249628], [0.6000148942508192], [0.6363568662496276], [0.6727360738754841], [0.6727360738754841], [0.6181858802502234], [0.5272564789991063], [0.4545352993744415], [0.418193327375633], [0.4363643133750372], [0.4909145070002979], [0.5272564789991063], [0.5454647006255585], [0.5272564789991063], [0.5090854929997021], [0.5272564789991063], [0.5818066726243669], [0.6545278522490318], [0.7272490318736967], [0.7272490318736967], [0.6545278522490318], [0.5636356866249628], [0.4909145070002979], [0.4909145070002979], [0.5636356866249628], [0.7090780458742925], [0.8181784331248138], [0.8727286267500743], [0.8000074471254095], [0.6000148942508192], [0.3272639261245159], [0.1272713732499255], [0.07272117962466486], [0.19999255287459033], [0.4727435210008936], [0.763628239499553], [0.9454498063747394], [0.9454498063747394], [0.8181784331248138], [0.6363568662496276], [0.4909145070002979], [0.4363643133750372], [0.4545352993744415], [0.5454647006255585], [0.6181858802502234], [0.6545278522490318], [0.6545278522490318], [0.6363568662496276], [0.5818066726243669], [0.5090854929997021], [0.4727435210008936], [0.4909145070002979], [0.5636356866249628], [0.6545278522490318], [0.6727360738754841], [0.6363568662496276], [0.5636356866249628], [0.4727435210008936], [0.418193327375633], [0.418193327375633], [0.4727435210008936], [0.5272564789991063], [0.6000148942508192], [0.6727360738754841], [0.763628239499553], [0.8181784331248138], [0.8000074471254095], [0.7272490318736967], [0.6181858802502234], [0.5272564789991063], [0.4727435210008936], [0.4909145070002979], [0.5454647006255585], [0.5636356866249628], [0.5818066726243669], [0.5818066726243669], [0.5636356866249628], [0.5636356866249628], [0.5454647006255585], [0.5090854929997021], [0.4363643133750372], [0.39998510574918084], [0.34547214775096813], [0.3272639261245159], [0.2909219541257075], [0.2909219541257075], [0.3090929401251117], [0.3636431337503723], [0.418193327375633], [0.4909145070002979], [0.5454647006255585], [0.5454647006255585], [0.5090854929997021], [0.4363643133750372], [0.34547214775096813], [0.2727137324992553], [0.23637176050044678], [0.23637176050044678], [0.2727137324992553], [0.3272639261245159], [0.418193327375633], [0.4727435210008936], [0.5090854929997021], [0.5272564789991063], [0.5090854929997021], [0.4909145070002979], [0.4545352993744415], [0.4727435210008936], [0.5090854929997021], [0.5636356866249628], [0.6000148942508192], [0.6000148942508192], [0.5454647006255585], [0.4363643133750372], [0.3090929401251117], [0.23637176050044678], [0.21820077450104255], [0.2727137324992553], [0.418193327375633], [0.5454647006255585], [0.6545278522490318], [0.6545278522490318], [0.5636356866249628], [0.418193327375633], [0.2909219541257075], [0.21820077450104255], [0.25454274649985115], [0.3636431337503723], [0.5090854929997021], [0.6000148942508192], [0.6000148942508192], [0.5454647006255585], [0.4545352993744415], [0.3818141197497765], [0.3636431337503723], [0.39998510574918084], [0.4909145070002979], [0.5818066726243669], [0.6363568662496276], [0.6545278522490318], [0.6181858802502234], [0.5636356866249628], [0.5090854929997021], [0.5090854929997021], [0.5454647006255585], [0.5818066726243669], [0.6000148942508192], [0.5818066726243669], [0.5454647006255585], [0.5454647006255585], [0.6000148942508192], [0.6727360738754841], [0.7454572535001489], [0.7817992254989574], [0.7272490318736967], [0.6363568662496276], [0.5454647006255585], [0.5272564789991063], [0.5636356866249628], [0.6363568662496276], [0.7090780458742925], [0.7454572535001489], [0.7090780458742925], [0.6545278522490318], [0.5818066726243669], [0.5090854929997021], [0.4909145070002979], [0.4727435210008936], [0.5090854929997021], [0.5818066726243669], [0.6727360738754841], [0.7272490318736967], [0.7090780458742925], [0.6181858802502234], [0.4909145070002979], [0.3636431337503723], [0.34547214775096813], [0.418193327375633], [0.5818066726243669], [0.7454572535001489], [0.8181784331248138], [0.7454572535001489], [0.5636356866249628], [0.34547214775096813], [0.19999255287459033], [0.21820077450104255], [0.3636431337503723], [0.5636356866249628], [0.7090780458742925], [0.7090780458742925], [0.5818066726243669], [0.39998510574918084], [0.23637176050044678], [0.18182156687518614], [0.25454274649985115], [0.3818141197497765], [0.5272564789991063], [0.5636356866249628], [0.5090854929997021], [0.3272639261245159], [0.1272713732499255], [0.0], [0.036379207625856426], [0.21820077450104255], [0.5090854929997021], [0.763628239499553], [0.909070598748883], [0.8545204051236223], [0.6363568662496276]], "eval_masks": [[0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0]], "forwards": [[0.909070598748883], [0.8727286267500743], [0.8908996127494787], [0.909070598748883], [0.909070598748883], [0.8545204051236223], [0.7817992254989574], [0.7090780458742925], [0.6909070598748882], [0.7090780458742925], [0.763628239499553], [0.8181784331248138], [0.8363494191242181], [0.8181784331248138], [0.763628239499553], [0.7272490318736967], [0.7090780458742925], [0.7454572535001489], [0.8181784331248138], [0.909070598748883], [0.9817917783735478], [1.0], [0.9454498063747394], [0.8363494191242181], [0.7272490318736967], [0.6545278522490318], [0.6363568662496276], [0.6545278522490318], [0.6727360738754841], [0.6545278522490318], [0.6000148942508192], [0.5272564789991063], [0.4727435210008936], [0.4727435210008936], [0.5272564789991063], [0.6181858802502234], [0.7272490318736967], [0.8181784331248138], [0.8363494191242181], [0.8181784331248138], [0.7454572535001489], [0.6545278522490318], [0.5818066726243669], [0.5454647006255585], [0.5272564789991063], [0.5272564789991063], [0.5272564789991063], [0.5636356866249628], [0.6000148942508192], [0.6363568662496276], [0.6727360738754841], [0.6727360738754841], [0.6181858802502234], [0.5272564789991063], [0.4545352993744415], [0.418193327375633], [0.4363643133750372], [0.4909145070002979], [0.5272564789991063], [0.5454647006255585], [0.5272564789991063], [0.5090854929997021], [0.5272564789991063], [0.5818066726243669], [0.6545278522490318], [0.7272490318736967], [0.7272490318736967], [0.6545278522490318], [0.5636356866249628], [0.4909145070002979], [0.4909145070002979], [0.5636356866249628], [0.7090780458742925], [0.8181784331248138], [0.8727286267500743], [0.8000074471254095], [0.6000148942508192], [0.3272639261245159], [0.1272713732499255], [0.07272117962466486], [0.19999255287459033], [0.4727435210008936], [0.763628239499553], [0.9454498063747394], [0.9454498063747394], [0.8181784331248138], [0.6363568662496276], [0.4909145070002979], [0.4363643133750372], [0.4545352993744415], [0.5454647006255585], [0.6181858802502234], [0.6545278522490318], [0.6545278522490318], [0.6363568662496276], [0.5818066726243669], [0.5090854929997021], [0.4727435210008936], [0.4909145070002979], [0.5636356866249628], [0.6545278522490318], [0.6727360738754841], [0.6363568662496276], [0.5636356866249628], [0.4727435210008936], [0.418193327375633], [0.418193327375633], [0.4727435210008936], [0.5272564789991063], [0.6000148942508192], [0.6727360738754841], [0.763628239499553], [0.8181784331248138], [0.8000074471254095], [0.7272490318736967], [0.6181858802502234], [0.5272564789991063], [0.4727435210008936], [0.4909145070002979], [0.5454647006255585], [0.5636356866249628], [0.5818066726243669], [0.5818066726243669], [0.5636356866249628], [0.5636356866249628], [0.5454647006255585], [0.5090854929997021], [0.4363643133750372], [0.39998510574918084], [0.34547214775096813], [0.3272639261245159], [0.2909219541257075], [0.2909219541257075], [0.3090929401251117], [0.3636431337503723], [0.418193327375633], [0.4909145070002979], [0.5454647006255585], [0.5454647006255585], [0.5090854929997021], [0.4363643133750372], [0.34547214775096813], [0.2727137324992553], [0.23637176050044678], [0.23637176050044678], [0.2727137324992553], [0.3272639261245159], [0.418193327375633], [0.4727435210008936], [0.5090854929997021], [0.5272564789991063], [0.5090854929997021], [0.4909145070002979], [0.4545352993744415], [0.4727435210008936], [0.5090854929997021], [0.5636356866249628], [0.6000148942508192], [0.6000148942508192], [0.5454647006255585], [0.4363643133750372], [0.3090929401251117], [0.23637176050044678], [0.21820077450104255], [0.2727137324992553], [0.418193327375633], [0.5454647006255585], [0.6545278522490318], [0.6545278522490318], [0.5636356866249628], [0.418193327375633], [0.2909219541257075], [0.21820077450104255], [0.25454274649985115], [0.3636431337503723], [0.5090854929997021], [0.6000148942508192], [0.6000148942508192], [0.5454647006255585], [0.4545352993744415], [0.3818141197497765], [0.3636431337503723], [0.39998510574918084], [0.4909145070002979], [0.5818066726243669], [0.6363568662496276], [0.6545278522490318], [0.6181858802502234], [0.5636356866249628], [0.5090854929997021], [0.5090854929997021], [0.5454647006255585], [0.5818066726243669], [0.6000148942508192], [0.5818066726243669], [0.5454647006255585], [0.5454647006255585], [0.6000148942508192], [0.6727360738754841], [0.7454572535001489], [0.7817992254989574], [0.7272490318736967], [0.6363568662496276], [0.5454647006255585], [0.5272564789991063], [0.5636356866249628], [0.6363568662496276], [0.7090780458742925], [0.7454572535001489], [0.7090780458742925], [0.6545278522490318], [0.5818066726243669], [0.5090854929997021], [0.4909145070002979], [0.4727435210008936], [0.5090854929997021], [0.5818066726243669], [0.6727360738754841], [0.7272490318736967], [0.7090780458742925], [0.6181858802502234], [0.4909145070002979], [0.3636431337503723], [0.34547214775096813], [0.418193327375633], [0.5818066726243669], [0.7454572535001489], [0.8181784331248138], [0.7454572535001489], [0.5636356866249628], [0.34547214775096813], [0.19999255287459033], [0.21820077450104255], [0.3636431337503723], [0.5636356866249628], [0.7090780458742925], [0.7090780458742925], [0.5818066726243669], [0.39998510574918084], [0.23637176050044678], [0.18182156687518614], [0.25454274649985115], [0.3818141197497765], [0.5272564789991063], [0.5636356866249628], [0.5090854929997021], [0.3272639261245159], [0.1272713732499255], [0.0], [0.036379207625856426], [0.21820077450104255], [0.5090854929997021], [0.763628239499553], [0.909070598748883], [0.8545204051236223], [0.6363568662496276]], "deltas": [[1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0]]}, "backward": {"values": [[0.6363568662496276], [0.8545204051236223], [0.909070598748883], [0.763628239499553], [0.5090854929997021], [0.21820077450104255], [0.036379207625856426], [0.0], [0.1272713732499255], [0.3272639261245159], [0.5090854929997021], [0.5636356866249628], [0.5272564789991063], [0.3818141197497765], [0.25454274649985115], [0.18182156687518614], [0.23637176050044678], [0.39998510574918084], [0.5818066726243669], [0.7090780458742925], [0.7090780458742925], [0.5636356866249628], [0.3636431337503723], [0.21820077450104255], [0.19999255287459033], [0.34547214775096813], [0.5636356866249628], [0.7454572535001489], [0.8181784331248138], [0.7454572535001489], [0.5818066726243669], [0.418193327375633], [0.34547214775096813], [0.3636431337503723], [0.4909145070002979], [0.6181858802502234], [0.7090780458742925], [0.7272490318736967], [0.6727360738754841], [0.5818066726243669], [0.5090854929997021], [0.4727435210008936], [0.4909145070002979], [0.5090854929997021], [0.5818066726243669], [0.6545278522490318], [0.7090780458742925], [0.7454572535001489], [0.7090780458742925], [0.6363568662496276], [0.5636356866249628], [0.5272564789991063], [0.5454647006255585], [0.6363568662496276], [0.7272490318736967], [0.7817992254989574], [0.7454572535001489], [0.6727360738754841], [0.6000148942508192], [0.5454647006255585], [0.5454647006255585], [0.5818066726243669], [0.6000148942508192], [0.5818066726243669], [0.5454647006255585], [0.5090854929997021], [0.5090854929997021], [0.5636356866249628], [0.6181858802502234], [0.6545278522490318], [0.6363568662496276], [0.5818066726243669], [0.4909145070002979], [0.39998510574918084], [0.3636431337503723], [0.3818141197497765], [0.4545352993744415], [0.5454647006255585], [0.6000148942508192], [0.6000148942508192], [0.5090854929997021], [0.3636431337503723], [0.25454274649985115], [0.21820077450104255], [0.2909219541257075], [0.418193327375633], [0.5636356866249628], [0.6545278522490318], [0.6545278522490318], [0.5454647006255585], [0.418193327375633], [0.2727137324992553], [0.21820077450104255], [0.23637176050044678], [0.3090929401251117], [0.4363643133750372], [0.5454647006255585], [0.6000148942508192], [0.6000148942508192], [0.5636356866249628], [0.5090854929997021], [0.4727435210008936], [0.4545352993744415], [0.4909145070002979], [0.5090854929997021], [0.5272564789991063], [0.5090854929997021], [0.4727435210008936], [0.418193327375633], [0.3272639261245159], [0.2727137324992553], [0.23637176050044678], [0.23637176050044678], [0.2727137324992553], [0.34547214775096813], [0.4363643133750372], [0.5090854929997021], [0.5454647006255585], [0.5454647006255585], [0.4909145070002979], [0.418193327375633], [0.3636431337503723], [0.3090929401251117], [0.2909219541257075], [0.2909219541257075], [0.3272639261245159], [0.34547214775096813], [0.39998510574918084], [0.4363643133750372], [0.5090854929997021], [0.5454647006255585], [0.5636356866249628], [0.5636356866249628], [0.5818066726243669], [0.5818066726243669], [0.5636356866249628], [0.5454647006255585], [0.4909145070002979], [0.4727435210008936], [0.5272564789991063], [0.6181858802502234], [0.7272490318736967], [0.8000074471254095], [0.8181784331248138], [0.763628239499553], [0.6727360738754841], [0.6000148942508192], [0.5272564789991063], [0.4727435210008936], [0.418193327375633], [0.418193327375633], [0.4727435210008936], [0.5636356866249628], [0.6363568662496276], [0.6727360738754841], [0.6545278522490318], [0.5636356866249628], [0.4909145070002979], [0.4727435210008936], [0.5090854929997021], [0.5818066726243669], [0.6363568662496276], [0.6545278522490318], [0.6545278522490318], [0.6181858802502234], [0.5454647006255585], [0.4545352993744415], [0.4363643133750372], [0.4909145070002979], [0.6363568662496276], [0.8181784331248138], [0.9454498063747394], [0.9454498063747394], [0.763628239499553], [0.4727435210008936], [0.19999255287459033], [0.07272117962466486], [0.1272713732499255], [0.3272639261245159], [0.6000148942508192], [0.8000074471254095], [0.8727286267500743], [0.8181784331248138], [0.7090780458742925], [0.5636356866249628], [0.4909145070002979], [0.4909145070002979], [0.5636356866249628], [0.6545278522490318], [0.7272490318736967], [0.7272490318736967], [0.6545278522490318], [0.5818066726243669], [0.5272564789991063], [0.5090854929997021], [0.5272564789991063], [0.5454647006255585], [0.5272564789991063], [0.4909145070002979], [0.4363643133750372], [0.418193327375633], [0.4545352993744415], [0.5272564789991063], [0.6181858802502234], [0.6727360738754841], [0.6727360738754841], [0.6363568662496276], [0.6000148942508192], [0.5636356866249628], [0.5272564789991063], [0.5272564789991063], [0.5272564789991063], [0.5454647006255585], [0.5818066726243669], [0.6545278522490318], [0.7454572535001489], [0.8181784331248138], [0.8363494191242181], [0.8181784331248138], [0.7272490318736967], [0.6181858802502234], [0.5272564789991063], [0.4727435210008936], [0.4727435210008936], [0.5272564789991063], [0.6000148942508192], [0.6545278522490318], [0.6727360738754841], [0.6545278522490318], [0.6363568662496276], [0.6545278522490318], [0.7272490318736967], [0.8363494191242181], [0.9454498063747394], [1.0], [0.9817917783735478], [0.909070598748883], [0.8181784331248138], [0.7454572535001489], [0.7090780458742925], [0.7272490318736967], [0.763628239499553], [0.8181784331248138], [0.8363494191242181], [0.8181784331248138], [0.763628239499553], [0.7090780458742925], [0.6909070598748882], [0.7090780458742925], [0.7817992254989574], [0.8545204051236223], [0.909070598748883], [0.909070598748883], [0.8908996127494787], [0.8727286267500743], [0.909070598748883]], "masks": [[1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1]], "evals": [[0.6363568662496276], [0.8545204051236223], [0.909070598748883], [0.763628239499553], [0.5090854929997021], [0.21820077450104255], [0.036379207625856426], [0.0], [0.1272713732499255], [0.3272639261245159], [0.5090854929997021], [0.5636356866249628], [0.5272564789991063], [0.3818141197497765], [0.25454274649985115], [0.18182156687518614], [0.23637176050044678], [0.39998510574918084], [0.5818066726243669], [0.7090780458742925], [0.7090780458742925], [0.5636356866249628], [0.3636431337503723], [0.21820077450104255], [0.19999255287459033], [0.34547214775096813], [0.5636356866249628], [0.7454572535001489], [0.8181784331248138], [0.7454572535001489], [0.5818066726243669], [0.418193327375633], [0.34547214775096813], [0.3636431337503723], [0.4909145070002979], [0.6181858802502234], [0.7090780458742925], [0.7272490318736967], [0.6727360738754841], [0.5818066726243669], [0.5090854929997021], [0.4727435210008936], [0.4909145070002979], [0.5090854929997021], [0.5818066726243669], [0.6545278522490318], [0.7090780458742925], [0.7454572535001489], [0.7090780458742925], [0.6363568662496276], [0.5636356866249628], [0.5272564789991063], [0.5454647006255585], [0.6363568662496276], [0.7272490318736967], [0.7817992254989574], [0.7454572535001489], [0.6727360738754841], [0.6000148942508192], [0.5454647006255585], [0.5454647006255585], [0.5818066726243669], [0.6000148942508192], [0.5818066726243669], [0.5454647006255585], [0.5090854929997021], [0.5090854929997021], [0.5636356866249628], [0.6181858802502234], [0.6545278522490318], [0.6363568662496276], [0.5818066726243669], [0.4909145070002979], [0.39998510574918084], [0.3636431337503723], [0.3818141197497765], [0.4545352993744415], [0.5454647006255585], [0.6000148942508192], [0.6000148942508192], [0.5090854929997021], [0.3636431337503723], [0.25454274649985115], [0.21820077450104255], [0.2909219541257075], [0.418193327375633], [0.5636356866249628], [0.6545278522490318], [0.6545278522490318], [0.5454647006255585], [0.418193327375633], [0.2727137324992553], [0.21820077450104255], [0.23637176050044678], [0.3090929401251117], [0.4363643133750372], [0.5454647006255585], [0.6000148942508192], [0.6000148942508192], [0.5636356866249628], [0.5090854929997021], [0.4727435210008936], [0.4545352993744415], [0.4909145070002979], [0.5090854929997021], [0.5272564789991063], [0.5090854929997021], [0.4727435210008936], [0.418193327375633], [0.3272639261245159], [0.2727137324992553], [0.23637176050044678], [0.23637176050044678], [0.2727137324992553], [0.34547214775096813], [0.4363643133750372], [0.5090854929997021], [0.5454647006255585], [0.5454647006255585], [0.4909145070002979], [0.418193327375633], [0.3636431337503723], [0.3090929401251117], [0.2909219541257075], [0.2909219541257075], [0.3272639261245159], [0.34547214775096813], [0.39998510574918084], [0.4363643133750372], [0.5090854929997021], [0.5454647006255585], [0.5636356866249628], [0.5636356866249628], [0.5818066726243669], [0.5818066726243669], [0.5636356866249628], [0.5454647006255585], [0.4909145070002979], [0.4727435210008936], [0.5272564789991063], [0.6181858802502234], [0.7272490318736967], [0.8000074471254095], [0.8181784331248138], [0.763628239499553], [0.6727360738754841], [0.6000148942508192], [0.5272564789991063], [0.4727435210008936], [0.418193327375633], [0.418193327375633], [0.4727435210008936], [0.5636356866249628], [0.6363568662496276], [0.6727360738754841], [0.6545278522490318], [0.5636356866249628], [0.4909145070002979], [0.4727435210008936], [0.5090854929997021], [0.5818066726243669], [0.6363568662496276], [0.6545278522490318], [0.6545278522490318], [0.6181858802502234], [0.5454647006255585], [0.4545352993744415], [0.4363643133750372], [0.4909145070002979], [0.6363568662496276], [0.8181784331248138], [0.9454498063747394], [0.9454498063747394], [0.763628239499553], [0.4727435210008936], [0.19999255287459033], [0.07272117962466486], [0.1272713732499255], [0.3272639261245159], [0.6000148942508192], [0.8000074471254095], [0.8727286267500743], [0.8181784331248138], [0.7090780458742925], [0.5636356866249628], [0.4909145070002979], [0.4909145070002979], [0.5636356866249628], [0.6545278522490318], [0.7272490318736967], [0.7272490318736967], [0.6545278522490318], [0.5818066726243669], [0.5272564789991063], [0.5090854929997021], [0.5272564789991063], [0.5454647006255585], [0.5272564789991063], [0.4909145070002979], [0.4363643133750372], [0.418193327375633], [0.4545352993744415], [0.5272564789991063], [0.6181858802502234], [0.6727360738754841], [0.6727360738754841], [0.6363568662496276], [0.6000148942508192], [0.5636356866249628], [0.5272564789991063], [0.5272564789991063], [0.5272564789991063], [0.5454647006255585], [0.5818066726243669], [0.6545278522490318], [0.7454572535001489], [0.8181784331248138], [0.8363494191242181], [0.8181784331248138], [0.7272490318736967], [0.6181858802502234], [0.5272564789991063], [0.4727435210008936], [0.4727435210008936], [0.5272564789991063], [0.6000148942508192], [0.6545278522490318], [0.6727360738754841], [0.6545278522490318], [0.6363568662496276], [0.6545278522490318], [0.7272490318736967], [0.8363494191242181], [0.9454498063747394], [1.0], [0.9817917783735478], [0.909070598748883], [0.8181784331248138], [0.7454572535001489], [0.7090780458742925], [0.7272490318736967], [0.763628239499553], [0.8181784331248138], [0.8363494191242181], [0.8181784331248138], [0.763628239499553], [0.7090780458742925], [0.6909070598748882], [0.7090780458742925], [0.7817992254989574], [0.8545204051236223], [0.909070598748883], [0.909070598748883], [0.8908996127494787], [0.8727286267500743], [0.909070598748883]], "eval_masks": [[0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0]], "forwards": [[0.6363568662496276], [0.8545204051236223], [0.909070598748883], [0.763628239499553], [0.5090854929997021], [0.21820077450104255], [0.036379207625856426], [0.0], [0.1272713732499255], [0.3272639261245159], [0.5090854929997021], [0.5636356866249628], [0.5272564789991063], [0.3818141197497765], [0.25454274649985115], [0.18182156687518614], [0.23637176050044678], [0.39998510574918084], [0.5818066726243669], [0.7090780458742925], [0.7090780458742925], [0.5636356866249628], [0.3636431337503723], [0.21820077450104255], [0.19999255287459033], [0.34547214775096813], [0.5636356866249628], [0.7454572535001489], [0.8181784331248138], [0.7454572535001489], [0.5818066726243669], [0.418193327375633], [0.34547214775096813], [0.3636431337503723], [0.4909145070002979], [0.6181858802502234], [0.7090780458742925], [0.7272490318736967], [0.6727360738754841], [0.5818066726243669], [0.5090854929997021], [0.4727435210008936], [0.4909145070002979], [0.5090854929997021], [0.5818066726243669], [0.6545278522490318], [0.7090780458742925], [0.7454572535001489], [0.7090780458742925], [0.6363568662496276], [0.5636356866249628], [0.5272564789991063], [0.5454647006255585], [0.6363568662496276], [0.7272490318736967], [0.7817992254989574], [0.7454572535001489], [0.6727360738754841], [0.6000148942508192], [0.5454647006255585], [0.5454647006255585], [0.5818066726243669], [0.6000148942508192], [0.5818066726243669], [0.5454647006255585], [0.5090854929997021], [0.5090854929997021], [0.5636356866249628], [0.6181858802502234], [0.6545278522490318], [0.6363568662496276], [0.5818066726243669], [0.4909145070002979], [0.39998510574918084], [0.3636431337503723], [0.3818141197497765], [0.4545352993744415], [0.5454647006255585], [0.6000148942508192], [0.6000148942508192], [0.5090854929997021], [0.3636431337503723], [0.25454274649985115], [0.21820077450104255], [0.2909219541257075], [0.418193327375633], [0.5636356866249628], [0.6545278522490318], [0.6545278522490318], [0.5454647006255585], [0.418193327375633], [0.2727137324992553], [0.21820077450104255], [0.23637176050044678], [0.3090929401251117], [0.4363643133750372], [0.5454647006255585], [0.6000148942508192], [0.6000148942508192], [0.5636356866249628], [0.5090854929997021], [0.4727435210008936], [0.4545352993744415], [0.4909145070002979], [0.5090854929997021], [0.5272564789991063], [0.5090854929997021], [0.4727435210008936], [0.418193327375633], [0.3272639261245159], [0.2727137324992553], [0.23637176050044678], [0.23637176050044678], [0.2727137324992553], [0.34547214775096813], [0.4363643133750372], [0.5090854929997021], [0.5454647006255585], [0.5454647006255585], [0.4909145070002979], [0.418193327375633], [0.3636431337503723], [0.3090929401251117], [0.2909219541257075], [0.2909219541257075], [0.3272639261245159], [0.34547214775096813], [0.39998510574918084], [0.4363643133750372], [0.5090854929997021], [0.5454647006255585], [0.5636356866249628], [0.5636356866249628], [0.5818066726243669], [0.5818066726243669], [0.5636356866249628], [0.5454647006255585], [0.4909145070002979], [0.4727435210008936], [0.5272564789991063], [0.6181858802502234], [0.7272490318736967], [0.8000074471254095], [0.8181784331248138], [0.763628239499553], [0.6727360738754841], [0.6000148942508192], [0.5272564789991063], [0.4727435210008936], [0.418193327375633], [0.418193327375633], [0.4727435210008936], [0.5636356866249628], [0.6363568662496276], [0.6727360738754841], [0.6545278522490318], [0.5636356866249628], [0.4909145070002979], [0.4727435210008936], [0.5090854929997021], [0.5818066726243669], [0.6363568662496276], [0.6545278522490318], [0.6545278522490318], [0.6181858802502234], [0.5454647006255585], [0.4545352993744415], [0.4363643133750372], [0.4909145070002979], [0.6363568662496276], [0.8181784331248138], [0.9454498063747394], [0.9454498063747394], [0.763628239499553], [0.4727435210008936], [0.19999255287459033], [0.07272117962466486], [0.1272713732499255], [0.3272639261245159], [0.6000148942508192], [0.8000074471254095], [0.8727286267500743], [0.8181784331248138], [0.7090780458742925], [0.5636356866249628], [0.4909145070002979], [0.4909145070002979], [0.5636356866249628], [0.6545278522490318], [0.7272490318736967], [0.7272490318736967], [0.6545278522490318], [0.5818066726243669], [0.5272564789991063], [0.5090854929997021], [0.5272564789991063], [0.5454647006255585], [0.5272564789991063], [0.4909145070002979], [0.4363643133750372], [0.418193327375633], [0.4545352993744415], [0.5272564789991063], [0.6181858802502234], [0.6727360738754841], [0.6727360738754841], [0.6363568662496276], [0.6000148942508192], [0.5636356866249628], [0.5272564789991063], [0.5272564789991063], [0.5272564789991063], [0.5454647006255585], [0.5818066726243669], [0.6545278522490318], [0.7454572535001489], [0.8181784331248138], [0.8363494191242181], [0.8181784331248138], [0.7272490318736967], [0.6181858802502234], [0.5272564789991063], [0.4727435210008936], [0.4727435210008936], [0.5272564789991063], [0.6000148942508192], [0.6545278522490318], [0.6727360738754841], [0.6545278522490318], [0.6363568662496276], [0.6545278522490318], [0.7272490318736967], [0.8363494191242181], [0.9454498063747394], [1.0], [0.9817917783735478], [0.909070598748883], [0.8181784331248138], [0.7454572535001489], [0.7090780458742925], [0.7272490318736967], [0.763628239499553], [0.8181784331248138], [0.8363494191242181], [0.8181784331248138], [0.763628239499553], [0.7090780458742925], [0.6909070598748882], [0.7090780458742925], [0.7817992254989574], [0.8545204051236223], [0.909070598748883], [0.909070598748883], [0.8908996127494787], [0.8727286267500743], [0.909070598748883]], "deltas": [[1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0]]}} -{"label": 0, "forward": {"values": [[0.9592058516196448], [0.9183699059561129], [0.8571368861024034], [0.816342737722048], [0.7551097178683385], [0.7142737722048066], [0.7142737722048066], [0.7347126436781609], [0.7755067920585162], [0.816342737722048], [0.8367398119122258], [0.8367398119122258], [0.816342737722048], [0.816342737722048], [0.816342737722048], [0.816342737722048], [0.8367398119122258], [0.8571368861024034], [0.8775757575757577], [0.8571368861024034], [0.7959456635318704], [0.7142737722048066], [0.5918495297805643], [0.5102194357366772], [0.4897805642633229], [0.5102194357366772], [0.5918495297805643], [0.6734796238244514], [0.7142737722048066], [0.7551097178683385], [0.7551097178683385], [0.7959456635318704], [0.8367398119122258], [0.8775757575757577], [0.8979728317659352], [0.8775757575757577], [0.8367398119122258], [0.7755067920585162], [0.7142737722048066], [0.6734796238244514], [0.6326436781609196], [0.6326436781609196], [0.6734796238244514], [0.7142737722048066], [0.7755067920585162], [0.7755067920585162], [0.7551097178683385], [0.6734796238244514], [0.6326436781609196], [0.6122466039707418], [0.693876698014629], [0.7551097178683385], [0.7551097178683385], [0.693876698014629], [0.5918495297805643], [0.5102194357366772], [0.4897805642633229], [0.5510135841170324], [0.6326436781609196], [0.6734796238244514], [0.693876698014629], [0.6734796238244514], [0.6530825496342737], [0.6530825496342737], [0.6530825496342737], [0.6530825496342737], [0.6734796238244514], [0.693876698014629], [0.7551097178683385], [0.7959456635318704], [0.8367398119122258], [0.816342737722048], [0.7142737722048066], [0.5918495297805643], [0.4693834900731452], [0.40815047021943573], [0.40815047021943573], [0.4489864158829676], [0.5306165099268547], [0.6326436781609196], [0.7347126436781609], [0.7755067920585162], [0.7142737722048066], [0.5306165099268547], [0.28568443051201675], [0.061191222570533006], [0.0], [0.1428631138975967], [0.42854754440961335], [0.7551097178683385], [0.9387669801462905], [0.9387669801462905], [0.7551097178683385], [0.4897805642633229], [0.26528735632183914], [0.10202716823406474], [0.020397074190177618], [0.040794148380355236], [0.1428631138975967], [0.28568443051201675], [0.4489864158829676], [0.5510135841170324], [0.5714106583072099], [0.5102194357366772], [0.40815047021943573], [0.34691745036572624], [0.32652037617554863], [0.40815047021943573], [0.4693834900731452], [0.5102194357366772], [0.5102194357366772], [0.4489864158829676], [0.3877533960292581], [0.34691745036572624], [0.34691745036572624], [0.36735632183908046], [0.42854754440961335], [0.4693834900731452], [0.5306165099268547], [0.5306165099268547], [0.4897805642633229], [0.40815047021943573], [0.28568443051201675], [0.16326018808777432], [0.08163009404388712], [0.061191222570533006], [0.10202716823406474], [0.18365726227795193], [0.26528735632183914], [0.32652037617554863], [0.36735632183908046], [0.32652037617554863], [0.28568443051201675], [0.2244932079414838], [0.16326018808777432], [0.16326018808777432], [0.20405433646812957], [0.28568443051201675], [0.36735632183908046], [0.40815047021943573], [0.3877533960292581], [0.32652037617554863], [0.28568443051201675], [0.24489028213166145], [0.26528735632183914], [0.32652037617554863], [0.3877533960292581], [0.42854754440961335], [0.4489864158829676], [0.42854754440961335], [0.3877533960292581], [0.36735632183908046], [0.36735632183908046], [0.42854754440961335], [0.5102194357366772], [0.5714106583072099], [0.5918495297805643], [0.5510135841170324], [0.4897805642633229], [0.40815047021943573], [0.36735632183908046], [0.36735632183908046], [0.36735632183908046], [0.3877533960292581], [0.40815047021943573], [0.42854754440961335], [0.4693834900731452], [0.5102194357366772], [0.5510135841170324], [0.5510135841170324], [0.5306165099268547], [0.4897805642633229], [0.4693834900731452], [0.4693834900731452], [0.5102194357366772], [0.5918495297805643], [0.6734796238244514], [0.7142737722048066], [0.7755067920585162], [0.7755067920585162], [0.7347126436781609], [0.6734796238244514], [0.6122466039707418], [0.5714106583072099], [0.5510135841170324], [0.5714106583072099], [0.5714106583072099], [0.5714106583072099], [0.5306165099268547], [0.4693834900731452], [0.42854754440961335], [0.42854754440961335], [0.4693834900731452], [0.5714106583072099], [0.6530825496342737], [0.7142737722048066], [0.693876698014629], [0.6122466039707418], [0.5306165099268547], [0.4897805642633229], [0.5306165099268547], [0.6326436781609196], [0.7755067920585162], [0.9183699059561129], [0.9796029258098223], [0.9592058516196448], [0.8775757575757577], [0.7347126436781609], [0.6326436781609196], [0.5918495297805643], [0.6530825496342737], [0.7755067920585162], [0.8775757575757577], [0.9387669801462905], [0.8979728317659352], [0.7959456635318704], [0.6326436781609196], [0.5510135841170324], [0.5510135841170324], [0.6326436781609196], [0.7347126436781609], [0.7551097178683385], [0.693876698014629], [0.5714106583072099], [0.4489864158829676], [0.40815047021943573], [0.4897805642633229], [0.6326436781609196], [0.7959456635318704], [0.8571368861024034], [0.8367398119122258], [0.7347126436781609], [0.6122466039707418], [0.5510135841170324], [0.5306165099268547], [0.5918495297805643], [0.6530825496342737], [0.7142737722048066], [0.7142737722048066], [0.693876698014629], [0.6734796238244514], [0.6734796238244514], [0.7142737722048066], [0.7755067920585162], [0.8775757575757577], [0.9183699059561129], [0.9183699059561129], [0.8367398119122258], [0.7142737722048066], [0.6326436781609196], [0.6326436781609196], [0.7142737722048066], [0.8775757575757577], [0.9796029258098223], [1.0], [0.8775757575757577]], "masks": [[1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1]], "evals": [[0.9592058516196448], [0.9183699059561129], [0.8571368861024034], [0.816342737722048], [0.7551097178683385], [0.7142737722048066], [0.7142737722048066], [0.7347126436781609], [0.7755067920585162], [0.816342737722048], [0.8367398119122258], [0.8367398119122258], [0.816342737722048], [0.816342737722048], [0.816342737722048], [0.816342737722048], [0.8367398119122258], [0.8571368861024034], [0.8775757575757577], [0.8571368861024034], [0.7959456635318704], [0.7142737722048066], [0.5918495297805643], [0.5102194357366772], [0.4897805642633229], [0.5102194357366772], [0.5918495297805643], [0.6734796238244514], [0.7142737722048066], [0.7551097178683385], [0.7551097178683385], [0.7959456635318704], [0.8367398119122258], [0.8775757575757577], [0.8979728317659352], [0.8775757575757577], [0.8367398119122258], [0.7755067920585162], [0.7142737722048066], [0.6734796238244514], [0.6326436781609196], [0.6326436781609196], [0.6734796238244514], [0.7142737722048066], [0.7755067920585162], [0.7755067920585162], [0.7551097178683385], [0.6734796238244514], [0.6326436781609196], [0.6122466039707418], [0.693876698014629], [0.7551097178683385], [0.7551097178683385], [0.693876698014629], [0.5918495297805643], [0.5102194357366772], [0.4897805642633229], [0.5510135841170324], [0.6326436781609196], [0.6734796238244514], [0.693876698014629], [0.6734796238244514], [0.6530825496342737], [0.6530825496342737], [0.6530825496342737], [0.6530825496342737], [0.6734796238244514], [0.693876698014629], [0.7551097178683385], [0.7959456635318704], [0.8367398119122258], [0.816342737722048], [0.7142737722048066], [0.5918495297805643], [0.4693834900731452], [0.40815047021943573], [0.40815047021943573], [0.4489864158829676], [0.5306165099268547], [0.6326436781609196], [0.7347126436781609], [0.7755067920585162], [0.7142737722048066], [0.5306165099268547], [0.28568443051201675], [0.061191222570533006], [0.0], [0.1428631138975967], [0.42854754440961335], [0.7551097178683385], [0.9387669801462905], [0.9387669801462905], [0.7551097178683385], [0.4897805642633229], [0.26528735632183914], [0.10202716823406474], [0.020397074190177618], [0.040794148380355236], [0.1428631138975967], [0.28568443051201675], [0.4489864158829676], [0.5510135841170324], [0.5714106583072099], [0.5102194357366772], [0.40815047021943573], [0.34691745036572624], [0.32652037617554863], [0.40815047021943573], [0.4693834900731452], [0.5102194357366772], [0.5102194357366772], [0.4489864158829676], [0.3877533960292581], [0.34691745036572624], [0.34691745036572624], [0.36735632183908046], [0.42854754440961335], [0.4693834900731452], [0.5306165099268547], [0.5306165099268547], [0.4897805642633229], [0.40815047021943573], [0.28568443051201675], [0.16326018808777432], [0.08163009404388712], [0.061191222570533006], [0.10202716823406474], [0.18365726227795193], [0.26528735632183914], [0.32652037617554863], [0.36735632183908046], [0.32652037617554863], [0.28568443051201675], [0.2244932079414838], [0.16326018808777432], [0.16326018808777432], [0.20405433646812957], [0.28568443051201675], [0.36735632183908046], [0.40815047021943573], [0.3877533960292581], [0.32652037617554863], [0.28568443051201675], [0.24489028213166145], [0.26528735632183914], [0.32652037617554863], [0.3877533960292581], [0.42854754440961335], [0.4489864158829676], [0.42854754440961335], [0.3877533960292581], [0.36735632183908046], [0.36735632183908046], [0.42854754440961335], [0.5102194357366772], [0.5714106583072099], [0.5918495297805643], [0.5510135841170324], [0.4897805642633229], [0.40815047021943573], [0.36735632183908046], [0.36735632183908046], [0.36735632183908046], [0.3877533960292581], [0.40815047021943573], [0.42854754440961335], [0.4693834900731452], [0.5102194357366772], [0.5510135841170324], [0.5510135841170324], [0.5306165099268547], [0.4897805642633229], [0.4693834900731452], [0.4693834900731452], [0.5102194357366772], [0.5918495297805643], [0.6734796238244514], [0.7142737722048066], [0.7755067920585162], [0.7755067920585162], [0.7347126436781609], [0.6734796238244514], [0.6122466039707418], [0.5714106583072099], [0.5510135841170324], [0.5714106583072099], [0.5714106583072099], [0.5714106583072099], [0.5306165099268547], [0.4693834900731452], [0.42854754440961335], [0.42854754440961335], [0.4693834900731452], [0.5714106583072099], [0.6530825496342737], [0.7142737722048066], [0.693876698014629], [0.6122466039707418], [0.5306165099268547], [0.4897805642633229], [0.5306165099268547], [0.6326436781609196], [0.7755067920585162], [0.9183699059561129], [0.9796029258098223], [0.9592058516196448], [0.8775757575757577], [0.7347126436781609], [0.6326436781609196], [0.5918495297805643], [0.6530825496342737], [0.7755067920585162], [0.8775757575757577], [0.9387669801462905], [0.8979728317659352], [0.7959456635318704], [0.6326436781609196], [0.5510135841170324], [0.5510135841170324], [0.6326436781609196], [0.7347126436781609], [0.7551097178683385], [0.693876698014629], [0.5714106583072099], [0.4489864158829676], [0.40815047021943573], [0.4897805642633229], [0.6326436781609196], [0.7959456635318704], [0.8571368861024034], [0.8367398119122258], [0.7347126436781609], [0.6122466039707418], [0.5510135841170324], [0.5306165099268547], [0.5918495297805643], [0.6530825496342737], [0.7142737722048066], [0.7142737722048066], [0.693876698014629], [0.6734796238244514], [0.6734796238244514], [0.7142737722048066], [0.7755067920585162], [0.8775757575757577], [0.9183699059561129], [0.9183699059561129], [0.8367398119122258], [0.7142737722048066], [0.6326436781609196], [0.6326436781609196], [0.7142737722048066], [0.8775757575757577], [0.9796029258098223], [1.0], [0.8775757575757577]], "eval_masks": [[0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0]], "forwards": [[0.9592058516196448], [0.9183699059561129], [0.8571368861024034], [0.816342737722048], [0.7551097178683385], [0.7142737722048066], [0.7142737722048066], [0.7347126436781609], [0.7755067920585162], [0.816342737722048], [0.8367398119122258], [0.8367398119122258], [0.816342737722048], [0.816342737722048], [0.816342737722048], [0.816342737722048], [0.8367398119122258], [0.8571368861024034], [0.8775757575757577], [0.8571368861024034], [0.7959456635318704], [0.7142737722048066], [0.5918495297805643], [0.5102194357366772], [0.4897805642633229], [0.5102194357366772], [0.5918495297805643], [0.6734796238244514], [0.7142737722048066], [0.7551097178683385], [0.7551097178683385], [0.7959456635318704], [0.8367398119122258], [0.8775757575757577], [0.8979728317659352], [0.8775757575757577], [0.8367398119122258], [0.7755067920585162], [0.7142737722048066], [0.6734796238244514], [0.6326436781609196], [0.6326436781609196], [0.6734796238244514], [0.7142737722048066], [0.7755067920585162], [0.7755067920585162], [0.7551097178683385], [0.6734796238244514], [0.6326436781609196], [0.6122466039707418], [0.693876698014629], [0.7551097178683385], [0.7551097178683385], [0.693876698014629], [0.5918495297805643], [0.5102194357366772], [0.4897805642633229], [0.5510135841170324], [0.6326436781609196], [0.6734796238244514], [0.693876698014629], [0.6734796238244514], [0.6530825496342737], [0.6530825496342737], [0.6530825496342737], [0.6530825496342737], [0.6734796238244514], [0.693876698014629], [0.7551097178683385], [0.7959456635318704], [0.8367398119122258], [0.816342737722048], [0.7142737722048066], [0.5918495297805643], [0.4693834900731452], [0.40815047021943573], [0.40815047021943573], [0.4489864158829676], [0.5306165099268547], [0.6326436781609196], [0.7347126436781609], [0.7755067920585162], [0.7142737722048066], [0.5306165099268547], [0.28568443051201675], [0.061191222570533006], [0.0], [0.1428631138975967], [0.42854754440961335], [0.7551097178683385], [0.9387669801462905], [0.9387669801462905], [0.7551097178683385], [0.4897805642633229], [0.26528735632183914], [0.10202716823406474], [0.020397074190177618], [0.040794148380355236], [0.1428631138975967], [0.28568443051201675], [0.4489864158829676], [0.5510135841170324], [0.5714106583072099], [0.5102194357366772], [0.40815047021943573], [0.34691745036572624], [0.32652037617554863], [0.40815047021943573], [0.4693834900731452], [0.5102194357366772], [0.5102194357366772], [0.4489864158829676], [0.3877533960292581], [0.34691745036572624], [0.34691745036572624], [0.36735632183908046], [0.42854754440961335], [0.4693834900731452], [0.5306165099268547], [0.5306165099268547], [0.4897805642633229], [0.40815047021943573], [0.28568443051201675], [0.16326018808777432], [0.08163009404388712], [0.061191222570533006], [0.10202716823406474], [0.18365726227795193], [0.26528735632183914], [0.32652037617554863], [0.36735632183908046], [0.32652037617554863], [0.28568443051201675], [0.2244932079414838], [0.16326018808777432], [0.16326018808777432], [0.20405433646812957], [0.28568443051201675], [0.36735632183908046], [0.40815047021943573], [0.3877533960292581], [0.32652037617554863], [0.28568443051201675], [0.24489028213166145], [0.26528735632183914], [0.32652037617554863], [0.3877533960292581], [0.42854754440961335], [0.4489864158829676], [0.42854754440961335], [0.3877533960292581], [0.36735632183908046], [0.36735632183908046], [0.42854754440961335], [0.5102194357366772], [0.5714106583072099], [0.5918495297805643], [0.5510135841170324], [0.4897805642633229], [0.40815047021943573], [0.36735632183908046], [0.36735632183908046], [0.36735632183908046], [0.3877533960292581], [0.40815047021943573], [0.42854754440961335], [0.4693834900731452], [0.5102194357366772], [0.5510135841170324], [0.5510135841170324], [0.5306165099268547], [0.4897805642633229], [0.4693834900731452], [0.4693834900731452], [0.5102194357366772], [0.5918495297805643], [0.6734796238244514], [0.7142737722048066], [0.7755067920585162], [0.7755067920585162], [0.7347126436781609], [0.6734796238244514], [0.6122466039707418], [0.5714106583072099], [0.5510135841170324], [0.5714106583072099], [0.5714106583072099], [0.5714106583072099], [0.5306165099268547], [0.4693834900731452], [0.42854754440961335], [0.42854754440961335], [0.4693834900731452], [0.5714106583072099], [0.6530825496342737], [0.7142737722048066], [0.693876698014629], [0.6122466039707418], [0.5306165099268547], [0.4897805642633229], [0.5306165099268547], [0.6326436781609196], [0.7755067920585162], [0.9183699059561129], [0.9796029258098223], [0.9592058516196448], [0.8775757575757577], [0.7347126436781609], [0.6326436781609196], [0.5918495297805643], [0.6530825496342737], [0.7755067920585162], [0.8775757575757577], [0.9387669801462905], [0.8979728317659352], [0.7959456635318704], [0.6326436781609196], [0.5510135841170324], [0.5510135841170324], [0.6326436781609196], [0.7347126436781609], [0.7551097178683385], [0.693876698014629], [0.5714106583072099], [0.4489864158829676], [0.40815047021943573], [0.4897805642633229], [0.6326436781609196], [0.7959456635318704], [0.8571368861024034], [0.8367398119122258], [0.7347126436781609], [0.6122466039707418], [0.5510135841170324], [0.5306165099268547], [0.5918495297805643], [0.6530825496342737], [0.7142737722048066], [0.7142737722048066], [0.693876698014629], [0.6734796238244514], [0.6734796238244514], [0.7142737722048066], [0.7755067920585162], [0.8775757575757577], [0.9183699059561129], [0.9183699059561129], [0.8367398119122258], [0.7142737722048066], [0.6326436781609196], [0.6326436781609196], [0.7142737722048066], [0.8775757575757577], [0.9796029258098223], [1.0], [0.8775757575757577]], "deltas": [[1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0]]}, "backward": {"values": [[0.8775757575757577], [1.0], [0.9796029258098223], [0.8775757575757577], [0.7142737722048066], [0.6326436781609196], [0.6326436781609196], [0.7142737722048066], [0.8367398119122258], [0.9183699059561129], [0.9183699059561129], [0.8775757575757577], [0.7755067920585162], [0.7142737722048066], [0.6734796238244514], [0.6734796238244514], [0.693876698014629], [0.7142737722048066], [0.7142737722048066], [0.6530825496342737], [0.5918495297805643], [0.5306165099268547], [0.5510135841170324], [0.6122466039707418], [0.7347126436781609], [0.8367398119122258], [0.8571368861024034], [0.7959456635318704], [0.6326436781609196], [0.4897805642633229], [0.40815047021943573], [0.4489864158829676], [0.5714106583072099], [0.693876698014629], [0.7551097178683385], [0.7347126436781609], [0.6326436781609196], [0.5510135841170324], [0.5510135841170324], [0.6326436781609196], [0.7959456635318704], [0.8979728317659352], [0.9387669801462905], [0.8775757575757577], [0.7755067920585162], [0.6530825496342737], [0.5918495297805643], [0.6326436781609196], [0.7347126436781609], [0.8775757575757577], [0.9592058516196448], [0.9796029258098223], [0.9183699059561129], [0.7755067920585162], [0.6326436781609196], [0.5306165099268547], [0.4897805642633229], [0.5306165099268547], [0.6122466039707418], [0.693876698014629], [0.7142737722048066], [0.6530825496342737], [0.5714106583072099], [0.4693834900731452], [0.42854754440961335], [0.42854754440961335], [0.4693834900731452], [0.5306165099268547], [0.5714106583072099], [0.5714106583072099], [0.5714106583072099], [0.5510135841170324], [0.5714106583072099], [0.6122466039707418], [0.6734796238244514], [0.7347126436781609], [0.7755067920585162], [0.7755067920585162], [0.7142737722048066], [0.6734796238244514], [0.5918495297805643], [0.5102194357366772], [0.4693834900731452], [0.4693834900731452], [0.4897805642633229], [0.5306165099268547], [0.5510135841170324], [0.5510135841170324], [0.5102194357366772], [0.4693834900731452], [0.42854754440961335], [0.40815047021943573], [0.3877533960292581], [0.36735632183908046], [0.36735632183908046], [0.36735632183908046], [0.40815047021943573], [0.4897805642633229], [0.5510135841170324], [0.5918495297805643], [0.5714106583072099], [0.5102194357366772], [0.42854754440961335], [0.36735632183908046], [0.36735632183908046], [0.3877533960292581], [0.42854754440961335], [0.4489864158829676], [0.42854754440961335], [0.3877533960292581], [0.32652037617554863], [0.26528735632183914], [0.24489028213166145], [0.28568443051201675], [0.32652037617554863], [0.3877533960292581], [0.40815047021943573], [0.36735632183908046], [0.28568443051201675], [0.20405433646812957], [0.16326018808777432], [0.16326018808777432], [0.2244932079414838], [0.28568443051201675], [0.32652037617554863], [0.36735632183908046], [0.32652037617554863], [0.26528735632183914], [0.18365726227795193], [0.10202716823406474], [0.061191222570533006], [0.08163009404388712], [0.16326018808777432], [0.28568443051201675], [0.40815047021943573], [0.4897805642633229], [0.5306165099268547], [0.5306165099268547], [0.4693834900731452], [0.42854754440961335], [0.36735632183908046], [0.34691745036572624], [0.34691745036572624], [0.3877533960292581], [0.4489864158829676], [0.5102194357366772], [0.5102194357366772], [0.4693834900731452], [0.40815047021943573], [0.32652037617554863], [0.34691745036572624], [0.40815047021943573], [0.5102194357366772], [0.5714106583072099], [0.5510135841170324], [0.4489864158829676], [0.28568443051201675], [0.1428631138975967], [0.040794148380355236], [0.020397074190177618], [0.10202716823406474], [0.26528735632183914], [0.4897805642633229], [0.7551097178683385], [0.9387669801462905], [0.9387669801462905], [0.7551097178683385], [0.42854754440961335], [0.1428631138975967], [0.0], [0.061191222570533006], [0.28568443051201675], [0.5306165099268547], [0.7142737722048066], [0.7755067920585162], [0.7347126436781609], [0.6326436781609196], [0.5306165099268547], [0.4489864158829676], [0.40815047021943573], [0.40815047021943573], [0.4693834900731452], [0.5918495297805643], [0.7142737722048066], [0.816342737722048], [0.8367398119122258], [0.7959456635318704], [0.7551097178683385], [0.693876698014629], [0.6734796238244514], [0.6530825496342737], [0.6530825496342737], [0.6530825496342737], [0.6530825496342737], [0.6734796238244514], [0.693876698014629], [0.6734796238244514], [0.6326436781609196], [0.5510135841170324], [0.4897805642633229], [0.5102194357366772], [0.5918495297805643], [0.693876698014629], [0.7551097178683385], [0.7551097178683385], [0.693876698014629], [0.6122466039707418], [0.6326436781609196], [0.6734796238244514], [0.7551097178683385], [0.7755067920585162], [0.7755067920585162], [0.7142737722048066], [0.6734796238244514], [0.6326436781609196], [0.6326436781609196], [0.6734796238244514], [0.7142737722048066], [0.7755067920585162], [0.8367398119122258], [0.8775757575757577], [0.8979728317659352], [0.8775757575757577], [0.8367398119122258], [0.7959456635318704], [0.7551097178683385], [0.7551097178683385], [0.7142737722048066], [0.6734796238244514], [0.5918495297805643], [0.5102194357366772], [0.4897805642633229], [0.5102194357366772], [0.5918495297805643], [0.7142737722048066], [0.7959456635318704], [0.8571368861024034], [0.8775757575757577], [0.8571368861024034], [0.8367398119122258], [0.816342737722048], [0.816342737722048], [0.816342737722048], [0.816342737722048], [0.8367398119122258], [0.8367398119122258], [0.816342737722048], [0.7755067920585162], [0.7347126436781609], [0.7142737722048066], [0.7142737722048066], [0.7551097178683385], [0.816342737722048], [0.8571368861024034], [0.9183699059561129], [0.9592058516196448]], "masks": [[1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1]], "evals": [[0.8775757575757577], [1.0], [0.9796029258098223], [0.8775757575757577], [0.7142737722048066], [0.6326436781609196], [0.6326436781609196], [0.7142737722048066], [0.8367398119122258], [0.9183699059561129], [0.9183699059561129], [0.8775757575757577], [0.7755067920585162], [0.7142737722048066], [0.6734796238244514], [0.6734796238244514], [0.693876698014629], [0.7142737722048066], [0.7142737722048066], [0.6530825496342737], [0.5918495297805643], [0.5306165099268547], [0.5510135841170324], [0.6122466039707418], [0.7347126436781609], [0.8367398119122258], [0.8571368861024034], [0.7959456635318704], [0.6326436781609196], [0.4897805642633229], [0.40815047021943573], [0.4489864158829676], [0.5714106583072099], [0.693876698014629], [0.7551097178683385], [0.7347126436781609], [0.6326436781609196], [0.5510135841170324], [0.5510135841170324], [0.6326436781609196], [0.7959456635318704], [0.8979728317659352], [0.9387669801462905], [0.8775757575757577], [0.7755067920585162], [0.6530825496342737], [0.5918495297805643], [0.6326436781609196], [0.7347126436781609], [0.8775757575757577], [0.9592058516196448], [0.9796029258098223], [0.9183699059561129], [0.7755067920585162], [0.6326436781609196], [0.5306165099268547], [0.4897805642633229], [0.5306165099268547], [0.6122466039707418], [0.693876698014629], [0.7142737722048066], [0.6530825496342737], [0.5714106583072099], [0.4693834900731452], [0.42854754440961335], [0.42854754440961335], [0.4693834900731452], [0.5306165099268547], [0.5714106583072099], [0.5714106583072099], [0.5714106583072099], [0.5510135841170324], [0.5714106583072099], [0.6122466039707418], [0.6734796238244514], [0.7347126436781609], [0.7755067920585162], [0.7755067920585162], [0.7142737722048066], [0.6734796238244514], [0.5918495297805643], [0.5102194357366772], [0.4693834900731452], [0.4693834900731452], [0.4897805642633229], [0.5306165099268547], [0.5510135841170324], [0.5510135841170324], [0.5102194357366772], [0.4693834900731452], [0.42854754440961335], [0.40815047021943573], [0.3877533960292581], [0.36735632183908046], [0.36735632183908046], [0.36735632183908046], [0.40815047021943573], [0.4897805642633229], [0.5510135841170324], [0.5918495297805643], [0.5714106583072099], [0.5102194357366772], [0.42854754440961335], [0.36735632183908046], [0.36735632183908046], [0.3877533960292581], [0.42854754440961335], [0.4489864158829676], [0.42854754440961335], [0.3877533960292581], [0.32652037617554863], [0.26528735632183914], [0.24489028213166145], [0.28568443051201675], [0.32652037617554863], [0.3877533960292581], [0.40815047021943573], [0.36735632183908046], [0.28568443051201675], [0.20405433646812957], [0.16326018808777432], [0.16326018808777432], [0.2244932079414838], [0.28568443051201675], [0.32652037617554863], [0.36735632183908046], [0.32652037617554863], [0.26528735632183914], [0.18365726227795193], [0.10202716823406474], [0.061191222570533006], [0.08163009404388712], [0.16326018808777432], [0.28568443051201675], [0.40815047021943573], [0.4897805642633229], [0.5306165099268547], [0.5306165099268547], [0.4693834900731452], [0.42854754440961335], [0.36735632183908046], [0.34691745036572624], [0.34691745036572624], [0.3877533960292581], [0.4489864158829676], [0.5102194357366772], [0.5102194357366772], [0.4693834900731452], [0.40815047021943573], [0.32652037617554863], [0.34691745036572624], [0.40815047021943573], [0.5102194357366772], [0.5714106583072099], [0.5510135841170324], [0.4489864158829676], [0.28568443051201675], [0.1428631138975967], [0.040794148380355236], [0.020397074190177618], [0.10202716823406474], [0.26528735632183914], [0.4897805642633229], [0.7551097178683385], [0.9387669801462905], [0.9387669801462905], [0.7551097178683385], [0.42854754440961335], [0.1428631138975967], [0.0], [0.061191222570533006], [0.28568443051201675], [0.5306165099268547], [0.7142737722048066], [0.7755067920585162], [0.7347126436781609], [0.6326436781609196], [0.5306165099268547], [0.4489864158829676], [0.40815047021943573], [0.40815047021943573], [0.4693834900731452], [0.5918495297805643], [0.7142737722048066], [0.816342737722048], [0.8367398119122258], [0.7959456635318704], [0.7551097178683385], [0.693876698014629], [0.6734796238244514], [0.6530825496342737], [0.6530825496342737], [0.6530825496342737], [0.6530825496342737], [0.6734796238244514], [0.693876698014629], [0.6734796238244514], [0.6326436781609196], [0.5510135841170324], [0.4897805642633229], [0.5102194357366772], [0.5918495297805643], [0.693876698014629], [0.7551097178683385], [0.7551097178683385], [0.693876698014629], [0.6122466039707418], [0.6326436781609196], [0.6734796238244514], [0.7551097178683385], [0.7755067920585162], [0.7755067920585162], [0.7142737722048066], [0.6734796238244514], [0.6326436781609196], [0.6326436781609196], [0.6734796238244514], [0.7142737722048066], [0.7755067920585162], [0.8367398119122258], [0.8775757575757577], [0.8979728317659352], [0.8775757575757577], [0.8367398119122258], [0.7959456635318704], [0.7551097178683385], [0.7551097178683385], [0.7142737722048066], [0.6734796238244514], [0.5918495297805643], [0.5102194357366772], [0.4897805642633229], [0.5102194357366772], [0.5918495297805643], [0.7142737722048066], [0.7959456635318704], [0.8571368861024034], [0.8775757575757577], [0.8571368861024034], [0.8367398119122258], [0.816342737722048], [0.816342737722048], [0.816342737722048], [0.816342737722048], [0.8367398119122258], [0.8367398119122258], [0.816342737722048], [0.7755067920585162], [0.7347126436781609], [0.7142737722048066], [0.7142737722048066], [0.7551097178683385], [0.816342737722048], [0.8571368861024034], [0.9183699059561129], [0.9592058516196448]], "eval_masks": [[0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0]], "forwards": [[0.8775757575757577], [1.0], [0.9796029258098223], [0.8775757575757577], [0.7142737722048066], [0.6326436781609196], [0.6326436781609196], [0.7142737722048066], [0.8367398119122258], [0.9183699059561129], [0.9183699059561129], [0.8775757575757577], [0.7755067920585162], [0.7142737722048066], [0.6734796238244514], [0.6734796238244514], [0.693876698014629], [0.7142737722048066], [0.7142737722048066], [0.6530825496342737], [0.5918495297805643], [0.5306165099268547], [0.5510135841170324], [0.6122466039707418], [0.7347126436781609], [0.8367398119122258], [0.8571368861024034], [0.7959456635318704], [0.6326436781609196], [0.4897805642633229], [0.40815047021943573], [0.4489864158829676], [0.5714106583072099], [0.693876698014629], [0.7551097178683385], [0.7347126436781609], [0.6326436781609196], [0.5510135841170324], [0.5510135841170324], [0.6326436781609196], [0.7959456635318704], [0.8979728317659352], [0.9387669801462905], [0.8775757575757577], [0.7755067920585162], [0.6530825496342737], [0.5918495297805643], [0.6326436781609196], [0.7347126436781609], [0.8775757575757577], [0.9592058516196448], [0.9796029258098223], [0.9183699059561129], [0.7755067920585162], [0.6326436781609196], [0.5306165099268547], [0.4897805642633229], [0.5306165099268547], [0.6122466039707418], [0.693876698014629], [0.7142737722048066], [0.6530825496342737], [0.5714106583072099], [0.4693834900731452], [0.42854754440961335], [0.42854754440961335], [0.4693834900731452], [0.5306165099268547], [0.5714106583072099], [0.5714106583072099], [0.5714106583072099], [0.5510135841170324], [0.5714106583072099], [0.6122466039707418], [0.6734796238244514], [0.7347126436781609], [0.7755067920585162], [0.7755067920585162], [0.7142737722048066], [0.6734796238244514], [0.5918495297805643], [0.5102194357366772], [0.4693834900731452], [0.4693834900731452], [0.4897805642633229], [0.5306165099268547], [0.5510135841170324], [0.5510135841170324], [0.5102194357366772], [0.4693834900731452], [0.42854754440961335], [0.40815047021943573], [0.3877533960292581], [0.36735632183908046], [0.36735632183908046], [0.36735632183908046], [0.40815047021943573], [0.4897805642633229], [0.5510135841170324], [0.5918495297805643], [0.5714106583072099], [0.5102194357366772], [0.42854754440961335], [0.36735632183908046], [0.36735632183908046], [0.3877533960292581], [0.42854754440961335], [0.4489864158829676], [0.42854754440961335], [0.3877533960292581], [0.32652037617554863], [0.26528735632183914], [0.24489028213166145], [0.28568443051201675], [0.32652037617554863], [0.3877533960292581], [0.40815047021943573], [0.36735632183908046], [0.28568443051201675], [0.20405433646812957], [0.16326018808777432], [0.16326018808777432], [0.2244932079414838], [0.28568443051201675], [0.32652037617554863], [0.36735632183908046], [0.32652037617554863], [0.26528735632183914], [0.18365726227795193], [0.10202716823406474], [0.061191222570533006], [0.08163009404388712], [0.16326018808777432], [0.28568443051201675], [0.40815047021943573], [0.4897805642633229], [0.5306165099268547], [0.5306165099268547], [0.4693834900731452], [0.42854754440961335], [0.36735632183908046], [0.34691745036572624], [0.34691745036572624], [0.3877533960292581], [0.4489864158829676], [0.5102194357366772], [0.5102194357366772], [0.4693834900731452], [0.40815047021943573], [0.32652037617554863], [0.34691745036572624], [0.40815047021943573], [0.5102194357366772], [0.5714106583072099], [0.5510135841170324], [0.4489864158829676], [0.28568443051201675], [0.1428631138975967], [0.040794148380355236], [0.020397074190177618], [0.10202716823406474], [0.26528735632183914], [0.4897805642633229], [0.7551097178683385], [0.9387669801462905], [0.9387669801462905], [0.7551097178683385], [0.42854754440961335], [0.1428631138975967], [0.0], [0.061191222570533006], [0.28568443051201675], [0.5306165099268547], [0.7142737722048066], [0.7755067920585162], [0.7347126436781609], [0.6326436781609196], [0.5306165099268547], [0.4489864158829676], [0.40815047021943573], [0.40815047021943573], [0.4693834900731452], [0.5918495297805643], [0.7142737722048066], [0.816342737722048], [0.8367398119122258], [0.7959456635318704], [0.7551097178683385], [0.693876698014629], [0.6734796238244514], [0.6530825496342737], [0.6530825496342737], [0.6530825496342737], [0.6530825496342737], [0.6734796238244514], [0.693876698014629], [0.6734796238244514], [0.6326436781609196], [0.5510135841170324], [0.4897805642633229], [0.5102194357366772], [0.5918495297805643], [0.693876698014629], [0.7551097178683385], [0.7551097178683385], [0.693876698014629], [0.6122466039707418], [0.6326436781609196], [0.6734796238244514], [0.7551097178683385], [0.7755067920585162], [0.7755067920585162], [0.7142737722048066], [0.6734796238244514], [0.6326436781609196], [0.6326436781609196], [0.6734796238244514], [0.7142737722048066], [0.7755067920585162], [0.8367398119122258], [0.8775757575757577], [0.8979728317659352], [0.8775757575757577], [0.8367398119122258], [0.7959456635318704], [0.7551097178683385], [0.7551097178683385], [0.7142737722048066], [0.6734796238244514], [0.5918495297805643], [0.5102194357366772], [0.4897805642633229], [0.5102194357366772], [0.5918495297805643], [0.7142737722048066], [0.7959456635318704], [0.8571368861024034], [0.8775757575757577], [0.8571368861024034], [0.8367398119122258], [0.816342737722048], [0.816342737722048], [0.816342737722048], [0.816342737722048], [0.8367398119122258], [0.8367398119122258], [0.816342737722048], [0.7755067920585162], [0.7347126436781609], [0.7142737722048066], [0.7142737722048066], [0.7551097178683385], [0.816342737722048], [0.8571368861024034], [0.9183699059561129], [0.9592058516196448]], "deltas": [[1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0]]}} -{"label": 0, "forward": {"values": [[0.7884683549289119], [0.7692095624433855], [0.7307707455397581], [0.7307707455397581], [0.7115119530542319], [0.6922925446024183], [0.6538537276987909], [0.6153755267614509], [0.5961561183096372], [0.5961561183096372], [0.6153755267614509], [0.6538537276987909], [0.7115119530542319], [0.7692095624433855], [0.8269071718325391], [0.8461265802843527], [0.8461265802843527], [0.8076877633807255], [0.7499901539915719], [0.6730731361506045], [0.5961561183096372], [0.5192391004686701], [0.48076089953133], [0.44228269859399], [0.44228269859399], [0.49998030798314363], [0.5768973258241109], [0.6345949352132645], [0.6922925446024183], [0.6730731361506045], [0.6345949352132645], [0.6345949352132645], [0.6730731361506045], [0.7115119530542319], [0.7692095624433855], [0.8076877633807255], [0.7884683549289119], [0.7499901539915719], [0.7115119530542319], [0.6538537276987909], [0.5961561183096372], [0.5576779173722973], [0.5576779173722973], [0.5961561183096372], [0.6538537276987909], [0.7115119530542319], [0.7115119530542319], [0.6730731361506045], [0.6153755267614509], [0.5961561183096372], [0.6153755267614509], [0.6730731361506045], [0.6730731361506045], [0.6345949352132645], [0.5576779173722973], [0.48076089953133], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.5768973258241109], [0.5768973258241109], [0.5768973258241109], [0.6153755267614509], [0.6345949352132645], [0.6730731361506045], [0.6538537276987909], [0.5961561183096372], [0.5192391004686701], [0.44228269859399], [0.38462447323854915], [0.34614627230120915], [0.34614627230120915], [0.38462447323854915], [0.46154149107951636], [0.5192391004686701], [0.5192391004686701], [0.44228269859399], [0.2884486629120555], [0.15383403568193454], [0.13461462723012094], [0.23075105352290187], [0.4038438816903627], [0.5768973258241109], [0.6345949352132645], [0.5576779173722973], [0.3653656807530227], [0.17309282816746097], [0.038478200937340015], [0.0], [0.05769760938915363], [0.15383403568193454], [0.2884486629120555], [0.4038438816903627], [0.48076089953133], [0.48076089953133], [0.38462447323854915], [0.2500098460084282], [0.11539521877830733], [0.09613642629278092], [0.13461462723012094], [0.2692292544602419], [0.3653656807530227], [0.44228269859399], [0.44228269859399], [0.4038438816903627], [0.34614627230120915], [0.2692292544602419], [0.23075105352290187], [0.21153164507108826], [0.21153164507108826], [0.23075105352290187], [0.2500098460084282], [0.2500098460084282], [0.23075105352290187], [0.19231223661927457], [0.17309282816746097], [0.13461462723012094], [0.13461462723012094], [0.11539521877830733], [0.07691701784096731], [0.038478200937340015], [0.019219408451813757], [0.038478200937340015], [0.038478200937340015], [0.05769760938915363], [0.038478200937340015], [0.038478200937340015], [0.07691701784096731], [0.11539521877830733], [0.21153164507108826], [0.2884486629120555], [0.3077074553975818], [0.2884486629120555], [0.21153164507108826], [0.11539521877830733], [0.05769760938915363], [0.05769760938915363], [0.11539521877830733], [0.21153164507108826], [0.3077074553975818], [0.3653656807530227], [0.3653656807530227], [0.3077074553975818], [0.23075105352290187], [0.17309282816746097], [0.15383403568193454], [0.21153164507108826], [0.3077074553975818], [0.4038438816903627], [0.44228269859399], [0.42306329014217636], [0.38462447323854915], [0.3077074553975818], [0.2500098460084282], [0.19231223661927457], [0.11539521877830733], [0.05769760938915363], [0.038478200937340015], [0.05769760938915363], [0.13461462723012094], [0.23075105352290187], [0.3077074553975818], [0.34614627230120915], [0.34614627230120915], [0.2884486629120555], [0.23075105352290187], [0.23075105352290187], [0.2692292544602419], [0.34614627230120915], [0.46154149107951636], [0.5384585089204836], [0.5768973258241109], [0.5576779173722973], [0.48076089953133], [0.4038438816903627], [0.3653656807530227], [0.3653656807530227], [0.42306329014217636], [0.49998030798314363], [0.5576779173722973], [0.5384585089204836], [0.46154149107951636], [0.34614627230120915], [0.2692292544602419], [0.2692292544602419], [0.34614627230120915], [0.44228269859399], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.7692095624433855], [0.7499901539915719], [0.6922925446024183], [0.5961561183096372], [0.5576779173722973], [0.5576779173722973], [0.6153755267614509], [0.6538537276987909], [0.6922925446024183], [0.6730731361506045], [0.5961561183096372], [0.5192391004686701], [0.48076089953133], [0.49998030798314363], [0.5576779173722973], [0.6345949352132645], [0.6538537276987909], [0.5961561183096372], [0.49998030798314363], [0.3653656807530227], [0.3269268638493955], [0.38462447323854915], [0.5384585089204836], [0.7115119530542319], [0.8076877633807255], [0.7692095624433855], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.34614627230120915], [0.5768973258241109], [0.8269071718325391], [1.0], [0.96152179906266], [0.7692095624433855]], "masks": [[1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [1], [1], [1], [1], [1], [1]], "evals": [[0.7884683549289119], [0.7692095624433855], [0.7307707455397581], [0.7307707455397581], [0.7115119530542319], [0.6922925446024183], [0.6538537276987909], [0.6153755267614509], [0.5961561183096372], [0.5961561183096372], [0.6153755267614509], [0.6538537276987909], [0.7115119530542319], [0.7692095624433855], [0.8269071718325391], [0.8461265802843527], [0.8461265802843527], [0.8076877633807255], [0.7499901539915719], [0.6730731361506045], [0.5961561183096372], [0.5192391004686701], [0.48076089953133], [0.44228269859399], [0.44228269859399], [0.49998030798314363], [0.5768973258241109], [0.6345949352132645], [0.6922925446024183], [0.6730731361506045], [0.6345949352132645], [0.6345949352132645], [0.6730731361506045], [0.7115119530542319], [0.7692095624433855], [0.8076877633807255], [0.7884683549289119], [0.7499901539915719], [0.7115119530542319], [0.6538537276987909], [0.5961561183096372], [0.5576779173722973], [0.5576779173722973], [0.5961561183096372], [0.6538537276987909], [0.7115119530542319], [0.7115119530542319], [0.6730731361506045], [0.6153755267614509], [0.5961561183096372], [0.6153755267614509], [0.6730731361506045], [0.6730731361506045], [0.6345949352132645], [0.5576779173722973], [0.48076089953133], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.5768973258241109], [0.5768973258241109], [0.5768973258241109], [0.6153755267614509], [0.6345949352132645], [0.6730731361506045], [0.6538537276987909], [0.5961561183096372], [0.5192391004686701], [0.44228269859399], [0.38462447323854915], [0.34614627230120915], [0.34614627230120915], [0.38462447323854915], [0.46154149107951636], [0.5192391004686701], [0.5192391004686701], [0.44228269859399], [0.2884486629120555], [0.15383403568193454], [0.13461462723012094], [0.23075105352290187], [0.4038438816903627], [0.5768973258241109], [0.6345949352132645], [0.5576779173722973], [0.3653656807530227], [0.17309282816746097], [0.038478200937340015], [0.0], [0.05769760938915363], [0.15383403568193454], [0.2884486629120555], [0.4038438816903627], [0.48076089953133], [0.48076089953133], [0.38462447323854915], [0.2500098460084282], [0.11539521877830733], [0.09613642629278092], [0.13461462723012094], [0.2692292544602419], [0.3653656807530227], [0.44228269859399], [0.44228269859399], [0.4038438816903627], [0.34614627230120915], [0.2692292544602419], [0.23075105352290187], [0.21153164507108826], [0.21153164507108826], [0.23075105352290187], [0.2500098460084282], [0.2500098460084282], [0.23075105352290187], [0.19231223661927457], [0.17309282816746097], [0.13461462723012094], [0.13461462723012094], [0.11539521877830733], [0.07691701784096731], [0.038478200937340015], [0.019219408451813757], [0.038478200937340015], [0.038478200937340015], [0.05769760938915363], [0.038478200937340015], [0.038478200937340015], [0.07691701784096731], [0.11539521877830733], [0.21153164507108826], [0.2884486629120555], [0.3077074553975818], [0.2884486629120555], [0.21153164507108826], [0.11539521877830733], [0.05769760938915363], [0.05769760938915363], [0.11539521877830733], [0.21153164507108826], [0.3077074553975818], [0.3653656807530227], [0.3653656807530227], [0.3077074553975818], [0.23075105352290187], [0.17309282816746097], [0.15383403568193454], [0.21153164507108826], [0.3077074553975818], [0.4038438816903627], [0.44228269859399], [0.42306329014217636], [0.38462447323854915], [0.3077074553975818], [0.2500098460084282], [0.19231223661927457], [0.11539521877830733], [0.05769760938915363], [0.038478200937340015], [0.05769760938915363], [0.13461462723012094], [0.23075105352290187], [0.3077074553975818], [0.34614627230120915], [0.34614627230120915], [0.2884486629120555], [0.23075105352290187], [0.23075105352290187], [0.2692292544602419], [0.34614627230120915], [0.46154149107951636], [0.5384585089204836], [0.5768973258241109], [0.5576779173722973], [0.48076089953133], [0.4038438816903627], [0.3653656807530227], [0.3653656807530227], [0.42306329014217636], [0.49998030798314363], [0.5576779173722973], [0.5384585089204836], [0.46154149107951636], [0.34614627230120915], [0.2692292544602419], [0.2692292544602419], [0.34614627230120915], [0.44228269859399], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.7692095624433855], [0.7499901539915719], [0.6922925446024183], [0.5961561183096372], [0.5576779173722973], [0.5576779173722973], [0.6153755267614509], [0.6538537276987909], [0.6922925446024183], [0.6730731361506045], [0.5961561183096372], [0.5192391004686701], [0.48076089953133], [0.49998030798314363], [0.5576779173722973], [0.6345949352132645], [0.6538537276987909], [0.5961561183096372], [0.49998030798314363], [0.3653656807530227], [0.3269268638493955], [0.38462447323854915], [0.5384585089204836], [0.7115119530542319], [0.8076877633807255], [0.7692095624433855], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.34614627230120915], [0.5768973258241109], [0.8269071718325391], [1.0], [0.96152179906266], [0.7692095624433855]], "eval_masks": [[0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0]], "forwards": [[0.7884683549289119], [0.7692095624433855], [0.7307707455397581], [0.7307707455397581], [0.7115119530542319], [0.6922925446024183], [0.6538537276987909], [0.6153755267614509], [0.5961561183096372], [0.5961561183096372], [0.6153755267614509], [0.6538537276987909], [0.7115119530542319], [0.7692095624433855], [0.8269071718325391], [0.8461265802843527], [0.8461265802843527], [0.8076877633807255], [0.7499901539915719], [0.6730731361506045], [0.5961561183096372], [0.5192391004686701], [0.48076089953133], [0.44228269859399], [0.44228269859399], [0.49998030798314363], [0.5768973258241109], [0.6345949352132645], [0.6922925446024183], [0.6730731361506045], [0.6345949352132645], [0.6345949352132645], [0.6730731361506045], [0.7115119530542319], [0.7692095624433855], [0.8076877633807255], [0.7884683549289119], [0.7499901539915719], [0.7115119530542319], [0.6538537276987909], [0.5961561183096372], [0.5576779173722973], [0.5576779173722973], [0.5961561183096372], [0.6538537276987909], [0.7115119530542319], [0.7115119530542319], [0.6730731361506045], [0.6153755267614509], [0.5961561183096372], [0.6153755267614509], [0.6730731361506045], [0.6730731361506045], [0.6345949352132645], [0.5576779173722973], [0.48076089953133], [0.48076089953133], [0.48076089953133], [0.48076089953133], [0.48076089953133], [0.48076089953133], [0.48076089953133], [0.48076089953133], [0.48076089953133], [0.48076089953133], [0.48076089953133], [0.5768973258241109], [0.5768973258241109], [0.5768973258241109], [0.6153755267614509], [0.6345949352132645], [0.6730731361506045], [0.6538537276987909], [0.5961561183096372], [0.5192391004686701], [0.44228269859399], [0.38462447323854915], [0.34614627230120915], [0.34614627230120915], [0.38462447323854915], [0.46154149107951636], [0.5192391004686701], [0.5192391004686701], [0.44228269859399], [0.2884486629120555], [0.15383403568193454], [0.13461462723012094], [0.23075105352290187], [0.4038438816903627], [0.5768973258241109], [0.6345949352132645], [0.5576779173722973], [0.3653656807530227], [0.17309282816746097], [0.038478200937340015], [0.0], [0.05769760938915363], [0.15383403568193454], [0.2884486629120555], [0.4038438816903627], [0.48076089953133], [0.48076089953133], [0.38462447323854915], [0.2500098460084282], [0.11539521877830733], [0.09613642629278092], [0.13461462723012094], [0.2692292544602419], [0.3653656807530227], [0.44228269859399], [0.44228269859399], [0.4038438816903627], [0.34614627230120915], [0.2692292544602419], [0.23075105352290187], [0.21153164507108826], [0.21153164507108826], [0.23075105352290187], [0.2500098460084282], [0.2500098460084282], [0.23075105352290187], [0.19231223661927457], [0.17309282816746097], [0.13461462723012094], [0.13461462723012094], [0.11539521877830733], [0.07691701784096731], [0.038478200937340015], [0.019219408451813757], [0.038478200937340015], [0.038478200937340015], [0.05769760938915363], [0.038478200937340015], [0.038478200937340015], [0.07691701784096731], [0.11539521877830733], [0.21153164507108826], [0.2884486629120555], [0.3077074553975818], [0.2884486629120555], [0.21153164507108826], [0.11539521877830733], [0.05769760938915363], [0.05769760938915363], [0.11539521877830733], [0.21153164507108826], [0.3077074553975818], [0.3653656807530227], [0.3653656807530227], [0.3077074553975818], [0.23075105352290187], [0.17309282816746097], [0.15383403568193454], [0.21153164507108826], [0.3077074553975818], [0.4038438816903627], [0.44228269859399], [0.42306329014217636], [0.38462447323854915], [0.3077074553975818], [0.2500098460084282], [0.19231223661927457], [0.11539521877830733], [0.05769760938915363], [0.038478200937340015], [0.05769760938915363], [0.13461462723012094], [0.23075105352290187], [0.3077074553975818], [0.34614627230120915], [0.34614627230120915], [0.2884486629120555], [0.23075105352290187], [0.23075105352290187], [0.2692292544602419], [0.34614627230120915], [0.46154149107951636], [0.5384585089204836], [0.5768973258241109], [0.5576779173722973], [0.48076089953133], [0.4038438816903627], [0.3653656807530227], [0.3653656807530227], [0.42306329014217636], [0.49998030798314363], [0.5576779173722973], [0.5384585089204836], [0.46154149107951636], [0.34614627230120915], [0.2692292544602419], [0.2692292544602419], [0.34614627230120915], [0.44228269859399], [0.44228269859399], [0.44228269859399], [0.44228269859399], [0.44228269859399], [0.44228269859399], [0.44228269859399], [0.44228269859399], [0.44228269859399], [0.44228269859399], [0.44228269859399], [0.7692095624433855], [0.7499901539915719], [0.6922925446024183], [0.5961561183096372], [0.5576779173722973], [0.5576779173722973], [0.6153755267614509], [0.6538537276987909], [0.6922925446024183], [0.6730731361506045], [0.5961561183096372], [0.5192391004686701], [0.48076089953133], [0.49998030798314363], [0.5576779173722973], [0.6345949352132645], [0.6538537276987909], [0.5961561183096372], [0.49998030798314363], [0.3653656807530227], [0.3269268638493955], [0.38462447323854915], [0.5384585089204836], [0.7115119530542319], [0.8076877633807255], [0.7692095624433855], [0.7692095624433855], [0.7692095624433855], [0.7692095624433855], [0.7692095624433855], [0.7692095624433855], [0.7692095624433855], [0.7692095624433855], [0.7692095624433855], [0.7692095624433855], [0.7692095624433855], [0.7692095624433855], [0.7692095624433855], [0.7692095624433855], [0.7692095624433855], [0.7692095624433855], [0.7692095624433855], [0.7692095624433855], [0.7692095624433855], [0.7692095624433855], [0.7692095624433855], [0.34614627230120915], [0.5768973258241109], [0.8269071718325391], [1.0], [0.96152179906266], [0.7692095624433855]], "deltas": [[1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [2.0], [3.0], [4.0], [5.0], [6.0], [7.0], [8.0], [9.0], [10.0], [11.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [2.0], [3.0], [4.0], [5.0], [6.0], [7.0], [8.0], [9.0], [10.0], [11.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [2.0], [3.0], [4.0], [5.0], [6.0], [7.0], [8.0], [9.0], [10.0], [11.0], [12.0], [13.0], [14.0], [15.0], [16.0], [17.0], [18.0], [19.0], [20.0], [21.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0]]}, "backward": {"values": [[0.7692095624433855], [0.96152179906266], [1.0], [0.8269071718325391], [0.5768973258241109], [0.34614627230120915], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.7692095624433855], [0.8076877633807255], [0.7115119530542319], [0.5384585089204836], [0.38462447323854915], [0.3269268638493955], [0.3653656807530227], [0.49998030798314363], [0.5961561183096372], [0.6538537276987909], [0.6345949352132645], [0.5576779173722973], [0.49998030798314363], [0.48076089953133], [0.5192391004686701], [0.5961561183096372], [0.6730731361506045], [0.6922925446024183], [0.6538537276987909], [0.6153755267614509], [0.5576779173722973], [0.5576779173722973], [0.5961561183096372], [0.6922925446024183], [0.7499901539915719], [0.7692095624433855], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.44228269859399], [0.34614627230120915], [0.2692292544602419], [0.2692292544602419], [0.34614627230120915], [0.46154149107951636], [0.5384585089204836], [0.5576779173722973], [0.49998030798314363], [0.42306329014217636], [0.3653656807530227], [0.3653656807530227], [0.4038438816903627], [0.48076089953133], [0.5576779173722973], [0.5768973258241109], [0.5384585089204836], [0.46154149107951636], [0.34614627230120915], [0.2692292544602419], [0.23075105352290187], [0.23075105352290187], [0.2884486629120555], [0.34614627230120915], [0.34614627230120915], [0.3077074553975818], [0.23075105352290187], [0.13461462723012094], [0.05769760938915363], [0.038478200937340015], [0.05769760938915363], [0.11539521877830733], [0.19231223661927457], [0.2500098460084282], [0.3077074553975818], [0.38462447323854915], [0.42306329014217636], [0.44228269859399], [0.4038438816903627], [0.3077074553975818], [0.21153164507108826], [0.15383403568193454], [0.17309282816746097], [0.23075105352290187], [0.3077074553975818], [0.3653656807530227], [0.3653656807530227], [0.3077074553975818], [0.21153164507108826], [0.11539521877830733], [0.05769760938915363], [0.05769760938915363], [0.11539521877830733], [0.21153164507108826], [0.2884486629120555], [0.3077074553975818], [0.2884486629120555], [0.21153164507108826], [0.11539521877830733], [0.07691701784096731], [0.038478200937340015], [0.038478200937340015], [0.05769760938915363], [0.038478200937340015], [0.038478200937340015], [0.019219408451813757], [0.038478200937340015], [0.07691701784096731], [0.11539521877830733], [0.13461462723012094], [0.13461462723012094], [0.17309282816746097], [0.19231223661927457], [0.23075105352290187], [0.2500098460084282], [0.2500098460084282], [0.23075105352290187], [0.21153164507108826], [0.21153164507108826], [0.23075105352290187], [0.2692292544602419], [0.34614627230120915], [0.4038438816903627], [0.44228269859399], [0.44228269859399], [0.3653656807530227], [0.2692292544602419], [0.13461462723012094], [0.09613642629278092], [0.11539521877830733], [0.2500098460084282], [0.38462447323854915], [0.48076089953133], [0.48076089953133], [0.4038438816903627], [0.2884486629120555], [0.15383403568193454], [0.05769760938915363], [0.0], [0.038478200937340015], [0.17309282816746097], [0.3653656807530227], [0.5576779173722973], [0.6345949352132645], [0.5768973258241109], [0.4038438816903627], [0.23075105352290187], [0.13461462723012094], [0.15383403568193454], [0.2884486629120555], [0.44228269859399], [0.5192391004686701], [0.5192391004686701], [0.46154149107951636], [0.38462447323854915], [0.34614627230120915], [0.34614627230120915], [0.38462447323854915], [0.44228269859399], [0.5192391004686701], [0.5961561183096372], [0.6538537276987909], [0.6730731361506045], [0.6345949352132645], [0.6153755267614509], [0.5768973258241109], [0.5768973258241109], [0.5768973258241109], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.48076089953133], [0.5576779173722973], [0.6345949352132645], [0.6730731361506045], [0.6730731361506045], [0.6153755267614509], [0.5961561183096372], [0.6153755267614509], [0.6730731361506045], [0.7115119530542319], [0.7115119530542319], [0.6538537276987909], [0.5961561183096372], [0.5576779173722973], [0.5576779173722973], [0.5961561183096372], [0.6538537276987909], [0.7115119530542319], [0.7499901539915719], [0.7884683549289119], [0.8076877633807255], [0.7692095624433855], [0.7115119530542319], [0.6730731361506045], [0.6345949352132645], [0.6345949352132645], [0.6730731361506045], [0.6922925446024183], [0.6345949352132645], [0.5768973258241109], [0.49998030798314363], [0.44228269859399], [0.44228269859399], [0.48076089953133], [0.5192391004686701], [0.5961561183096372], [0.6730731361506045], [0.7499901539915719], [0.8076877633807255], [0.8461265802843527], [0.8461265802843527], [0.8269071718325391], [0.7692095624433855], [0.7115119530542319], [0.6538537276987909], [0.6153755267614509], [0.5961561183096372], [0.5961561183096372], [0.6153755267614509], [0.6538537276987909], [0.6922925446024183], [0.7115119530542319], [0.7307707455397581], [0.7307707455397581], [0.7692095624433855], [0.7884683549289119]], "masks": [[1], [1], [1], [1], [1], [1], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1]], "evals": [[0.7692095624433855], [0.96152179906266], [1.0], [0.8269071718325391], [0.5768973258241109], [0.34614627230120915], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.7692095624433855], [0.8076877633807255], [0.7115119530542319], [0.5384585089204836], [0.38462447323854915], [0.3269268638493955], [0.3653656807530227], [0.49998030798314363], [0.5961561183096372], [0.6538537276987909], [0.6345949352132645], [0.5576779173722973], [0.49998030798314363], [0.48076089953133], [0.5192391004686701], [0.5961561183096372], [0.6730731361506045], [0.6922925446024183], [0.6538537276987909], [0.6153755267614509], [0.5576779173722973], [0.5576779173722973], [0.5961561183096372], [0.6922925446024183], [0.7499901539915719], [0.7692095624433855], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.44228269859399], [0.34614627230120915], [0.2692292544602419], [0.2692292544602419], [0.34614627230120915], [0.46154149107951636], [0.5384585089204836], [0.5576779173722973], [0.49998030798314363], [0.42306329014217636], [0.3653656807530227], [0.3653656807530227], [0.4038438816903627], [0.48076089953133], [0.5576779173722973], [0.5768973258241109], [0.5384585089204836], [0.46154149107951636], [0.34614627230120915], [0.2692292544602419], [0.23075105352290187], [0.23075105352290187], [0.2884486629120555], [0.34614627230120915], [0.34614627230120915], [0.3077074553975818], [0.23075105352290187], [0.13461462723012094], [0.05769760938915363], [0.038478200937340015], [0.05769760938915363], [0.11539521877830733], [0.19231223661927457], [0.2500098460084282], [0.3077074553975818], [0.38462447323854915], [0.42306329014217636], [0.44228269859399], [0.4038438816903627], [0.3077074553975818], [0.21153164507108826], [0.15383403568193454], [0.17309282816746097], [0.23075105352290187], [0.3077074553975818], [0.3653656807530227], [0.3653656807530227], [0.3077074553975818], [0.21153164507108826], [0.11539521877830733], [0.05769760938915363], [0.05769760938915363], [0.11539521877830733], [0.21153164507108826], [0.2884486629120555], [0.3077074553975818], [0.2884486629120555], [0.21153164507108826], [0.11539521877830733], [0.07691701784096731], [0.038478200937340015], [0.038478200937340015], [0.05769760938915363], [0.038478200937340015], [0.038478200937340015], [0.019219408451813757], [0.038478200937340015], [0.07691701784096731], [0.11539521877830733], [0.13461462723012094], [0.13461462723012094], [0.17309282816746097], [0.19231223661927457], [0.23075105352290187], [0.2500098460084282], [0.2500098460084282], [0.23075105352290187], [0.21153164507108826], [0.21153164507108826], [0.23075105352290187], [0.2692292544602419], [0.34614627230120915], [0.4038438816903627], [0.44228269859399], [0.44228269859399], [0.3653656807530227], [0.2692292544602419], [0.13461462723012094], [0.09613642629278092], [0.11539521877830733], [0.2500098460084282], [0.38462447323854915], [0.48076089953133], [0.48076089953133], [0.4038438816903627], [0.2884486629120555], [0.15383403568193454], [0.05769760938915363], [0.0], [0.038478200937340015], [0.17309282816746097], [0.3653656807530227], [0.5576779173722973], [0.6345949352132645], [0.5768973258241109], [0.4038438816903627], [0.23075105352290187], [0.13461462723012094], [0.15383403568193454], [0.2884486629120555], [0.44228269859399], [0.5192391004686701], [0.5192391004686701], [0.46154149107951636], [0.38462447323854915], [0.34614627230120915], [0.34614627230120915], [0.38462447323854915], [0.44228269859399], [0.5192391004686701], [0.5961561183096372], [0.6538537276987909], [0.6730731361506045], [0.6345949352132645], [0.6153755267614509], [0.5768973258241109], [0.5768973258241109], [0.5768973258241109], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.48076089953133], [0.5576779173722973], [0.6345949352132645], [0.6730731361506045], [0.6730731361506045], [0.6153755267614509], [0.5961561183096372], [0.6153755267614509], [0.6730731361506045], [0.7115119530542319], [0.7115119530542319], [0.6538537276987909], [0.5961561183096372], [0.5576779173722973], [0.5576779173722973], [0.5961561183096372], [0.6538537276987909], [0.7115119530542319], [0.7499901539915719], [0.7884683549289119], [0.8076877633807255], [0.7692095624433855], [0.7115119530542319], [0.6730731361506045], [0.6345949352132645], [0.6345949352132645], [0.6730731361506045], [0.6922925446024183], [0.6345949352132645], [0.5768973258241109], [0.49998030798314363], [0.44228269859399], [0.44228269859399], [0.48076089953133], [0.5192391004686701], [0.5961561183096372], [0.6730731361506045], [0.7499901539915719], [0.8076877633807255], [0.8461265802843527], [0.8461265802843527], [0.8269071718325391], [0.7692095624433855], [0.7115119530542319], [0.6538537276987909], [0.6153755267614509], [0.5961561183096372], [0.5961561183096372], [0.6153755267614509], [0.6538537276987909], [0.6922925446024183], [0.7115119530542319], [0.7307707455397581], [0.7307707455397581], [0.7692095624433855], [0.7884683549289119]], "eval_masks": [[0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0]], "forwards": [[0.7692095624433855], [0.96152179906266], [1.0], [0.8269071718325391], [0.5768973258241109], [0.34614627230120915], [0.34614627230120915], [0.34614627230120915], [0.34614627230120915], [0.34614627230120915], [0.34614627230120915], [0.34614627230120915], [0.34614627230120915], [0.34614627230120915], [0.34614627230120915], [0.34614627230120915], [0.34614627230120915], [0.34614627230120915], [0.34614627230120915], [0.34614627230120915], [0.34614627230120915], [0.34614627230120915], [0.34614627230120915], [0.34614627230120915], [0.34614627230120915], [0.34614627230120915], [0.7692095624433855], [0.8076877633807255], [0.7115119530542319], [0.5384585089204836], [0.38462447323854915], [0.3269268638493955], [0.3653656807530227], [0.49998030798314363], [0.5961561183096372], [0.6538537276987909], [0.6345949352132645], [0.5576779173722973], [0.49998030798314363], [0.48076089953133], [0.5192391004686701], [0.5961561183096372], [0.6730731361506045], [0.6922925446024183], [0.6538537276987909], [0.6153755267614509], [0.5576779173722973], [0.5576779173722973], [0.5961561183096372], [0.6922925446024183], [0.7499901539915719], [0.7692095624433855], [0.7692095624433855], [0.7692095624433855], [0.7692095624433855], [0.7692095624433855], [0.7692095624433855], [0.7692095624433855], [0.7692095624433855], [0.7692095624433855], [0.7692095624433855], [0.7692095624433855], [0.44228269859399], [0.34614627230120915], [0.2692292544602419], [0.2692292544602419], [0.34614627230120915], [0.46154149107951636], [0.5384585089204836], [0.5576779173722973], [0.49998030798314363], [0.42306329014217636], [0.3653656807530227], [0.3653656807530227], [0.4038438816903627], [0.48076089953133], [0.5576779173722973], [0.5768973258241109], [0.5384585089204836], [0.46154149107951636], [0.34614627230120915], [0.2692292544602419], [0.23075105352290187], [0.23075105352290187], [0.2884486629120555], [0.34614627230120915], [0.34614627230120915], [0.3077074553975818], [0.23075105352290187], [0.13461462723012094], [0.05769760938915363], [0.038478200937340015], [0.05769760938915363], [0.11539521877830733], [0.19231223661927457], [0.2500098460084282], [0.3077074553975818], [0.38462447323854915], [0.42306329014217636], [0.44228269859399], [0.4038438816903627], [0.3077074553975818], [0.21153164507108826], [0.15383403568193454], [0.17309282816746097], [0.23075105352290187], [0.3077074553975818], [0.3653656807530227], [0.3653656807530227], [0.3077074553975818], [0.21153164507108826], [0.11539521877830733], [0.05769760938915363], [0.05769760938915363], [0.11539521877830733], [0.21153164507108826], [0.2884486629120555], [0.3077074553975818], [0.2884486629120555], [0.21153164507108826], [0.11539521877830733], [0.07691701784096731], [0.038478200937340015], [0.038478200937340015], [0.05769760938915363], [0.038478200937340015], [0.038478200937340015], [0.019219408451813757], [0.038478200937340015], [0.07691701784096731], [0.11539521877830733], [0.13461462723012094], [0.13461462723012094], [0.17309282816746097], [0.19231223661927457], [0.23075105352290187], [0.2500098460084282], [0.2500098460084282], [0.23075105352290187], [0.21153164507108826], [0.21153164507108826], [0.23075105352290187], [0.2692292544602419], [0.34614627230120915], [0.4038438816903627], [0.44228269859399], [0.44228269859399], [0.3653656807530227], [0.2692292544602419], [0.13461462723012094], [0.09613642629278092], [0.11539521877830733], [0.2500098460084282], [0.38462447323854915], [0.48076089953133], [0.48076089953133], [0.4038438816903627], [0.2884486629120555], [0.15383403568193454], [0.05769760938915363], [0.0], [0.038478200937340015], [0.17309282816746097], [0.3653656807530227], [0.5576779173722973], [0.6345949352132645], [0.5768973258241109], [0.4038438816903627], [0.23075105352290187], [0.13461462723012094], [0.15383403568193454], [0.2884486629120555], [0.44228269859399], [0.5192391004686701], [0.5192391004686701], [0.46154149107951636], [0.38462447323854915], [0.34614627230120915], [0.34614627230120915], [0.38462447323854915], [0.44228269859399], [0.5192391004686701], [0.5961561183096372], [0.6538537276987909], [0.6730731361506045], [0.6345949352132645], [0.6153755267614509], [0.5768973258241109], [0.5768973258241109], [0.5768973258241109], [0.5768973258241109], [0.5768973258241109], [0.5768973258241109], [0.5768973258241109], [0.5768973258241109], [0.5768973258241109], [0.5768973258241109], [0.5768973258241109], [0.5768973258241109], [0.5768973258241109], [0.48076089953133], [0.5576779173722973], [0.6345949352132645], [0.6730731361506045], [0.6730731361506045], [0.6153755267614509], [0.5961561183096372], [0.6153755267614509], [0.6730731361506045], [0.7115119530542319], [0.7115119530542319], [0.6538537276987909], [0.5961561183096372], [0.5576779173722973], [0.5576779173722973], [0.5961561183096372], [0.6538537276987909], [0.7115119530542319], [0.7499901539915719], [0.7884683549289119], [0.8076877633807255], [0.7692095624433855], [0.7115119530542319], [0.6730731361506045], [0.6345949352132645], [0.6345949352132645], [0.6730731361506045], [0.6922925446024183], [0.6345949352132645], [0.5768973258241109], [0.49998030798314363], [0.44228269859399], [0.44228269859399], [0.48076089953133], [0.5192391004686701], [0.5961561183096372], [0.6730731361506045], [0.7499901539915719], [0.8076877633807255], [0.8461265802843527], [0.8461265802843527], [0.8269071718325391], [0.7692095624433855], [0.7115119530542319], [0.6538537276987909], [0.6153755267614509], [0.5961561183096372], [0.5961561183096372], [0.6153755267614509], [0.6538537276987909], [0.6922925446024183], [0.7115119530542319], [0.7307707455397581], [0.7307707455397581], [0.7692095624433855], [0.7884683549289119]], "deltas": [[1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [2.0], [3.0], [4.0], [5.0], [6.0], [7.0], [8.0], [9.0], [10.0], [11.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [2.0], [3.0], [4.0], [5.0], [6.0], [7.0], [8.0], [9.0], [10.0], [11.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [2.0], [3.0], [4.0], [5.0], [6.0], [7.0], [8.0], [9.0], [10.0], [11.0], [12.0], [13.0], [14.0], [15.0], [16.0], [17.0], [18.0], [19.0], [20.0], [21.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0]]}} -{"label": 0, "forward": {"values": [[0.7258282958411787], [0.7258282958411787], [0.7580682456314207], [0.7903412281571037], [0.8064612030522248], [0.7903412281571037], [0.7580682456314207], [0.7419482707362998], [0.7419482707362998], [0.7419482707362998], [0.7258282958411787], [0.6451623558946917], [0.5161364912628414], [0.3548376441053084], [0.20969180457833714], [0.12902586463185015], [0.16129884715753312], [0.29032471178938324], [0.5000165163677204], [0.7096752882106168], [0.8548541604730288], [0.919367092788954], [0.8870941102632709], [0.7903412281571037], [0.6935553133154957], [0.6290423809995707], [0.6129224061044496], [0.6451623558946917], [0.6935553133154957], [0.6935553133154957], [0.6613153635252536], [0.5967693984738877], [0.5322564661579626], [0.5000165163677204], [0.5322564661579626], [0.5484094737885243], [0.5484094737885243], [0.5000165163677204], [0.4032306015261124], [0.30644468668450436], [0.29032471178938324], [0.33871766921018726], [0.4032306015261124], [0.4677435338420375], [0.4677435338420375], [0.41935057642123347], [0.3548376441053084], [0.30644468668450436], [0.30644468668450436], [0.37095761900042945], [0.4516235589469164], [0.5000165163677204], [0.48386350873715855], [0.41935057642123347], [0.33871766921018726], [0.29032471178938324], [0.30644468668450436], [0.3548376441053084], [0.41935057642123347], [0.4677435338420375], [0.4677435338420375], [0.4677435338420375], [0.5000165163677204], [0.5645294486836455], [0.6451623558946917], [0.6774353384203746], [0.6129224061044496], [0.5161364912628414], [0.41935057642123347], [0.3548376441053084], [0.3548376441053084], [0.41935057642123347], [0.5000165163677204], [0.5645294486836455], [0.5967693984738877], [0.5322564661579626], [0.38711062663099133], [0.17741882205265416], [0.016119974895121052], [0.0], [0.17741882205265416], [0.4677435338420375], [0.7419482707362998], [0.919367092788954], [0.8870941102632709], [0.7419482707362998], [0.5322564661579626], [0.33871766921018726], [0.22581177947345818], [0.17741882205265416], [0.20969180457833714], [0.33871766921018726], [0.5484094737885243], [0.7741882205265418], [0.919367092788954], [0.9032471178938328], [0.7741882205265418], [0.5806494235787666], [0.41935057642123347], [0.37095761900042945], [0.38711062663099133], [0.43550358405179534], [0.48386350873715855], [0.5161364912628414], [0.5484094737885243], [0.6290423809995707], [0.6935553133154957], [0.7258282958411787], [0.6935553133154957], [0.6290423809995707], [0.5645294486836455], [0.5322564661579626], [0.5645294486836455], [0.5967693984738877], [0.5967693984738877], [0.6129224061044496], [0.6290423809995707], [0.6774353384203746], [0.7419482707362998], [0.7741882205265418], [0.7580682456314207], [0.6774353384203746], [0.5484094737885243], [0.43550358405179534], [0.4032306015261124], [0.4516235589469164], [0.5484094737885243], [0.6613153635252536], [0.7419482707362998], [0.7580682456314207], [0.6774353384203746], [0.5484094737885243], [0.41935057642123347], [0.33871766921018726], [0.32259769431506624], [0.37095761900042945], [0.43550358405179534], [0.4677435338420375], [0.48386350873715855], [0.4516235589469164], [0.4032306015261124], [0.37095761900042945], [0.33871766921018726], [0.30644468668450436], [0.27420473689426217], [0.25805172926370035], [0.27420473689426217], [0.33871766921018726], [0.41935057642123347], [0.48386350873715855], [0.48386350873715855], [0.43550358405179534], [0.38711062663099133], [0.37095761900042945], [0.4032306015261124], [0.5000165163677204], [0.5967693984738877], [0.6290423809995707], [0.6129224061044496], [0.5322564661579626], [0.4032306015261124], [0.32259769431506624], [0.32259769431506624], [0.41935057642123347], [0.5967693984738877], [0.8064612030522248], [0.9516400753146368], [1.0], [0.9354870676840751], [0.7580682456314207], [0.5645294486836455], [0.4516235589469164], [0.4516235589469164], [0.5645294486836455], [0.7258282958411787], [0.8387341855779078], [0.8709741353681498], [0.8225811779473459], [0.7419482707362998], [0.6935553133154957], [0.7096752882106168], [0.7419482707362998], [0.7580682456314207], [0.6935553133154957], [0.5967693984738877], [0.4677435338420375], [0.4032306015261124], [0.41935057642123347], [0.5161364912628414], [0.6935553133154957], [0.8548541604730288], [0.9677600502097579], [0.9838800251048789], [0.919367092788954], [0.8548541604730288], [0.8064612030522248], [0.8064612030522248], [0.8548541604730288], [0.8709741353681498], [0.8387341855779078], [0.7096752882106168], [0.5322564661579626], [0.37095761900042945], [0.30644468668450436], [0.3548376441053084], [0.5000165163677204], [0.6290423809995707], [0.7096752882106168], [0.6613153635252536], [0.5645294486836455], [0.4677435338420375], [0.43550358405179534], [0.5161364912628414], [0.6290423809995707], [0.7419482707362998], [0.8064612030522248], [0.8064612030522248], [0.7741882205265418], [0.7258282958411787], [0.6613153635252536], [0.5806494235787666], [0.5161364912628414], [0.4677435338420375], [0.4516235589469164], [0.4677435338420375], [0.5484094737885243], [0.6290423809995707], [0.6774353384203746], [0.7096752882106168], [0.6935553133154957], [0.6451623558946917], [0.6129224061044496], [0.5967693984738877], [0.5967693984738877], [0.5645294486836455], [0.5484094737885243], [0.5000165163677204], [0.43550358405179534], [0.4032306015261124], [0.37095761900042945], [0.38711062663099133], [0.4032306015261124], [0.41935057642123347], [0.43550358405179534], [0.4516235589469164], [0.48386350873715855], [0.5322564661579626], [0.5967693984738877], [0.6290423809995707], [0.6129224061044496], [0.5645294486836455], [0.5000165163677204], [0.4677435338420375], [0.48386350873715855], [0.5322564661579626], [0.5645294486836455]], "masks": [[1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1]], "evals": [[0.7258282958411787], [0.7258282958411787], [0.7580682456314207], [0.7903412281571037], [0.8064612030522248], [0.7903412281571037], [0.7580682456314207], [0.7419482707362998], [0.7419482707362998], [0.7419482707362998], [0.7258282958411787], [0.6451623558946917], [0.5161364912628414], [0.3548376441053084], [0.20969180457833714], [0.12902586463185015], [0.16129884715753312], [0.29032471178938324], [0.5000165163677204], [0.7096752882106168], [0.8548541604730288], [0.919367092788954], [0.8870941102632709], [0.7903412281571037], [0.6935553133154957], [0.6290423809995707], [0.6129224061044496], [0.6451623558946917], [0.6935553133154957], [0.6935553133154957], [0.6613153635252536], [0.5967693984738877], [0.5322564661579626], [0.5000165163677204], [0.5322564661579626], [0.5484094737885243], [0.5484094737885243], [0.5000165163677204], [0.4032306015261124], [0.30644468668450436], [0.29032471178938324], [0.33871766921018726], [0.4032306015261124], [0.4677435338420375], [0.4677435338420375], [0.41935057642123347], [0.3548376441053084], [0.30644468668450436], [0.30644468668450436], [0.37095761900042945], [0.4516235589469164], [0.5000165163677204], [0.48386350873715855], [0.41935057642123347], [0.33871766921018726], [0.29032471178938324], [0.30644468668450436], [0.3548376441053084], [0.41935057642123347], [0.4677435338420375], [0.4677435338420375], [0.4677435338420375], [0.5000165163677204], [0.5645294486836455], [0.6451623558946917], [0.6774353384203746], [0.6129224061044496], [0.5161364912628414], [0.41935057642123347], [0.3548376441053084], [0.3548376441053084], [0.41935057642123347], [0.5000165163677204], [0.5645294486836455], [0.5967693984738877], [0.5322564661579626], [0.38711062663099133], [0.17741882205265416], [0.016119974895121052], [0.0], [0.17741882205265416], [0.4677435338420375], [0.7419482707362998], [0.919367092788954], [0.8870941102632709], [0.7419482707362998], [0.5322564661579626], [0.33871766921018726], [0.22581177947345818], [0.17741882205265416], [0.20969180457833714], [0.33871766921018726], [0.5484094737885243], [0.7741882205265418], [0.919367092788954], [0.9032471178938328], [0.7741882205265418], [0.5806494235787666], [0.41935057642123347], [0.37095761900042945], [0.38711062663099133], [0.43550358405179534], [0.48386350873715855], [0.5161364912628414], [0.5484094737885243], [0.6290423809995707], [0.6935553133154957], [0.7258282958411787], [0.6935553133154957], [0.6290423809995707], [0.5645294486836455], [0.5322564661579626], [0.5645294486836455], [0.5967693984738877], [0.5967693984738877], [0.6129224061044496], [0.6290423809995707], [0.6774353384203746], [0.7419482707362998], [0.7741882205265418], [0.7580682456314207], [0.6774353384203746], [0.5484094737885243], [0.43550358405179534], [0.4032306015261124], [0.4516235589469164], [0.5484094737885243], [0.6613153635252536], [0.7419482707362998], [0.7580682456314207], [0.6774353384203746], [0.5484094737885243], [0.41935057642123347], [0.33871766921018726], [0.32259769431506624], [0.37095761900042945], [0.43550358405179534], [0.4677435338420375], [0.48386350873715855], [0.4516235589469164], [0.4032306015261124], [0.37095761900042945], [0.33871766921018726], [0.30644468668450436], [0.27420473689426217], [0.25805172926370035], [0.27420473689426217], [0.33871766921018726], [0.41935057642123347], [0.48386350873715855], [0.48386350873715855], [0.43550358405179534], [0.38711062663099133], [0.37095761900042945], [0.4032306015261124], [0.5000165163677204], [0.5967693984738877], [0.6290423809995707], [0.6129224061044496], [0.5322564661579626], [0.4032306015261124], [0.32259769431506624], [0.32259769431506624], [0.41935057642123347], [0.5967693984738877], [0.8064612030522248], [0.9516400753146368], [1.0], [0.9354870676840751], [0.7580682456314207], [0.5645294486836455], [0.4516235589469164], [0.4516235589469164], [0.5645294486836455], [0.7258282958411787], [0.8387341855779078], [0.8709741353681498], [0.8225811779473459], [0.7419482707362998], [0.6935553133154957], [0.7096752882106168], [0.7419482707362998], [0.7580682456314207], [0.6935553133154957], [0.5967693984738877], [0.4677435338420375], [0.4032306015261124], [0.41935057642123347], [0.5161364912628414], [0.6935553133154957], [0.8548541604730288], [0.9677600502097579], [0.9838800251048789], [0.919367092788954], [0.8548541604730288], [0.8064612030522248], [0.8064612030522248], [0.8548541604730288], [0.8709741353681498], [0.8387341855779078], [0.7096752882106168], [0.5322564661579626], [0.37095761900042945], [0.30644468668450436], [0.3548376441053084], [0.5000165163677204], [0.6290423809995707], [0.7096752882106168], [0.6613153635252536], [0.5645294486836455], [0.4677435338420375], [0.43550358405179534], [0.5161364912628414], [0.6290423809995707], [0.7419482707362998], [0.8064612030522248], [0.8064612030522248], [0.7741882205265418], [0.7258282958411787], [0.6613153635252536], [0.5806494235787666], [0.5161364912628414], [0.4677435338420375], [0.4516235589469164], [0.4677435338420375], [0.5484094737885243], [0.6290423809995707], [0.6774353384203746], [0.7096752882106168], [0.6935553133154957], [0.6451623558946917], [0.6129224061044496], [0.5967693984738877], [0.5967693984738877], [0.5645294486836455], [0.5484094737885243], [0.5000165163677204], [0.43550358405179534], [0.4032306015261124], [0.37095761900042945], [0.38711062663099133], [0.4032306015261124], [0.41935057642123347], [0.43550358405179534], [0.4516235589469164], [0.48386350873715855], [0.5322564661579626], [0.5967693984738877], [0.6290423809995707], [0.6129224061044496], [0.5645294486836455], [0.5000165163677204], [0.4677435338420375], [0.48386350873715855], [0.5322564661579626], [0.5645294486836455]], "eval_masks": [[0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0]], "forwards": [[0.7258282958411787], [0.7258282958411787], [0.7580682456314207], [0.7903412281571037], [0.8064612030522248], [0.7903412281571037], [0.7580682456314207], [0.7419482707362998], [0.7419482707362998], [0.7419482707362998], [0.7258282958411787], [0.6451623558946917], [0.5161364912628414], [0.3548376441053084], [0.20969180457833714], [0.12902586463185015], [0.16129884715753312], [0.29032471178938324], [0.5000165163677204], [0.7096752882106168], [0.8548541604730288], [0.919367092788954], [0.8870941102632709], [0.7903412281571037], [0.6935553133154957], [0.6290423809995707], [0.6129224061044496], [0.6451623558946917], [0.6935553133154957], [0.6935553133154957], [0.6613153635252536], [0.5967693984738877], [0.5322564661579626], [0.5000165163677204], [0.5322564661579626], [0.5484094737885243], [0.5484094737885243], [0.5000165163677204], [0.4032306015261124], [0.30644468668450436], [0.29032471178938324], [0.33871766921018726], [0.4032306015261124], [0.4677435338420375], [0.4677435338420375], [0.41935057642123347], [0.3548376441053084], [0.30644468668450436], [0.30644468668450436], [0.37095761900042945], [0.4516235589469164], [0.5000165163677204], [0.48386350873715855], [0.41935057642123347], [0.33871766921018726], [0.29032471178938324], [0.30644468668450436], [0.3548376441053084], [0.41935057642123347], [0.4677435338420375], [0.4677435338420375], [0.4677435338420375], [0.5000165163677204], [0.5645294486836455], [0.6451623558946917], [0.6774353384203746], [0.6129224061044496], [0.5161364912628414], [0.41935057642123347], [0.3548376441053084], [0.3548376441053084], [0.41935057642123347], [0.5000165163677204], [0.5645294486836455], [0.5967693984738877], [0.5322564661579626], [0.38711062663099133], [0.17741882205265416], [0.016119974895121052], [0.0], [0.17741882205265416], [0.4677435338420375], [0.7419482707362998], [0.919367092788954], [0.8870941102632709], [0.7419482707362998], [0.5322564661579626], [0.33871766921018726], [0.22581177947345818], [0.17741882205265416], [0.20969180457833714], [0.33871766921018726], [0.5484094737885243], [0.7741882205265418], [0.919367092788954], [0.9032471178938328], [0.7741882205265418], [0.5806494235787666], [0.41935057642123347], [0.37095761900042945], [0.38711062663099133], [0.43550358405179534], [0.48386350873715855], [0.5161364912628414], [0.5484094737885243], [0.6290423809995707], [0.6935553133154957], [0.7258282958411787], [0.6935553133154957], [0.6290423809995707], [0.5645294486836455], [0.5322564661579626], [0.5645294486836455], [0.5967693984738877], [0.5967693984738877], [0.6129224061044496], [0.6290423809995707], [0.6774353384203746], [0.7419482707362998], [0.7741882205265418], [0.7580682456314207], [0.6774353384203746], [0.5484094737885243], [0.43550358405179534], [0.4032306015261124], [0.4516235589469164], [0.5484094737885243], [0.6613153635252536], [0.7419482707362998], [0.7580682456314207], [0.6774353384203746], [0.5484094737885243], [0.41935057642123347], [0.33871766921018726], [0.32259769431506624], [0.37095761900042945], [0.43550358405179534], [0.4677435338420375], [0.48386350873715855], [0.4516235589469164], [0.4032306015261124], [0.37095761900042945], [0.33871766921018726], [0.30644468668450436], [0.27420473689426217], [0.25805172926370035], [0.27420473689426217], [0.33871766921018726], [0.41935057642123347], [0.48386350873715855], [0.48386350873715855], [0.43550358405179534], [0.38711062663099133], [0.37095761900042945], [0.4032306015261124], [0.5000165163677204], [0.5967693984738877], [0.6290423809995707], [0.6129224061044496], [0.5322564661579626], [0.4032306015261124], [0.32259769431506624], [0.32259769431506624], [0.41935057642123347], [0.5967693984738877], [0.8064612030522248], [0.9516400753146368], [1.0], [0.9354870676840751], [0.7580682456314207], [0.5645294486836455], [0.4516235589469164], [0.4516235589469164], [0.5645294486836455], [0.7258282958411787], [0.8387341855779078], [0.8709741353681498], [0.8225811779473459], [0.7419482707362998], [0.6935553133154957], [0.7096752882106168], [0.7419482707362998], [0.7580682456314207], [0.6935553133154957], [0.5967693984738877], [0.4677435338420375], [0.4032306015261124], [0.41935057642123347], [0.5161364912628414], [0.6935553133154957], [0.8548541604730288], [0.9677600502097579], [0.9838800251048789], [0.919367092788954], [0.8548541604730288], [0.8064612030522248], [0.8064612030522248], [0.8548541604730288], [0.8709741353681498], [0.8387341855779078], [0.7096752882106168], [0.5322564661579626], [0.37095761900042945], [0.30644468668450436], [0.3548376441053084], [0.5000165163677204], [0.6290423809995707], [0.7096752882106168], [0.6613153635252536], [0.5645294486836455], [0.4677435338420375], [0.43550358405179534], [0.5161364912628414], [0.6290423809995707], [0.7419482707362998], [0.8064612030522248], [0.8064612030522248], [0.7741882205265418], [0.7258282958411787], [0.6613153635252536], [0.5806494235787666], [0.5161364912628414], [0.4677435338420375], [0.4516235589469164], [0.4677435338420375], [0.5484094737885243], [0.6290423809995707], [0.6774353384203746], [0.7096752882106168], [0.6935553133154957], [0.6451623558946917], [0.6129224061044496], [0.5967693984738877], [0.5967693984738877], [0.5645294486836455], [0.5484094737885243], [0.5000165163677204], [0.43550358405179534], [0.4032306015261124], [0.37095761900042945], [0.38711062663099133], [0.4032306015261124], [0.41935057642123347], [0.43550358405179534], [0.4516235589469164], [0.48386350873715855], [0.5322564661579626], [0.5967693984738877], [0.6290423809995707], [0.6129224061044496], [0.5645294486836455], [0.5000165163677204], [0.4677435338420375], [0.48386350873715855], [0.5322564661579626], [0.5645294486836455]], "deltas": [[1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0]]}, "backward": {"values": [[0.5645294486836455], [0.5322564661579626], [0.48386350873715855], [0.4677435338420375], [0.5000165163677204], [0.5645294486836455], [0.6129224061044496], [0.6290423809995707], [0.5967693984738877], [0.5322564661579626], [0.48386350873715855], [0.4516235589469164], [0.43550358405179534], [0.41935057642123347], [0.4032306015261124], [0.38711062663099133], [0.37095761900042945], [0.4032306015261124], [0.43550358405179534], [0.5000165163677204], [0.5484094737885243], [0.5645294486836455], [0.5967693984738877], [0.5967693984738877], [0.6129224061044496], [0.6451623558946917], [0.6935553133154957], [0.7096752882106168], [0.6774353384203746], [0.6290423809995707], [0.5484094737885243], [0.4677435338420375], [0.4516235589469164], [0.4677435338420375], [0.5161364912628414], [0.5806494235787666], [0.6613153635252536], [0.7258282958411787], [0.7741882205265418], [0.8064612030522248], [0.8064612030522248], [0.7419482707362998], [0.6290423809995707], [0.5161364912628414], [0.43550358405179534], [0.4677435338420375], [0.5645294486836455], [0.6613153635252536], [0.7096752882106168], [0.6290423809995707], [0.5000165163677204], [0.3548376441053084], [0.30644468668450436], [0.37095761900042945], [0.5322564661579626], [0.7096752882106168], [0.8387341855779078], [0.8709741353681498], [0.8548541604730288], [0.8064612030522248], [0.8064612030522248], [0.8548541604730288], [0.919367092788954], [0.9838800251048789], [0.9677600502097579], [0.8548541604730288], [0.6935553133154957], [0.5161364912628414], [0.41935057642123347], [0.4032306015261124], [0.4677435338420375], [0.5967693984738877], [0.6935553133154957], [0.7580682456314207], [0.7419482707362998], [0.7096752882106168], [0.6935553133154957], [0.7419482707362998], [0.8225811779473459], [0.8709741353681498], [0.8387341855779078], [0.7258282958411787], [0.5645294486836455], [0.4516235589469164], [0.4516235589469164], [0.5645294486836455], [0.7580682456314207], [0.9354870676840751], [1.0], [0.9516400753146368], [0.8064612030522248], [0.5967693984738877], [0.41935057642123347], [0.32259769431506624], [0.32259769431506624], [0.4032306015261124], [0.5322564661579626], [0.6129224061044496], [0.6290423809995707], [0.5967693984738877], [0.5000165163677204], [0.4032306015261124], [0.37095761900042945], [0.38711062663099133], [0.43550358405179534], [0.48386350873715855], [0.48386350873715855], [0.41935057642123347], [0.33871766921018726], [0.27420473689426217], [0.25805172926370035], [0.27420473689426217], [0.30644468668450436], [0.33871766921018726], [0.37095761900042945], [0.4032306015261124], [0.4516235589469164], [0.48386350873715855], [0.4677435338420375], [0.43550358405179534], [0.37095761900042945], [0.32259769431506624], [0.33871766921018726], [0.41935057642123347], [0.5484094737885243], [0.6774353384203746], [0.7580682456314207], [0.7419482707362998], [0.6613153635252536], [0.5484094737885243], [0.4516235589469164], [0.4032306015261124], [0.43550358405179534], [0.5484094737885243], [0.6774353384203746], [0.7580682456314207], [0.7741882205265418], [0.7419482707362998], [0.6774353384203746], [0.6290423809995707], [0.6129224061044496], [0.5967693984738877], [0.5967693984738877], [0.5645294486836455], [0.5322564661579626], [0.5645294486836455], [0.6290423809995707], [0.6935553133154957], [0.7258282958411787], [0.6935553133154957], [0.6290423809995707], [0.5484094737885243], [0.5161364912628414], [0.48386350873715855], [0.43550358405179534], [0.38711062663099133], [0.37095761900042945], [0.41935057642123347], [0.5806494235787666], [0.7741882205265418], [0.9032471178938328], [0.919367092788954], [0.7741882205265418], [0.5484094737885243], [0.33871766921018726], [0.20969180457833714], [0.17741882205265416], [0.22581177947345818], [0.33871766921018726], [0.5322564661579626], [0.7419482707362998], [0.8870941102632709], [0.919367092788954], [0.7419482707362998], [0.4677435338420375], [0.17741882205265416], [0.0], [0.016119974895121052], [0.17741882205265416], [0.38711062663099133], [0.5322564661579626], [0.5967693984738877], [0.5645294486836455], [0.5000165163677204], [0.41935057642123347], [0.3548376441053084], [0.3548376441053084], [0.41935057642123347], [0.5161364912628414], [0.6129224061044496], [0.6774353384203746], [0.6451623558946917], [0.5645294486836455], [0.5000165163677204], [0.4677435338420375], [0.4677435338420375], [0.4677435338420375], [0.41935057642123347], [0.3548376441053084], [0.30644468668450436], [0.29032471178938324], [0.33871766921018726], [0.41935057642123347], [0.48386350873715855], [0.5000165163677204], [0.4516235589469164], [0.37095761900042945], [0.30644468668450436], [0.30644468668450436], [0.3548376441053084], [0.41935057642123347], [0.4677435338420375], [0.4677435338420375], [0.4032306015261124], [0.33871766921018726], [0.29032471178938324], [0.30644468668450436], [0.4032306015261124], [0.5000165163677204], [0.5484094737885243], [0.5484094737885243], [0.5322564661579626], [0.5000165163677204], [0.5322564661579626], [0.5967693984738877], [0.6613153635252536], [0.6935553133154957], [0.6935553133154957], [0.6451623558946917], [0.6129224061044496], [0.6290423809995707], [0.6935553133154957], [0.7903412281571037], [0.8870941102632709], [0.919367092788954], [0.8548541604730288], [0.7096752882106168], [0.5000165163677204], [0.29032471178938324], [0.16129884715753312], [0.12902586463185015], [0.20969180457833714], [0.3548376441053084], [0.5161364912628414], [0.6451623558946917], [0.7258282958411787], [0.7419482707362998], [0.7419482707362998], [0.7419482707362998], [0.7580682456314207], [0.7903412281571037], [0.8064612030522248], [0.7903412281571037], [0.7580682456314207], [0.7258282958411787], [0.7258282958411787]], "masks": [[1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1]], "evals": [[0.5645294486836455], [0.5322564661579626], [0.48386350873715855], [0.4677435338420375], [0.5000165163677204], [0.5645294486836455], [0.6129224061044496], [0.6290423809995707], [0.5967693984738877], [0.5322564661579626], [0.48386350873715855], [0.4516235589469164], [0.43550358405179534], [0.41935057642123347], [0.4032306015261124], [0.38711062663099133], [0.37095761900042945], [0.4032306015261124], [0.43550358405179534], [0.5000165163677204], [0.5484094737885243], [0.5645294486836455], [0.5967693984738877], [0.5967693984738877], [0.6129224061044496], [0.6451623558946917], [0.6935553133154957], [0.7096752882106168], [0.6774353384203746], [0.6290423809995707], [0.5484094737885243], [0.4677435338420375], [0.4516235589469164], [0.4677435338420375], [0.5161364912628414], [0.5806494235787666], [0.6613153635252536], [0.7258282958411787], [0.7741882205265418], [0.8064612030522248], [0.8064612030522248], [0.7419482707362998], [0.6290423809995707], [0.5161364912628414], [0.43550358405179534], [0.4677435338420375], [0.5645294486836455], [0.6613153635252536], [0.7096752882106168], [0.6290423809995707], [0.5000165163677204], [0.3548376441053084], [0.30644468668450436], [0.37095761900042945], [0.5322564661579626], [0.7096752882106168], [0.8387341855779078], [0.8709741353681498], [0.8548541604730288], [0.8064612030522248], [0.8064612030522248], [0.8548541604730288], [0.919367092788954], [0.9838800251048789], [0.9677600502097579], [0.8548541604730288], [0.6935553133154957], [0.5161364912628414], [0.41935057642123347], [0.4032306015261124], [0.4677435338420375], [0.5967693984738877], [0.6935553133154957], [0.7580682456314207], [0.7419482707362998], [0.7096752882106168], [0.6935553133154957], [0.7419482707362998], [0.8225811779473459], [0.8709741353681498], [0.8387341855779078], [0.7258282958411787], [0.5645294486836455], [0.4516235589469164], [0.4516235589469164], [0.5645294486836455], [0.7580682456314207], [0.9354870676840751], [1.0], [0.9516400753146368], [0.8064612030522248], [0.5967693984738877], [0.41935057642123347], [0.32259769431506624], [0.32259769431506624], [0.4032306015261124], [0.5322564661579626], [0.6129224061044496], [0.6290423809995707], [0.5967693984738877], [0.5000165163677204], [0.4032306015261124], [0.37095761900042945], [0.38711062663099133], [0.43550358405179534], [0.48386350873715855], [0.48386350873715855], [0.41935057642123347], [0.33871766921018726], [0.27420473689426217], [0.25805172926370035], [0.27420473689426217], [0.30644468668450436], [0.33871766921018726], [0.37095761900042945], [0.4032306015261124], [0.4516235589469164], [0.48386350873715855], [0.4677435338420375], [0.43550358405179534], [0.37095761900042945], [0.32259769431506624], [0.33871766921018726], [0.41935057642123347], [0.5484094737885243], [0.6774353384203746], [0.7580682456314207], [0.7419482707362998], [0.6613153635252536], [0.5484094737885243], [0.4516235589469164], [0.4032306015261124], [0.43550358405179534], [0.5484094737885243], [0.6774353384203746], [0.7580682456314207], [0.7741882205265418], [0.7419482707362998], [0.6774353384203746], [0.6290423809995707], [0.6129224061044496], [0.5967693984738877], [0.5967693984738877], [0.5645294486836455], [0.5322564661579626], [0.5645294486836455], [0.6290423809995707], [0.6935553133154957], [0.7258282958411787], [0.6935553133154957], [0.6290423809995707], [0.5484094737885243], [0.5161364912628414], [0.48386350873715855], [0.43550358405179534], [0.38711062663099133], [0.37095761900042945], [0.41935057642123347], [0.5806494235787666], [0.7741882205265418], [0.9032471178938328], [0.919367092788954], [0.7741882205265418], [0.5484094737885243], [0.33871766921018726], [0.20969180457833714], [0.17741882205265416], [0.22581177947345818], [0.33871766921018726], [0.5322564661579626], [0.7419482707362998], [0.8870941102632709], [0.919367092788954], [0.7419482707362998], [0.4677435338420375], [0.17741882205265416], [0.0], [0.016119974895121052], [0.17741882205265416], [0.38711062663099133], [0.5322564661579626], [0.5967693984738877], [0.5645294486836455], [0.5000165163677204], [0.41935057642123347], [0.3548376441053084], [0.3548376441053084], [0.41935057642123347], [0.5161364912628414], [0.6129224061044496], [0.6774353384203746], [0.6451623558946917], [0.5645294486836455], [0.5000165163677204], [0.4677435338420375], [0.4677435338420375], [0.4677435338420375], [0.41935057642123347], [0.3548376441053084], [0.30644468668450436], [0.29032471178938324], [0.33871766921018726], [0.41935057642123347], [0.48386350873715855], [0.5000165163677204], [0.4516235589469164], [0.37095761900042945], [0.30644468668450436], [0.30644468668450436], [0.3548376441053084], [0.41935057642123347], [0.4677435338420375], [0.4677435338420375], [0.4032306015261124], [0.33871766921018726], [0.29032471178938324], [0.30644468668450436], [0.4032306015261124], [0.5000165163677204], [0.5484094737885243], [0.5484094737885243], [0.5322564661579626], [0.5000165163677204], [0.5322564661579626], [0.5967693984738877], [0.6613153635252536], [0.6935553133154957], [0.6935553133154957], [0.6451623558946917], [0.6129224061044496], [0.6290423809995707], [0.6935553133154957], [0.7903412281571037], [0.8870941102632709], [0.919367092788954], [0.8548541604730288], [0.7096752882106168], [0.5000165163677204], [0.29032471178938324], [0.16129884715753312], [0.12902586463185015], [0.20969180457833714], [0.3548376441053084], [0.5161364912628414], [0.6451623558946917], [0.7258282958411787], [0.7419482707362998], [0.7419482707362998], [0.7419482707362998], [0.7580682456314207], [0.7903412281571037], [0.8064612030522248], [0.7903412281571037], [0.7580682456314207], [0.7258282958411787], [0.7258282958411787]], "eval_masks": [[0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0]], "forwards": [[0.5645294486836455], [0.5322564661579626], [0.48386350873715855], [0.4677435338420375], [0.5000165163677204], [0.5645294486836455], [0.6129224061044496], [0.6290423809995707], [0.5967693984738877], [0.5322564661579626], [0.48386350873715855], [0.4516235589469164], [0.43550358405179534], [0.41935057642123347], [0.4032306015261124], [0.38711062663099133], [0.37095761900042945], [0.4032306015261124], [0.43550358405179534], [0.5000165163677204], [0.5484094737885243], [0.5645294486836455], [0.5967693984738877], [0.5967693984738877], [0.6129224061044496], [0.6451623558946917], [0.6935553133154957], [0.7096752882106168], [0.6774353384203746], [0.6290423809995707], [0.5484094737885243], [0.4677435338420375], [0.4516235589469164], [0.4677435338420375], [0.5161364912628414], [0.5806494235787666], [0.6613153635252536], [0.7258282958411787], [0.7741882205265418], [0.8064612030522248], [0.8064612030522248], [0.7419482707362998], [0.6290423809995707], [0.5161364912628414], [0.43550358405179534], [0.4677435338420375], [0.5645294486836455], [0.6613153635252536], [0.7096752882106168], [0.6290423809995707], [0.5000165163677204], [0.3548376441053084], [0.30644468668450436], [0.37095761900042945], [0.5322564661579626], [0.7096752882106168], [0.8387341855779078], [0.8709741353681498], [0.8548541604730288], [0.8064612030522248], [0.8064612030522248], [0.8548541604730288], [0.919367092788954], [0.9838800251048789], [0.9677600502097579], [0.8548541604730288], [0.6935553133154957], [0.5161364912628414], [0.41935057642123347], [0.4032306015261124], [0.4677435338420375], [0.5967693984738877], [0.6935553133154957], [0.7580682456314207], [0.7419482707362998], [0.7096752882106168], [0.6935553133154957], [0.7419482707362998], [0.8225811779473459], [0.8709741353681498], [0.8387341855779078], [0.7258282958411787], [0.5645294486836455], [0.4516235589469164], [0.4516235589469164], [0.5645294486836455], [0.7580682456314207], [0.9354870676840751], [1.0], [0.9516400753146368], [0.8064612030522248], [0.5967693984738877], [0.41935057642123347], [0.32259769431506624], [0.32259769431506624], [0.4032306015261124], [0.5322564661579626], [0.6129224061044496], [0.6290423809995707], [0.5967693984738877], [0.5000165163677204], [0.4032306015261124], [0.37095761900042945], [0.38711062663099133], [0.43550358405179534], [0.48386350873715855], [0.48386350873715855], [0.41935057642123347], [0.33871766921018726], [0.27420473689426217], [0.25805172926370035], [0.27420473689426217], [0.30644468668450436], [0.33871766921018726], [0.37095761900042945], [0.4032306015261124], [0.4516235589469164], [0.48386350873715855], [0.4677435338420375], [0.43550358405179534], [0.37095761900042945], [0.32259769431506624], [0.33871766921018726], [0.41935057642123347], [0.5484094737885243], [0.6774353384203746], [0.7580682456314207], [0.7419482707362998], [0.6613153635252536], [0.5484094737885243], [0.4516235589469164], [0.4032306015261124], [0.43550358405179534], [0.5484094737885243], [0.6774353384203746], [0.7580682456314207], [0.7741882205265418], [0.7419482707362998], [0.6774353384203746], [0.6290423809995707], [0.6129224061044496], [0.5967693984738877], [0.5967693984738877], [0.5645294486836455], [0.5322564661579626], [0.5645294486836455], [0.6290423809995707], [0.6935553133154957], [0.7258282958411787], [0.6935553133154957], [0.6290423809995707], [0.5484094737885243], [0.5161364912628414], [0.48386350873715855], [0.43550358405179534], [0.38711062663099133], [0.37095761900042945], [0.41935057642123347], [0.5806494235787666], [0.7741882205265418], [0.9032471178938328], [0.919367092788954], [0.7741882205265418], [0.5484094737885243], [0.33871766921018726], [0.20969180457833714], [0.17741882205265416], [0.22581177947345818], [0.33871766921018726], [0.5322564661579626], [0.7419482707362998], [0.8870941102632709], [0.919367092788954], [0.7419482707362998], [0.4677435338420375], [0.17741882205265416], [0.0], [0.016119974895121052], [0.17741882205265416], [0.38711062663099133], [0.5322564661579626], [0.5967693984738877], [0.5645294486836455], [0.5000165163677204], [0.41935057642123347], [0.3548376441053084], [0.3548376441053084], [0.41935057642123347], [0.5161364912628414], [0.6129224061044496], [0.6774353384203746], [0.6451623558946917], [0.5645294486836455], [0.5000165163677204], [0.4677435338420375], [0.4677435338420375], [0.4677435338420375], [0.41935057642123347], [0.3548376441053084], [0.30644468668450436], [0.29032471178938324], [0.33871766921018726], [0.41935057642123347], [0.48386350873715855], [0.5000165163677204], [0.4516235589469164], [0.37095761900042945], [0.30644468668450436], [0.30644468668450436], [0.3548376441053084], [0.41935057642123347], [0.4677435338420375], [0.4677435338420375], [0.4032306015261124], [0.33871766921018726], [0.29032471178938324], [0.30644468668450436], [0.4032306015261124], [0.5000165163677204], [0.5484094737885243], [0.5484094737885243], [0.5322564661579626], [0.5000165163677204], [0.5322564661579626], [0.5967693984738877], [0.6613153635252536], [0.6935553133154957], [0.6935553133154957], [0.6451623558946917], [0.6129224061044496], [0.6290423809995707], [0.6935553133154957], [0.7903412281571037], [0.8870941102632709], [0.919367092788954], [0.8548541604730288], [0.7096752882106168], [0.5000165163677204], [0.29032471178938324], [0.16129884715753312], [0.12902586463185015], [0.20969180457833714], [0.3548376441053084], [0.5161364912628414], [0.6451623558946917], [0.7258282958411787], [0.7419482707362998], [0.7419482707362998], [0.7419482707362998], [0.7580682456314207], [0.7903412281571037], [0.8064612030522248], [0.7903412281571037], [0.7580682456314207], [0.7258282958411787], [0.7258282958411787]], "deltas": [[1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0]]}} -{"label": 0, "forward": {"values": [[0.8701260705356667], [0.8311612319804245], [0.8311612319804245], [0.8311612319804245], [0.8311612319804245], [0.7921963934251822], [0.7532315548699399], [0.7272727272727272], [0.7142667163146975], [0.7272727272727272], [0.7532315548699399], [0.7792169796265759], [0.7921963934251822], [0.7662375658279695], [0.7142667163146975], [0.6493430501622426], [0.6233576254056067], [0.6493430501622426], [0.7402521410713335], [0.8571200595776372], [0.9610351614447576], [1.0], [0.9740145752433639], [0.883105484334273], [0.7662375658279695], [0.6753284749188786], [0.6233576254056067], [0.6233576254056067], [0.6233576254056067], [0.6103782116070003], [0.5584339592531518], [0.49351029310069683], [0.44153944358742486], [0.4285600297888186], [0.48050428214266716], [0.5584339592531518], [0.6493430501622426], [0.7012873025160913], [0.7142667163146975], [0.6883078887174849], [0.6363636363636364], [0.5844193840097878], [0.5454545454545454], [0.49351029310069683], [0.4675248683440609], [0.44153944358742486], [0.44153944358742486], [0.4545454545454545], [0.49351029310069683], [0.5194691206979094], [0.5324485344965157], [0.5324485344965157], [0.48050428214266716], [0.41558061599021223], [0.3636363636363636], [0.3506569498377573], [0.37661577743496993], [0.44153944358742486], [0.48050428214266716], [0.49351029310069683], [0.4675248683440609], [0.4675248683440609], [0.5064897068993032], [0.597398797808394], [0.7012873025160913], [0.7532315548699399], [0.7272727272727272], [0.6493430501622426], [0.5324485344965157], [0.4545454545454545], [0.4545454545454545], [0.5064897068993032], [0.6233576254056067], [0.7532315548699399], [0.8181818181818182], [0.7532315548699399], [0.5584339592531518], [0.29868610032448534], [0.0779296771104846], [0.0], [0.11686791850630349], [0.37661577743496993], [0.6493430501622426], [0.8441406457790308], [0.8701260705356667], [0.7532315548699399], [0.5844193840097878], [0.4285600297888186], [0.3506569498377573], [0.33765093887972764], [0.3895951912335762], [0.48050428214266716], [0.571413373051758], [0.6363636363636364], [0.6493430501622426], [0.597398797808394], [0.5194691206979094], [0.4545454545454545], [0.44153944358742486], [0.48050428214266716], [0.5454545454545454], [0.571413373051758], [0.5584339592531518], [0.5064897068993032], [0.48050428214266716], [0.4675248683440609], [0.48050428214266716], [0.5064897068993032], [0.5194691206979094], [0.5584339592531518], [0.6103782116070003], [0.6883078887174849], [0.7532315548699399], [0.7662375658279695], [0.7142667163146975], [0.6493430501622426], [0.5844193840097878], [0.571413373051758], [0.5844193840097878], [0.597398797808394], [0.597398797808394], [0.571413373051758], [0.5454545454545454], [0.5064897068993032], [0.48050428214266716], [0.48050428214266716], [0.48050428214266716], [0.48050428214266716], [0.49351029310069683], [0.49351029310069683], [0.4545454545454545], [0.4026012021916059], [0.3636363636363636], [0.37661577743496993], [0.4285600297888186], [0.5194691206979094], [0.5844193840097878], [0.6103782116070003], [0.5844193840097878], [0.5454545454545454], [0.48050428214266716], [0.4285600297888186], [0.3895951912335762], [0.3246715250811213], [0.285706686525879], [0.27272727272727265], [0.3246715250811213], [0.4026012021916059], [0.48050428214266716], [0.5454545454545454], [0.5584339592531518], [0.5454545454545454], [0.5064897068993032], [0.48050428214266716], [0.49351029310069683], [0.5194691206979094], [0.5584339592531518], [0.5584339592531518], [0.5324485344965157], [0.4675248683440609], [0.37661577743496993], [0.285706686525879], [0.24674184797063667], [0.27272727272727265], [0.37661577743496993], [0.49351029310069683], [0.6233576254056067], [0.6753284749188786], [0.6363636363636364], [0.5324485344965157], [0.4026012021916059], [0.29868610032448534], [0.27272727272727265], [0.33765093887972764], [0.4545454545454545], [0.5454545454545454], [0.5844193840097878], [0.5584339592531518], [0.49351029310069683], [0.41558061599021223], [0.37661577743496993], [0.3895951912335762], [0.44153944358742486], [0.49351029310069683], [0.5584339592531518], [0.597398797808394], [0.6233576254056067], [0.6233576254056067], [0.6363636363636364], [0.6493430501622426], [0.6623224639608489], [0.6883078887174849], [0.6753284749188786], [0.6103782116070003], [0.5584339592531518], [0.5324485344965157], [0.5584339592531518], [0.6363636363636364], [0.7272727272727272], [0.7792169796265759], [0.7532315548699399], [0.6623224639608489], [0.5454545454545454], [0.48050428214266716], [0.48050428214266716], [0.5454545454545454], [0.6103782116070003], [0.6493430501622426], [0.6363636363636364], [0.5844193840097878], [0.5324485344965157], [0.48050428214266716], [0.4675248683440609], [0.48050428214266716], [0.5194691206979094], [0.5584339592531518], [0.6103782116070003], [0.6623224639608489], [0.6753284749188786], [0.6363636363636364], [0.5584339592531518], [0.48050428214266716], [0.41558061599021223], [0.4026012021916059], [0.4545454545454545], [0.5454545454545454], [0.6363636363636364], [0.6493430501622426], [0.6103782116070003], [0.48050428214266716], [0.3506569498377573], [0.27272727272727265], [0.27272727272727265], [0.3506569498377573], [0.4545454545454545], [0.5324485344965157], [0.5324485344965157], [0.4675248683440609], [0.37661577743496993], [0.31169211128251495], [0.29868610032448534], [0.3246715250811213], [0.4026012021916059], [0.4675248683440609], [0.49351029310069683], [0.4545454545454545], [0.37661577743496993], [0.27272727272727265], [0.20777700941539437], [0.2207830203734241], [0.33765093887972764], [0.49351029310069683], [0.6493430501622426], [0.7532315548699399], [0.7532315548699399], [0.6493430501622426]], "masks": [[1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1]], "evals": [[0.8701260705356667], [0.8311612319804245], [0.8311612319804245], [0.8311612319804245], [0.8311612319804245], [0.7921963934251822], [0.7532315548699399], [0.7272727272727272], [0.7142667163146975], [0.7272727272727272], [0.7532315548699399], [0.7792169796265759], [0.7921963934251822], [0.7662375658279695], [0.7142667163146975], [0.6493430501622426], [0.6233576254056067], [0.6493430501622426], [0.7402521410713335], [0.8571200595776372], [0.9610351614447576], [1.0], [0.9740145752433639], [0.883105484334273], [0.7662375658279695], [0.6753284749188786], [0.6233576254056067], [0.6233576254056067], [0.6233576254056067], [0.6103782116070003], [0.5584339592531518], [0.49351029310069683], [0.44153944358742486], [0.4285600297888186], [0.48050428214266716], [0.5584339592531518], [0.6493430501622426], [0.7012873025160913], [0.7142667163146975], [0.6883078887174849], [0.6363636363636364], [0.5844193840097878], [0.5454545454545454], [0.49351029310069683], [0.4675248683440609], [0.44153944358742486], [0.44153944358742486], [0.4545454545454545], [0.49351029310069683], [0.5194691206979094], [0.5324485344965157], [0.5324485344965157], [0.48050428214266716], [0.41558061599021223], [0.3636363636363636], [0.3506569498377573], [0.37661577743496993], [0.44153944358742486], [0.48050428214266716], [0.49351029310069683], [0.4675248683440609], [0.4675248683440609], [0.5064897068993032], [0.597398797808394], [0.7012873025160913], [0.7532315548699399], [0.7272727272727272], [0.6493430501622426], [0.5324485344965157], [0.4545454545454545], [0.4545454545454545], [0.5064897068993032], [0.6233576254056067], [0.7532315548699399], [0.8181818181818182], [0.7532315548699399], [0.5584339592531518], [0.29868610032448534], [0.0779296771104846], [0.0], [0.11686791850630349], [0.37661577743496993], [0.6493430501622426], [0.8441406457790308], [0.8701260705356667], [0.7532315548699399], [0.5844193840097878], [0.4285600297888186], [0.3506569498377573], [0.33765093887972764], [0.3895951912335762], [0.48050428214266716], [0.571413373051758], [0.6363636363636364], [0.6493430501622426], [0.597398797808394], [0.5194691206979094], [0.4545454545454545], [0.44153944358742486], [0.48050428214266716], [0.5454545454545454], [0.571413373051758], [0.5584339592531518], [0.5064897068993032], [0.48050428214266716], [0.4675248683440609], [0.48050428214266716], [0.5064897068993032], [0.5194691206979094], [0.5584339592531518], [0.6103782116070003], [0.6883078887174849], [0.7532315548699399], [0.7662375658279695], [0.7142667163146975], [0.6493430501622426], [0.5844193840097878], [0.571413373051758], [0.5844193840097878], [0.597398797808394], [0.597398797808394], [0.571413373051758], [0.5454545454545454], [0.5064897068993032], [0.48050428214266716], [0.48050428214266716], [0.48050428214266716], [0.48050428214266716], [0.49351029310069683], [0.49351029310069683], [0.4545454545454545], [0.4026012021916059], [0.3636363636363636], [0.37661577743496993], [0.4285600297888186], [0.5194691206979094], [0.5844193840097878], [0.6103782116070003], [0.5844193840097878], [0.5454545454545454], [0.48050428214266716], [0.4285600297888186], [0.3895951912335762], [0.3246715250811213], [0.285706686525879], [0.27272727272727265], [0.3246715250811213], [0.4026012021916059], [0.48050428214266716], [0.5454545454545454], [0.5584339592531518], [0.5454545454545454], [0.5064897068993032], [0.48050428214266716], [0.49351029310069683], [0.5194691206979094], [0.5584339592531518], [0.5584339592531518], [0.5324485344965157], [0.4675248683440609], [0.37661577743496993], [0.285706686525879], [0.24674184797063667], [0.27272727272727265], [0.37661577743496993], [0.49351029310069683], [0.6233576254056067], [0.6753284749188786], [0.6363636363636364], [0.5324485344965157], [0.4026012021916059], [0.29868610032448534], [0.27272727272727265], [0.33765093887972764], [0.4545454545454545], [0.5454545454545454], [0.5844193840097878], [0.5584339592531518], [0.49351029310069683], [0.41558061599021223], [0.37661577743496993], [0.3895951912335762], [0.44153944358742486], [0.49351029310069683], [0.5584339592531518], [0.597398797808394], [0.6233576254056067], [0.6233576254056067], [0.6363636363636364], [0.6493430501622426], [0.6623224639608489], [0.6883078887174849], [0.6753284749188786], [0.6103782116070003], [0.5584339592531518], [0.5324485344965157], [0.5584339592531518], [0.6363636363636364], [0.7272727272727272], [0.7792169796265759], [0.7532315548699399], [0.6623224639608489], [0.5454545454545454], [0.48050428214266716], [0.48050428214266716], [0.5454545454545454], [0.6103782116070003], [0.6493430501622426], [0.6363636363636364], [0.5844193840097878], [0.5324485344965157], [0.48050428214266716], [0.4675248683440609], [0.48050428214266716], [0.5194691206979094], [0.5584339592531518], [0.6103782116070003], [0.6623224639608489], [0.6753284749188786], [0.6363636363636364], [0.5584339592531518], [0.48050428214266716], [0.41558061599021223], [0.4026012021916059], [0.4545454545454545], [0.5454545454545454], [0.6363636363636364], [0.6493430501622426], [0.6103782116070003], [0.48050428214266716], [0.3506569498377573], [0.27272727272727265], [0.27272727272727265], [0.3506569498377573], [0.4545454545454545], [0.5324485344965157], [0.5324485344965157], [0.4675248683440609], [0.37661577743496993], [0.31169211128251495], [0.29868610032448534], [0.3246715250811213], [0.4026012021916059], [0.4675248683440609], [0.49351029310069683], [0.4545454545454545], [0.37661577743496993], [0.27272727272727265], [0.20777700941539437], [0.2207830203734241], [0.33765093887972764], [0.49351029310069683], [0.6493430501622426], [0.7532315548699399], [0.7532315548699399], [0.6493430501622426]], "eval_masks": [[0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0]], "forwards": [[0.8701260705356667], [0.8311612319804245], [0.8311612319804245], [0.8311612319804245], [0.8311612319804245], [0.7921963934251822], [0.7532315548699399], [0.7272727272727272], [0.7142667163146975], [0.7272727272727272], [0.7532315548699399], [0.7792169796265759], [0.7921963934251822], [0.7662375658279695], [0.7142667163146975], [0.6493430501622426], [0.6233576254056067], [0.6493430501622426], [0.7402521410713335], [0.8571200595776372], [0.9610351614447576], [1.0], [0.9740145752433639], [0.883105484334273], [0.7662375658279695], [0.6753284749188786], [0.6233576254056067], [0.6233576254056067], [0.6233576254056067], [0.6103782116070003], [0.5584339592531518], [0.49351029310069683], [0.44153944358742486], [0.4285600297888186], [0.48050428214266716], [0.5584339592531518], [0.6493430501622426], [0.7012873025160913], [0.7142667163146975], [0.6883078887174849], [0.6363636363636364], [0.5844193840097878], [0.5454545454545454], [0.49351029310069683], [0.4675248683440609], [0.44153944358742486], [0.44153944358742486], [0.4545454545454545], [0.49351029310069683], [0.5194691206979094], [0.5324485344965157], [0.5324485344965157], [0.48050428214266716], [0.41558061599021223], [0.3636363636363636], [0.3506569498377573], [0.37661577743496993], [0.44153944358742486], [0.48050428214266716], [0.49351029310069683], [0.4675248683440609], [0.4675248683440609], [0.5064897068993032], [0.597398797808394], [0.7012873025160913], [0.7532315548699399], [0.7272727272727272], [0.6493430501622426], [0.5324485344965157], [0.4545454545454545], [0.4545454545454545], [0.5064897068993032], [0.6233576254056067], [0.7532315548699399], [0.8181818181818182], [0.7532315548699399], [0.5584339592531518], [0.29868610032448534], [0.0779296771104846], [0.0], [0.11686791850630349], [0.37661577743496993], [0.6493430501622426], [0.8441406457790308], [0.8701260705356667], [0.7532315548699399], [0.5844193840097878], [0.4285600297888186], [0.3506569498377573], [0.33765093887972764], [0.3895951912335762], [0.48050428214266716], [0.571413373051758], [0.6363636363636364], [0.6493430501622426], [0.597398797808394], [0.5194691206979094], [0.4545454545454545], [0.44153944358742486], [0.48050428214266716], [0.5454545454545454], [0.571413373051758], [0.5584339592531518], [0.5064897068993032], [0.48050428214266716], [0.4675248683440609], [0.48050428214266716], [0.5064897068993032], [0.5194691206979094], [0.5584339592531518], [0.6103782116070003], [0.6883078887174849], [0.7532315548699399], [0.7662375658279695], [0.7142667163146975], [0.6493430501622426], [0.5844193840097878], [0.571413373051758], [0.5844193840097878], [0.597398797808394], [0.597398797808394], [0.571413373051758], [0.5454545454545454], [0.5064897068993032], [0.48050428214266716], [0.48050428214266716], [0.48050428214266716], [0.48050428214266716], [0.49351029310069683], [0.49351029310069683], [0.4545454545454545], [0.4026012021916059], [0.3636363636363636], [0.37661577743496993], [0.4285600297888186], [0.5194691206979094], [0.5844193840097878], [0.6103782116070003], [0.5844193840097878], [0.5454545454545454], [0.48050428214266716], [0.4285600297888186], [0.3895951912335762], [0.3246715250811213], [0.285706686525879], [0.27272727272727265], [0.3246715250811213], [0.4026012021916059], [0.48050428214266716], [0.5454545454545454], [0.5584339592531518], [0.5454545454545454], [0.5064897068993032], [0.48050428214266716], [0.49351029310069683], [0.5194691206979094], [0.5584339592531518], [0.5584339592531518], [0.5324485344965157], [0.4675248683440609], [0.37661577743496993], [0.285706686525879], [0.24674184797063667], [0.27272727272727265], [0.37661577743496993], [0.49351029310069683], [0.6233576254056067], [0.6753284749188786], [0.6363636363636364], [0.5324485344965157], [0.4026012021916059], [0.29868610032448534], [0.27272727272727265], [0.33765093887972764], [0.4545454545454545], [0.5454545454545454], [0.5844193840097878], [0.5584339592531518], [0.49351029310069683], [0.41558061599021223], [0.37661577743496993], [0.3895951912335762], [0.44153944358742486], [0.49351029310069683], [0.5584339592531518], [0.597398797808394], [0.6233576254056067], [0.6233576254056067], [0.6363636363636364], [0.6493430501622426], [0.6623224639608489], [0.6883078887174849], [0.6753284749188786], [0.6103782116070003], [0.5584339592531518], [0.5324485344965157], [0.5584339592531518], [0.6363636363636364], [0.7272727272727272], [0.7792169796265759], [0.7532315548699399], [0.6623224639608489], [0.5454545454545454], [0.48050428214266716], [0.48050428214266716], [0.5454545454545454], [0.6103782116070003], [0.6493430501622426], [0.6363636363636364], [0.5844193840097878], [0.5324485344965157], [0.48050428214266716], [0.4675248683440609], [0.48050428214266716], [0.5194691206979094], [0.5584339592531518], [0.6103782116070003], [0.6623224639608489], [0.6753284749188786], [0.6363636363636364], [0.5584339592531518], [0.48050428214266716], [0.41558061599021223], [0.4026012021916059], [0.4545454545454545], [0.5454545454545454], [0.6363636363636364], [0.6493430501622426], [0.6103782116070003], [0.48050428214266716], [0.3506569498377573], [0.27272727272727265], [0.27272727272727265], [0.3506569498377573], [0.4545454545454545], [0.5324485344965157], [0.5324485344965157], [0.4675248683440609], [0.37661577743496993], [0.31169211128251495], [0.29868610032448534], [0.3246715250811213], [0.4026012021916059], [0.4675248683440609], [0.49351029310069683], [0.4545454545454545], [0.37661577743496993], [0.27272727272727265], [0.20777700941539437], [0.2207830203734241], [0.33765093887972764], [0.49351029310069683], [0.6493430501622426], [0.7532315548699399], [0.7532315548699399], [0.6493430501622426]], "deltas": [[1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0]]}, "backward": {"values": [[0.6493430501622426], [0.7532315548699399], [0.7532315548699399], [0.6493430501622426], [0.49351029310069683], [0.33765093887972764], [0.2207830203734241], [0.20777700941539437], [0.27272727272727265], [0.37661577743496993], [0.4545454545454545], [0.49351029310069683], [0.4675248683440609], [0.4026012021916059], [0.3246715250811213], [0.29868610032448534], [0.31169211128251495], [0.37661577743496993], [0.4675248683440609], [0.5324485344965157], [0.5324485344965157], [0.4545454545454545], [0.3506569498377573], [0.27272727272727265], [0.27272727272727265], [0.3506569498377573], [0.48050428214266716], [0.6103782116070003], [0.6493430501622426], [0.6363636363636364], [0.5454545454545454], [0.4545454545454545], [0.4026012021916059], [0.41558061599021223], [0.48050428214266716], [0.5584339592531518], [0.6363636363636364], [0.6753284749188786], [0.6623224639608489], [0.6103782116070003], [0.5584339592531518], [0.5194691206979094], [0.48050428214266716], [0.4675248683440609], [0.48050428214266716], [0.5324485344965157], [0.5844193840097878], [0.6363636363636364], [0.6493430501622426], [0.6103782116070003], [0.5454545454545454], [0.48050428214266716], [0.48050428214266716], [0.5454545454545454], [0.6623224639608489], [0.7532315548699399], [0.7792169796265759], [0.7272727272727272], [0.6363636363636364], [0.5584339592531518], [0.5324485344965157], [0.5584339592531518], [0.6103782116070003], [0.6753284749188786], [0.6883078887174849], [0.6623224639608489], [0.6493430501622426], [0.6363636363636364], [0.6233576254056067], [0.6233576254056067], [0.597398797808394], [0.5584339592531518], [0.49351029310069683], [0.44153944358742486], [0.3895951912335762], [0.37661577743496993], [0.41558061599021223], [0.49351029310069683], [0.5584339592531518], [0.5844193840097878], [0.5454545454545454], [0.4545454545454545], [0.33765093887972764], [0.27272727272727265], [0.29868610032448534], [0.4026012021916059], [0.5324485344965157], [0.6363636363636364], [0.6753284749188786], [0.6233576254056067], [0.49351029310069683], [0.37661577743496993], [0.27272727272727265], [0.24674184797063667], [0.285706686525879], [0.37661577743496993], [0.4675248683440609], [0.5324485344965157], [0.5584339592531518], [0.5584339592531518], [0.5194691206979094], [0.49351029310069683], [0.48050428214266716], [0.5064897068993032], [0.5454545454545454], [0.5584339592531518], [0.5454545454545454], [0.48050428214266716], [0.4026012021916059], [0.3246715250811213], [0.27272727272727265], [0.285706686525879], [0.3246715250811213], [0.3895951912335762], [0.4285600297888186], [0.48050428214266716], [0.5454545454545454], [0.5844193840097878], [0.6103782116070003], [0.5844193840097878], [0.5194691206979094], [0.4285600297888186], [0.37661577743496993], [0.3636363636363636], [0.4026012021916059], [0.4545454545454545], [0.49351029310069683], [0.49351029310069683], [0.48050428214266716], [0.48050428214266716], [0.48050428214266716], [0.48050428214266716], [0.5064897068993032], [0.5454545454545454], [0.571413373051758], [0.597398797808394], [0.597398797808394], [0.5844193840097878], [0.571413373051758], [0.5844193840097878], [0.6493430501622426], [0.7142667163146975], [0.7662375658279695], [0.7532315548699399], [0.6883078887174849], [0.6103782116070003], [0.5584339592531518], [0.5194691206979094], [0.5064897068993032], [0.48050428214266716], [0.4675248683440609], [0.48050428214266716], [0.5064897068993032], [0.5584339592531518], [0.571413373051758], [0.5454545454545454], [0.48050428214266716], [0.44153944358742486], [0.4545454545454545], [0.5194691206979094], [0.597398797808394], [0.6493430501622426], [0.6363636363636364], [0.571413373051758], [0.48050428214266716], [0.3895951912335762], [0.33765093887972764], [0.3506569498377573], [0.4285600297888186], [0.5844193840097878], [0.7532315548699399], [0.8701260705356667], [0.8441406457790308], [0.6493430501622426], [0.37661577743496993], [0.11686791850630349], [0.0], [0.0779296771104846], [0.29868610032448534], [0.5584339592531518], [0.7532315548699399], [0.8181818181818182], [0.7532315548699399], [0.6233576254056067], [0.5064897068993032], [0.4545454545454545], [0.4545454545454545], [0.5324485344965157], [0.6493430501622426], [0.7272727272727272], [0.7532315548699399], [0.7012873025160913], [0.597398797808394], [0.5064897068993032], [0.4675248683440609], [0.4675248683440609], [0.49351029310069683], [0.48050428214266716], [0.44153944358742486], [0.37661577743496993], [0.3506569498377573], [0.3636363636363636], [0.41558061599021223], [0.48050428214266716], [0.5324485344965157], [0.5324485344965157], [0.5194691206979094], [0.49351029310069683], [0.4545454545454545], [0.44153944358742486], [0.44153944358742486], [0.4675248683440609], [0.49351029310069683], [0.5454545454545454], [0.5844193840097878], [0.6363636363636364], [0.6883078887174849], [0.7142667163146975], [0.7012873025160913], [0.6493430501622426], [0.5584339592531518], [0.48050428214266716], [0.4285600297888186], [0.44153944358742486], [0.49351029310069683], [0.5584339592531518], [0.6103782116070003], [0.6233576254056067], [0.6233576254056067], [0.6233576254056067], [0.6753284749188786], [0.7662375658279695], [0.883105484334273], [0.9740145752433639], [1.0], [0.9610351614447576], [0.8571200595776372], [0.7402521410713335], [0.6493430501622426], [0.6233576254056067], [0.6493430501622426], [0.7142667163146975], [0.7662375658279695], [0.7921963934251822], [0.7792169796265759], [0.7532315548699399], [0.7272727272727272], [0.7142667163146975], [0.7272727272727272], [0.7532315548699399], [0.7921963934251822], [0.8311612319804245], [0.8311612319804245], [0.8311612319804245], [0.8311612319804245], [0.8701260705356667]], "masks": [[1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1]], "evals": [[0.6493430501622426], [0.7532315548699399], [0.7532315548699399], [0.6493430501622426], [0.49351029310069683], [0.33765093887972764], [0.2207830203734241], [0.20777700941539437], [0.27272727272727265], [0.37661577743496993], [0.4545454545454545], [0.49351029310069683], [0.4675248683440609], [0.4026012021916059], [0.3246715250811213], [0.29868610032448534], [0.31169211128251495], [0.37661577743496993], [0.4675248683440609], [0.5324485344965157], [0.5324485344965157], [0.4545454545454545], [0.3506569498377573], [0.27272727272727265], [0.27272727272727265], [0.3506569498377573], [0.48050428214266716], [0.6103782116070003], [0.6493430501622426], [0.6363636363636364], [0.5454545454545454], [0.4545454545454545], [0.4026012021916059], [0.41558061599021223], [0.48050428214266716], [0.5584339592531518], [0.6363636363636364], [0.6753284749188786], [0.6623224639608489], [0.6103782116070003], [0.5584339592531518], [0.5194691206979094], [0.48050428214266716], [0.4675248683440609], [0.48050428214266716], [0.5324485344965157], [0.5844193840097878], [0.6363636363636364], [0.6493430501622426], [0.6103782116070003], [0.5454545454545454], [0.48050428214266716], [0.48050428214266716], [0.5454545454545454], [0.6623224639608489], [0.7532315548699399], [0.7792169796265759], [0.7272727272727272], [0.6363636363636364], [0.5584339592531518], [0.5324485344965157], [0.5584339592531518], [0.6103782116070003], [0.6753284749188786], [0.6883078887174849], [0.6623224639608489], [0.6493430501622426], [0.6363636363636364], [0.6233576254056067], [0.6233576254056067], [0.597398797808394], [0.5584339592531518], [0.49351029310069683], [0.44153944358742486], [0.3895951912335762], [0.37661577743496993], [0.41558061599021223], [0.49351029310069683], [0.5584339592531518], [0.5844193840097878], [0.5454545454545454], [0.4545454545454545], [0.33765093887972764], [0.27272727272727265], [0.29868610032448534], [0.4026012021916059], [0.5324485344965157], [0.6363636363636364], [0.6753284749188786], [0.6233576254056067], [0.49351029310069683], [0.37661577743496993], [0.27272727272727265], [0.24674184797063667], [0.285706686525879], [0.37661577743496993], [0.4675248683440609], [0.5324485344965157], [0.5584339592531518], [0.5584339592531518], [0.5194691206979094], [0.49351029310069683], [0.48050428214266716], [0.5064897068993032], [0.5454545454545454], [0.5584339592531518], [0.5454545454545454], [0.48050428214266716], [0.4026012021916059], [0.3246715250811213], [0.27272727272727265], [0.285706686525879], [0.3246715250811213], [0.3895951912335762], [0.4285600297888186], [0.48050428214266716], [0.5454545454545454], [0.5844193840097878], [0.6103782116070003], [0.5844193840097878], [0.5194691206979094], [0.4285600297888186], [0.37661577743496993], [0.3636363636363636], [0.4026012021916059], [0.4545454545454545], [0.49351029310069683], [0.49351029310069683], [0.48050428214266716], [0.48050428214266716], [0.48050428214266716], [0.48050428214266716], [0.5064897068993032], [0.5454545454545454], [0.571413373051758], [0.597398797808394], [0.597398797808394], [0.5844193840097878], [0.571413373051758], [0.5844193840097878], [0.6493430501622426], [0.7142667163146975], [0.7662375658279695], [0.7532315548699399], [0.6883078887174849], [0.6103782116070003], [0.5584339592531518], [0.5194691206979094], [0.5064897068993032], [0.48050428214266716], [0.4675248683440609], [0.48050428214266716], [0.5064897068993032], [0.5584339592531518], [0.571413373051758], [0.5454545454545454], [0.48050428214266716], [0.44153944358742486], [0.4545454545454545], [0.5194691206979094], [0.597398797808394], [0.6493430501622426], [0.6363636363636364], [0.571413373051758], [0.48050428214266716], [0.3895951912335762], [0.33765093887972764], [0.3506569498377573], [0.4285600297888186], [0.5844193840097878], [0.7532315548699399], [0.8701260705356667], [0.8441406457790308], [0.6493430501622426], [0.37661577743496993], [0.11686791850630349], [0.0], [0.0779296771104846], [0.29868610032448534], [0.5584339592531518], [0.7532315548699399], [0.8181818181818182], [0.7532315548699399], [0.6233576254056067], [0.5064897068993032], [0.4545454545454545], [0.4545454545454545], [0.5324485344965157], [0.6493430501622426], [0.7272727272727272], [0.7532315548699399], [0.7012873025160913], [0.597398797808394], [0.5064897068993032], [0.4675248683440609], [0.4675248683440609], [0.49351029310069683], [0.48050428214266716], [0.44153944358742486], [0.37661577743496993], [0.3506569498377573], [0.3636363636363636], [0.41558061599021223], [0.48050428214266716], [0.5324485344965157], [0.5324485344965157], [0.5194691206979094], [0.49351029310069683], [0.4545454545454545], [0.44153944358742486], [0.44153944358742486], [0.4675248683440609], [0.49351029310069683], [0.5454545454545454], [0.5844193840097878], [0.6363636363636364], [0.6883078887174849], [0.7142667163146975], [0.7012873025160913], [0.6493430501622426], [0.5584339592531518], [0.48050428214266716], [0.4285600297888186], [0.44153944358742486], [0.49351029310069683], [0.5584339592531518], [0.6103782116070003], [0.6233576254056067], [0.6233576254056067], [0.6233576254056067], [0.6753284749188786], [0.7662375658279695], [0.883105484334273], [0.9740145752433639], [1.0], [0.9610351614447576], [0.8571200595776372], [0.7402521410713335], [0.6493430501622426], [0.6233576254056067], [0.6493430501622426], [0.7142667163146975], [0.7662375658279695], [0.7921963934251822], [0.7792169796265759], [0.7532315548699399], [0.7272727272727272], [0.7142667163146975], [0.7272727272727272], [0.7532315548699399], [0.7921963934251822], [0.8311612319804245], [0.8311612319804245], [0.8311612319804245], [0.8311612319804245], [0.8701260705356667]], "eval_masks": [[0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0]], "forwards": [[0.6493430501622426], [0.7532315548699399], [0.7532315548699399], [0.6493430501622426], [0.49351029310069683], [0.33765093887972764], [0.2207830203734241], [0.20777700941539437], [0.27272727272727265], [0.37661577743496993], [0.4545454545454545], [0.49351029310069683], [0.4675248683440609], [0.4026012021916059], [0.3246715250811213], [0.29868610032448534], [0.31169211128251495], [0.37661577743496993], [0.4675248683440609], [0.5324485344965157], [0.5324485344965157], [0.4545454545454545], [0.3506569498377573], [0.27272727272727265], [0.27272727272727265], [0.3506569498377573], [0.48050428214266716], [0.6103782116070003], [0.6493430501622426], [0.6363636363636364], [0.5454545454545454], [0.4545454545454545], [0.4026012021916059], [0.41558061599021223], [0.48050428214266716], [0.5584339592531518], [0.6363636363636364], [0.6753284749188786], [0.6623224639608489], [0.6103782116070003], [0.5584339592531518], [0.5194691206979094], [0.48050428214266716], [0.4675248683440609], [0.48050428214266716], [0.5324485344965157], [0.5844193840097878], [0.6363636363636364], [0.6493430501622426], [0.6103782116070003], [0.5454545454545454], [0.48050428214266716], [0.48050428214266716], [0.5454545454545454], [0.6623224639608489], [0.7532315548699399], [0.7792169796265759], [0.7272727272727272], [0.6363636363636364], [0.5584339592531518], [0.5324485344965157], [0.5584339592531518], [0.6103782116070003], [0.6753284749188786], [0.6883078887174849], [0.6623224639608489], [0.6493430501622426], [0.6363636363636364], [0.6233576254056067], [0.6233576254056067], [0.597398797808394], [0.5584339592531518], [0.49351029310069683], [0.44153944358742486], [0.3895951912335762], [0.37661577743496993], [0.41558061599021223], [0.49351029310069683], [0.5584339592531518], [0.5844193840097878], [0.5454545454545454], [0.4545454545454545], [0.33765093887972764], [0.27272727272727265], [0.29868610032448534], [0.4026012021916059], [0.5324485344965157], [0.6363636363636364], [0.6753284749188786], [0.6233576254056067], [0.49351029310069683], [0.37661577743496993], [0.27272727272727265], [0.24674184797063667], [0.285706686525879], [0.37661577743496993], [0.4675248683440609], [0.5324485344965157], [0.5584339592531518], [0.5584339592531518], [0.5194691206979094], [0.49351029310069683], [0.48050428214266716], [0.5064897068993032], [0.5454545454545454], [0.5584339592531518], [0.5454545454545454], [0.48050428214266716], [0.4026012021916059], [0.3246715250811213], [0.27272727272727265], [0.285706686525879], [0.3246715250811213], [0.3895951912335762], [0.4285600297888186], [0.48050428214266716], [0.5454545454545454], [0.5844193840097878], [0.6103782116070003], [0.5844193840097878], [0.5194691206979094], [0.4285600297888186], [0.37661577743496993], [0.3636363636363636], [0.4026012021916059], [0.4545454545454545], [0.49351029310069683], [0.49351029310069683], [0.48050428214266716], [0.48050428214266716], [0.48050428214266716], [0.48050428214266716], [0.5064897068993032], [0.5454545454545454], [0.571413373051758], [0.597398797808394], [0.597398797808394], [0.5844193840097878], [0.571413373051758], [0.5844193840097878], [0.6493430501622426], [0.7142667163146975], [0.7662375658279695], [0.7532315548699399], [0.6883078887174849], [0.6103782116070003], [0.5584339592531518], [0.5194691206979094], [0.5064897068993032], [0.48050428214266716], [0.4675248683440609], [0.48050428214266716], [0.5064897068993032], [0.5584339592531518], [0.571413373051758], [0.5454545454545454], [0.48050428214266716], [0.44153944358742486], [0.4545454545454545], [0.5194691206979094], [0.597398797808394], [0.6493430501622426], [0.6363636363636364], [0.571413373051758], [0.48050428214266716], [0.3895951912335762], [0.33765093887972764], [0.3506569498377573], [0.4285600297888186], [0.5844193840097878], [0.7532315548699399], [0.8701260705356667], [0.8441406457790308], [0.6493430501622426], [0.37661577743496993], [0.11686791850630349], [0.0], [0.0779296771104846], [0.29868610032448534], [0.5584339592531518], [0.7532315548699399], [0.8181818181818182], [0.7532315548699399], [0.6233576254056067], [0.5064897068993032], [0.4545454545454545], [0.4545454545454545], [0.5324485344965157], [0.6493430501622426], [0.7272727272727272], [0.7532315548699399], [0.7012873025160913], [0.597398797808394], [0.5064897068993032], [0.4675248683440609], [0.4675248683440609], [0.49351029310069683], [0.48050428214266716], [0.44153944358742486], [0.37661577743496993], [0.3506569498377573], [0.3636363636363636], [0.41558061599021223], [0.48050428214266716], [0.5324485344965157], [0.5324485344965157], [0.5194691206979094], [0.49351029310069683], [0.4545454545454545], [0.44153944358742486], [0.44153944358742486], [0.4675248683440609], [0.49351029310069683], [0.5454545454545454], [0.5844193840097878], [0.6363636363636364], [0.6883078887174849], [0.7142667163146975], [0.7012873025160913], [0.6493430501622426], [0.5584339592531518], [0.48050428214266716], [0.4285600297888186], [0.44153944358742486], [0.49351029310069683], [0.5584339592531518], [0.6103782116070003], [0.6233576254056067], [0.6233576254056067], [0.6233576254056067], [0.6753284749188786], [0.7662375658279695], [0.883105484334273], [0.9740145752433639], [1.0], [0.9610351614447576], [0.8571200595776372], [0.7402521410713335], [0.6493430501622426], [0.6233576254056067], [0.6493430501622426], [0.7142667163146975], [0.7662375658279695], [0.7921963934251822], [0.7792169796265759], [0.7532315548699399], [0.7272727272727272], [0.7142667163146975], [0.7272727272727272], [0.7532315548699399], [0.7921963934251822], [0.8311612319804245], [0.8311612319804245], [0.8311612319804245], [0.8311612319804245], [0.8701260705356667]], "deltas": [[1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0]]}} -{"label": 0, "forward": {"values": [[0.9807805915481864], [0.9423023906108464], [0.8846047812216927], [0.8461659643180653], [0.7692489464770982], [0.7307707455397581], [0.6922925446024183], [0.6922925446024183], [0.7115513370879445], [0.7499901539915719], [0.7692489464770982], [0.8076877633807255], [0.8269071718325391], [0.8269071718325391], [0.8269071718325391], [0.8269071718325391], [0.8461659643180653], [0.8461659643180653], [0.8461659643180653], [0.8269071718325391], [0.7884683549289118], [0.7115513370879445], [0.5961561183096372], [0.5000196920168564], [0.4423220826277028], [0.48076089953133], [0.5769367098578236], [0.6730731361506045], [0.7499901539915719], [0.7692489464770982], [0.7692489464770982], [0.7692489464770982], [0.8076877633807255], [0.8461659643180653], [0.8653853727698791], [0.8653853727698791], [0.8461659643180653], [0.8076877633807255], [0.7692489464770982], [0.7499901539915719], [0.7115513370879445], [0.6922925446024183], [0.6730731361506045], [0.6730731361506045], [0.7115513370879445], [0.7307707455397581], [0.7307707455397581], [0.7115513370879445], [0.6730731361506045], [0.6730731361506045], [0.6922925446024183], [0.7307707455397581], [0.7115513370879445], [0.6153755267614509], [0.5384585089204836], [0.48076089953133], [0.46154149107951636], [0.5384585089204836], [0.5961561183096372], [0.6153755267614509], [0.5769367098578236], [0.5384585089204836], [0.5384585089204836], [0.5576779173722972], [0.6153755267614509], [0.6730731361506045], [0.6922925446024183], [0.6730731361506045], [0.6538537276987909], [0.6730731361506045], [0.7115513370879445], [0.7115513370879445], [0.7115513370879445], [0.6538537276987909], [0.5961561183096372], [0.5192391004686701], [0.4231026741758891], [0.3269268638493955], [0.2692292544602419], [0.3077074553975818], [0.4423220826277028], [0.5769367098578236], [0.6538537276987909], [0.5961561183096372], [0.4038438816903627], [0.19231223661927457], [0.09617581032649364], [0.15387341971564727], [0.34614627230120915], [0.5384585089204836], [0.6346343192469772], [0.5961561183096372], [0.46154149107951636], [0.3077074553975818], [0.17309282816746097], [0.07691701784096738], [0.038478200937340015], [0.038478200937340015], [0.11539521877830726], [0.23079043755661457], [0.3269268638493955], [0.4038438816903627], [0.38462447323854915], [0.3077074553975818], [0.19231223661927457], [0.15387341971564727], [0.17309282816746097], [0.2500098460084282], [0.34614627230120915], [0.38462447323854915], [0.4038438816903627], [0.36540506478673546], [0.3269268638493955], [0.2692292544602419], [0.23079043755661457], [0.2500098460084282], [0.2692292544602419], [0.2884880469457682], [0.34614627230120915], [0.36540506478673546], [0.3269268638493955], [0.2500098460084282], [0.15387341971564727], [0.07691701784096738], [0.019258792485526397], [0.0], [0.038478200937340015], [0.07691701784096738], [0.11539521877830726], [0.15387341971564727], [0.13461462723012102], [0.09617581032649364], [0.05769760938915363], [0.019258792485526397], [0.019258792485526397], [0.05769760938915363], [0.13461462723012102], [0.23079043755661457], [0.2884880469457682], [0.2884880469457682], [0.23079043755661457], [0.15387341971564727], [0.09617581032649364], [0.038478200937340015], [0.07691701784096738], [0.13461462723012102], [0.23079043755661457], [0.3077074553975818], [0.36540506478673546], [0.34614627230120915], [0.2884880469457682], [0.23079043755661457], [0.21153164507108818], [0.23079043755661457], [0.3269268638493955], [0.4231026741758891], [0.48076089953133], [0.46154149107951636], [0.4038438816903627], [0.3077074553975818], [0.23079043755661457], [0.17309282816746097], [0.13461462723012102], [0.13461462723012102], [0.15387341971564727], [0.23079043755661457], [0.3269268638493955], [0.4038438816903627], [0.46154149107951636], [0.4423220826277028], [0.38462447323854915], [0.3077074553975818], [0.2692292544602419], [0.2884880469457682], [0.36540506478673546], [0.5000196920168564], [0.5961561183096372], [0.6730731361506045], [0.6730731361506045], [0.6538537276987909], [0.5961561183096372], [0.5576779173722972], [0.5192391004686701], [0.5000196920168564], [0.5000196920168564], [0.5192391004686701], [0.5384585089204836], [0.5192391004686701], [0.5000196920168564], [0.4231026741758891], [0.38462447323854915], [0.38462447323854915], [0.4038438816903627], [0.48076089953133], [0.5384585089204836], [0.5961561183096372], [0.5769367098578236], [0.5576779173722972], [0.5192391004686701], [0.48076089953133], [0.48076089953133], [0.5384585089204836], [0.6153755267614509], [0.7307707455397581], [0.8269071718325391], [0.8653853727698791], [0.8461659643180653], [0.7692489464770982], [0.6346343192469772], [0.5576779173722972], [0.5384585089204836], [0.5961561183096372], [0.6730731361506045], [0.7499901539915719], [0.7692489464770982], [0.7115513370879445], [0.6153755267614509], [0.5769367098578236], [0.5769367098578236], [0.6153755267614509], [0.6538537276987909], [0.6538537276987909], [0.5769367098578236], [0.46154149107951636], [0.4038438816903627], [0.4231026741758891], [0.5384585089204836], [0.7115513370879445], [0.8269071718325391], [0.8653853727698791], [0.7884683549289118], [0.6730731361506045], [0.5769367098578236], [0.5576779173722972], [0.5961561183096372], [0.6730731361506045], [0.7307707455397581], [0.7307707455397581], [0.7115513370879445], [0.6730731361506045], [0.6730731361506045], [0.6922925446024183], [0.7499901539915719], [0.8076877633807255], [0.8653853727698791], [0.8653853727698791], [0.8076877633807255], [0.6922925446024183], [0.5576779173722972], [0.5000196920168564], [0.5384585089204836], [0.7115513370879445], [0.8846047812216927], [1.0], [1.0], [0.8461659643180653]], "masks": [[1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1]], "evals": [[0.9807805915481864], [0.9423023906108464], [0.8846047812216927], [0.8461659643180653], [0.7692489464770982], [0.7307707455397581], [0.6922925446024183], [0.6922925446024183], [0.7115513370879445], [0.7499901539915719], [0.7692489464770982], [0.8076877633807255], [0.8269071718325391], [0.8269071718325391], [0.8269071718325391], [0.8269071718325391], [0.8461659643180653], [0.8461659643180653], [0.8461659643180653], [0.8269071718325391], [0.7884683549289118], [0.7115513370879445], [0.5961561183096372], [0.5000196920168564], [0.4423220826277028], [0.48076089953133], [0.5769367098578236], [0.6730731361506045], [0.7499901539915719], [0.7692489464770982], [0.7692489464770982], [0.7692489464770982], [0.8076877633807255], [0.8461659643180653], [0.8653853727698791], [0.8653853727698791], [0.8461659643180653], [0.8076877633807255], [0.7692489464770982], [0.7499901539915719], [0.7115513370879445], [0.6922925446024183], [0.6730731361506045], [0.6730731361506045], [0.7115513370879445], [0.7307707455397581], [0.7307707455397581], [0.7115513370879445], [0.6730731361506045], [0.6730731361506045], [0.6922925446024183], [0.7307707455397581], [0.7115513370879445], [0.6153755267614509], [0.5384585089204836], [0.48076089953133], [0.46154149107951636], [0.5384585089204836], [0.5961561183096372], [0.6153755267614509], [0.5769367098578236], [0.5384585089204836], [0.5384585089204836], [0.5576779173722972], [0.6153755267614509], [0.6730731361506045], [0.6922925446024183], [0.6730731361506045], [0.6538537276987909], [0.6730731361506045], [0.7115513370879445], [0.7115513370879445], [0.7115513370879445], [0.6538537276987909], [0.5961561183096372], [0.5192391004686701], [0.4231026741758891], [0.3269268638493955], [0.2692292544602419], [0.3077074553975818], [0.4423220826277028], [0.5769367098578236], [0.6538537276987909], [0.5961561183096372], [0.4038438816903627], [0.19231223661927457], [0.09617581032649364], [0.15387341971564727], [0.34614627230120915], [0.5384585089204836], [0.6346343192469772], [0.5961561183096372], [0.46154149107951636], [0.3077074553975818], [0.17309282816746097], [0.07691701784096738], [0.038478200937340015], [0.038478200937340015], [0.11539521877830726], [0.23079043755661457], [0.3269268638493955], [0.4038438816903627], [0.38462447323854915], [0.3077074553975818], [0.19231223661927457], [0.15387341971564727], [0.17309282816746097], [0.2500098460084282], [0.34614627230120915], [0.38462447323854915], [0.4038438816903627], [0.36540506478673546], [0.3269268638493955], [0.2692292544602419], [0.23079043755661457], [0.2500098460084282], [0.2692292544602419], [0.2884880469457682], [0.34614627230120915], [0.36540506478673546], [0.3269268638493955], [0.2500098460084282], [0.15387341971564727], [0.07691701784096738], [0.019258792485526397], [0.0], [0.038478200937340015], [0.07691701784096738], [0.11539521877830726], [0.15387341971564727], [0.13461462723012102], [0.09617581032649364], [0.05769760938915363], [0.019258792485526397], [0.019258792485526397], [0.05769760938915363], [0.13461462723012102], [0.23079043755661457], [0.2884880469457682], [0.2884880469457682], [0.23079043755661457], [0.15387341971564727], [0.09617581032649364], [0.038478200937340015], [0.07691701784096738], [0.13461462723012102], [0.23079043755661457], [0.3077074553975818], [0.36540506478673546], [0.34614627230120915], [0.2884880469457682], [0.23079043755661457], [0.21153164507108818], [0.23079043755661457], [0.3269268638493955], [0.4231026741758891], [0.48076089953133], [0.46154149107951636], [0.4038438816903627], [0.3077074553975818], [0.23079043755661457], [0.17309282816746097], [0.13461462723012102], [0.13461462723012102], [0.15387341971564727], [0.23079043755661457], [0.3269268638493955], [0.4038438816903627], [0.46154149107951636], [0.4423220826277028], [0.38462447323854915], [0.3077074553975818], [0.2692292544602419], [0.2884880469457682], [0.36540506478673546], [0.5000196920168564], [0.5961561183096372], [0.6730731361506045], [0.6730731361506045], [0.6538537276987909], [0.5961561183096372], [0.5576779173722972], [0.5192391004686701], [0.5000196920168564], [0.5000196920168564], [0.5192391004686701], [0.5384585089204836], [0.5192391004686701], [0.5000196920168564], [0.4231026741758891], [0.38462447323854915], [0.38462447323854915], [0.4038438816903627], [0.48076089953133], [0.5384585089204836], [0.5961561183096372], [0.5769367098578236], [0.5576779173722972], [0.5192391004686701], [0.48076089953133], [0.48076089953133], [0.5384585089204836], [0.6153755267614509], [0.7307707455397581], [0.8269071718325391], [0.8653853727698791], [0.8461659643180653], [0.7692489464770982], [0.6346343192469772], [0.5576779173722972], [0.5384585089204836], [0.5961561183096372], [0.6730731361506045], [0.7499901539915719], [0.7692489464770982], [0.7115513370879445], [0.6153755267614509], [0.5769367098578236], [0.5769367098578236], [0.6153755267614509], [0.6538537276987909], [0.6538537276987909], [0.5769367098578236], [0.46154149107951636], [0.4038438816903627], [0.4231026741758891], [0.5384585089204836], [0.7115513370879445], [0.8269071718325391], [0.8653853727698791], [0.7884683549289118], [0.6730731361506045], [0.5769367098578236], [0.5576779173722972], [0.5961561183096372], [0.6730731361506045], [0.7307707455397581], [0.7307707455397581], [0.7115513370879445], [0.6730731361506045], [0.6730731361506045], [0.6922925446024183], [0.7499901539915719], [0.8076877633807255], [0.8653853727698791], [0.8653853727698791], [0.8076877633807255], [0.6922925446024183], [0.5576779173722972], [0.5000196920168564], [0.5384585089204836], [0.7115513370879445], [0.8846047812216927], [1.0], [1.0], [0.8461659643180653]], "eval_masks": [[0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0]], "forwards": [[0.9807805915481864], [0.9423023906108464], [0.8846047812216927], [0.8461659643180653], [0.7692489464770982], [0.7307707455397581], [0.6922925446024183], [0.6922925446024183], [0.7115513370879445], [0.7499901539915719], [0.7692489464770982], [0.8076877633807255], [0.8269071718325391], [0.8269071718325391], [0.8269071718325391], [0.8269071718325391], [0.8461659643180653], [0.8461659643180653], [0.8461659643180653], [0.8269071718325391], [0.7884683549289118], [0.7115513370879445], [0.5961561183096372], [0.5000196920168564], [0.4423220826277028], [0.48076089953133], [0.5769367098578236], [0.6730731361506045], [0.7499901539915719], [0.7692489464770982], [0.7692489464770982], [0.7692489464770982], [0.8076877633807255], [0.8461659643180653], [0.8653853727698791], [0.8653853727698791], [0.8461659643180653], [0.8076877633807255], [0.7692489464770982], [0.7499901539915719], [0.7115513370879445], [0.6922925446024183], [0.6730731361506045], [0.6730731361506045], [0.7115513370879445], [0.7307707455397581], [0.7307707455397581], [0.7115513370879445], [0.6730731361506045], [0.6730731361506045], [0.6922925446024183], [0.7307707455397581], [0.7115513370879445], [0.6153755267614509], [0.5384585089204836], [0.48076089953133], [0.46154149107951636], [0.5384585089204836], [0.5961561183096372], [0.6153755267614509], [0.5769367098578236], [0.5384585089204836], [0.5384585089204836], [0.5576779173722972], [0.6153755267614509], [0.6730731361506045], [0.6922925446024183], [0.6730731361506045], [0.6538537276987909], [0.6730731361506045], [0.7115513370879445], [0.7115513370879445], [0.7115513370879445], [0.6538537276987909], [0.5961561183096372], [0.5192391004686701], [0.4231026741758891], [0.3269268638493955], [0.2692292544602419], [0.3077074553975818], [0.4423220826277028], [0.5769367098578236], [0.6538537276987909], [0.5961561183096372], [0.4038438816903627], [0.19231223661927457], [0.09617581032649364], [0.15387341971564727], [0.34614627230120915], [0.5384585089204836], [0.6346343192469772], [0.5961561183096372], [0.46154149107951636], [0.3077074553975818], [0.17309282816746097], [0.07691701784096738], [0.038478200937340015], [0.038478200937340015], [0.11539521877830726], [0.23079043755661457], [0.3269268638493955], [0.4038438816903627], [0.38462447323854915], [0.3077074553975818], [0.19231223661927457], [0.15387341971564727], [0.17309282816746097], [0.2500098460084282], [0.34614627230120915], [0.38462447323854915], [0.4038438816903627], [0.36540506478673546], [0.3269268638493955], [0.2692292544602419], [0.23079043755661457], [0.2500098460084282], [0.2692292544602419], [0.2884880469457682], [0.34614627230120915], [0.36540506478673546], [0.3269268638493955], [0.2500098460084282], [0.15387341971564727], [0.07691701784096738], [0.019258792485526397], [0.0], [0.038478200937340015], [0.07691701784096738], [0.11539521877830726], [0.15387341971564727], [0.13461462723012102], [0.09617581032649364], [0.05769760938915363], [0.019258792485526397], [0.019258792485526397], [0.05769760938915363], [0.13461462723012102], [0.23079043755661457], [0.2884880469457682], [0.2884880469457682], [0.23079043755661457], [0.15387341971564727], [0.09617581032649364], [0.038478200937340015], [0.07691701784096738], [0.13461462723012102], [0.23079043755661457], [0.3077074553975818], [0.36540506478673546], [0.34614627230120915], [0.2884880469457682], [0.23079043755661457], [0.21153164507108818], [0.23079043755661457], [0.3269268638493955], [0.4231026741758891], [0.48076089953133], [0.46154149107951636], [0.4038438816903627], [0.3077074553975818], [0.23079043755661457], [0.17309282816746097], [0.13461462723012102], [0.13461462723012102], [0.15387341971564727], [0.23079043755661457], [0.3269268638493955], [0.4038438816903627], [0.46154149107951636], [0.4423220826277028], [0.38462447323854915], [0.3077074553975818], [0.2692292544602419], [0.2884880469457682], [0.36540506478673546], [0.5000196920168564], [0.5961561183096372], [0.6730731361506045], [0.6730731361506045], [0.6538537276987909], [0.5961561183096372], [0.5576779173722972], [0.5192391004686701], [0.5000196920168564], [0.5000196920168564], [0.5192391004686701], [0.5384585089204836], [0.5192391004686701], [0.5000196920168564], [0.4231026741758891], [0.38462447323854915], [0.38462447323854915], [0.4038438816903627], [0.48076089953133], [0.5384585089204836], [0.5961561183096372], [0.5769367098578236], [0.5576779173722972], [0.5192391004686701], [0.48076089953133], [0.48076089953133], [0.5384585089204836], [0.6153755267614509], [0.7307707455397581], [0.8269071718325391], [0.8653853727698791], [0.8461659643180653], [0.7692489464770982], [0.6346343192469772], [0.5576779173722972], [0.5384585089204836], [0.5961561183096372], [0.6730731361506045], [0.7499901539915719], [0.7692489464770982], [0.7115513370879445], [0.6153755267614509], [0.5769367098578236], [0.5769367098578236], [0.6153755267614509], [0.6538537276987909], [0.6538537276987909], [0.5769367098578236], [0.46154149107951636], [0.4038438816903627], [0.4231026741758891], [0.5384585089204836], [0.7115513370879445], [0.8269071718325391], [0.8653853727698791], [0.7884683549289118], [0.6730731361506045], [0.5769367098578236], [0.5576779173722972], [0.5961561183096372], [0.6730731361506045], [0.7307707455397581], [0.7307707455397581], [0.7115513370879445], [0.6730731361506045], [0.6730731361506045], [0.6922925446024183], [0.7499901539915719], [0.8076877633807255], [0.8653853727698791], [0.8653853727698791], [0.8076877633807255], [0.6922925446024183], [0.5576779173722972], [0.5000196920168564], [0.5384585089204836], [0.7115513370879445], [0.8846047812216927], [1.0], [1.0], [0.8461659643180653]], "deltas": [[1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0]]}, "backward": {"values": [[0.8461659643180653], [1.0], [1.0], [0.8846047812216927], [0.7115513370879445], [0.5384585089204836], [0.5000196920168564], [0.5576779173722972], [0.6922925446024183], [0.8076877633807255], [0.8653853727698791], [0.8653853727698791], [0.8076877633807255], [0.7499901539915719], [0.6922925446024183], [0.6730731361506045], [0.6730731361506045], [0.7115513370879445], [0.7307707455397581], [0.7307707455397581], [0.6730731361506045], [0.5961561183096372], [0.5576779173722972], [0.5769367098578236], [0.6730731361506045], [0.7884683549289118], [0.8653853727698791], [0.8269071718325391], [0.7115513370879445], [0.5384585089204836], [0.4231026741758891], [0.4038438816903627], [0.46154149107951636], [0.5769367098578236], [0.6538537276987909], [0.6538537276987909], [0.6153755267614509], [0.5769367098578236], [0.5769367098578236], [0.6153755267614509], [0.7115513370879445], [0.7692489464770982], [0.7499901539915719], [0.6730731361506045], [0.5961561183096372], [0.5384585089204836], [0.5576779173722972], [0.6346343192469772], [0.7692489464770982], [0.8461659643180653], [0.8653853727698791], [0.8269071718325391], [0.7307707455397581], [0.6153755267614509], [0.5384585089204836], [0.48076089953133], [0.48076089953133], [0.5192391004686701], [0.5576779173722972], [0.5769367098578236], [0.5961561183096372], [0.5384585089204836], [0.48076089953133], [0.4038438816903627], [0.38462447323854915], [0.38462447323854915], [0.4231026741758891], [0.5000196920168564], [0.5192391004686701], [0.5384585089204836], [0.5192391004686701], [0.5000196920168564], [0.5000196920168564], [0.5192391004686701], [0.5576779173722972], [0.5961561183096372], [0.6538537276987909], [0.6730731361506045], [0.6730731361506045], [0.5961561183096372], [0.5000196920168564], [0.36540506478673546], [0.2884880469457682], [0.2692292544602419], [0.3077074553975818], [0.38462447323854915], [0.4423220826277028], [0.46154149107951636], [0.4038438816903627], [0.3269268638493955], [0.23079043755661457], [0.15387341971564727], [0.13461462723012102], [0.13461462723012102], [0.17309282816746097], [0.23079043755661457], [0.3077074553975818], [0.4038438816903627], [0.46154149107951636], [0.48076089953133], [0.4231026741758891], [0.3269268638493955], [0.23079043755661457], [0.21153164507108818], [0.23079043755661457], [0.2884880469457682], [0.34614627230120915], [0.36540506478673546], [0.3077074553975818], [0.23079043755661457], [0.13461462723012102], [0.07691701784096738], [0.038478200937340015], [0.09617581032649364], [0.15387341971564727], [0.23079043755661457], [0.2884880469457682], [0.2884880469457682], [0.23079043755661457], [0.13461462723012102], [0.05769760938915363], [0.019258792485526397], [0.019258792485526397], [0.05769760938915363], [0.09617581032649364], [0.13461462723012102], [0.15387341971564727], [0.11539521877830726], [0.07691701784096738], [0.038478200937340015], [0.0], [0.019258792485526397], [0.07691701784096738], [0.15387341971564727], [0.2500098460084282], [0.3269268638493955], [0.36540506478673546], [0.34614627230120915], [0.2884880469457682], [0.2692292544602419], [0.2500098460084282], [0.23079043755661457], [0.2692292544602419], [0.3269268638493955], [0.36540506478673546], [0.4038438816903627], [0.38462447323854915], [0.34614627230120915], [0.2500098460084282], [0.17309282816746097], [0.15387341971564727], [0.19231223661927457], [0.3077074553975818], [0.38462447323854915], [0.4038438816903627], [0.3269268638493955], [0.23079043755661457], [0.11539521877830726], [0.038478200937340015], [0.038478200937340015], [0.07691701784096738], [0.17309282816746097], [0.3077074553975818], [0.46154149107951636], [0.5961561183096372], [0.6346343192469772], [0.5384585089204836], [0.34614627230120915], [0.15387341971564727], [0.09617581032649364], [0.19231223661927457], [0.4038438816903627], [0.5961561183096372], [0.6538537276987909], [0.5769367098578236], [0.4423220826277028], [0.3077074553975818], [0.2692292544602419], [0.3269268638493955], [0.4231026741758891], [0.5192391004686701], [0.5961561183096372], [0.6538537276987909], [0.7115513370879445], [0.7115513370879445], [0.7115513370879445], [0.6730731361506045], [0.6538537276987909], [0.6730731361506045], [0.6922925446024183], [0.6730731361506045], [0.6153755267614509], [0.5576779173722972], [0.5384585089204836], [0.5384585089204836], [0.5769367098578236], [0.6153755267614509], [0.5961561183096372], [0.5384585089204836], [0.46154149107951636], [0.48076089953133], [0.5384585089204836], [0.6153755267614509], [0.7115513370879445], [0.7307707455397581], [0.6922925446024183], [0.6730731361506045], [0.6730731361506045], [0.7115513370879445], [0.7307707455397581], [0.7307707455397581], [0.7115513370879445], [0.6730731361506045], [0.6730731361506045], [0.6922925446024183], [0.7115513370879445], [0.7499901539915719], [0.7692489464770982], [0.8076877633807255], [0.8461659643180653], [0.8653853727698791], [0.8653853727698791], [0.8461659643180653], [0.8076877633807255], [0.7692489464770982], [0.7692489464770982], [0.7692489464770982], [0.7499901539915719], [0.6730731361506045], [0.5769367098578236], [0.48076089953133], [0.4423220826277028], [0.5000196920168564], [0.5961561183096372], [0.7115513370879445], [0.7884683549289118], [0.8269071718325391], [0.8461659643180653], [0.8461659643180653], [0.8461659643180653], [0.8269071718325391], [0.8269071718325391], [0.8269071718325391], [0.8269071718325391], [0.8076877633807255], [0.7692489464770982], [0.7499901539915719], [0.7115513370879445], [0.6922925446024183], [0.6922925446024183], [0.7307707455397581], [0.7692489464770982], [0.8461659643180653], [0.8846047812216927], [0.9423023906108464], [0.9807805915481864]], "masks": [[1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1]], "evals": [[0.8461659643180653], [1.0], [1.0], [0.8846047812216927], [0.7115513370879445], [0.5384585089204836], [0.5000196920168564], [0.5576779173722972], [0.6922925446024183], [0.8076877633807255], [0.8653853727698791], [0.8653853727698791], [0.8076877633807255], [0.7499901539915719], [0.6922925446024183], [0.6730731361506045], [0.6730731361506045], [0.7115513370879445], [0.7307707455397581], [0.7307707455397581], [0.6730731361506045], [0.5961561183096372], [0.5576779173722972], [0.5769367098578236], [0.6730731361506045], [0.7884683549289118], [0.8653853727698791], [0.8269071718325391], [0.7115513370879445], [0.5384585089204836], [0.4231026741758891], [0.4038438816903627], [0.46154149107951636], [0.5769367098578236], [0.6538537276987909], [0.6538537276987909], [0.6153755267614509], [0.5769367098578236], [0.5769367098578236], [0.6153755267614509], [0.7115513370879445], [0.7692489464770982], [0.7499901539915719], [0.6730731361506045], [0.5961561183096372], [0.5384585089204836], [0.5576779173722972], [0.6346343192469772], [0.7692489464770982], [0.8461659643180653], [0.8653853727698791], [0.8269071718325391], [0.7307707455397581], [0.6153755267614509], [0.5384585089204836], [0.48076089953133], [0.48076089953133], [0.5192391004686701], [0.5576779173722972], [0.5769367098578236], [0.5961561183096372], [0.5384585089204836], [0.48076089953133], [0.4038438816903627], [0.38462447323854915], [0.38462447323854915], [0.4231026741758891], [0.5000196920168564], [0.5192391004686701], [0.5384585089204836], [0.5192391004686701], [0.5000196920168564], [0.5000196920168564], [0.5192391004686701], [0.5576779173722972], [0.5961561183096372], [0.6538537276987909], [0.6730731361506045], [0.6730731361506045], [0.5961561183096372], [0.5000196920168564], [0.36540506478673546], [0.2884880469457682], [0.2692292544602419], [0.3077074553975818], [0.38462447323854915], [0.4423220826277028], [0.46154149107951636], [0.4038438816903627], [0.3269268638493955], [0.23079043755661457], [0.15387341971564727], [0.13461462723012102], [0.13461462723012102], [0.17309282816746097], [0.23079043755661457], [0.3077074553975818], [0.4038438816903627], [0.46154149107951636], [0.48076089953133], [0.4231026741758891], [0.3269268638493955], [0.23079043755661457], [0.21153164507108818], [0.23079043755661457], [0.2884880469457682], [0.34614627230120915], [0.36540506478673546], [0.3077074553975818], [0.23079043755661457], [0.13461462723012102], [0.07691701784096738], [0.038478200937340015], [0.09617581032649364], [0.15387341971564727], [0.23079043755661457], [0.2884880469457682], [0.2884880469457682], [0.23079043755661457], [0.13461462723012102], [0.05769760938915363], [0.019258792485526397], [0.019258792485526397], [0.05769760938915363], [0.09617581032649364], [0.13461462723012102], [0.15387341971564727], [0.11539521877830726], [0.07691701784096738], [0.038478200937340015], [0.0], [0.019258792485526397], [0.07691701784096738], [0.15387341971564727], [0.2500098460084282], [0.3269268638493955], [0.36540506478673546], [0.34614627230120915], [0.2884880469457682], [0.2692292544602419], [0.2500098460084282], [0.23079043755661457], [0.2692292544602419], [0.3269268638493955], [0.36540506478673546], [0.4038438816903627], [0.38462447323854915], [0.34614627230120915], [0.2500098460084282], [0.17309282816746097], [0.15387341971564727], [0.19231223661927457], [0.3077074553975818], [0.38462447323854915], [0.4038438816903627], [0.3269268638493955], [0.23079043755661457], [0.11539521877830726], [0.038478200937340015], [0.038478200937340015], [0.07691701784096738], [0.17309282816746097], [0.3077074553975818], [0.46154149107951636], [0.5961561183096372], [0.6346343192469772], [0.5384585089204836], [0.34614627230120915], [0.15387341971564727], [0.09617581032649364], [0.19231223661927457], [0.4038438816903627], [0.5961561183096372], [0.6538537276987909], [0.5769367098578236], [0.4423220826277028], [0.3077074553975818], [0.2692292544602419], [0.3269268638493955], [0.4231026741758891], [0.5192391004686701], [0.5961561183096372], [0.6538537276987909], [0.7115513370879445], [0.7115513370879445], [0.7115513370879445], [0.6730731361506045], [0.6538537276987909], [0.6730731361506045], [0.6922925446024183], [0.6730731361506045], [0.6153755267614509], [0.5576779173722972], [0.5384585089204836], [0.5384585089204836], [0.5769367098578236], [0.6153755267614509], [0.5961561183096372], [0.5384585089204836], [0.46154149107951636], [0.48076089953133], [0.5384585089204836], [0.6153755267614509], [0.7115513370879445], [0.7307707455397581], [0.6922925446024183], [0.6730731361506045], [0.6730731361506045], [0.7115513370879445], [0.7307707455397581], [0.7307707455397581], [0.7115513370879445], [0.6730731361506045], [0.6730731361506045], [0.6922925446024183], [0.7115513370879445], [0.7499901539915719], [0.7692489464770982], [0.8076877633807255], [0.8461659643180653], [0.8653853727698791], [0.8653853727698791], [0.8461659643180653], [0.8076877633807255], [0.7692489464770982], [0.7692489464770982], [0.7692489464770982], [0.7499901539915719], [0.6730731361506045], [0.5769367098578236], [0.48076089953133], [0.4423220826277028], [0.5000196920168564], [0.5961561183096372], [0.7115513370879445], [0.7884683549289118], [0.8269071718325391], [0.8461659643180653], [0.8461659643180653], [0.8461659643180653], [0.8269071718325391], [0.8269071718325391], [0.8269071718325391], [0.8269071718325391], [0.8076877633807255], [0.7692489464770982], [0.7499901539915719], [0.7115513370879445], [0.6922925446024183], [0.6922925446024183], [0.7307707455397581], [0.7692489464770982], [0.8461659643180653], [0.8846047812216927], [0.9423023906108464], [0.9807805915481864]], "eval_masks": [[0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0]], "forwards": [[0.8461659643180653], [1.0], [1.0], [0.8846047812216927], [0.7115513370879445], [0.5384585089204836], [0.5000196920168564], [0.5576779173722972], [0.6922925446024183], [0.8076877633807255], [0.8653853727698791], [0.8653853727698791], [0.8076877633807255], [0.7499901539915719], [0.6922925446024183], [0.6730731361506045], [0.6730731361506045], [0.7115513370879445], [0.7307707455397581], [0.7307707455397581], [0.6730731361506045], [0.5961561183096372], [0.5576779173722972], [0.5769367098578236], [0.6730731361506045], [0.7884683549289118], [0.8653853727698791], [0.8269071718325391], [0.7115513370879445], [0.5384585089204836], [0.4231026741758891], [0.4038438816903627], [0.46154149107951636], [0.5769367098578236], [0.6538537276987909], [0.6538537276987909], [0.6153755267614509], [0.5769367098578236], [0.5769367098578236], [0.6153755267614509], [0.7115513370879445], [0.7692489464770982], [0.7499901539915719], [0.6730731361506045], [0.5961561183096372], [0.5384585089204836], [0.5576779173722972], [0.6346343192469772], [0.7692489464770982], [0.8461659643180653], [0.8653853727698791], [0.8269071718325391], [0.7307707455397581], [0.6153755267614509], [0.5384585089204836], [0.48076089953133], [0.48076089953133], [0.5192391004686701], [0.5576779173722972], [0.5769367098578236], [0.5961561183096372], [0.5384585089204836], [0.48076089953133], [0.4038438816903627], [0.38462447323854915], [0.38462447323854915], [0.4231026741758891], [0.5000196920168564], [0.5192391004686701], [0.5384585089204836], [0.5192391004686701], [0.5000196920168564], [0.5000196920168564], [0.5192391004686701], [0.5576779173722972], [0.5961561183096372], [0.6538537276987909], [0.6730731361506045], [0.6730731361506045], [0.5961561183096372], [0.5000196920168564], [0.36540506478673546], [0.2884880469457682], [0.2692292544602419], [0.3077074553975818], [0.38462447323854915], [0.4423220826277028], [0.46154149107951636], [0.4038438816903627], [0.3269268638493955], [0.23079043755661457], [0.15387341971564727], [0.13461462723012102], [0.13461462723012102], [0.17309282816746097], [0.23079043755661457], [0.3077074553975818], [0.4038438816903627], [0.46154149107951636], [0.48076089953133], [0.4231026741758891], [0.3269268638493955], [0.23079043755661457], [0.21153164507108818], [0.23079043755661457], [0.2884880469457682], [0.34614627230120915], [0.36540506478673546], [0.3077074553975818], [0.23079043755661457], [0.13461462723012102], [0.07691701784096738], [0.038478200937340015], [0.09617581032649364], [0.15387341971564727], [0.23079043755661457], [0.2884880469457682], [0.2884880469457682], [0.23079043755661457], [0.13461462723012102], [0.05769760938915363], [0.019258792485526397], [0.019258792485526397], [0.05769760938915363], [0.09617581032649364], [0.13461462723012102], [0.15387341971564727], [0.11539521877830726], [0.07691701784096738], [0.038478200937340015], [0.0], [0.019258792485526397], [0.07691701784096738], [0.15387341971564727], [0.2500098460084282], [0.3269268638493955], [0.36540506478673546], [0.34614627230120915], [0.2884880469457682], [0.2692292544602419], [0.2500098460084282], [0.23079043755661457], [0.2692292544602419], [0.3269268638493955], [0.36540506478673546], [0.4038438816903627], [0.38462447323854915], [0.34614627230120915], [0.2500098460084282], [0.17309282816746097], [0.15387341971564727], [0.19231223661927457], [0.3077074553975818], [0.38462447323854915], [0.4038438816903627], [0.3269268638493955], [0.23079043755661457], [0.11539521877830726], [0.038478200937340015], [0.038478200937340015], [0.07691701784096738], [0.17309282816746097], [0.3077074553975818], [0.46154149107951636], [0.5961561183096372], [0.6346343192469772], [0.5384585089204836], [0.34614627230120915], [0.15387341971564727], [0.09617581032649364], [0.19231223661927457], [0.4038438816903627], [0.5961561183096372], [0.6538537276987909], [0.5769367098578236], [0.4423220826277028], [0.3077074553975818], [0.2692292544602419], [0.3269268638493955], [0.4231026741758891], [0.5192391004686701], [0.5961561183096372], [0.6538537276987909], [0.7115513370879445], [0.7115513370879445], [0.7115513370879445], [0.6730731361506045], [0.6538537276987909], [0.6730731361506045], [0.6922925446024183], [0.6730731361506045], [0.6153755267614509], [0.5576779173722972], [0.5384585089204836], [0.5384585089204836], [0.5769367098578236], [0.6153755267614509], [0.5961561183096372], [0.5384585089204836], [0.46154149107951636], [0.48076089953133], [0.5384585089204836], [0.6153755267614509], [0.7115513370879445], [0.7307707455397581], [0.6922925446024183], [0.6730731361506045], [0.6730731361506045], [0.7115513370879445], [0.7307707455397581], [0.7307707455397581], [0.7115513370879445], [0.6730731361506045], [0.6730731361506045], [0.6922925446024183], [0.7115513370879445], [0.7499901539915719], [0.7692489464770982], [0.8076877633807255], [0.8461659643180653], [0.8653853727698791], [0.8653853727698791], [0.8461659643180653], [0.8076877633807255], [0.7692489464770982], [0.7692489464770982], [0.7692489464770982], [0.7499901539915719], [0.6730731361506045], [0.5769367098578236], [0.48076089953133], [0.4423220826277028], [0.5000196920168564], [0.5961561183096372], [0.7115513370879445], [0.7884683549289118], [0.8269071718325391], [0.8461659643180653], [0.8461659643180653], [0.8461659643180653], [0.8269071718325391], [0.8269071718325391], [0.8269071718325391], [0.8269071718325391], [0.8076877633807255], [0.7692489464770982], [0.7499901539915719], [0.7115513370879445], [0.6922925446024183], [0.6922925446024183], [0.7307707455397581], [0.7692489464770982], [0.8461659643180653], [0.8846047812216927], [0.9423023906108464], [0.9807805915481864]], "deltas": [[1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0]]}} -{"label": 0, "forward": {"values": [[0.7631366208569119], [0.8157908919428726], [0.8683912691996766], [0.8947453516572352], [0.8420910805712746], [0.7368364322285099], [0.6052277014281865], [0.5263271355429804], [0.5263271355429804], [0.5789275127997845], [0.6315817838857452], [0.6841821611425492], [0.6578819725141472], [0.5526273241713825], [0.4473726758286176], [0.36841821611425496], [0.394718404742657], [0.4736728644570198], [0.6578819725141472], [0.8157908919428726], [0.9473457289140393], [1.0], [0.9736459175424416], [0.8683912691996766], [0.7631366208569119], [0.6841821611425492], [0.6578819725141472], [0.6578819725141472], [0.6578819725141472], [0.5789275127997845], [0.4473726758286176], [0.3157639450282943], [0.2368633791430882], [0.2631635677714902], [0.36841821611425496], [0.5263271355429804], [0.6315817838857452], [0.6578819725141472], [0.6578819725141472], [0.6052277014281865], [0.5789275127997845], [0.5526273241713825], [0.5263271355429804], [0.4999730530854218], [0.4736728644570198], [0.4473726758286176], [0.421018593371059], [0.4473726758286176], [0.4736728644570198], [0.5263271355429804], [0.5526273241713825], [0.5789275127997845], [0.5263271355429804], [0.4473726758286176], [0.36841821611425496], [0.3157639450282943], [0.36841821611425496], [0.4473726758286176], [0.5263271355429804], [0.5526273241713825], [0.4999730530854218], [0.4736728644570198], [0.4999730530854218], [0.5789275127997845], [0.6841821611425492], [0.7368364322285099], [0.7105362436001078], [0.6052277014281865], [0.4736728644570198], [0.36841821611425496], [0.36841821611425496], [0.4736728644570198], [0.6578819725141472], [0.8157908919428726], [0.8947453516572352], [0.8157908919428726], [0.5789275127997845], [0.2631635677714902], [0.02630018862840212], [0.0], [0.1579089194287254], [0.4736728644570198], [0.7631366208569119], [0.9210455402856373], [0.9210455402856373], [0.8157908919428726], [0.6315817838857452], [0.4736728644570198], [0.36841821611425496], [0.3157639450282943], [0.36841821611425496], [0.4999730530854218], [0.6315817838857452], [0.7631366208569119], [0.7894368094853139], [0.7105362436001078], [0.6052277014281865], [0.5263271355429804], [0.4999730530854218], [0.5789275127997845], [0.6315817838857452], [0.6578819725141472], [0.6578819725141472], [0.6052277014281865], [0.5789275127997845], [0.5789275127997845], [0.6052277014281865], [0.6315817838857452], [0.6578819725141472], [0.7105362436001078], [0.8157908919428726], [0.9210455402856373], [0.9736459175424416], [0.9736459175424416], [0.9210455402856373], [0.8683912691996766], [0.8157908919428726], [0.8157908919428726], [0.8157908919428726], [0.8683912691996766], [0.8683912691996766], [0.8947453516572352], [0.8683912691996766], [0.8157908919428726], [0.7631366208569119], [0.7368364322285099], [0.7631366208569119], [0.7631366208569119], [0.7894368094853139], [0.7368364322285099], [0.6578819725141472], [0.5789275127997845], [0.5263271355429804], [0.5526273241713825], [0.6578819725141472], [0.7105362436001078], [0.7368364322285099], [0.7368364322285099], [0.7105362436001078], [0.6578819725141472], [0.6052277014281865], [0.5263271355429804], [0.421018593371059], [0.3421180274858529], [0.3157639450282943], [0.3157639450282943], [0.394718404742657], [0.5263271355429804], [0.6052277014281865], [0.6578819725141472], [0.6578819725141472], [0.5789275127997845], [0.5263271355429804], [0.4999730530854218], [0.4999730530854218], [0.5789275127997845], [0.6578819725141472], [0.7105362436001078], [0.6841821611425492], [0.5789275127997845], [0.421018593371059], [0.28946375639989225], [0.2368633791430882], [0.2631635677714902], [0.394718404742657], [0.5526273241713825], [0.7105362436001078], [0.7894368094853139], [0.7631366208569119], [0.6052277014281865], [0.394718404742657], [0.2368633791430882], [0.2368633791430882], [0.3421180274858529], [0.5263271355429804], [0.6841821611425492], [0.7105362436001078], [0.6315817838857452], [0.4736728644570198], [0.36841821611425496], [0.3157639450282943], [0.36841821611425496], [0.4999730530854218], [0.5789275127997845], [0.6578819725141472], [0.6841821611425492], [0.6315817838857452], [0.5789275127997845], [0.5789275127997845], [0.6315817838857452], [0.6841821611425492], [0.7368364322285099], [0.7105362436001078], [0.6315817838857452], [0.5789275127997845], [0.5789275127997845], [0.6578819725141472], [0.7894368094853139], [0.8947453516572352], [0.9210455402856373], [0.8157908919428726], [0.6578819725141472], [0.4999730530854218], [0.394718404742657], [0.36841821611425496], [0.4473726758286176], [0.5526273241713825], [0.6315817838857452], [0.6578819725141472], [0.6315817838857452], [0.5526273241713825], [0.4999730530854218], [0.4473726758286176], [0.421018593371059], [0.4473726758286176], [0.5263271355429804], [0.6315817838857452], [0.7105362436001078], [0.7368364322285099], [0.6578819725141472], [0.5526273241713825], [0.394718404742657], [0.3421180274858529], [0.394718404742657], [0.4999730530854218], [0.6841821611425492], [0.7894368094853139], [0.7894368094853139], [0.6578819725141472], [0.421018593371059], [0.2368633791430882], [0.1579089194287254], [0.2368633791430882], [0.4473726758286176], [0.6315817838857452], [0.7368364322285099], [0.7105362436001078], [0.5263271355429804], [0.3421180274858529], [0.1842091080571275], [0.1842091080571275], [0.2631635677714902], [0.36841821611425496], [0.4999730530854218], [0.4999730530854218], [0.394718404742657], [0.21050929668552953], [0.05265427108596068], [0.02630018862840212], [0.1842091080571275], [0.4473726758286176], [0.7368364322285099], [0.9210455402856373], [0.9473457289140393], [0.8157908919428726], [0.6315817838857452]], "masks": [[1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1]], "evals": [[0.7631366208569119], [0.8157908919428726], [0.8683912691996766], [0.8947453516572352], [0.8420910805712746], [0.7368364322285099], [0.6052277014281865], [0.5263271355429804], [0.5263271355429804], [0.5789275127997845], [0.6315817838857452], [0.6841821611425492], [0.6578819725141472], [0.5526273241713825], [0.4473726758286176], [0.36841821611425496], [0.394718404742657], [0.4736728644570198], [0.6578819725141472], [0.8157908919428726], [0.9473457289140393], [1.0], [0.9736459175424416], [0.8683912691996766], [0.7631366208569119], [0.6841821611425492], [0.6578819725141472], [0.6578819725141472], [0.6578819725141472], [0.5789275127997845], [0.4473726758286176], [0.3157639450282943], [0.2368633791430882], [0.2631635677714902], [0.36841821611425496], [0.5263271355429804], [0.6315817838857452], [0.6578819725141472], [0.6578819725141472], [0.6052277014281865], [0.5789275127997845], [0.5526273241713825], [0.5263271355429804], [0.4999730530854218], [0.4736728644570198], [0.4473726758286176], [0.421018593371059], [0.4473726758286176], [0.4736728644570198], [0.5263271355429804], [0.5526273241713825], [0.5789275127997845], [0.5263271355429804], [0.4473726758286176], [0.36841821611425496], [0.3157639450282943], [0.36841821611425496], [0.4473726758286176], [0.5263271355429804], [0.5526273241713825], [0.4999730530854218], [0.4736728644570198], [0.4999730530854218], [0.5789275127997845], [0.6841821611425492], [0.7368364322285099], [0.7105362436001078], [0.6052277014281865], [0.4736728644570198], [0.36841821611425496], [0.36841821611425496], [0.4736728644570198], [0.6578819725141472], [0.8157908919428726], [0.8947453516572352], [0.8157908919428726], [0.5789275127997845], [0.2631635677714902], [0.02630018862840212], [0.0], [0.1579089194287254], [0.4736728644570198], [0.7631366208569119], [0.9210455402856373], [0.9210455402856373], [0.8157908919428726], [0.6315817838857452], [0.4736728644570198], [0.36841821611425496], [0.3157639450282943], [0.36841821611425496], [0.4999730530854218], [0.6315817838857452], [0.7631366208569119], [0.7894368094853139], [0.7105362436001078], [0.6052277014281865], [0.5263271355429804], [0.4999730530854218], [0.5789275127997845], [0.6315817838857452], [0.6578819725141472], [0.6578819725141472], [0.6052277014281865], [0.5789275127997845], [0.5789275127997845], [0.6052277014281865], [0.6315817838857452], [0.6578819725141472], [0.7105362436001078], [0.8157908919428726], [0.9210455402856373], [0.9736459175424416], [0.9736459175424416], [0.9210455402856373], [0.8683912691996766], [0.8157908919428726], [0.8157908919428726], [0.8157908919428726], [0.8683912691996766], [0.8683912691996766], [0.8947453516572352], [0.8683912691996766], [0.8157908919428726], [0.7631366208569119], [0.7368364322285099], [0.7631366208569119], [0.7631366208569119], [0.7894368094853139], [0.7368364322285099], [0.6578819725141472], [0.5789275127997845], [0.5263271355429804], [0.5526273241713825], [0.6578819725141472], [0.7105362436001078], [0.7368364322285099], [0.7368364322285099], [0.7105362436001078], [0.6578819725141472], [0.6052277014281865], [0.5263271355429804], [0.421018593371059], [0.3421180274858529], [0.3157639450282943], [0.3157639450282943], [0.394718404742657], [0.5263271355429804], [0.6052277014281865], [0.6578819725141472], [0.6578819725141472], [0.5789275127997845], [0.5263271355429804], [0.4999730530854218], [0.4999730530854218], [0.5789275127997845], [0.6578819725141472], [0.7105362436001078], [0.6841821611425492], [0.5789275127997845], [0.421018593371059], [0.28946375639989225], [0.2368633791430882], [0.2631635677714902], [0.394718404742657], [0.5526273241713825], [0.7105362436001078], [0.7894368094853139], [0.7631366208569119], [0.6052277014281865], [0.394718404742657], [0.2368633791430882], [0.2368633791430882], [0.3421180274858529], [0.5263271355429804], [0.6841821611425492], [0.7105362436001078], [0.6315817838857452], [0.4736728644570198], [0.36841821611425496], [0.3157639450282943], [0.36841821611425496], [0.4999730530854218], [0.5789275127997845], [0.6578819725141472], [0.6841821611425492], [0.6315817838857452], [0.5789275127997845], [0.5789275127997845], [0.6315817838857452], [0.6841821611425492], [0.7368364322285099], [0.7105362436001078], [0.6315817838857452], [0.5789275127997845], [0.5789275127997845], [0.6578819725141472], [0.7894368094853139], [0.8947453516572352], [0.9210455402856373], [0.8157908919428726], [0.6578819725141472], [0.4999730530854218], [0.394718404742657], [0.36841821611425496], [0.4473726758286176], [0.5526273241713825], [0.6315817838857452], [0.6578819725141472], [0.6315817838857452], [0.5526273241713825], [0.4999730530854218], [0.4473726758286176], [0.421018593371059], [0.4473726758286176], [0.5263271355429804], [0.6315817838857452], [0.7105362436001078], [0.7368364322285099], [0.6578819725141472], [0.5526273241713825], [0.394718404742657], [0.3421180274858529], [0.394718404742657], [0.4999730530854218], [0.6841821611425492], [0.7894368094853139], [0.7894368094853139], [0.6578819725141472], [0.421018593371059], [0.2368633791430882], [0.1579089194287254], [0.2368633791430882], [0.4473726758286176], [0.6315817838857452], [0.7368364322285099], [0.7105362436001078], [0.5263271355429804], [0.3421180274858529], [0.1842091080571275], [0.1842091080571275], [0.2631635677714902], [0.36841821611425496], [0.4999730530854218], [0.4999730530854218], [0.394718404742657], [0.21050929668552953], [0.05265427108596068], [0.02630018862840212], [0.1842091080571275], [0.4473726758286176], [0.7368364322285099], [0.9210455402856373], [0.9473457289140393], [0.8157908919428726], [0.6315817838857452]], "eval_masks": [[0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0]], "forwards": [[0.7631366208569119], [0.8157908919428726], [0.8683912691996766], [0.8947453516572352], [0.8420910805712746], [0.7368364322285099], [0.6052277014281865], [0.5263271355429804], [0.5263271355429804], [0.5789275127997845], [0.6315817838857452], [0.6841821611425492], [0.6578819725141472], [0.5526273241713825], [0.4473726758286176], [0.36841821611425496], [0.394718404742657], [0.4736728644570198], [0.6578819725141472], [0.8157908919428726], [0.9473457289140393], [1.0], [0.9736459175424416], [0.8683912691996766], [0.7631366208569119], [0.6841821611425492], [0.6578819725141472], [0.6578819725141472], [0.6578819725141472], [0.5789275127997845], [0.4473726758286176], [0.3157639450282943], [0.2368633791430882], [0.2631635677714902], [0.36841821611425496], [0.5263271355429804], [0.6315817838857452], [0.6578819725141472], [0.6578819725141472], [0.6052277014281865], [0.5789275127997845], [0.5526273241713825], [0.5263271355429804], [0.4999730530854218], [0.4736728644570198], [0.4473726758286176], [0.421018593371059], [0.4473726758286176], [0.4736728644570198], [0.5263271355429804], [0.5526273241713825], [0.5789275127997845], [0.5263271355429804], [0.4473726758286176], [0.36841821611425496], [0.3157639450282943], [0.36841821611425496], [0.4473726758286176], [0.5263271355429804], [0.5526273241713825], [0.4999730530854218], [0.4736728644570198], [0.4999730530854218], [0.5789275127997845], [0.6841821611425492], [0.7368364322285099], [0.7105362436001078], [0.6052277014281865], [0.4736728644570198], [0.36841821611425496], [0.36841821611425496], [0.4736728644570198], [0.6578819725141472], [0.8157908919428726], [0.8947453516572352], [0.8157908919428726], [0.5789275127997845], [0.2631635677714902], [0.02630018862840212], [0.0], [0.1579089194287254], [0.4736728644570198], [0.7631366208569119], [0.9210455402856373], [0.9210455402856373], [0.8157908919428726], [0.6315817838857452], [0.4736728644570198], [0.36841821611425496], [0.3157639450282943], [0.36841821611425496], [0.4999730530854218], [0.6315817838857452], [0.7631366208569119], [0.7894368094853139], [0.7105362436001078], [0.6052277014281865], [0.5263271355429804], [0.4999730530854218], [0.5789275127997845], [0.6315817838857452], [0.6578819725141472], [0.6578819725141472], [0.6052277014281865], [0.5789275127997845], [0.5789275127997845], [0.6052277014281865], [0.6315817838857452], [0.6578819725141472], [0.7105362436001078], [0.8157908919428726], [0.9210455402856373], [0.9736459175424416], [0.9736459175424416], [0.9210455402856373], [0.8683912691996766], [0.8157908919428726], [0.8157908919428726], [0.8157908919428726], [0.8683912691996766], [0.8683912691996766], [0.8947453516572352], [0.8683912691996766], [0.8157908919428726], [0.7631366208569119], [0.7368364322285099], [0.7631366208569119], [0.7631366208569119], [0.7894368094853139], [0.7368364322285099], [0.6578819725141472], [0.5789275127997845], [0.5263271355429804], [0.5526273241713825], [0.6578819725141472], [0.7105362436001078], [0.7368364322285099], [0.7368364322285099], [0.7105362436001078], [0.6578819725141472], [0.6052277014281865], [0.5263271355429804], [0.421018593371059], [0.3421180274858529], [0.3157639450282943], [0.3157639450282943], [0.394718404742657], [0.5263271355429804], [0.6052277014281865], [0.6578819725141472], [0.6578819725141472], [0.5789275127997845], [0.5263271355429804], [0.4999730530854218], [0.4999730530854218], [0.5789275127997845], [0.6578819725141472], [0.7105362436001078], [0.6841821611425492], [0.5789275127997845], [0.421018593371059], [0.28946375639989225], [0.2368633791430882], [0.2631635677714902], [0.394718404742657], [0.5526273241713825], [0.7105362436001078], [0.7894368094853139], [0.7631366208569119], [0.6052277014281865], [0.394718404742657], [0.2368633791430882], [0.2368633791430882], [0.3421180274858529], [0.5263271355429804], [0.6841821611425492], [0.7105362436001078], [0.6315817838857452], [0.4736728644570198], [0.36841821611425496], [0.3157639450282943], [0.36841821611425496], [0.4999730530854218], [0.5789275127997845], [0.6578819725141472], [0.6841821611425492], [0.6315817838857452], [0.5789275127997845], [0.5789275127997845], [0.6315817838857452], [0.6841821611425492], [0.7368364322285099], [0.7105362436001078], [0.6315817838857452], [0.5789275127997845], [0.5789275127997845], [0.6578819725141472], [0.7894368094853139], [0.8947453516572352], [0.9210455402856373], [0.8157908919428726], [0.6578819725141472], [0.4999730530854218], [0.394718404742657], [0.36841821611425496], [0.4473726758286176], [0.5526273241713825], [0.6315817838857452], [0.6578819725141472], [0.6315817838857452], [0.5526273241713825], [0.4999730530854218], [0.4473726758286176], [0.421018593371059], [0.4473726758286176], [0.5263271355429804], [0.6315817838857452], [0.7105362436001078], [0.7368364322285099], [0.6578819725141472], [0.5526273241713825], [0.394718404742657], [0.3421180274858529], [0.394718404742657], [0.4999730530854218], [0.6841821611425492], [0.7894368094853139], [0.7894368094853139], [0.6578819725141472], [0.421018593371059], [0.2368633791430882], [0.1579089194287254], [0.2368633791430882], [0.4473726758286176], [0.6315817838857452], [0.7368364322285099], [0.7105362436001078], [0.5263271355429804], [0.3421180274858529], [0.1842091080571275], [0.1842091080571275], [0.2631635677714902], [0.36841821611425496], [0.4999730530854218], [0.4999730530854218], [0.394718404742657], [0.21050929668552953], [0.05265427108596068], [0.02630018862840212], [0.1842091080571275], [0.4473726758286176], [0.7368364322285099], [0.9210455402856373], [0.9473457289140393], [0.8157908919428726], [0.6315817838857452]], "deltas": [[1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0]]}, "backward": {"values": [[0.6315817838857452], [0.8157908919428726], [0.9473457289140393], [0.9210455402856373], [0.7368364322285099], [0.4473726758286176], [0.1842091080571275], [0.02630018862840212], [0.05265427108596068], [0.21050929668552953], [0.394718404742657], [0.4999730530854218], [0.4999730530854218], [0.36841821611425496], [0.2631635677714902], [0.1842091080571275], [0.1842091080571275], [0.3421180274858529], [0.5263271355429804], [0.7105362436001078], [0.7368364322285099], [0.6315817838857452], [0.4473726758286176], [0.2368633791430882], [0.1579089194287254], [0.2368633791430882], [0.421018593371059], [0.6578819725141472], [0.7894368094853139], [0.7894368094853139], [0.6841821611425492], [0.4999730530854218], [0.394718404742657], [0.3421180274858529], [0.394718404742657], [0.5526273241713825], [0.6578819725141472], [0.7368364322285099], [0.7105362436001078], [0.6315817838857452], [0.5263271355429804], [0.4473726758286176], [0.421018593371059], [0.4473726758286176], [0.4999730530854218], [0.5526273241713825], [0.6315817838857452], [0.6578819725141472], [0.6315817838857452], [0.5526273241713825], [0.4473726758286176], [0.36841821611425496], [0.394718404742657], [0.4999730530854218], [0.6578819725141472], [0.8157908919428726], [0.9210455402856373], [0.8947453516572352], [0.7894368094853139], [0.6578819725141472], [0.5789275127997845], [0.5789275127997845], [0.6315817838857452], [0.7105362436001078], [0.7368364322285099], [0.6841821611425492], [0.6315817838857452], [0.5789275127997845], [0.5789275127997845], [0.6315817838857452], [0.6841821611425492], [0.6578819725141472], [0.5789275127997845], [0.4999730530854218], [0.36841821611425496], [0.3157639450282943], [0.36841821611425496], [0.4736728644570198], [0.6315817838857452], [0.7105362436001078], [0.6841821611425492], [0.5263271355429804], [0.3421180274858529], [0.2368633791430882], [0.2368633791430882], [0.394718404742657], [0.6052277014281865], [0.7631366208569119], [0.7894368094853139], [0.7105362436001078], [0.5526273241713825], [0.394718404742657], [0.2631635677714902], [0.2368633791430882], [0.28946375639989225], [0.421018593371059], [0.5789275127997845], [0.6841821611425492], [0.7105362436001078], [0.6578819725141472], [0.5789275127997845], [0.4999730530854218], [0.4999730530854218], [0.5263271355429804], [0.5789275127997845], [0.6578819725141472], [0.6578819725141472], [0.6052277014281865], [0.5263271355429804], [0.394718404742657], [0.3157639450282943], [0.3157639450282943], [0.3421180274858529], [0.421018593371059], [0.5263271355429804], [0.6052277014281865], [0.6578819725141472], [0.7105362436001078], [0.7368364322285099], [0.7368364322285099], [0.7105362436001078], [0.6578819725141472], [0.5526273241713825], [0.5263271355429804], [0.5789275127997845], [0.6578819725141472], [0.7368364322285099], [0.7894368094853139], [0.7631366208569119], [0.7631366208569119], [0.7368364322285099], [0.7631366208569119], [0.8157908919428726], [0.8683912691996766], [0.8947453516572352], [0.8683912691996766], [0.8683912691996766], [0.8157908919428726], [0.8157908919428726], [0.8157908919428726], [0.8683912691996766], [0.9210455402856373], [0.9736459175424416], [0.9736459175424416], [0.9210455402856373], [0.8157908919428726], [0.7105362436001078], [0.6578819725141472], [0.6315817838857452], [0.6052277014281865], [0.5789275127997845], [0.5789275127997845], [0.6052277014281865], [0.6578819725141472], [0.6578819725141472], [0.6315817838857452], [0.5789275127997845], [0.4999730530854218], [0.5263271355429804], [0.6052277014281865], [0.7105362436001078], [0.7894368094853139], [0.7631366208569119], [0.6315817838857452], [0.4999730530854218], [0.36841821611425496], [0.3157639450282943], [0.36841821611425496], [0.4736728644570198], [0.6315817838857452], [0.8157908919428726], [0.9210455402856373], [0.9210455402856373], [0.7631366208569119], [0.4736728644570198], [0.1579089194287254], [0.0], [0.02630018862840212], [0.2631635677714902], [0.5789275127997845], [0.8157908919428726], [0.8947453516572352], [0.8157908919428726], [0.6578819725141472], [0.4736728644570198], [0.36841821611425496], [0.36841821611425496], [0.4736728644570198], [0.6052277014281865], [0.7105362436001078], [0.7368364322285099], [0.6841821611425492], [0.5789275127997845], [0.4999730530854218], [0.4736728644570198], [0.4999730530854218], [0.5526273241713825], [0.5263271355429804], [0.4473726758286176], [0.36841821611425496], [0.3157639450282943], [0.36841821611425496], [0.4473726758286176], [0.5263271355429804], [0.5789275127997845], [0.5526273241713825], [0.5263271355429804], [0.4736728644570198], [0.4473726758286176], [0.421018593371059], [0.4473726758286176], [0.4736728644570198], [0.4999730530854218], [0.5263271355429804], [0.5526273241713825], [0.5789275127997845], [0.6052277014281865], [0.6578819725141472], [0.6578819725141472], [0.6315817838857452], [0.5263271355429804], [0.36841821611425496], [0.2631635677714902], [0.2368633791430882], [0.3157639450282943], [0.4473726758286176], [0.5789275127997845], [0.6578819725141472], [0.6578819725141472], [0.6578819725141472], [0.6841821611425492], [0.7631366208569119], [0.8683912691996766], [0.9736459175424416], [1.0], [0.9473457289140393], [0.8157908919428726], [0.6578819725141472], [0.4736728644570198], [0.394718404742657], [0.36841821611425496], [0.4473726758286176], [0.5526273241713825], [0.6578819725141472], [0.6841821611425492], [0.6315817838857452], [0.5789275127997845], [0.5263271355429804], [0.5263271355429804], [0.6052277014281865], [0.7368364322285099], [0.8420910805712746], [0.8947453516572352], [0.8683912691996766], [0.8157908919428726], [0.7631366208569119]], "masks": [[1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1]], "evals": [[0.6315817838857452], [0.8157908919428726], [0.9473457289140393], [0.9210455402856373], [0.7368364322285099], [0.4473726758286176], [0.1842091080571275], [0.02630018862840212], [0.05265427108596068], [0.21050929668552953], [0.394718404742657], [0.4999730530854218], [0.4999730530854218], [0.36841821611425496], [0.2631635677714902], [0.1842091080571275], [0.1842091080571275], [0.3421180274858529], [0.5263271355429804], [0.7105362436001078], [0.7368364322285099], [0.6315817838857452], [0.4473726758286176], [0.2368633791430882], [0.1579089194287254], [0.2368633791430882], [0.421018593371059], [0.6578819725141472], [0.7894368094853139], [0.7894368094853139], [0.6841821611425492], [0.4999730530854218], [0.394718404742657], [0.3421180274858529], [0.394718404742657], [0.5526273241713825], [0.6578819725141472], [0.7368364322285099], [0.7105362436001078], [0.6315817838857452], [0.5263271355429804], [0.4473726758286176], [0.421018593371059], [0.4473726758286176], [0.4999730530854218], [0.5526273241713825], [0.6315817838857452], [0.6578819725141472], [0.6315817838857452], [0.5526273241713825], [0.4473726758286176], [0.36841821611425496], [0.394718404742657], [0.4999730530854218], [0.6578819725141472], [0.8157908919428726], [0.9210455402856373], [0.8947453516572352], [0.7894368094853139], [0.6578819725141472], [0.5789275127997845], [0.5789275127997845], [0.6315817838857452], [0.7105362436001078], [0.7368364322285099], [0.6841821611425492], [0.6315817838857452], [0.5789275127997845], [0.5789275127997845], [0.6315817838857452], [0.6841821611425492], [0.6578819725141472], [0.5789275127997845], [0.4999730530854218], [0.36841821611425496], [0.3157639450282943], [0.36841821611425496], [0.4736728644570198], [0.6315817838857452], [0.7105362436001078], [0.6841821611425492], [0.5263271355429804], [0.3421180274858529], [0.2368633791430882], [0.2368633791430882], [0.394718404742657], [0.6052277014281865], [0.7631366208569119], [0.7894368094853139], [0.7105362436001078], [0.5526273241713825], [0.394718404742657], [0.2631635677714902], [0.2368633791430882], [0.28946375639989225], [0.421018593371059], [0.5789275127997845], [0.6841821611425492], [0.7105362436001078], [0.6578819725141472], [0.5789275127997845], [0.4999730530854218], [0.4999730530854218], [0.5263271355429804], [0.5789275127997845], [0.6578819725141472], [0.6578819725141472], [0.6052277014281865], [0.5263271355429804], [0.394718404742657], [0.3157639450282943], [0.3157639450282943], [0.3421180274858529], [0.421018593371059], [0.5263271355429804], [0.6052277014281865], [0.6578819725141472], [0.7105362436001078], [0.7368364322285099], [0.7368364322285099], [0.7105362436001078], [0.6578819725141472], [0.5526273241713825], [0.5263271355429804], [0.5789275127997845], [0.6578819725141472], [0.7368364322285099], [0.7894368094853139], [0.7631366208569119], [0.7631366208569119], [0.7368364322285099], [0.7631366208569119], [0.8157908919428726], [0.8683912691996766], [0.8947453516572352], [0.8683912691996766], [0.8683912691996766], [0.8157908919428726], [0.8157908919428726], [0.8157908919428726], [0.8683912691996766], [0.9210455402856373], [0.9736459175424416], [0.9736459175424416], [0.9210455402856373], [0.8157908919428726], [0.7105362436001078], [0.6578819725141472], [0.6315817838857452], [0.6052277014281865], [0.5789275127997845], [0.5789275127997845], [0.6052277014281865], [0.6578819725141472], [0.6578819725141472], [0.6315817838857452], [0.5789275127997845], [0.4999730530854218], [0.5263271355429804], [0.6052277014281865], [0.7105362436001078], [0.7894368094853139], [0.7631366208569119], [0.6315817838857452], [0.4999730530854218], [0.36841821611425496], [0.3157639450282943], [0.36841821611425496], [0.4736728644570198], [0.6315817838857452], [0.8157908919428726], [0.9210455402856373], [0.9210455402856373], [0.7631366208569119], [0.4736728644570198], [0.1579089194287254], [0.0], [0.02630018862840212], [0.2631635677714902], [0.5789275127997845], [0.8157908919428726], [0.8947453516572352], [0.8157908919428726], [0.6578819725141472], [0.4736728644570198], [0.36841821611425496], [0.36841821611425496], [0.4736728644570198], [0.6052277014281865], [0.7105362436001078], [0.7368364322285099], [0.6841821611425492], [0.5789275127997845], [0.4999730530854218], [0.4736728644570198], [0.4999730530854218], [0.5526273241713825], [0.5263271355429804], [0.4473726758286176], [0.36841821611425496], [0.3157639450282943], [0.36841821611425496], [0.4473726758286176], [0.5263271355429804], [0.5789275127997845], [0.5526273241713825], [0.5263271355429804], [0.4736728644570198], [0.4473726758286176], [0.421018593371059], [0.4473726758286176], [0.4736728644570198], [0.4999730530854218], [0.5263271355429804], [0.5526273241713825], [0.5789275127997845], [0.6052277014281865], [0.6578819725141472], [0.6578819725141472], [0.6315817838857452], [0.5263271355429804], [0.36841821611425496], [0.2631635677714902], [0.2368633791430882], [0.3157639450282943], [0.4473726758286176], [0.5789275127997845], [0.6578819725141472], [0.6578819725141472], [0.6578819725141472], [0.6841821611425492], [0.7631366208569119], [0.8683912691996766], [0.9736459175424416], [1.0], [0.9473457289140393], [0.8157908919428726], [0.6578819725141472], [0.4736728644570198], [0.394718404742657], [0.36841821611425496], [0.4473726758286176], [0.5526273241713825], [0.6578819725141472], [0.6841821611425492], [0.6315817838857452], [0.5789275127997845], [0.5263271355429804], [0.5263271355429804], [0.6052277014281865], [0.7368364322285099], [0.8420910805712746], [0.8947453516572352], [0.8683912691996766], [0.8157908919428726], [0.7631366208569119]], "eval_masks": [[0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0]], "forwards": [[0.6315817838857452], [0.8157908919428726], [0.9473457289140393], [0.9210455402856373], [0.7368364322285099], [0.4473726758286176], [0.1842091080571275], [0.02630018862840212], [0.05265427108596068], [0.21050929668552953], [0.394718404742657], [0.4999730530854218], [0.4999730530854218], [0.36841821611425496], [0.2631635677714902], [0.1842091080571275], [0.1842091080571275], [0.3421180274858529], [0.5263271355429804], [0.7105362436001078], [0.7368364322285099], [0.6315817838857452], [0.4473726758286176], [0.2368633791430882], [0.1579089194287254], [0.2368633791430882], [0.421018593371059], [0.6578819725141472], [0.7894368094853139], [0.7894368094853139], [0.6841821611425492], [0.4999730530854218], [0.394718404742657], [0.3421180274858529], [0.394718404742657], [0.5526273241713825], [0.6578819725141472], [0.7368364322285099], [0.7105362436001078], [0.6315817838857452], [0.5263271355429804], [0.4473726758286176], [0.421018593371059], [0.4473726758286176], [0.4999730530854218], [0.5526273241713825], [0.6315817838857452], [0.6578819725141472], [0.6315817838857452], [0.5526273241713825], [0.4473726758286176], [0.36841821611425496], [0.394718404742657], [0.4999730530854218], [0.6578819725141472], [0.8157908919428726], [0.9210455402856373], [0.8947453516572352], [0.7894368094853139], [0.6578819725141472], [0.5789275127997845], [0.5789275127997845], [0.6315817838857452], [0.7105362436001078], [0.7368364322285099], [0.6841821611425492], [0.6315817838857452], [0.5789275127997845], [0.5789275127997845], [0.6315817838857452], [0.6841821611425492], [0.6578819725141472], [0.5789275127997845], [0.4999730530854218], [0.36841821611425496], [0.3157639450282943], [0.36841821611425496], [0.4736728644570198], [0.6315817838857452], [0.7105362436001078], [0.6841821611425492], [0.5263271355429804], [0.3421180274858529], [0.2368633791430882], [0.2368633791430882], [0.394718404742657], [0.6052277014281865], [0.7631366208569119], [0.7894368094853139], [0.7105362436001078], [0.5526273241713825], [0.394718404742657], [0.2631635677714902], [0.2368633791430882], [0.28946375639989225], [0.421018593371059], [0.5789275127997845], [0.6841821611425492], [0.7105362436001078], [0.6578819725141472], [0.5789275127997845], [0.4999730530854218], [0.4999730530854218], [0.5263271355429804], [0.5789275127997845], [0.6578819725141472], [0.6578819725141472], [0.6052277014281865], [0.5263271355429804], [0.394718404742657], [0.3157639450282943], [0.3157639450282943], [0.3421180274858529], [0.421018593371059], [0.5263271355429804], [0.6052277014281865], [0.6578819725141472], [0.7105362436001078], [0.7368364322285099], [0.7368364322285099], [0.7105362436001078], [0.6578819725141472], [0.5526273241713825], [0.5263271355429804], [0.5789275127997845], [0.6578819725141472], [0.7368364322285099], [0.7894368094853139], [0.7631366208569119], [0.7631366208569119], [0.7368364322285099], [0.7631366208569119], [0.8157908919428726], [0.8683912691996766], [0.8947453516572352], [0.8683912691996766], [0.8683912691996766], [0.8157908919428726], [0.8157908919428726], [0.8157908919428726], [0.8683912691996766], [0.9210455402856373], [0.9736459175424416], [0.9736459175424416], [0.9210455402856373], [0.8157908919428726], [0.7105362436001078], [0.6578819725141472], [0.6315817838857452], [0.6052277014281865], [0.5789275127997845], [0.5789275127997845], [0.6052277014281865], [0.6578819725141472], [0.6578819725141472], [0.6315817838857452], [0.5789275127997845], [0.4999730530854218], [0.5263271355429804], [0.6052277014281865], [0.7105362436001078], [0.7894368094853139], [0.7631366208569119], [0.6315817838857452], [0.4999730530854218], [0.36841821611425496], [0.3157639450282943], [0.36841821611425496], [0.4736728644570198], [0.6315817838857452], [0.8157908919428726], [0.9210455402856373], [0.9210455402856373], [0.7631366208569119], [0.4736728644570198], [0.1579089194287254], [0.0], [0.02630018862840212], [0.2631635677714902], [0.5789275127997845], [0.8157908919428726], [0.8947453516572352], [0.8157908919428726], [0.6578819725141472], [0.4736728644570198], [0.36841821611425496], [0.36841821611425496], [0.4736728644570198], [0.6052277014281865], [0.7105362436001078], [0.7368364322285099], [0.6841821611425492], [0.5789275127997845], [0.4999730530854218], [0.4736728644570198], [0.4999730530854218], [0.5526273241713825], [0.5263271355429804], [0.4473726758286176], [0.36841821611425496], [0.3157639450282943], [0.36841821611425496], [0.4473726758286176], [0.5263271355429804], [0.5789275127997845], [0.5526273241713825], [0.5263271355429804], [0.4736728644570198], [0.4473726758286176], [0.421018593371059], [0.4473726758286176], [0.4736728644570198], [0.4999730530854218], [0.5263271355429804], [0.5526273241713825], [0.5789275127997845], [0.6052277014281865], [0.6578819725141472], [0.6578819725141472], [0.6315817838857452], [0.5263271355429804], [0.36841821611425496], [0.2631635677714902], [0.2368633791430882], [0.3157639450282943], [0.4473726758286176], [0.5789275127997845], [0.6578819725141472], [0.6578819725141472], [0.6578819725141472], [0.6841821611425492], [0.7631366208569119], [0.8683912691996766], [0.9736459175424416], [1.0], [0.9473457289140393], [0.8157908919428726], [0.6578819725141472], [0.4736728644570198], [0.394718404742657], [0.36841821611425496], [0.4473726758286176], [0.5526273241713825], [0.6578819725141472], [0.6841821611425492], [0.6315817838857452], [0.5789275127997845], [0.5263271355429804], [0.5263271355429804], [0.6052277014281865], [0.7368364322285099], [0.8420910805712746], [0.8947453516572352], [0.8683912691996766], [0.8157908919428726], [0.7631366208569119]], "deltas": [[1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0]]}} -{"label": 0, "forward": {"values": [[0.4418936940369594], [0.5349114116974663], [0.6511716517431891], [0.7209468470184798], [0.7209468470184798], [0.6977043246332635], [0.6744141741284054], [0.6511716517431891], [0.6511716517431891], [0.6511716517431891], [0.627929129357973], [0.5581539340826824], [0.4186035435321014], [0.2791007811011621], [0.11630786816536484], [0.0], [0.0], [0.11630786816536484], [0.2791007811011621], [0.4418936940369594], [0.5581539340826824], [0.6046866069727568], [0.5813964564678986], [0.5349114116974663], [0.5349114116974663], [0.5581539340826824], [0.627929129357973], [0.6744141741284054], [0.6744141741284054], [0.627929129357973], [0.5349114116974663], [0.4418936940369594], [0.37211849876166886], [0.37211849876166886], [0.4186035435321014], [0.4418936940369594], [0.4186035435321014], [0.32558582587159457], [0.2325681082110878], [0.18608306344065534], [0.2325681082110878], [0.30234330348637833], [0.3953610211468851], [0.4186035435321014], [0.3953610211468851], [0.32558582587159457], [0.2791007811011621], [0.25581063059630404], [0.2791007811011621], [0.34882834825681086], [0.3953610211468851], [0.4186035435321014], [0.37211849876166886], [0.30234330348637833], [0.2325681082110878], [0.2325681082110878], [0.2791007811011621], [0.34882834825681086], [0.3953610211468851], [0.3953610211468851], [0.37211849876166886], [0.32558582587159457], [0.34882834825681086], [0.3953610211468851], [0.4418936940369594], [0.4651362164221757], [0.4418936940369594], [0.3953610211468851], [0.34882834825681086], [0.2791007811011621], [0.2791007811011621], [0.30234330348637833], [0.37211849876166886], [0.4651362164221757], [0.5116212611926081], [0.5116212611926081], [0.3953610211468851], [0.2325681082110878], [0.11630786816536484], [0.11630786816536484], [0.25581063059630404], [0.4418936940369594], [0.6046866069727568], [0.6744141741284054], [0.6511716517431891], [0.5813964564678986], [0.4651362164221757], [0.37211849876166886], [0.25581063059630404], [0.16279291293579726], [0.18608306344065534], [0.34882834825681086], [0.5581539340826824], [0.7674795199085539], [0.8604972375690608], [0.8139645646789865], [0.6511716517431891], [0.4651362164221757], [0.32558582587159457], [0.2791007811011621], [0.2791007811011621], [0.34882834825681086], [0.4186035435321014], [0.5116212611926081], [0.6046866069727568], [0.6744141741284054], [0.6977043246332635], [0.6977043246332635], [0.6511716517431891], [0.6046866069727568], [0.5813964564678986], [0.5813964564678986], [0.5813964564678986], [0.627929129357973], [0.6511716517431891], [0.6744141741284054], [0.7209468470184798], [0.7907220422937703], [0.8372070870642028], [0.8604972375690608], [0.8139645646789865], [0.7209468470184798], [0.6046866069727568], [0.4883787388073919], [0.4418936940369594], [0.5116212611926081], [0.627929129357973], [0.7674795199085539], [0.8604972375690608], [0.8604972375690608], [0.7674795199085539], [0.627929129357973], [0.4883787388073919], [0.4651362164221757], [0.4883787388073919], [0.5349114116974663], [0.5813964564678986], [0.5813964564678986], [0.5813964564678986], [0.5349114116974663], [0.5349114116974663], [0.4883787388073919], [0.4418936940369594], [0.37211849876166886], [0.32558582587159457], [0.30234330348637833], [0.34882834825681086], [0.4186035435321014], [0.4883787388073919], [0.5349114116974663], [0.5116212611926081], [0.4651362164221757], [0.3953610211468851], [0.3953610211468851], [0.4186035435321014], [0.5116212611926081], [0.6046866069727568], [0.6744141741284054], [0.6744141741284054], [0.5813964564678986], [0.4883787388073919], [0.4186035435321014], [0.4651362164221757], [0.6046866069727568], [0.7674795199085539], [0.9069822823394933], [1.0], [0.9535149552295675], [0.8372070870642028], [0.6511716517431891], [0.4651362164221757], [0.37211849876166886], [0.3953610211468851], [0.5116212611926081], [0.6744141741284054], [0.744189369403696], [0.744189369403696], [0.6744141741284054], [0.5813964564678986], [0.5349114116974663], [0.5813964564678986], [0.627929129357973], [0.6511716517431891], [0.6046866069727568], [0.4883787388073919], [0.37211849876166886], [0.32558582587159457], [0.37211849876166886], [0.4883787388073919], [0.6511716517431891], [0.7907220422937703], [0.8139645646789865], [0.7907220422937703], [0.7209468470184798], [0.6744141741284054], [0.6744141741284054], [0.6977043246332635], [0.7674795199085539], [0.7674795199085539], [0.6744141741284054], [0.5349114116974663], [0.34882834825681086], [0.20932558582587157], [0.18608306344065534], [0.2791007811011621], [0.4186035435321014], [0.5349114116974663], [0.5813964564678986], [0.5349114116974663], [0.4186035435321014], [0.37211849876166886], [0.37211849876166886], [0.4418936940369594], [0.5349114116974663], [0.5813964564678986], [0.6046866069727568], [0.6046866069727568], [0.5581539340826824], [0.5116212611926081], [0.4186035435321014], [0.37211849876166886], [0.32558582587159457], [0.32558582587159457], [0.34882834825681086], [0.3953610211468851], [0.4186035435321014], [0.4651362164221757], [0.4651362164221757], [0.5116212611926081], [0.5116212611926081], [0.5116212611926081], [0.5349114116974663], [0.5116212611926081], [0.5116212611926081], [0.4883787388073919], [0.4651362164221757], [0.3953610211468851], [0.34882834825681086], [0.2791007811011621], [0.2791007811011621], [0.2791007811011621], [0.2791007811011621], [0.30234330348637833], [0.30234330348637833], [0.34882834825681086], [0.3953610211468851], [0.4651362164221757], [0.5349114116974663], [0.5813964564678986], [0.5581539340826824], [0.4883787388073919], [0.4186035435321014], [0.37211849876166886], [0.37211849876166886], [0.37211849876166886], [0.4186035435321014]], "masks": [[1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1]], "evals": [[0.4418936940369594], [0.5349114116974663], [0.6511716517431891], [0.7209468470184798], [0.7209468470184798], [0.6977043246332635], [0.6744141741284054], [0.6511716517431891], [0.6511716517431891], [0.6511716517431891], [0.627929129357973], [0.5581539340826824], [0.4186035435321014], [0.2791007811011621], [0.11630786816536484], [0.0], [0.0], [0.11630786816536484], [0.2791007811011621], [0.4418936940369594], [0.5581539340826824], [0.6046866069727568], [0.5813964564678986], [0.5349114116974663], [0.5349114116974663], [0.5581539340826824], [0.627929129357973], [0.6744141741284054], [0.6744141741284054], [0.627929129357973], [0.5349114116974663], [0.4418936940369594], [0.37211849876166886], [0.37211849876166886], [0.4186035435321014], [0.4418936940369594], [0.4186035435321014], [0.32558582587159457], [0.2325681082110878], [0.18608306344065534], [0.2325681082110878], [0.30234330348637833], [0.3953610211468851], [0.4186035435321014], [0.3953610211468851], [0.32558582587159457], [0.2791007811011621], [0.25581063059630404], [0.2791007811011621], [0.34882834825681086], [0.3953610211468851], [0.4186035435321014], [0.37211849876166886], [0.30234330348637833], [0.2325681082110878], [0.2325681082110878], [0.2791007811011621], [0.34882834825681086], [0.3953610211468851], [0.3953610211468851], [0.37211849876166886], [0.32558582587159457], [0.34882834825681086], [0.3953610211468851], [0.4418936940369594], [0.4651362164221757], [0.4418936940369594], [0.3953610211468851], [0.34882834825681086], [0.2791007811011621], [0.2791007811011621], [0.30234330348637833], [0.37211849876166886], [0.4651362164221757], [0.5116212611926081], [0.5116212611926081], [0.3953610211468851], [0.2325681082110878], [0.11630786816536484], [0.11630786816536484], [0.25581063059630404], [0.4418936940369594], [0.6046866069727568], [0.6744141741284054], [0.6511716517431891], [0.5813964564678986], [0.4651362164221757], [0.37211849876166886], [0.25581063059630404], [0.16279291293579726], [0.18608306344065534], [0.34882834825681086], [0.5581539340826824], [0.7674795199085539], [0.8604972375690608], [0.8139645646789865], [0.6511716517431891], [0.4651362164221757], [0.32558582587159457], [0.2791007811011621], [0.2791007811011621], [0.34882834825681086], [0.4186035435321014], [0.5116212611926081], [0.6046866069727568], [0.6744141741284054], [0.6977043246332635], [0.6977043246332635], [0.6511716517431891], [0.6046866069727568], [0.5813964564678986], [0.5813964564678986], [0.5813964564678986], [0.627929129357973], [0.6511716517431891], [0.6744141741284054], [0.7209468470184798], [0.7907220422937703], [0.8372070870642028], [0.8604972375690608], [0.8139645646789865], [0.7209468470184798], [0.6046866069727568], [0.4883787388073919], [0.4418936940369594], [0.5116212611926081], [0.627929129357973], [0.7674795199085539], [0.8604972375690608], [0.8604972375690608], [0.7674795199085539], [0.627929129357973], [0.4883787388073919], [0.4651362164221757], [0.4883787388073919], [0.5349114116974663], [0.5813964564678986], [0.5813964564678986], [0.5813964564678986], [0.5349114116974663], [0.5349114116974663], [0.4883787388073919], [0.4418936940369594], [0.37211849876166886], [0.32558582587159457], [0.30234330348637833], [0.34882834825681086], [0.4186035435321014], [0.4883787388073919], [0.5349114116974663], [0.5116212611926081], [0.4651362164221757], [0.3953610211468851], [0.3953610211468851], [0.4186035435321014], [0.5116212611926081], [0.6046866069727568], [0.6744141741284054], [0.6744141741284054], [0.5813964564678986], [0.4883787388073919], [0.4186035435321014], [0.4651362164221757], [0.6046866069727568], [0.7674795199085539], [0.9069822823394933], [1.0], [0.9535149552295675], [0.8372070870642028], [0.6511716517431891], [0.4651362164221757], [0.37211849876166886], [0.3953610211468851], [0.5116212611926081], [0.6744141741284054], [0.744189369403696], [0.744189369403696], [0.6744141741284054], [0.5813964564678986], [0.5349114116974663], [0.5813964564678986], [0.627929129357973], [0.6511716517431891], [0.6046866069727568], [0.4883787388073919], [0.37211849876166886], [0.32558582587159457], [0.37211849876166886], [0.4883787388073919], [0.6511716517431891], [0.7907220422937703], [0.8139645646789865], [0.7907220422937703], [0.7209468470184798], [0.6744141741284054], [0.6744141741284054], [0.6977043246332635], [0.7674795199085539], [0.7674795199085539], [0.6744141741284054], [0.5349114116974663], [0.34882834825681086], [0.20932558582587157], [0.18608306344065534], [0.2791007811011621], [0.4186035435321014], [0.5349114116974663], [0.5813964564678986], [0.5349114116974663], [0.4186035435321014], [0.37211849876166886], [0.37211849876166886], [0.4418936940369594], [0.5349114116974663], [0.5813964564678986], [0.6046866069727568], [0.6046866069727568], [0.5581539340826824], [0.5116212611926081], [0.4186035435321014], [0.37211849876166886], [0.32558582587159457], [0.32558582587159457], [0.34882834825681086], [0.3953610211468851], [0.4186035435321014], [0.4651362164221757], [0.4651362164221757], [0.5116212611926081], [0.5116212611926081], [0.5116212611926081], [0.5349114116974663], [0.5116212611926081], [0.5116212611926081], [0.4883787388073919], [0.4651362164221757], [0.3953610211468851], [0.34882834825681086], [0.2791007811011621], [0.2791007811011621], [0.2791007811011621], [0.2791007811011621], [0.30234330348637833], [0.30234330348637833], [0.34882834825681086], [0.3953610211468851], [0.4651362164221757], [0.5349114116974663], [0.5813964564678986], [0.5581539340826824], [0.4883787388073919], [0.4186035435321014], [0.37211849876166886], [0.37211849876166886], [0.37211849876166886], [0.4186035435321014]], "eval_masks": [[0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0]], "forwards": [[0.4418936940369594], [0.5349114116974663], [0.6511716517431891], [0.7209468470184798], [0.7209468470184798], [0.6977043246332635], [0.6744141741284054], [0.6511716517431891], [0.6511716517431891], [0.6511716517431891], [0.627929129357973], [0.5581539340826824], [0.4186035435321014], [0.2791007811011621], [0.11630786816536484], [0.0], [0.0], [0.11630786816536484], [0.2791007811011621], [0.4418936940369594], [0.5581539340826824], [0.6046866069727568], [0.5813964564678986], [0.5349114116974663], [0.5349114116974663], [0.5581539340826824], [0.627929129357973], [0.6744141741284054], [0.6744141741284054], [0.627929129357973], [0.5349114116974663], [0.4418936940369594], [0.37211849876166886], [0.37211849876166886], [0.4186035435321014], [0.4418936940369594], [0.4186035435321014], [0.32558582587159457], [0.2325681082110878], [0.18608306344065534], [0.2325681082110878], [0.30234330348637833], [0.3953610211468851], [0.4186035435321014], [0.3953610211468851], [0.32558582587159457], [0.2791007811011621], [0.25581063059630404], [0.2791007811011621], [0.34882834825681086], [0.3953610211468851], [0.4186035435321014], [0.37211849876166886], [0.30234330348637833], [0.2325681082110878], [0.2325681082110878], [0.2791007811011621], [0.34882834825681086], [0.3953610211468851], [0.3953610211468851], [0.37211849876166886], [0.32558582587159457], [0.34882834825681086], [0.3953610211468851], [0.4418936940369594], [0.4651362164221757], [0.4418936940369594], [0.3953610211468851], [0.34882834825681086], [0.2791007811011621], [0.2791007811011621], [0.30234330348637833], [0.37211849876166886], [0.4651362164221757], [0.5116212611926081], [0.5116212611926081], [0.3953610211468851], [0.2325681082110878], [0.11630786816536484], [0.11630786816536484], [0.25581063059630404], [0.4418936940369594], [0.6046866069727568], [0.6744141741284054], [0.6511716517431891], [0.5813964564678986], [0.4651362164221757], [0.37211849876166886], [0.25581063059630404], [0.16279291293579726], [0.18608306344065534], [0.34882834825681086], [0.5581539340826824], [0.7674795199085539], [0.8604972375690608], [0.8139645646789865], [0.6511716517431891], [0.4651362164221757], [0.32558582587159457], [0.2791007811011621], [0.2791007811011621], [0.34882834825681086], [0.4186035435321014], [0.5116212611926081], [0.6046866069727568], [0.6744141741284054], [0.6977043246332635], [0.6977043246332635], [0.6511716517431891], [0.6046866069727568], [0.5813964564678986], [0.5813964564678986], [0.5813964564678986], [0.627929129357973], [0.6511716517431891], [0.6744141741284054], [0.7209468470184798], [0.7907220422937703], [0.8372070870642028], [0.8604972375690608], [0.8139645646789865], [0.7209468470184798], [0.6046866069727568], [0.4883787388073919], [0.4418936940369594], [0.5116212611926081], [0.627929129357973], [0.7674795199085539], [0.8604972375690608], [0.8604972375690608], [0.7674795199085539], [0.627929129357973], [0.4883787388073919], [0.4651362164221757], [0.4883787388073919], [0.5349114116974663], [0.5813964564678986], [0.5813964564678986], [0.5813964564678986], [0.5349114116974663], [0.5349114116974663], [0.4883787388073919], [0.4418936940369594], [0.37211849876166886], [0.32558582587159457], [0.30234330348637833], [0.34882834825681086], [0.4186035435321014], [0.4883787388073919], [0.5349114116974663], [0.5116212611926081], [0.4651362164221757], [0.3953610211468851], [0.3953610211468851], [0.4186035435321014], [0.5116212611926081], [0.6046866069727568], [0.6744141741284054], [0.6744141741284054], [0.5813964564678986], [0.4883787388073919], [0.4186035435321014], [0.4651362164221757], [0.6046866069727568], [0.7674795199085539], [0.9069822823394933], [1.0], [0.9535149552295675], [0.8372070870642028], [0.6511716517431891], [0.4651362164221757], [0.37211849876166886], [0.3953610211468851], [0.5116212611926081], [0.6744141741284054], [0.744189369403696], [0.744189369403696], [0.6744141741284054], [0.5813964564678986], [0.5349114116974663], [0.5813964564678986], [0.627929129357973], [0.6511716517431891], [0.6046866069727568], [0.4883787388073919], [0.37211849876166886], [0.32558582587159457], [0.37211849876166886], [0.4883787388073919], [0.6511716517431891], [0.7907220422937703], [0.8139645646789865], [0.7907220422937703], [0.7209468470184798], [0.6744141741284054], [0.6744141741284054], [0.6977043246332635], [0.7674795199085539], [0.7674795199085539], [0.6744141741284054], [0.5349114116974663], [0.34882834825681086], [0.20932558582587157], [0.18608306344065534], [0.2791007811011621], [0.4186035435321014], [0.5349114116974663], [0.5813964564678986], [0.5349114116974663], [0.4186035435321014], [0.37211849876166886], [0.37211849876166886], [0.4418936940369594], [0.5349114116974663], [0.5813964564678986], [0.6046866069727568], [0.6046866069727568], [0.5581539340826824], [0.5116212611926081], [0.4186035435321014], [0.37211849876166886], [0.32558582587159457], [0.32558582587159457], [0.34882834825681086], [0.3953610211468851], [0.4186035435321014], [0.4651362164221757], [0.4651362164221757], [0.5116212611926081], [0.5116212611926081], [0.5116212611926081], [0.5349114116974663], [0.5116212611926081], [0.5116212611926081], [0.4883787388073919], [0.4651362164221757], [0.3953610211468851], [0.34882834825681086], [0.2791007811011621], [0.2791007811011621], [0.2791007811011621], [0.2791007811011621], [0.30234330348637833], [0.30234330348637833], [0.34882834825681086], [0.3953610211468851], [0.4651362164221757], [0.5349114116974663], [0.5813964564678986], [0.5581539340826824], [0.4883787388073919], [0.4186035435321014], [0.37211849876166886], [0.37211849876166886], [0.37211849876166886], [0.4186035435321014]], "deltas": [[1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0]]}, "backward": {"values": [[0.4186035435321014], [0.37211849876166886], [0.37211849876166886], [0.37211849876166886], [0.4186035435321014], [0.4883787388073919], [0.5581539340826824], [0.5813964564678986], [0.5349114116974663], [0.4651362164221757], [0.3953610211468851], [0.34882834825681086], [0.30234330348637833], [0.30234330348637833], [0.2791007811011621], [0.2791007811011621], [0.2791007811011621], [0.2791007811011621], [0.34882834825681086], [0.3953610211468851], [0.4651362164221757], [0.4883787388073919], [0.5116212611926081], [0.5116212611926081], [0.5349114116974663], [0.5116212611926081], [0.5116212611926081], [0.5116212611926081], [0.4651362164221757], [0.4651362164221757], [0.4186035435321014], [0.3953610211468851], [0.34882834825681086], [0.32558582587159457], [0.32558582587159457], [0.37211849876166886], [0.4186035435321014], [0.5116212611926081], [0.5581539340826824], [0.6046866069727568], [0.6046866069727568], [0.5813964564678986], [0.5349114116974663], [0.4418936940369594], [0.37211849876166886], [0.37211849876166886], [0.4186035435321014], [0.5349114116974663], [0.5813964564678986], [0.5349114116974663], [0.4186035435321014], [0.2791007811011621], [0.18608306344065534], [0.20932558582587157], [0.34882834825681086], [0.5349114116974663], [0.6744141741284054], [0.7674795199085539], [0.7674795199085539], [0.6977043246332635], [0.6744141741284054], [0.6744141741284054], [0.7209468470184798], [0.7907220422937703], [0.8139645646789865], [0.7907220422937703], [0.6511716517431891], [0.4883787388073919], [0.37211849876166886], [0.32558582587159457], [0.37211849876166886], [0.4883787388073919], [0.6046866069727568], [0.6511716517431891], [0.627929129357973], [0.5813964564678986], [0.5349114116974663], [0.5813964564678986], [0.6744141741284054], [0.744189369403696], [0.744189369403696], [0.6744141741284054], [0.5116212611926081], [0.3953610211468851], [0.37211849876166886], [0.4651362164221757], [0.6511716517431891], [0.8372070870642028], [0.9535149552295675], [1.0], [0.9069822823394933], [0.7674795199085539], [0.6046866069727568], [0.4651362164221757], [0.4186035435321014], [0.4883787388073919], [0.5813964564678986], [0.6744141741284054], [0.6744141741284054], [0.6046866069727568], [0.5116212611926081], [0.4186035435321014], [0.3953610211468851], [0.3953610211468851], [0.4651362164221757], [0.5116212611926081], [0.5349114116974663], [0.4883787388073919], [0.4186035435321014], [0.34882834825681086], [0.30234330348637833], [0.32558582587159457], [0.37211849876166886], [0.4418936940369594], [0.4883787388073919], [0.5349114116974663], [0.5349114116974663], [0.5813964564678986], [0.5813964564678986], [0.5813964564678986], [0.5349114116974663], [0.4883787388073919], [0.4651362164221757], [0.4883787388073919], [0.627929129357973], [0.7674795199085539], [0.8604972375690608], [0.8604972375690608], [0.7674795199085539], [0.627929129357973], [0.5116212611926081], [0.4418936940369594], [0.4883787388073919], [0.6046866069727568], [0.7209468470184798], [0.8139645646789865], [0.8604972375690608], [0.8372070870642028], [0.7907220422937703], [0.7209468470184798], [0.6744141741284054], [0.6511716517431891], [0.627929129357973], [0.5813964564678986], [0.5813964564678986], [0.5813964564678986], [0.6046866069727568], [0.6511716517431891], [0.6977043246332635], [0.6977043246332635], [0.6744141741284054], [0.6046866069727568], [0.5116212611926081], [0.4186035435321014], [0.34882834825681086], [0.2791007811011621], [0.2791007811011621], [0.32558582587159457], [0.4651362164221757], [0.6511716517431891], [0.8139645646789865], [0.8604972375690608], [0.7674795199085539], [0.5581539340826824], [0.34882834825681086], [0.18608306344065534], [0.16279291293579726], [0.25581063059630404], [0.37211849876166886], [0.4651362164221757], [0.5813964564678986], [0.6511716517431891], [0.6744141741284054], [0.6046866069727568], [0.4418936940369594], [0.25581063059630404], [0.11630786816536484], [0.11630786816536484], [0.2325681082110878], [0.3953610211468851], [0.5116212611926081], [0.5116212611926081], [0.4651362164221757], [0.37211849876166886], [0.30234330348637833], [0.2791007811011621], [0.2791007811011621], [0.34882834825681086], [0.3953610211468851], [0.4418936940369594], [0.4651362164221757], [0.4418936940369594], [0.3953610211468851], [0.34882834825681086], [0.32558582587159457], [0.37211849876166886], [0.3953610211468851], [0.3953610211468851], [0.34882834825681086], [0.2791007811011621], [0.2325681082110878], [0.2325681082110878], [0.30234330348637833], [0.37211849876166886], [0.4186035435321014], [0.3953610211468851], [0.34882834825681086], [0.2791007811011621], [0.25581063059630404], [0.2791007811011621], [0.32558582587159457], [0.3953610211468851], [0.4186035435321014], [0.3953610211468851], [0.30234330348637833], [0.2325681082110878], [0.18608306344065534], [0.2325681082110878], [0.32558582587159457], [0.4186035435321014], [0.4418936940369594], [0.4186035435321014], [0.37211849876166886], [0.37211849876166886], [0.4418936940369594], [0.5349114116974663], [0.627929129357973], [0.6744141741284054], [0.6744141741284054], [0.627929129357973], [0.5581539340826824], [0.5349114116974663], [0.5349114116974663], [0.5813964564678986], [0.6046866069727568], [0.5581539340826824], [0.4418936940369594], [0.2791007811011621], [0.11630786816536484], [0.0], [0.0], [0.11630786816536484], [0.2791007811011621], [0.4186035435321014], [0.5581539340826824], [0.627929129357973], [0.6511716517431891], [0.6511716517431891], [0.6511716517431891], [0.6744141741284054], [0.6977043246332635], [0.7209468470184798], [0.7209468470184798], [0.6511716517431891], [0.5349114116974663], [0.4418936940369594]], "masks": [[1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1]], "evals": [[0.4186035435321014], [0.37211849876166886], [0.37211849876166886], [0.37211849876166886], [0.4186035435321014], [0.4883787388073919], [0.5581539340826824], [0.5813964564678986], [0.5349114116974663], [0.4651362164221757], [0.3953610211468851], [0.34882834825681086], [0.30234330348637833], [0.30234330348637833], [0.2791007811011621], [0.2791007811011621], [0.2791007811011621], [0.2791007811011621], [0.34882834825681086], [0.3953610211468851], [0.4651362164221757], [0.4883787388073919], [0.5116212611926081], [0.5116212611926081], [0.5349114116974663], [0.5116212611926081], [0.5116212611926081], [0.5116212611926081], [0.4651362164221757], [0.4651362164221757], [0.4186035435321014], [0.3953610211468851], [0.34882834825681086], [0.32558582587159457], [0.32558582587159457], [0.37211849876166886], [0.4186035435321014], [0.5116212611926081], [0.5581539340826824], [0.6046866069727568], [0.6046866069727568], [0.5813964564678986], [0.5349114116974663], [0.4418936940369594], [0.37211849876166886], [0.37211849876166886], [0.4186035435321014], [0.5349114116974663], [0.5813964564678986], [0.5349114116974663], [0.4186035435321014], [0.2791007811011621], [0.18608306344065534], [0.20932558582587157], [0.34882834825681086], [0.5349114116974663], [0.6744141741284054], [0.7674795199085539], [0.7674795199085539], [0.6977043246332635], [0.6744141741284054], [0.6744141741284054], [0.7209468470184798], [0.7907220422937703], [0.8139645646789865], [0.7907220422937703], [0.6511716517431891], [0.4883787388073919], [0.37211849876166886], [0.32558582587159457], [0.37211849876166886], [0.4883787388073919], [0.6046866069727568], [0.6511716517431891], [0.627929129357973], [0.5813964564678986], [0.5349114116974663], [0.5813964564678986], [0.6744141741284054], [0.744189369403696], [0.744189369403696], [0.6744141741284054], [0.5116212611926081], [0.3953610211468851], [0.37211849876166886], [0.4651362164221757], [0.6511716517431891], [0.8372070870642028], [0.9535149552295675], [1.0], [0.9069822823394933], [0.7674795199085539], [0.6046866069727568], [0.4651362164221757], [0.4186035435321014], [0.4883787388073919], [0.5813964564678986], [0.6744141741284054], [0.6744141741284054], [0.6046866069727568], [0.5116212611926081], [0.4186035435321014], [0.3953610211468851], [0.3953610211468851], [0.4651362164221757], [0.5116212611926081], [0.5349114116974663], [0.4883787388073919], [0.4186035435321014], [0.34882834825681086], [0.30234330348637833], [0.32558582587159457], [0.37211849876166886], [0.4418936940369594], [0.4883787388073919], [0.5349114116974663], [0.5349114116974663], [0.5813964564678986], [0.5813964564678986], [0.5813964564678986], [0.5349114116974663], [0.4883787388073919], [0.4651362164221757], [0.4883787388073919], [0.627929129357973], [0.7674795199085539], [0.8604972375690608], [0.8604972375690608], [0.7674795199085539], [0.627929129357973], [0.5116212611926081], [0.4418936940369594], [0.4883787388073919], [0.6046866069727568], [0.7209468470184798], [0.8139645646789865], [0.8604972375690608], [0.8372070870642028], [0.7907220422937703], [0.7209468470184798], [0.6744141741284054], [0.6511716517431891], [0.627929129357973], [0.5813964564678986], [0.5813964564678986], [0.5813964564678986], [0.6046866069727568], [0.6511716517431891], [0.6977043246332635], [0.6977043246332635], [0.6744141741284054], [0.6046866069727568], [0.5116212611926081], [0.4186035435321014], [0.34882834825681086], [0.2791007811011621], [0.2791007811011621], [0.32558582587159457], [0.4651362164221757], [0.6511716517431891], [0.8139645646789865], [0.8604972375690608], [0.7674795199085539], [0.5581539340826824], [0.34882834825681086], [0.18608306344065534], [0.16279291293579726], [0.25581063059630404], [0.37211849876166886], [0.4651362164221757], [0.5813964564678986], [0.6511716517431891], [0.6744141741284054], [0.6046866069727568], [0.4418936940369594], [0.25581063059630404], [0.11630786816536484], [0.11630786816536484], [0.2325681082110878], [0.3953610211468851], [0.5116212611926081], [0.5116212611926081], [0.4651362164221757], [0.37211849876166886], [0.30234330348637833], [0.2791007811011621], [0.2791007811011621], [0.34882834825681086], [0.3953610211468851], [0.4418936940369594], [0.4651362164221757], [0.4418936940369594], [0.3953610211468851], [0.34882834825681086], [0.32558582587159457], [0.37211849876166886], [0.3953610211468851], [0.3953610211468851], [0.34882834825681086], [0.2791007811011621], [0.2325681082110878], [0.2325681082110878], [0.30234330348637833], [0.37211849876166886], [0.4186035435321014], [0.3953610211468851], [0.34882834825681086], [0.2791007811011621], [0.25581063059630404], [0.2791007811011621], [0.32558582587159457], [0.3953610211468851], [0.4186035435321014], [0.3953610211468851], [0.30234330348637833], [0.2325681082110878], [0.18608306344065534], [0.2325681082110878], [0.32558582587159457], [0.4186035435321014], [0.4418936940369594], [0.4186035435321014], [0.37211849876166886], [0.37211849876166886], [0.4418936940369594], [0.5349114116974663], [0.627929129357973], [0.6744141741284054], [0.6744141741284054], [0.627929129357973], [0.5581539340826824], [0.5349114116974663], [0.5349114116974663], [0.5813964564678986], [0.6046866069727568], [0.5581539340826824], [0.4418936940369594], [0.2791007811011621], [0.11630786816536484], [0.0], [0.0], [0.11630786816536484], [0.2791007811011621], [0.4186035435321014], [0.5581539340826824], [0.627929129357973], [0.6511716517431891], [0.6511716517431891], [0.6511716517431891], [0.6744141741284054], [0.6977043246332635], [0.7209468470184798], [0.7209468470184798], [0.6511716517431891], [0.5349114116974663], [0.4418936940369594]], "eval_masks": [[0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0]], "forwards": [[0.4186035435321014], [0.37211849876166886], [0.37211849876166886], [0.37211849876166886], [0.4186035435321014], [0.4883787388073919], [0.5581539340826824], [0.5813964564678986], [0.5349114116974663], [0.4651362164221757], [0.3953610211468851], [0.34882834825681086], [0.30234330348637833], [0.30234330348637833], [0.2791007811011621], [0.2791007811011621], [0.2791007811011621], [0.2791007811011621], [0.34882834825681086], [0.3953610211468851], [0.4651362164221757], [0.4883787388073919], [0.5116212611926081], [0.5116212611926081], [0.5349114116974663], [0.5116212611926081], [0.5116212611926081], [0.5116212611926081], [0.4651362164221757], [0.4651362164221757], [0.4186035435321014], [0.3953610211468851], [0.34882834825681086], [0.32558582587159457], [0.32558582587159457], [0.37211849876166886], [0.4186035435321014], [0.5116212611926081], [0.5581539340826824], [0.6046866069727568], [0.6046866069727568], [0.5813964564678986], [0.5349114116974663], [0.4418936940369594], [0.37211849876166886], [0.37211849876166886], [0.4186035435321014], [0.5349114116974663], [0.5813964564678986], [0.5349114116974663], [0.4186035435321014], [0.2791007811011621], [0.18608306344065534], [0.20932558582587157], [0.34882834825681086], [0.5349114116974663], [0.6744141741284054], [0.7674795199085539], [0.7674795199085539], [0.6977043246332635], [0.6744141741284054], [0.6744141741284054], [0.7209468470184798], [0.7907220422937703], [0.8139645646789865], [0.7907220422937703], [0.6511716517431891], [0.4883787388073919], [0.37211849876166886], [0.32558582587159457], [0.37211849876166886], [0.4883787388073919], [0.6046866069727568], [0.6511716517431891], [0.627929129357973], [0.5813964564678986], [0.5349114116974663], [0.5813964564678986], [0.6744141741284054], [0.744189369403696], [0.744189369403696], [0.6744141741284054], [0.5116212611926081], [0.3953610211468851], [0.37211849876166886], [0.4651362164221757], [0.6511716517431891], [0.8372070870642028], [0.9535149552295675], [1.0], [0.9069822823394933], [0.7674795199085539], [0.6046866069727568], [0.4651362164221757], [0.4186035435321014], [0.4883787388073919], [0.5813964564678986], [0.6744141741284054], [0.6744141741284054], [0.6046866069727568], [0.5116212611926081], [0.4186035435321014], [0.3953610211468851], [0.3953610211468851], [0.4651362164221757], [0.5116212611926081], [0.5349114116974663], [0.4883787388073919], [0.4186035435321014], [0.34882834825681086], [0.30234330348637833], [0.32558582587159457], [0.37211849876166886], [0.4418936940369594], [0.4883787388073919], [0.5349114116974663], [0.5349114116974663], [0.5813964564678986], [0.5813964564678986], [0.5813964564678986], [0.5349114116974663], [0.4883787388073919], [0.4651362164221757], [0.4883787388073919], [0.627929129357973], [0.7674795199085539], [0.8604972375690608], [0.8604972375690608], [0.7674795199085539], [0.627929129357973], [0.5116212611926081], [0.4418936940369594], [0.4883787388073919], [0.6046866069727568], [0.7209468470184798], [0.8139645646789865], [0.8604972375690608], [0.8372070870642028], [0.7907220422937703], [0.7209468470184798], [0.6744141741284054], [0.6511716517431891], [0.627929129357973], [0.5813964564678986], [0.5813964564678986], [0.5813964564678986], [0.6046866069727568], [0.6511716517431891], [0.6977043246332635], [0.6977043246332635], [0.6744141741284054], [0.6046866069727568], [0.5116212611926081], [0.4186035435321014], [0.34882834825681086], [0.2791007811011621], [0.2791007811011621], [0.32558582587159457], [0.4651362164221757], [0.6511716517431891], [0.8139645646789865], [0.8604972375690608], [0.7674795199085539], [0.5581539340826824], [0.34882834825681086], [0.18608306344065534], [0.16279291293579726], [0.25581063059630404], [0.37211849876166886], [0.4651362164221757], [0.5813964564678986], [0.6511716517431891], [0.6744141741284054], [0.6046866069727568], [0.4418936940369594], [0.25581063059630404], [0.11630786816536484], [0.11630786816536484], [0.2325681082110878], [0.3953610211468851], [0.5116212611926081], [0.5116212611926081], [0.4651362164221757], [0.37211849876166886], [0.30234330348637833], [0.2791007811011621], [0.2791007811011621], [0.34882834825681086], [0.3953610211468851], [0.4418936940369594], [0.4651362164221757], [0.4418936940369594], [0.3953610211468851], [0.34882834825681086], [0.32558582587159457], [0.37211849876166886], [0.3953610211468851], [0.3953610211468851], [0.34882834825681086], [0.2791007811011621], [0.2325681082110878], [0.2325681082110878], [0.30234330348637833], [0.37211849876166886], [0.4186035435321014], [0.3953610211468851], [0.34882834825681086], [0.2791007811011621], [0.25581063059630404], [0.2791007811011621], [0.32558582587159457], [0.3953610211468851], [0.4186035435321014], [0.3953610211468851], [0.30234330348637833], [0.2325681082110878], [0.18608306344065534], [0.2325681082110878], [0.32558582587159457], [0.4186035435321014], [0.4418936940369594], [0.4186035435321014], [0.37211849876166886], [0.37211849876166886], [0.4418936940369594], [0.5349114116974663], [0.627929129357973], [0.6744141741284054], [0.6744141741284054], [0.627929129357973], [0.5581539340826824], [0.5349114116974663], [0.5349114116974663], [0.5813964564678986], [0.6046866069727568], [0.5581539340826824], [0.4418936940369594], [0.2791007811011621], [0.11630786816536484], [0.0], [0.0], [0.11630786816536484], [0.2791007811011621], [0.4186035435321014], [0.5581539340826824], [0.627929129357973], [0.6511716517431891], [0.6511716517431891], [0.6511716517431891], [0.6744141741284054], [0.6977043246332635], [0.7209468470184798], [0.7209468470184798], [0.6511716517431891], [0.5349114116974663], [0.4418936940369594]], "deltas": [[1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0]]}} -{"label": 0, "forward": {"values": [[0.7142700409596254], [0.7678466939730836], [0.8392700409596254], [0.8571533060269162], [0.8214233469865417], [0.7678466939730836], [0.6785766530134582], [0.6071533060269163], [0.553576653013458], [0.553576653013458], [0.5892700409596254], [0.6071533060269163], [0.5892700409596254], [0.5178466939730837], [0.4107299590403744], [0.3392700409596255], [0.3392700409596255], [0.4285766530134581], [0.6071533060269163], [0.7856933879461673], [0.928576653013458], [1.0], [1.0], [0.928576653013458], [0.8392700409596254], [0.7499999999999999], [0.6964233469865417], [0.6785766530134582], [0.6606933879461673], [0.5892700409596254], [0.48215330602691625], [0.3392700409596255], [0.26784669397308364], [0.26784669397308364], [0.3392700409596255], [0.4464233469865418], [0.5178466939730837], [0.5178466939730837], [0.5], [0.48215330602691625], [0.48215330602691625], [0.5], [0.5], [0.48215330602691625], [0.4642700409596255], [0.4107299590403744], [0.39284669397308364], [0.4107299590403744], [0.4642700409596255], [0.5178466939730837], [0.553576653013458], [0.553576653013458], [0.5], [0.4285766530134581], [0.37499999999999994], [0.39284669397308364], [0.4285766530134581], [0.5178466939730837], [0.5714233469865418], [0.5714233469865418], [0.5357299590403745], [0.5178466939730837], [0.553576653013458], [0.6606933879461673], [0.7678466939730836], [0.8214233469865417], [0.7678466939730836], [0.6428466939730836], [0.48215330602691625], [0.37499999999999994], [0.37499999999999994], [0.4642700409596255], [0.625], [0.7856933879461673], [0.8392700409596254], [0.7499999999999999], [0.5178466939730837], [0.24999999999999994], [0.0357299590403745], [0.0], [0.16072995904037446], [0.4464233469865418], [0.7142700409596254], [0.8749999999999999], [0.8928466939730837], [0.7856933879461673], [0.6071533060269163], [0.4285766530134581], [0.30357665301345815], [0.26784669397308364], [0.3214233469865418], [0.4642700409596255], [0.625], [0.7321533060269163], [0.7499999999999999], [0.7142700409596254], [0.625], [0.5714233469865418], [0.5714233469865418], [0.5892700409596254], [0.6071533060269163], [0.625], [0.625], [0.625], [0.6606933879461673], [0.6785766530134582], [0.7142700409596254], [0.7321533060269163], [0.7321533060269163], [0.7856933879461673], [0.8392700409596254], [0.9106933879461674], [0.9464233469865417], [0.9106933879461674], [0.8928466939730837], [0.8571533060269162], [0.8392700409596254], [0.8571533060269162], [0.8749999999999999], [0.8749999999999999], [0.8571533060269162], [0.8214233469865417], [0.7856933879461673], [0.7142700409596254], [0.6964233469865417], [0.6964233469865417], [0.7499999999999999], [0.803576653013458], [0.8214233469865417], [0.7856933879461673], [0.6785766530134582], [0.5714233469865418], [0.5357299590403745], [0.553576653013458], [0.6428466939730836], [0.7142700409596254], [0.7321533060269163], [0.7142700409596254], [0.6785766530134582], [0.6606933879461673], [0.625], [0.553576653013458], [0.4642700409596255], [0.37499999999999994], [0.3392700409596255], [0.3571533060269163], [0.4285766530134581], [0.5357299590403745], [0.6428466939730836], [0.6964233469865417], [0.6964233469865417], [0.6606933879461673], [0.625], [0.5714233469865418], [0.553576653013458], [0.5892700409596254], [0.6428466939730836], [0.6785766530134582], [0.6606933879461673], [0.5714233469865418], [0.4464233469865418], [0.3392700409596255], [0.3214233469865418], [0.37499999999999994], [0.5178466939730837], [0.6785766530134582], [0.803576653013458], [0.8392700409596254], [0.7678466939730836], [0.6071533060269163], [0.4285766530134581], [0.3214233469865418], [0.3392700409596255], [0.4464233469865418], [0.625], [0.7142700409596254], [0.7321533060269163], [0.6428466939730836], [0.5178466939730837], [0.4464233469865418], [0.4464233469865418], [0.5], [0.5892700409596254], [0.6428466939730836], [0.6785766530134582], [0.6785766530134582], [0.6606933879461673], [0.6606933879461673], [0.6964233469865417], [0.7678466939730836], [0.8392700409596254], [0.8749999999999999], [0.8214233469865417], [0.7321533060269163], [0.6428466939730836], [0.6428466939730836], [0.7499999999999999], [0.8749999999999999], [0.9464233469865417], [0.928576653013458], [0.803576653013458], [0.6428466939730836], [0.5], [0.4107299590403744], [0.4107299590403744], [0.4642700409596255], [0.5178466939730837], [0.5714233469865418], [0.5892700409596254], [0.553576653013458], [0.5178466939730837], [0.48215330602691625], [0.48215330602691625], [0.48215330602691625], [0.5357299590403745], [0.5892700409596254], [0.6606933879461673], [0.7142700409596254], [0.7321533060269163], [0.6964233469865417], [0.6071533060269163], [0.5178466939730837], [0.48215330602691625], [0.5178466939730837], [0.6071533060269163], [0.7142700409596254], [0.7678466939730836], [0.7678466939730836], [0.6606933879461673], [0.5178466939730837], [0.37499999999999994], [0.28572995904037446], [0.3214233469865418], [0.4464233469865418], [0.5892700409596254], [0.6785766530134582], [0.6606933879461673], [0.553576653013458], [0.4107299590403744], [0.3214233469865418], [0.3214233469865418], [0.39284669397308364], [0.5], [0.5714233469865418], [0.5892700409596254], [0.5178466939730837], [0.4107299590403744], [0.3214233469865418], [0.28572995904037446], [0.3571533060269163], [0.5178466939730837], [0.6964233469865417], [0.8214233469865417], [0.8571533060269162], [0.7856933879461673], [0.6606933879461673]], "masks": [[1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1]], "evals": [[0.7142700409596254], [0.7678466939730836], [0.8392700409596254], [0.8571533060269162], [0.8214233469865417], [0.7678466939730836], [0.6785766530134582], [0.6071533060269163], [0.553576653013458], [0.553576653013458], [0.5892700409596254], [0.6071533060269163], [0.5892700409596254], [0.5178466939730837], [0.4107299590403744], [0.3392700409596255], [0.3392700409596255], [0.4285766530134581], [0.6071533060269163], [0.7856933879461673], [0.928576653013458], [1.0], [1.0], [0.928576653013458], [0.8392700409596254], [0.7499999999999999], [0.6964233469865417], [0.6785766530134582], [0.6606933879461673], [0.5892700409596254], [0.48215330602691625], [0.3392700409596255], [0.26784669397308364], [0.26784669397308364], [0.3392700409596255], [0.4464233469865418], [0.5178466939730837], [0.5178466939730837], [0.5], [0.48215330602691625], [0.48215330602691625], [0.5], [0.5], [0.48215330602691625], [0.4642700409596255], [0.4107299590403744], [0.39284669397308364], [0.4107299590403744], [0.4642700409596255], [0.5178466939730837], [0.553576653013458], [0.553576653013458], [0.5], [0.4285766530134581], [0.37499999999999994], [0.39284669397308364], [0.4285766530134581], [0.5178466939730837], [0.5714233469865418], [0.5714233469865418], [0.5357299590403745], [0.5178466939730837], [0.553576653013458], [0.6606933879461673], [0.7678466939730836], [0.8214233469865417], [0.7678466939730836], [0.6428466939730836], [0.48215330602691625], [0.37499999999999994], [0.37499999999999994], [0.4642700409596255], [0.625], [0.7856933879461673], [0.8392700409596254], [0.7499999999999999], [0.5178466939730837], [0.24999999999999994], [0.0357299590403745], [0.0], [0.16072995904037446], [0.4464233469865418], [0.7142700409596254], [0.8749999999999999], [0.8928466939730837], [0.7856933879461673], [0.6071533060269163], [0.4285766530134581], [0.30357665301345815], [0.26784669397308364], [0.3214233469865418], [0.4642700409596255], [0.625], [0.7321533060269163], [0.7499999999999999], [0.7142700409596254], [0.625], [0.5714233469865418], [0.5714233469865418], [0.5892700409596254], [0.6071533060269163], [0.625], [0.625], [0.625], [0.6606933879461673], [0.6785766530134582], [0.7142700409596254], [0.7321533060269163], [0.7321533060269163], [0.7856933879461673], [0.8392700409596254], [0.9106933879461674], [0.9464233469865417], [0.9106933879461674], [0.8928466939730837], [0.8571533060269162], [0.8392700409596254], [0.8571533060269162], [0.8749999999999999], [0.8749999999999999], [0.8571533060269162], [0.8214233469865417], [0.7856933879461673], [0.7142700409596254], [0.6964233469865417], [0.6964233469865417], [0.7499999999999999], [0.803576653013458], [0.8214233469865417], [0.7856933879461673], [0.6785766530134582], [0.5714233469865418], [0.5357299590403745], [0.553576653013458], [0.6428466939730836], [0.7142700409596254], [0.7321533060269163], [0.7142700409596254], [0.6785766530134582], [0.6606933879461673], [0.625], [0.553576653013458], [0.4642700409596255], [0.37499999999999994], [0.3392700409596255], [0.3571533060269163], [0.4285766530134581], [0.5357299590403745], [0.6428466939730836], [0.6964233469865417], [0.6964233469865417], [0.6606933879461673], [0.625], [0.5714233469865418], [0.553576653013458], [0.5892700409596254], [0.6428466939730836], [0.6785766530134582], [0.6606933879461673], [0.5714233469865418], [0.4464233469865418], [0.3392700409596255], [0.3214233469865418], [0.37499999999999994], [0.5178466939730837], [0.6785766530134582], [0.803576653013458], [0.8392700409596254], [0.7678466939730836], [0.6071533060269163], [0.4285766530134581], [0.3214233469865418], [0.3392700409596255], [0.4464233469865418], [0.625], [0.7142700409596254], [0.7321533060269163], [0.6428466939730836], [0.5178466939730837], [0.4464233469865418], [0.4464233469865418], [0.5], [0.5892700409596254], [0.6428466939730836], [0.6785766530134582], [0.6785766530134582], [0.6606933879461673], [0.6606933879461673], [0.6964233469865417], [0.7678466939730836], [0.8392700409596254], [0.8749999999999999], [0.8214233469865417], [0.7321533060269163], [0.6428466939730836], [0.6428466939730836], [0.7499999999999999], [0.8749999999999999], [0.9464233469865417], [0.928576653013458], [0.803576653013458], [0.6428466939730836], [0.5], [0.4107299590403744], [0.4107299590403744], [0.4642700409596255], [0.5178466939730837], [0.5714233469865418], [0.5892700409596254], [0.553576653013458], [0.5178466939730837], [0.48215330602691625], [0.48215330602691625], [0.48215330602691625], [0.5357299590403745], [0.5892700409596254], [0.6606933879461673], [0.7142700409596254], [0.7321533060269163], [0.6964233469865417], [0.6071533060269163], [0.5178466939730837], [0.48215330602691625], [0.5178466939730837], [0.6071533060269163], [0.7142700409596254], [0.7678466939730836], [0.7678466939730836], [0.6606933879461673], [0.5178466939730837], [0.37499999999999994], [0.28572995904037446], [0.3214233469865418], [0.4464233469865418], [0.5892700409596254], [0.6785766530134582], [0.6606933879461673], [0.553576653013458], [0.4107299590403744], [0.3214233469865418], [0.3214233469865418], [0.39284669397308364], [0.5], [0.5714233469865418], [0.5892700409596254], [0.5178466939730837], [0.4107299590403744], [0.3214233469865418], [0.28572995904037446], [0.3571533060269163], [0.5178466939730837], [0.6964233469865417], [0.8214233469865417], [0.8571533060269162], [0.7856933879461673], [0.6606933879461673]], "eval_masks": [[0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0]], "forwards": [[0.7142700409596254], [0.7678466939730836], [0.8392700409596254], [0.8571533060269162], [0.8214233469865417], [0.7678466939730836], [0.6785766530134582], [0.6071533060269163], [0.553576653013458], [0.553576653013458], [0.5892700409596254], [0.6071533060269163], [0.5892700409596254], [0.5178466939730837], [0.4107299590403744], [0.3392700409596255], [0.3392700409596255], [0.4285766530134581], [0.6071533060269163], [0.7856933879461673], [0.928576653013458], [1.0], [1.0], [0.928576653013458], [0.8392700409596254], [0.7499999999999999], [0.6964233469865417], [0.6785766530134582], [0.6606933879461673], [0.5892700409596254], [0.48215330602691625], [0.3392700409596255], [0.26784669397308364], [0.26784669397308364], [0.3392700409596255], [0.4464233469865418], [0.5178466939730837], [0.5178466939730837], [0.5], [0.48215330602691625], [0.48215330602691625], [0.5], [0.5], [0.48215330602691625], [0.4642700409596255], [0.4107299590403744], [0.39284669397308364], [0.4107299590403744], [0.4642700409596255], [0.5178466939730837], [0.553576653013458], [0.553576653013458], [0.5], [0.4285766530134581], [0.37499999999999994], [0.39284669397308364], [0.4285766530134581], [0.5178466939730837], [0.5714233469865418], [0.5714233469865418], [0.5357299590403745], [0.5178466939730837], [0.553576653013458], [0.6606933879461673], [0.7678466939730836], [0.8214233469865417], [0.7678466939730836], [0.6428466939730836], [0.48215330602691625], [0.37499999999999994], [0.37499999999999994], [0.4642700409596255], [0.625], [0.7856933879461673], [0.8392700409596254], [0.7499999999999999], [0.5178466939730837], [0.24999999999999994], [0.0357299590403745], [0.0], [0.16072995904037446], [0.4464233469865418], [0.7142700409596254], [0.8749999999999999], [0.8928466939730837], [0.7856933879461673], [0.6071533060269163], [0.4285766530134581], [0.30357665301345815], [0.26784669397308364], [0.3214233469865418], [0.4642700409596255], [0.625], [0.7321533060269163], [0.7499999999999999], [0.7142700409596254], [0.625], [0.5714233469865418], [0.5714233469865418], [0.5892700409596254], [0.6071533060269163], [0.625], [0.625], [0.625], [0.6606933879461673], [0.6785766530134582], [0.7142700409596254], [0.7321533060269163], [0.7321533060269163], [0.7856933879461673], [0.8392700409596254], [0.9106933879461674], [0.9464233469865417], [0.9106933879461674], [0.8928466939730837], [0.8571533060269162], [0.8392700409596254], [0.8571533060269162], [0.8749999999999999], [0.8749999999999999], [0.8571533060269162], [0.8214233469865417], [0.7856933879461673], [0.7142700409596254], [0.6964233469865417], [0.6964233469865417], [0.7499999999999999], [0.803576653013458], [0.8214233469865417], [0.7856933879461673], [0.6785766530134582], [0.5714233469865418], [0.5357299590403745], [0.553576653013458], [0.6428466939730836], [0.7142700409596254], [0.7321533060269163], [0.7142700409596254], [0.6785766530134582], [0.6606933879461673], [0.625], [0.553576653013458], [0.4642700409596255], [0.37499999999999994], [0.3392700409596255], [0.3571533060269163], [0.4285766530134581], [0.5357299590403745], [0.6428466939730836], [0.6964233469865417], [0.6964233469865417], [0.6606933879461673], [0.625], [0.5714233469865418], [0.553576653013458], [0.5892700409596254], [0.6428466939730836], [0.6785766530134582], [0.6606933879461673], [0.5714233469865418], [0.4464233469865418], [0.3392700409596255], [0.3214233469865418], [0.37499999999999994], [0.5178466939730837], [0.6785766530134582], [0.803576653013458], [0.8392700409596254], [0.7678466939730836], [0.6071533060269163], [0.4285766530134581], [0.3214233469865418], [0.3392700409596255], [0.4464233469865418], [0.625], [0.7142700409596254], [0.7321533060269163], [0.6428466939730836], [0.5178466939730837], [0.4464233469865418], [0.4464233469865418], [0.5], [0.5892700409596254], [0.6428466939730836], [0.6785766530134582], [0.6785766530134582], [0.6606933879461673], [0.6606933879461673], [0.6964233469865417], [0.7678466939730836], [0.8392700409596254], [0.8749999999999999], [0.8214233469865417], [0.7321533060269163], [0.6428466939730836], [0.6428466939730836], [0.7499999999999999], [0.8749999999999999], [0.9464233469865417], [0.928576653013458], [0.803576653013458], [0.6428466939730836], [0.5], [0.4107299590403744], [0.4107299590403744], [0.4642700409596255], [0.5178466939730837], [0.5714233469865418], [0.5892700409596254], [0.553576653013458], [0.5178466939730837], [0.48215330602691625], [0.48215330602691625], [0.48215330602691625], [0.5357299590403745], [0.5892700409596254], [0.6606933879461673], [0.7142700409596254], [0.7321533060269163], [0.6964233469865417], [0.6071533060269163], [0.5178466939730837], [0.48215330602691625], [0.5178466939730837], [0.6071533060269163], [0.7142700409596254], [0.7678466939730836], [0.7678466939730836], [0.6606933879461673], [0.5178466939730837], [0.37499999999999994], [0.28572995904037446], [0.3214233469865418], [0.4464233469865418], [0.5892700409596254], [0.6785766530134582], [0.6606933879461673], [0.553576653013458], [0.4107299590403744], [0.3214233469865418], [0.3214233469865418], [0.39284669397308364], [0.5], [0.5714233469865418], [0.5892700409596254], [0.5178466939730837], [0.4107299590403744], [0.3214233469865418], [0.28572995904037446], [0.3571533060269163], [0.5178466939730837], [0.6964233469865417], [0.8214233469865417], [0.8571533060269162], [0.7856933879461673], [0.6606933879461673]], "deltas": [[1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0]]}, "backward": {"values": [[0.6606933879461673], [0.7856933879461673], [0.8571533060269162], [0.8214233469865417], [0.6964233469865417], [0.5178466939730837], [0.3571533060269163], [0.28572995904037446], [0.3214233469865418], [0.4107299590403744], [0.5178466939730837], [0.5892700409596254], [0.5714233469865418], [0.5], [0.39284669397308364], [0.3214233469865418], [0.3214233469865418], [0.4107299590403744], [0.553576653013458], [0.6606933879461673], [0.6785766530134582], [0.5892700409596254], [0.4464233469865418], [0.3214233469865418], [0.28572995904037446], [0.37499999999999994], [0.5178466939730837], [0.6606933879461673], [0.7678466939730836], [0.7678466939730836], [0.7142700409596254], [0.6071533060269163], [0.5178466939730837], [0.48215330602691625], [0.5178466939730837], [0.6071533060269163], [0.6964233469865417], [0.7321533060269163], [0.7142700409596254], [0.6606933879461673], [0.5892700409596254], [0.5357299590403745], [0.48215330602691625], [0.48215330602691625], [0.48215330602691625], [0.5178466939730837], [0.553576653013458], [0.5892700409596254], [0.5714233469865418], [0.5178466939730837], [0.4642700409596255], [0.4107299590403744], [0.4107299590403744], [0.5], [0.6428466939730836], [0.803576653013458], [0.928576653013458], [0.9464233469865417], [0.8749999999999999], [0.7499999999999999], [0.6428466939730836], [0.6428466939730836], [0.7321533060269163], [0.8214233469865417], [0.8749999999999999], [0.8392700409596254], [0.7678466939730836], [0.6964233469865417], [0.6606933879461673], [0.6606933879461673], [0.6785766530134582], [0.6785766530134582], [0.6428466939730836], [0.5892700409596254], [0.5], [0.4464233469865418], [0.4464233469865418], [0.5178466939730837], [0.6428466939730836], [0.7321533060269163], [0.7142700409596254], [0.625], [0.4464233469865418], [0.3392700409596255], [0.3214233469865418], [0.4285766530134581], [0.6071533060269163], [0.7678466939730836], [0.8392700409596254], [0.803576653013458], [0.6785766530134582], [0.5178466939730837], [0.37499999999999994], [0.3214233469865418], [0.3392700409596255], [0.4464233469865418], [0.5714233469865418], [0.6606933879461673], [0.6785766530134582], [0.6428466939730836], [0.5892700409596254], [0.553576653013458], [0.5714233469865418], [0.625], [0.6606933879461673], [0.6964233469865417], [0.6964233469865417], [0.6428466939730836], [0.5357299590403745], [0.4285766530134581], [0.3571533060269163], [0.3392700409596255], [0.37499999999999994], [0.4642700409596255], [0.553576653013458], [0.625], [0.6606933879461673], [0.6785766530134582], [0.7142700409596254], [0.7321533060269163], [0.7142700409596254], [0.6428466939730836], [0.553576653013458], [0.5357299590403745], [0.5714233469865418], [0.6785766530134582], [0.7856933879461673], [0.8214233469865417], [0.803576653013458], [0.7499999999999999], [0.6964233469865417], [0.6964233469865417], [0.7142700409596254], [0.7856933879461673], [0.8214233469865417], [0.8571533060269162], [0.8749999999999999], [0.8749999999999999], [0.8571533060269162], [0.8392700409596254], [0.8571533060269162], [0.8928466939730837], [0.9106933879461674], [0.9464233469865417], [0.9106933879461674], [0.8392700409596254], [0.7856933879461673], [0.7321533060269163], [0.7321533060269163], [0.7142700409596254], [0.6785766530134582], [0.6606933879461673], [0.625], [0.625], [0.625], [0.6071533060269163], [0.5892700409596254], [0.5714233469865418], [0.5714233469865418], [0.625], [0.7142700409596254], [0.7499999999999999], [0.7321533060269163], [0.625], [0.4642700409596255], [0.3214233469865418], [0.26784669397308364], [0.30357665301345815], [0.4285766530134581], [0.6071533060269163], [0.7856933879461673], [0.8928466939730837], [0.8749999999999999], [0.7142700409596254], [0.4464233469865418], [0.16072995904037446], [0.0], [0.0357299590403745], [0.24999999999999994], [0.5178466939730837], [0.7499999999999999], [0.8392700409596254], [0.7856933879461673], [0.625], [0.4642700409596255], [0.37499999999999994], [0.37499999999999994], [0.48215330602691625], [0.6428466939730836], [0.7678466939730836], [0.8214233469865417], [0.7678466939730836], [0.6606933879461673], [0.553576653013458], [0.5178466939730837], [0.5357299590403745], [0.5714233469865418], [0.5714233469865418], [0.5178466939730837], [0.4285766530134581], [0.39284669397308364], [0.37499999999999994], [0.4285766530134581], [0.5], [0.553576653013458], [0.553576653013458], [0.5178466939730837], [0.4642700409596255], [0.4107299590403744], [0.39284669397308364], [0.4107299590403744], [0.4642700409596255], [0.48215330602691625], [0.5], [0.5], [0.48215330602691625], [0.48215330602691625], [0.5], [0.5178466939730837], [0.5178466939730837], [0.4464233469865418], [0.3392700409596255], [0.26784669397308364], [0.26784669397308364], [0.3392700409596255], [0.48215330602691625], [0.5892700409596254], [0.6606933879461673], [0.6785766530134582], [0.6964233469865417], [0.7499999999999999], [0.8392700409596254], [0.928576653013458], [1.0], [1.0], [0.928576653013458], [0.7856933879461673], [0.6071533060269163], [0.4285766530134581], [0.3392700409596255], [0.3392700409596255], [0.4107299590403744], [0.5178466939730837], [0.5892700409596254], [0.6071533060269163], [0.5892700409596254], [0.553576653013458], [0.553576653013458], [0.6071533060269163], [0.6785766530134582], [0.7678466939730836], [0.8214233469865417], [0.8571533060269162], [0.8392700409596254], [0.7678466939730836], [0.7142700409596254]], "masks": [[1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1]], "evals": [[0.6606933879461673], [0.7856933879461673], [0.8571533060269162], [0.8214233469865417], [0.6964233469865417], [0.5178466939730837], [0.3571533060269163], [0.28572995904037446], [0.3214233469865418], [0.4107299590403744], [0.5178466939730837], [0.5892700409596254], [0.5714233469865418], [0.5], [0.39284669397308364], [0.3214233469865418], [0.3214233469865418], [0.4107299590403744], [0.553576653013458], [0.6606933879461673], [0.6785766530134582], [0.5892700409596254], [0.4464233469865418], [0.3214233469865418], [0.28572995904037446], [0.37499999999999994], [0.5178466939730837], [0.6606933879461673], [0.7678466939730836], [0.7678466939730836], [0.7142700409596254], [0.6071533060269163], [0.5178466939730837], [0.48215330602691625], [0.5178466939730837], [0.6071533060269163], [0.6964233469865417], [0.7321533060269163], [0.7142700409596254], [0.6606933879461673], [0.5892700409596254], [0.5357299590403745], [0.48215330602691625], [0.48215330602691625], [0.48215330602691625], [0.5178466939730837], [0.553576653013458], [0.5892700409596254], [0.5714233469865418], [0.5178466939730837], [0.4642700409596255], [0.4107299590403744], [0.4107299590403744], [0.5], [0.6428466939730836], [0.803576653013458], [0.928576653013458], [0.9464233469865417], [0.8749999999999999], [0.7499999999999999], [0.6428466939730836], [0.6428466939730836], [0.7321533060269163], [0.8214233469865417], [0.8749999999999999], [0.8392700409596254], [0.7678466939730836], [0.6964233469865417], [0.6606933879461673], [0.6606933879461673], [0.6785766530134582], [0.6785766530134582], [0.6428466939730836], [0.5892700409596254], [0.5], [0.4464233469865418], [0.4464233469865418], [0.5178466939730837], [0.6428466939730836], [0.7321533060269163], [0.7142700409596254], [0.625], [0.4464233469865418], [0.3392700409596255], [0.3214233469865418], [0.4285766530134581], [0.6071533060269163], [0.7678466939730836], [0.8392700409596254], [0.803576653013458], [0.6785766530134582], [0.5178466939730837], [0.37499999999999994], [0.3214233469865418], [0.3392700409596255], [0.4464233469865418], [0.5714233469865418], [0.6606933879461673], [0.6785766530134582], [0.6428466939730836], [0.5892700409596254], [0.553576653013458], [0.5714233469865418], [0.625], [0.6606933879461673], [0.6964233469865417], [0.6964233469865417], [0.6428466939730836], [0.5357299590403745], [0.4285766530134581], [0.3571533060269163], [0.3392700409596255], [0.37499999999999994], [0.4642700409596255], [0.553576653013458], [0.625], [0.6606933879461673], [0.6785766530134582], [0.7142700409596254], [0.7321533060269163], [0.7142700409596254], [0.6428466939730836], [0.553576653013458], [0.5357299590403745], [0.5714233469865418], [0.6785766530134582], [0.7856933879461673], [0.8214233469865417], [0.803576653013458], [0.7499999999999999], [0.6964233469865417], [0.6964233469865417], [0.7142700409596254], [0.7856933879461673], [0.8214233469865417], [0.8571533060269162], [0.8749999999999999], [0.8749999999999999], [0.8571533060269162], [0.8392700409596254], [0.8571533060269162], [0.8928466939730837], [0.9106933879461674], [0.9464233469865417], [0.9106933879461674], [0.8392700409596254], [0.7856933879461673], [0.7321533060269163], [0.7321533060269163], [0.7142700409596254], [0.6785766530134582], [0.6606933879461673], [0.625], [0.625], [0.625], [0.6071533060269163], [0.5892700409596254], [0.5714233469865418], [0.5714233469865418], [0.625], [0.7142700409596254], [0.7499999999999999], [0.7321533060269163], [0.625], [0.4642700409596255], [0.3214233469865418], [0.26784669397308364], [0.30357665301345815], [0.4285766530134581], [0.6071533060269163], [0.7856933879461673], [0.8928466939730837], [0.8749999999999999], [0.7142700409596254], [0.4464233469865418], [0.16072995904037446], [0.0], [0.0357299590403745], [0.24999999999999994], [0.5178466939730837], [0.7499999999999999], [0.8392700409596254], [0.7856933879461673], [0.625], [0.4642700409596255], [0.37499999999999994], [0.37499999999999994], [0.48215330602691625], [0.6428466939730836], [0.7678466939730836], [0.8214233469865417], [0.7678466939730836], [0.6606933879461673], [0.553576653013458], [0.5178466939730837], [0.5357299590403745], [0.5714233469865418], [0.5714233469865418], [0.5178466939730837], [0.4285766530134581], [0.39284669397308364], [0.37499999999999994], [0.4285766530134581], [0.5], [0.553576653013458], [0.553576653013458], [0.5178466939730837], [0.4642700409596255], [0.4107299590403744], [0.39284669397308364], [0.4107299590403744], [0.4642700409596255], [0.48215330602691625], [0.5], [0.5], [0.48215330602691625], [0.48215330602691625], [0.5], [0.5178466939730837], [0.5178466939730837], [0.4464233469865418], [0.3392700409596255], [0.26784669397308364], [0.26784669397308364], [0.3392700409596255], [0.48215330602691625], [0.5892700409596254], [0.6606933879461673], [0.6785766530134582], [0.6964233469865417], [0.7499999999999999], [0.8392700409596254], [0.928576653013458], [1.0], [1.0], [0.928576653013458], [0.7856933879461673], [0.6071533060269163], [0.4285766530134581], [0.3392700409596255], [0.3392700409596255], [0.4107299590403744], [0.5178466939730837], [0.5892700409596254], [0.6071533060269163], [0.5892700409596254], [0.553576653013458], [0.553576653013458], [0.6071533060269163], [0.6785766530134582], [0.7678466939730836], [0.8214233469865417], [0.8571533060269162], [0.8392700409596254], [0.7678466939730836], [0.7142700409596254]], "eval_masks": [[0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0]], "forwards": [[0.6606933879461673], [0.7856933879461673], [0.8571533060269162], [0.8214233469865417], [0.6964233469865417], [0.5178466939730837], [0.3571533060269163], [0.28572995904037446], [0.3214233469865418], [0.4107299590403744], [0.5178466939730837], [0.5892700409596254], [0.5714233469865418], [0.5], [0.39284669397308364], [0.3214233469865418], [0.3214233469865418], [0.4107299590403744], [0.553576653013458], [0.6606933879461673], [0.6785766530134582], [0.5892700409596254], [0.4464233469865418], [0.3214233469865418], [0.28572995904037446], [0.37499999999999994], [0.5178466939730837], [0.6606933879461673], [0.7678466939730836], [0.7678466939730836], [0.7142700409596254], [0.6071533060269163], [0.5178466939730837], [0.48215330602691625], [0.5178466939730837], [0.6071533060269163], [0.6964233469865417], [0.7321533060269163], [0.7142700409596254], [0.6606933879461673], [0.5892700409596254], [0.5357299590403745], [0.48215330602691625], [0.48215330602691625], [0.48215330602691625], [0.5178466939730837], [0.553576653013458], [0.5892700409596254], [0.5714233469865418], [0.5178466939730837], [0.4642700409596255], [0.4107299590403744], [0.4107299590403744], [0.5], [0.6428466939730836], [0.803576653013458], [0.928576653013458], [0.9464233469865417], [0.8749999999999999], [0.7499999999999999], [0.6428466939730836], [0.6428466939730836], [0.7321533060269163], [0.8214233469865417], [0.8749999999999999], [0.8392700409596254], [0.7678466939730836], [0.6964233469865417], [0.6606933879461673], [0.6606933879461673], [0.6785766530134582], [0.6785766530134582], [0.6428466939730836], [0.5892700409596254], [0.5], [0.4464233469865418], [0.4464233469865418], [0.5178466939730837], [0.6428466939730836], [0.7321533060269163], [0.7142700409596254], [0.625], [0.4464233469865418], [0.3392700409596255], [0.3214233469865418], [0.4285766530134581], [0.6071533060269163], [0.7678466939730836], [0.8392700409596254], [0.803576653013458], [0.6785766530134582], [0.5178466939730837], [0.37499999999999994], [0.3214233469865418], [0.3392700409596255], [0.4464233469865418], [0.5714233469865418], [0.6606933879461673], [0.6785766530134582], [0.6428466939730836], [0.5892700409596254], [0.553576653013458], [0.5714233469865418], [0.625], [0.6606933879461673], [0.6964233469865417], [0.6964233469865417], [0.6428466939730836], [0.5357299590403745], [0.4285766530134581], [0.3571533060269163], [0.3392700409596255], [0.37499999999999994], [0.4642700409596255], [0.553576653013458], [0.625], [0.6606933879461673], [0.6785766530134582], [0.7142700409596254], [0.7321533060269163], [0.7142700409596254], [0.6428466939730836], [0.553576653013458], [0.5357299590403745], [0.5714233469865418], [0.6785766530134582], [0.7856933879461673], [0.8214233469865417], [0.803576653013458], [0.7499999999999999], [0.6964233469865417], [0.6964233469865417], [0.7142700409596254], [0.7856933879461673], [0.8214233469865417], [0.8571533060269162], [0.8749999999999999], [0.8749999999999999], [0.8571533060269162], [0.8392700409596254], [0.8571533060269162], [0.8928466939730837], [0.9106933879461674], [0.9464233469865417], [0.9106933879461674], [0.8392700409596254], [0.7856933879461673], [0.7321533060269163], [0.7321533060269163], [0.7142700409596254], [0.6785766530134582], [0.6606933879461673], [0.625], [0.625], [0.625], [0.6071533060269163], [0.5892700409596254], [0.5714233469865418], [0.5714233469865418], [0.625], [0.7142700409596254], [0.7499999999999999], [0.7321533060269163], [0.625], [0.4642700409596255], [0.3214233469865418], [0.26784669397308364], [0.30357665301345815], [0.4285766530134581], [0.6071533060269163], [0.7856933879461673], [0.8928466939730837], [0.8749999999999999], [0.7142700409596254], [0.4464233469865418], [0.16072995904037446], [0.0], [0.0357299590403745], [0.24999999999999994], [0.5178466939730837], [0.7499999999999999], [0.8392700409596254], [0.7856933879461673], [0.625], [0.4642700409596255], [0.37499999999999994], [0.37499999999999994], [0.48215330602691625], [0.6428466939730836], [0.7678466939730836], [0.8214233469865417], [0.7678466939730836], [0.6606933879461673], [0.553576653013458], [0.5178466939730837], [0.5357299590403745], [0.5714233469865418], [0.5714233469865418], [0.5178466939730837], [0.4285766530134581], [0.39284669397308364], [0.37499999999999994], [0.4285766530134581], [0.5], [0.553576653013458], [0.553576653013458], [0.5178466939730837], [0.4642700409596255], [0.4107299590403744], [0.39284669397308364], [0.4107299590403744], [0.4642700409596255], [0.48215330602691625], [0.5], [0.5], [0.48215330602691625], [0.48215330602691625], [0.5], [0.5178466939730837], [0.5178466939730837], [0.4464233469865418], [0.3392700409596255], [0.26784669397308364], [0.26784669397308364], [0.3392700409596255], [0.48215330602691625], [0.5892700409596254], [0.6606933879461673], [0.6785766530134582], [0.6964233469865417], [0.7499999999999999], [0.8392700409596254], [0.928576653013458], [1.0], [1.0], [0.928576653013458], [0.7856933879461673], [0.6071533060269163], [0.4285766530134581], [0.3392700409596255], [0.3392700409596255], [0.4107299590403744], [0.5178466939730837], [0.5892700409596254], [0.6071533060269163], [0.5892700409596254], [0.553576653013458], [0.553576653013458], [0.6071533060269163], [0.6785766530134582], [0.7678466939730836], [0.8214233469865417], [0.8571533060269162], [0.8392700409596254], [0.7678466939730836], [0.7142700409596254]], "deltas": [[1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0]]}} -{"label": 0, "forward": {"values": [[0.5357299590403745], [0.6071533060269163], [0.7142700409596254], [0.803576653013458], [0.8214233469865417], [0.803576653013458], [0.7499999999999999], [0.7321533060269163], [0.7142700409596254], [0.6785766530134582], [0.6071533060269163], [0.5], [0.3571533060269163], [0.2143066120538326], [0.08930661205383265], [0.017883265067290842], [0.0357299590403745], [0.12499999999999997], [0.30357665301345815], [0.5], [0.6964233469865417], [0.8214233469865417], [0.8571533060269162], [0.8392700409596254], [0.7678466939730837], [0.7142700409596254], [0.7142700409596254], [0.7499999999999999], [0.7678466939730837], [0.7142700409596254], [0.5893066120538326], [0.44642334698654185], [0.3571533060269163], [0.37500000000000006], [0.4285766530134582], [0.44642334698654185], [0.37500000000000006], [0.26784669397308364], [0.1428466939730837], [0.08930661205383265], [0.1428466939730837], [0.25], [0.33930661205383267], [0.37500000000000006], [0.33930661205383267], [0.2857299590403745], [0.23215330602691633], [0.19642334698654185], [0.2143066120538326], [0.26784669397308364], [0.33930661205383267], [0.3928466939730837], [0.3928466939730837], [0.33930661205383267], [0.25], [0.19642334698654185], [0.2143066120538326], [0.2857299590403745], [0.37500000000000006], [0.3928466939730837], [0.3571533060269163], [0.3214233469865418], [0.33930661205383267], [0.3928466939730837], [0.48215330602691636], [0.5357299590403745], [0.48215330602691636], [0.3928466939730837], [0.2857299590403745], [0.2143066120538326], [0.19642334698654185], [0.26784669397308364], [0.3571533060269163], [0.4643066120538326], [0.5357299590403745], [0.5], [0.3571533060269163], [0.16072995904037446], [0.017883265067290842], [0.0], [0.1428466939730837], [0.37500000000000006], [0.6071533060269163], [0.7321533060269163], [0.7499999999999999], [0.6428466939730836], [0.5], [0.33930661205383267], [0.17857665301345818], [0.1071533060269163], [0.12499999999999997], [0.2857299590403745], [0.5178466939730837], [0.7321533060269163], [0.8392700409596254], [0.803576653013458], [0.6964233469865417], [0.5714233469865418], [0.4643066120538326], [0.4285766530134582], [0.44642334698654185], [0.48215330602691636], [0.5178466939730837], [0.5893066120538326], [0.6607299590403745], [0.7321533060269163], [0.7499999999999999], [0.7499999999999999], [0.6964233469865417], [0.6428466939730836], [0.6071533060269163], [0.6071533060269163], [0.6428466939730836], [0.6607299590403745], [0.6964233469865417], [0.7142700409596254], [0.7499999999999999], [0.803576653013458], [0.8571533060269162], [0.8928466939730837], [0.8571533060269162], [0.7678466939730837], [0.6428466939730836], [0.5535766530134582], [0.5357299590403745], [0.6071533060269163], [0.7499999999999999], [0.875], [0.9464233469865417], [0.8928466939730837], [0.7678466939730837], [0.625], [0.5178466939730837], [0.5], [0.5357299590403745], [0.5714233469865418], [0.5893066120538326], [0.5893066120538326], [0.5535766530134582], [0.5357299590403745], [0.5], [0.48215330602691636], [0.4285766530134582], [0.3571533060269163], [0.2857299590403745], [0.26784669397308364], [0.30357665301345815], [0.37500000000000006], [0.4643066120538326], [0.5357299590403745], [0.5178466939730837], [0.44642334698654185], [0.3928466939730837], [0.3571533060269163], [0.3928466939730837], [0.5], [0.5893066120538326], [0.6607299590403745], [0.625], [0.5178466939730837], [0.37500000000000006], [0.2857299590403745], [0.3214233469865418], [0.48215330602691636], [0.6964233469865417], [0.875], [0.9821533060269163], [0.9464233469865417], [0.7857299590403745], [0.5893066120538326], [0.41072995904037446], [0.33930661205383267], [0.37500000000000006], [0.5], [0.6428466939730836], [0.7142700409596254], [0.7142700409596254], [0.6428466939730836], [0.5893066120538326], [0.5714233469865418], [0.5893066120538326], [0.6071533060269163], [0.625], [0.5714233469865418], [0.48215330602691636], [0.3928466939730837], [0.3571533060269163], [0.4285766530134582], [0.5893066120538326], [0.7678466939730837], [0.928576653013458], [1.0], [0.9642700409596255], [0.875], [0.8214233469865417], [0.8214233469865417], [0.875], [0.9107299590403743], [0.8571533060269162], [0.7321533060269163], [0.5535766530134582], [0.3571533060269163], [0.23215330602691633], [0.19642334698654185], [0.2857299590403745], [0.41072995904037446], [0.5535766530134582], [0.6071533060269163], [0.5714233469865418], [0.44642334698654185], [0.3571533060269163], [0.3214233469865418], [0.37500000000000006], [0.48215330602691636], [0.5893066120538326], [0.6607299590403745], [0.6785766530134582], [0.6785766530134582], [0.6607299590403745], [0.6071533060269163], [0.5535766530134582], [0.5], [0.5], [0.5357299590403745], [0.5893066120538326], [0.6428466939730836], [0.6607299590403745], [0.6428466939730836], [0.6071533060269163], [0.5714233469865418], [0.5357299590403745], [0.5], [0.4643066120538326], [0.4643066120538326], [0.48215330602691636], [0.5178466939730837], [0.5357299590403745], [0.5178466939730837], [0.48215330602691636], [0.44642334698654185], [0.44642334698654185], [0.48215330602691636], [0.5178466939730837], [0.5178466939730837], [0.5], [0.48215330602691636], [0.5], [0.5178466939730837], [0.5535766530134582], [0.5357299590403745], [0.5178466939730837], [0.5], [0.5], [0.5714233469865418], [0.6607299590403745], [0.7321533060269163]], "masks": [[1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1]], "evals": [[0.5357299590403745], [0.6071533060269163], [0.7142700409596254], [0.803576653013458], [0.8214233469865417], [0.803576653013458], [0.7499999999999999], [0.7321533060269163], [0.7142700409596254], [0.6785766530134582], [0.6071533060269163], [0.5], [0.3571533060269163], [0.2143066120538326], [0.08930661205383265], [0.017883265067290842], [0.0357299590403745], [0.12499999999999997], [0.30357665301345815], [0.5], [0.6964233469865417], [0.8214233469865417], [0.8571533060269162], [0.8392700409596254], [0.7678466939730837], [0.7142700409596254], [0.7142700409596254], [0.7499999999999999], [0.7678466939730837], [0.7142700409596254], [0.5893066120538326], [0.44642334698654185], [0.3571533060269163], [0.37500000000000006], [0.4285766530134582], [0.44642334698654185], [0.37500000000000006], [0.26784669397308364], [0.1428466939730837], [0.08930661205383265], [0.1428466939730837], [0.25], [0.33930661205383267], [0.37500000000000006], [0.33930661205383267], [0.2857299590403745], [0.23215330602691633], [0.19642334698654185], [0.2143066120538326], [0.26784669397308364], [0.33930661205383267], [0.3928466939730837], [0.3928466939730837], [0.33930661205383267], [0.25], [0.19642334698654185], [0.2143066120538326], [0.2857299590403745], [0.37500000000000006], [0.3928466939730837], [0.3571533060269163], [0.3214233469865418], [0.33930661205383267], [0.3928466939730837], [0.48215330602691636], [0.5357299590403745], [0.48215330602691636], [0.3928466939730837], [0.2857299590403745], [0.2143066120538326], [0.19642334698654185], [0.26784669397308364], [0.3571533060269163], [0.4643066120538326], [0.5357299590403745], [0.5], [0.3571533060269163], [0.16072995904037446], [0.017883265067290842], [0.0], [0.1428466939730837], [0.37500000000000006], [0.6071533060269163], [0.7321533060269163], [0.7499999999999999], [0.6428466939730836], [0.5], [0.33930661205383267], [0.17857665301345818], [0.1071533060269163], [0.12499999999999997], [0.2857299590403745], [0.5178466939730837], [0.7321533060269163], [0.8392700409596254], [0.803576653013458], [0.6964233469865417], [0.5714233469865418], [0.4643066120538326], [0.4285766530134582], [0.44642334698654185], [0.48215330602691636], [0.5178466939730837], [0.5893066120538326], [0.6607299590403745], [0.7321533060269163], [0.7499999999999999], [0.7499999999999999], [0.6964233469865417], [0.6428466939730836], [0.6071533060269163], [0.6071533060269163], [0.6428466939730836], [0.6607299590403745], [0.6964233469865417], [0.7142700409596254], [0.7499999999999999], [0.803576653013458], [0.8571533060269162], [0.8928466939730837], [0.8571533060269162], [0.7678466939730837], [0.6428466939730836], [0.5535766530134582], [0.5357299590403745], [0.6071533060269163], [0.7499999999999999], [0.875], [0.9464233469865417], [0.8928466939730837], [0.7678466939730837], [0.625], [0.5178466939730837], [0.5], [0.5357299590403745], [0.5714233469865418], [0.5893066120538326], [0.5893066120538326], [0.5535766530134582], [0.5357299590403745], [0.5], [0.48215330602691636], [0.4285766530134582], [0.3571533060269163], [0.2857299590403745], [0.26784669397308364], [0.30357665301345815], [0.37500000000000006], [0.4643066120538326], [0.5357299590403745], [0.5178466939730837], [0.44642334698654185], [0.3928466939730837], [0.3571533060269163], [0.3928466939730837], [0.5], [0.5893066120538326], [0.6607299590403745], [0.625], [0.5178466939730837], [0.37500000000000006], [0.2857299590403745], [0.3214233469865418], [0.48215330602691636], [0.6964233469865417], [0.875], [0.9821533060269163], [0.9464233469865417], [0.7857299590403745], [0.5893066120538326], [0.41072995904037446], [0.33930661205383267], [0.37500000000000006], [0.5], [0.6428466939730836], [0.7142700409596254], [0.7142700409596254], [0.6428466939730836], [0.5893066120538326], [0.5714233469865418], [0.5893066120538326], [0.6071533060269163], [0.625], [0.5714233469865418], [0.48215330602691636], [0.3928466939730837], [0.3571533060269163], [0.4285766530134582], [0.5893066120538326], [0.7678466939730837], [0.928576653013458], [1.0], [0.9642700409596255], [0.875], [0.8214233469865417], [0.8214233469865417], [0.875], [0.9107299590403743], [0.8571533060269162], [0.7321533060269163], [0.5535766530134582], [0.3571533060269163], [0.23215330602691633], [0.19642334698654185], [0.2857299590403745], [0.41072995904037446], [0.5535766530134582], [0.6071533060269163], [0.5714233469865418], [0.44642334698654185], [0.3571533060269163], [0.3214233469865418], [0.37500000000000006], [0.48215330602691636], [0.5893066120538326], [0.6607299590403745], [0.6785766530134582], [0.6785766530134582], [0.6607299590403745], [0.6071533060269163], [0.5535766530134582], [0.5], [0.5], [0.5357299590403745], [0.5893066120538326], [0.6428466939730836], [0.6607299590403745], [0.6428466939730836], [0.6071533060269163], [0.5714233469865418], [0.5357299590403745], [0.5], [0.4643066120538326], [0.4643066120538326], [0.48215330602691636], [0.5178466939730837], [0.5357299590403745], [0.5178466939730837], [0.48215330602691636], [0.44642334698654185], [0.44642334698654185], [0.48215330602691636], [0.5178466939730837], [0.5178466939730837], [0.5], [0.48215330602691636], [0.5], [0.5178466939730837], [0.5535766530134582], [0.5357299590403745], [0.5178466939730837], [0.5], [0.5], [0.5714233469865418], [0.6607299590403745], [0.7321533060269163]], "eval_masks": [[0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0]], "forwards": [[0.5357299590403745], [0.6071533060269163], [0.7142700409596254], [0.803576653013458], [0.8214233469865417], [0.803576653013458], [0.7499999999999999], [0.7321533060269163], [0.7142700409596254], [0.6785766530134582], [0.6071533060269163], [0.5], [0.3571533060269163], [0.2143066120538326], [0.08930661205383265], [0.017883265067290842], [0.0357299590403745], [0.12499999999999997], [0.30357665301345815], [0.5], [0.6964233469865417], [0.8214233469865417], [0.8571533060269162], [0.8392700409596254], [0.7678466939730837], [0.7142700409596254], [0.7142700409596254], [0.7499999999999999], [0.7678466939730837], [0.7142700409596254], [0.5893066120538326], [0.44642334698654185], [0.3571533060269163], [0.37500000000000006], [0.4285766530134582], [0.44642334698654185], [0.37500000000000006], [0.26784669397308364], [0.1428466939730837], [0.08930661205383265], [0.1428466939730837], [0.25], [0.33930661205383267], [0.37500000000000006], [0.33930661205383267], [0.2857299590403745], [0.23215330602691633], [0.19642334698654185], [0.2143066120538326], [0.26784669397308364], [0.33930661205383267], [0.3928466939730837], [0.3928466939730837], [0.33930661205383267], [0.25], [0.19642334698654185], [0.2143066120538326], [0.2857299590403745], [0.37500000000000006], [0.3928466939730837], [0.3571533060269163], [0.3214233469865418], [0.33930661205383267], [0.3928466939730837], [0.48215330602691636], [0.5357299590403745], [0.48215330602691636], [0.3928466939730837], [0.2857299590403745], [0.2143066120538326], [0.19642334698654185], [0.26784669397308364], [0.3571533060269163], [0.4643066120538326], [0.5357299590403745], [0.5], [0.3571533060269163], [0.16072995904037446], [0.017883265067290842], [0.0], [0.1428466939730837], [0.37500000000000006], [0.6071533060269163], [0.7321533060269163], [0.7499999999999999], [0.6428466939730836], [0.5], [0.33930661205383267], [0.17857665301345818], [0.1071533060269163], [0.12499999999999997], [0.2857299590403745], [0.5178466939730837], [0.7321533060269163], [0.8392700409596254], [0.803576653013458], [0.6964233469865417], [0.5714233469865418], [0.4643066120538326], [0.4285766530134582], [0.44642334698654185], [0.48215330602691636], [0.5178466939730837], [0.5893066120538326], [0.6607299590403745], [0.7321533060269163], [0.7499999999999999], [0.7499999999999999], [0.6964233469865417], [0.6428466939730836], [0.6071533060269163], [0.6071533060269163], [0.6428466939730836], [0.6607299590403745], [0.6964233469865417], [0.7142700409596254], [0.7499999999999999], [0.803576653013458], [0.8571533060269162], [0.8928466939730837], [0.8571533060269162], [0.7678466939730837], [0.6428466939730836], [0.5535766530134582], [0.5357299590403745], [0.6071533060269163], [0.7499999999999999], [0.875], [0.9464233469865417], [0.8928466939730837], [0.7678466939730837], [0.625], [0.5178466939730837], [0.5], [0.5357299590403745], [0.5714233469865418], [0.5893066120538326], [0.5893066120538326], [0.5535766530134582], [0.5357299590403745], [0.5], [0.48215330602691636], [0.4285766530134582], [0.3571533060269163], [0.2857299590403745], [0.26784669397308364], [0.30357665301345815], [0.37500000000000006], [0.4643066120538326], [0.5357299590403745], [0.5178466939730837], [0.44642334698654185], [0.3928466939730837], [0.3571533060269163], [0.3928466939730837], [0.5], [0.5893066120538326], [0.6607299590403745], [0.625], [0.5178466939730837], [0.37500000000000006], [0.2857299590403745], [0.3214233469865418], [0.48215330602691636], [0.6964233469865417], [0.875], [0.9821533060269163], [0.9464233469865417], [0.7857299590403745], [0.5893066120538326], [0.41072995904037446], [0.33930661205383267], [0.37500000000000006], [0.5], [0.6428466939730836], [0.7142700409596254], [0.7142700409596254], [0.6428466939730836], [0.5893066120538326], [0.5714233469865418], [0.5893066120538326], [0.6071533060269163], [0.625], [0.5714233469865418], [0.48215330602691636], [0.3928466939730837], [0.3571533060269163], [0.4285766530134582], [0.5893066120538326], [0.7678466939730837], [0.928576653013458], [1.0], [0.9642700409596255], [0.875], [0.8214233469865417], [0.8214233469865417], [0.875], [0.9107299590403743], [0.8571533060269162], [0.7321533060269163], [0.5535766530134582], [0.3571533060269163], [0.23215330602691633], [0.19642334698654185], [0.2857299590403745], [0.41072995904037446], [0.5535766530134582], [0.6071533060269163], [0.5714233469865418], [0.44642334698654185], [0.3571533060269163], [0.3214233469865418], [0.37500000000000006], [0.48215330602691636], [0.5893066120538326], [0.6607299590403745], [0.6785766530134582], [0.6785766530134582], [0.6607299590403745], [0.6071533060269163], [0.5535766530134582], [0.5], [0.5], [0.5357299590403745], [0.5893066120538326], [0.6428466939730836], [0.6607299590403745], [0.6428466939730836], [0.6071533060269163], [0.5714233469865418], [0.5357299590403745], [0.5], [0.4643066120538326], [0.4643066120538326], [0.48215330602691636], [0.5178466939730837], [0.5357299590403745], [0.5178466939730837], [0.48215330602691636], [0.44642334698654185], [0.44642334698654185], [0.48215330602691636], [0.5178466939730837], [0.5178466939730837], [0.5], [0.48215330602691636], [0.5], [0.5178466939730837], [0.5535766530134582], [0.5357299590403745], [0.5178466939730837], [0.5], [0.5], [0.5714233469865418], [0.6607299590403745], [0.7321533060269163]], "deltas": [[1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0]]}, "backward": {"values": [[0.7321533060269163], [0.6607299590403745], [0.5714233469865418], [0.5], [0.5], [0.5178466939730837], [0.5357299590403745], [0.5535766530134582], [0.5178466939730837], [0.5], [0.48215330602691636], [0.5], [0.5178466939730837], [0.5178466939730837], [0.48215330602691636], [0.44642334698654185], [0.44642334698654185], [0.48215330602691636], [0.5178466939730837], [0.5357299590403745], [0.5178466939730837], [0.48215330602691636], [0.4643066120538326], [0.4643066120538326], [0.5], [0.5357299590403745], [0.5714233469865418], [0.6071533060269163], [0.6428466939730836], [0.6607299590403745], [0.6428466939730836], [0.5893066120538326], [0.5357299590403745], [0.5], [0.5], [0.5535766530134582], [0.6071533060269163], [0.6607299590403745], [0.6785766530134582], [0.6785766530134582], [0.6607299590403745], [0.5893066120538326], [0.48215330602691636], [0.37500000000000006], [0.3214233469865418], [0.3571533060269163], [0.44642334698654185], [0.5714233469865418], [0.6071533060269163], [0.5535766530134582], [0.41072995904037446], [0.2857299590403745], [0.19642334698654185], [0.23215330602691633], [0.3571533060269163], [0.5535766530134582], [0.7321533060269163], [0.8571533060269162], [0.9107299590403743], [0.875], [0.8214233469865417], [0.8214233469865417], [0.875], [0.9642700409596255], [1.0], [0.928576653013458], [0.7678466939730837], [0.5893066120538326], [0.4285766530134582], [0.3571533060269163], [0.3928466939730837], [0.48215330602691636], [0.5714233469865418], [0.625], [0.6071533060269163], [0.5893066120538326], [0.5714233469865418], [0.5893066120538326], [0.6428466939730836], [0.7142700409596254], [0.7142700409596254], [0.6428466939730836], [0.5], [0.37500000000000006], [0.33930661205383267], [0.41072995904037446], [0.5893066120538326], [0.7857299590403745], [0.9464233469865417], [0.9821533060269163], [0.875], [0.6964233469865417], [0.48215330602691636], [0.3214233469865418], [0.2857299590403745], [0.37500000000000006], [0.5178466939730837], [0.625], [0.6607299590403745], [0.5893066120538326], [0.5], [0.3928466939730837], [0.3571533060269163], [0.3928466939730837], [0.44642334698654185], [0.5178466939730837], [0.5357299590403745], [0.4643066120538326], [0.37500000000000006], [0.30357665301345815], [0.26784669397308364], [0.2857299590403745], [0.3571533060269163], [0.4285766530134582], [0.48215330602691636], [0.5], [0.5357299590403745], [0.5535766530134582], [0.5893066120538326], [0.5893066120538326], [0.5714233469865418], [0.5357299590403745], [0.5], [0.5178466939730837], [0.625], [0.7678466939730837], [0.8928466939730837], [0.9464233469865417], [0.875], [0.7499999999999999], [0.6071533060269163], [0.5357299590403745], [0.5535766530134582], [0.6428466939730836], [0.7678466939730837], [0.8571533060269162], [0.8928466939730837], [0.8571533060269162], [0.803576653013458], [0.7499999999999999], [0.7142700409596254], [0.6964233469865417], [0.6607299590403745], [0.6428466939730836], [0.6071533060269163], [0.6071533060269163], [0.6428466939730836], [0.6964233469865417], [0.7499999999999999], [0.7499999999999999], [0.7321533060269163], [0.6607299590403745], [0.5893066120538326], [0.5178466939730837], [0.48215330602691636], [0.44642334698654185], [0.4285766530134582], [0.4643066120538326], [0.5714233469865418], [0.6964233469865417], [0.803576653013458], [0.8392700409596254], [0.7321533060269163], [0.5178466939730837], [0.2857299590403745], [0.12499999999999997], [0.1071533060269163], [0.17857665301345818], [0.33930661205383267], [0.5], [0.6428466939730836], [0.7499999999999999], [0.7321533060269163], [0.6071533060269163], [0.37500000000000006], [0.1428466939730837], [0.0], [0.017883265067290842], [0.16072995904037446], [0.3571533060269163], [0.5], [0.5357299590403745], [0.4643066120538326], [0.3571533060269163], [0.26784669397308364], [0.19642334698654185], [0.2143066120538326], [0.2857299590403745], [0.3928466939730837], [0.48215330602691636], [0.5357299590403745], [0.48215330602691636], [0.3928466939730837], [0.33930661205383267], [0.3214233469865418], [0.3571533060269163], [0.3928466939730837], [0.37500000000000006], [0.2857299590403745], [0.2143066120538326], [0.19642334698654185], [0.25], [0.33930661205383267], [0.3928466939730837], [0.3928466939730837], [0.33930661205383267], [0.26784669397308364], [0.2143066120538326], [0.19642334698654185], [0.23215330602691633], [0.2857299590403745], [0.33930661205383267], [0.37500000000000006], [0.33930661205383267], [0.25], [0.1428466939730837], [0.08930661205383265], [0.1428466939730837], [0.26784669397308364], [0.37500000000000006], [0.44642334698654185], [0.4285766530134582], [0.37500000000000006], [0.3571533060269163], [0.44642334698654185], [0.5893066120538326], [0.7142700409596254], [0.7678466939730837], [0.7499999999999999], [0.7142700409596254], [0.7142700409596254], [0.7678466939730837], [0.8392700409596254], [0.8571533060269162], [0.8214233469865417], [0.6964233469865417], [0.5], [0.30357665301345815], [0.12499999999999997], [0.0357299590403745], [0.017883265067290842], [0.08930661205383265], [0.2143066120538326], [0.3571533060269163], [0.5], [0.6071533060269163], [0.6785766530134582], [0.7142700409596254], [0.7321533060269163], [0.7499999999999999], [0.803576653013458], [0.8214233469865417], [0.803576653013458], [0.7142700409596254], [0.6071533060269163], [0.5357299590403745]], "masks": [[1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1]], "evals": [[0.7321533060269163], [0.6607299590403745], [0.5714233469865418], [0.5], [0.5], [0.5178466939730837], [0.5357299590403745], [0.5535766530134582], [0.5178466939730837], [0.5], [0.48215330602691636], [0.5], [0.5178466939730837], [0.5178466939730837], [0.48215330602691636], [0.44642334698654185], [0.44642334698654185], [0.48215330602691636], [0.5178466939730837], [0.5357299590403745], [0.5178466939730837], [0.48215330602691636], [0.4643066120538326], [0.4643066120538326], [0.5], [0.5357299590403745], [0.5714233469865418], [0.6071533060269163], [0.6428466939730836], [0.6607299590403745], [0.6428466939730836], [0.5893066120538326], [0.5357299590403745], [0.5], [0.5], [0.5535766530134582], [0.6071533060269163], [0.6607299590403745], [0.6785766530134582], [0.6785766530134582], [0.6607299590403745], [0.5893066120538326], [0.48215330602691636], [0.37500000000000006], [0.3214233469865418], [0.3571533060269163], [0.44642334698654185], [0.5714233469865418], [0.6071533060269163], [0.5535766530134582], [0.41072995904037446], [0.2857299590403745], [0.19642334698654185], [0.23215330602691633], [0.3571533060269163], [0.5535766530134582], [0.7321533060269163], [0.8571533060269162], [0.9107299590403743], [0.875], [0.8214233469865417], [0.8214233469865417], [0.875], [0.9642700409596255], [1.0], [0.928576653013458], [0.7678466939730837], [0.5893066120538326], [0.4285766530134582], [0.3571533060269163], [0.3928466939730837], [0.48215330602691636], [0.5714233469865418], [0.625], [0.6071533060269163], [0.5893066120538326], [0.5714233469865418], [0.5893066120538326], [0.6428466939730836], [0.7142700409596254], [0.7142700409596254], [0.6428466939730836], [0.5], [0.37500000000000006], [0.33930661205383267], [0.41072995904037446], [0.5893066120538326], [0.7857299590403745], [0.9464233469865417], [0.9821533060269163], [0.875], [0.6964233469865417], [0.48215330602691636], [0.3214233469865418], [0.2857299590403745], [0.37500000000000006], [0.5178466939730837], [0.625], [0.6607299590403745], [0.5893066120538326], [0.5], [0.3928466939730837], [0.3571533060269163], [0.3928466939730837], [0.44642334698654185], [0.5178466939730837], [0.5357299590403745], [0.4643066120538326], [0.37500000000000006], [0.30357665301345815], [0.26784669397308364], [0.2857299590403745], [0.3571533060269163], [0.4285766530134582], [0.48215330602691636], [0.5], [0.5357299590403745], [0.5535766530134582], [0.5893066120538326], [0.5893066120538326], [0.5714233469865418], [0.5357299590403745], [0.5], [0.5178466939730837], [0.625], [0.7678466939730837], [0.8928466939730837], [0.9464233469865417], [0.875], [0.7499999999999999], [0.6071533060269163], [0.5357299590403745], [0.5535766530134582], [0.6428466939730836], [0.7678466939730837], [0.8571533060269162], [0.8928466939730837], [0.8571533060269162], [0.803576653013458], [0.7499999999999999], [0.7142700409596254], [0.6964233469865417], [0.6607299590403745], [0.6428466939730836], [0.6071533060269163], [0.6071533060269163], [0.6428466939730836], [0.6964233469865417], [0.7499999999999999], [0.7499999999999999], [0.7321533060269163], [0.6607299590403745], [0.5893066120538326], [0.5178466939730837], [0.48215330602691636], [0.44642334698654185], [0.4285766530134582], [0.4643066120538326], [0.5714233469865418], [0.6964233469865417], [0.803576653013458], [0.8392700409596254], [0.7321533060269163], [0.5178466939730837], [0.2857299590403745], [0.12499999999999997], [0.1071533060269163], [0.17857665301345818], [0.33930661205383267], [0.5], [0.6428466939730836], [0.7499999999999999], [0.7321533060269163], [0.6071533060269163], [0.37500000000000006], [0.1428466939730837], [0.0], [0.017883265067290842], [0.16072995904037446], [0.3571533060269163], [0.5], [0.5357299590403745], [0.4643066120538326], [0.3571533060269163], [0.26784669397308364], [0.19642334698654185], [0.2143066120538326], [0.2857299590403745], [0.3928466939730837], [0.48215330602691636], [0.5357299590403745], [0.48215330602691636], [0.3928466939730837], [0.33930661205383267], [0.3214233469865418], [0.3571533060269163], [0.3928466939730837], [0.37500000000000006], [0.2857299590403745], [0.2143066120538326], [0.19642334698654185], [0.25], [0.33930661205383267], [0.3928466939730837], [0.3928466939730837], [0.33930661205383267], [0.26784669397308364], [0.2143066120538326], [0.19642334698654185], [0.23215330602691633], [0.2857299590403745], [0.33930661205383267], [0.37500000000000006], [0.33930661205383267], [0.25], [0.1428466939730837], [0.08930661205383265], [0.1428466939730837], [0.26784669397308364], [0.37500000000000006], [0.44642334698654185], [0.4285766530134582], [0.37500000000000006], [0.3571533060269163], [0.44642334698654185], [0.5893066120538326], [0.7142700409596254], [0.7678466939730837], [0.7499999999999999], [0.7142700409596254], [0.7142700409596254], [0.7678466939730837], [0.8392700409596254], [0.8571533060269162], [0.8214233469865417], [0.6964233469865417], [0.5], [0.30357665301345815], [0.12499999999999997], [0.0357299590403745], [0.017883265067290842], [0.08930661205383265], [0.2143066120538326], [0.3571533060269163], [0.5], [0.6071533060269163], [0.6785766530134582], [0.7142700409596254], [0.7321533060269163], [0.7499999999999999], [0.803576653013458], [0.8214233469865417], [0.803576653013458], [0.7142700409596254], [0.6071533060269163], [0.5357299590403745]], "eval_masks": [[0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0]], "forwards": [[0.7321533060269163], [0.6607299590403745], [0.5714233469865418], [0.5], [0.5], [0.5178466939730837], [0.5357299590403745], [0.5535766530134582], [0.5178466939730837], [0.5], [0.48215330602691636], [0.5], [0.5178466939730837], [0.5178466939730837], [0.48215330602691636], [0.44642334698654185], [0.44642334698654185], [0.48215330602691636], [0.5178466939730837], [0.5357299590403745], [0.5178466939730837], [0.48215330602691636], [0.4643066120538326], [0.4643066120538326], [0.5], [0.5357299590403745], [0.5714233469865418], [0.6071533060269163], [0.6428466939730836], [0.6607299590403745], [0.6428466939730836], [0.5893066120538326], [0.5357299590403745], [0.5], [0.5], [0.5535766530134582], [0.6071533060269163], [0.6607299590403745], [0.6785766530134582], [0.6785766530134582], [0.6607299590403745], [0.5893066120538326], [0.48215330602691636], [0.37500000000000006], [0.3214233469865418], [0.3571533060269163], [0.44642334698654185], [0.5714233469865418], [0.6071533060269163], [0.5535766530134582], [0.41072995904037446], [0.2857299590403745], [0.19642334698654185], [0.23215330602691633], [0.3571533060269163], [0.5535766530134582], [0.7321533060269163], [0.8571533060269162], [0.9107299590403743], [0.875], [0.8214233469865417], [0.8214233469865417], [0.875], [0.9642700409596255], [1.0], [0.928576653013458], [0.7678466939730837], [0.5893066120538326], [0.4285766530134582], [0.3571533060269163], [0.3928466939730837], [0.48215330602691636], [0.5714233469865418], [0.625], [0.6071533060269163], [0.5893066120538326], [0.5714233469865418], [0.5893066120538326], [0.6428466939730836], [0.7142700409596254], [0.7142700409596254], [0.6428466939730836], [0.5], [0.37500000000000006], [0.33930661205383267], [0.41072995904037446], [0.5893066120538326], [0.7857299590403745], [0.9464233469865417], [0.9821533060269163], [0.875], [0.6964233469865417], [0.48215330602691636], [0.3214233469865418], [0.2857299590403745], [0.37500000000000006], [0.5178466939730837], [0.625], [0.6607299590403745], [0.5893066120538326], [0.5], [0.3928466939730837], [0.3571533060269163], [0.3928466939730837], [0.44642334698654185], [0.5178466939730837], [0.5357299590403745], [0.4643066120538326], [0.37500000000000006], [0.30357665301345815], [0.26784669397308364], [0.2857299590403745], [0.3571533060269163], [0.4285766530134582], [0.48215330602691636], [0.5], [0.5357299590403745], [0.5535766530134582], [0.5893066120538326], [0.5893066120538326], [0.5714233469865418], [0.5357299590403745], [0.5], [0.5178466939730837], [0.625], [0.7678466939730837], [0.8928466939730837], [0.9464233469865417], [0.875], [0.7499999999999999], [0.6071533060269163], [0.5357299590403745], [0.5535766530134582], [0.6428466939730836], [0.7678466939730837], [0.8571533060269162], [0.8928466939730837], [0.8571533060269162], [0.803576653013458], [0.7499999999999999], [0.7142700409596254], [0.6964233469865417], [0.6607299590403745], [0.6428466939730836], [0.6071533060269163], [0.6071533060269163], [0.6428466939730836], [0.6964233469865417], [0.7499999999999999], [0.7499999999999999], [0.7321533060269163], [0.6607299590403745], [0.5893066120538326], [0.5178466939730837], [0.48215330602691636], [0.44642334698654185], [0.4285766530134582], [0.4643066120538326], [0.5714233469865418], [0.6964233469865417], [0.803576653013458], [0.8392700409596254], [0.7321533060269163], [0.5178466939730837], [0.2857299590403745], [0.12499999999999997], [0.1071533060269163], [0.17857665301345818], [0.33930661205383267], [0.5], [0.6428466939730836], [0.7499999999999999], [0.7321533060269163], [0.6071533060269163], [0.37500000000000006], [0.1428466939730837], [0.0], [0.017883265067290842], [0.16072995904037446], [0.3571533060269163], [0.5], [0.5357299590403745], [0.4643066120538326], [0.3571533060269163], [0.26784669397308364], [0.19642334698654185], [0.2143066120538326], [0.2857299590403745], [0.3928466939730837], [0.48215330602691636], [0.5357299590403745], [0.48215330602691636], [0.3928466939730837], [0.33930661205383267], [0.3214233469865418], [0.3571533060269163], [0.3928466939730837], [0.37500000000000006], [0.2857299590403745], [0.2143066120538326], [0.19642334698654185], [0.25], [0.33930661205383267], [0.3928466939730837], [0.3928466939730837], [0.33930661205383267], [0.26784669397308364], [0.2143066120538326], [0.19642334698654185], [0.23215330602691633], [0.2857299590403745], [0.33930661205383267], [0.37500000000000006], [0.33930661205383267], [0.25], [0.1428466939730837], [0.08930661205383265], [0.1428466939730837], [0.26784669397308364], [0.37500000000000006], [0.44642334698654185], [0.4285766530134582], [0.37500000000000006], [0.3571533060269163], [0.44642334698654185], [0.5893066120538326], [0.7142700409596254], [0.7678466939730837], [0.7499999999999999], [0.7142700409596254], [0.7142700409596254], [0.7678466939730837], [0.8392700409596254], [0.8571533060269162], [0.8214233469865417], [0.6964233469865417], [0.5], [0.30357665301345815], [0.12499999999999997], [0.0357299590403745], [0.017883265067290842], [0.08930661205383265], [0.2143066120538326], [0.3571533060269163], [0.5], [0.6071533060269163], [0.6785766530134582], [0.7142700409596254], [0.7321533060269163], [0.7499999999999999], [0.803576653013458], [0.8214233469865417], [0.803576653013458], [0.7142700409596254], [0.6071533060269163], [0.5357299590403745]], "deltas": [[1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0]]}} -{"label": 0, "forward": {"values": [[0.7619465574409986], [0.8095377413692216], [0.8571289252974448], [0.8571289252974448], [0.8571289252974448], [0.7619465574409986], [0.6190754827384435], [0.5237955919641115], [0.4762044080358885], [0.5237955919641115], [0.6190754827384435], [0.6666666666666666], [0.7142578505948898], [0.6666666666666666], [0.6190754827384435], [0.5237955919641115], [0.5237955919641115], [0.5714842988102203], [0.6666666666666666], [0.7619465574409986], [0.8571289252974448], [0.8571289252974448], [0.8095377413692216], [0.7619465574409986], [0.7142578505948898], [0.6190754827384435], [0.6666666666666666], [0.6666666666666666], [0.7142578505948898], [0.6666666666666666], [0.5714842988102203], [0.4762044080358885], [0.38092451726155646], [0.3333333333333333], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.6190754827384435], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.4286132241076653], [0.38092451726155646], [0.4286132241076653], [0.5237955919641115], [0.5714842988102203], [0.5714842988102203], [0.5237955919641115], [0.4762044080358885], [0.4762044080358885], [0.5237955919641115], [0.6190754827384435], [0.6666666666666666], [0.6666666666666666], [0.5714842988102203], [0.5237955919641115], [0.4286132241076653], [0.4762044080358885], [0.6190754827384435], [0.7142578505948898], [0.8095377413692216], [0.7619465574409986], [0.6666666666666666], [0.4286132241076653], [0.23815096547688705], [0.14287107470255517], [0.23815096547688705], [0.4286132241076653], [0.6190754827384435], [0.7619465574409986], [0.7619465574409986], [0.6666666666666666], [0.5714842988102203], [0.4762044080358885], [0.4286132241076653], [0.4762044080358885], [0.5237955919641115], [0.5714842988102203], [0.5714842988102203], [0.5714842988102203], [0.5237955919641115], [0.5237955919641115], [0.4762044080358885], [0.4762044080358885], [0.5237955919641115], [0.5714842988102203], [0.6666666666666666], [0.7142578505948898], [0.6666666666666666], [0.5714842988102203], [0.4762044080358885], [0.4286132241076653], [0.4286132241076653], [0.4762044080358885], [0.6190754827384435], [0.6666666666666666], [0.7142578505948898], [0.7619465574409986], [0.8095377413692216], [0.8095377413692216], [0.7619465574409986], [0.7142578505948898], [0.6190754827384435], [0.5714842988102203], [0.5714842988102203], [0.6190754827384435], [0.7142578505948898], [0.7142578505948898], [0.7142578505948898], [0.7142578505948898], [0.6666666666666666], [0.6190754827384435], [0.5714842988102203], [0.5237955919641115], [0.5237955919641115], [0.4762044080358885], [0.4286132241076653], [0.4286132241076653], [0.4286132241076653], [0.4286132241076653], [0.4762044080358885], [0.5237955919641115], [0.6190754827384435], [0.6190754827384435], [0.6190754827384435], [0.5714842988102203], [0.4762044080358885], [0.4286132241076653], [0.3333333333333333], [0.2857421494051102], [0.2857421494051102], [0.3333333333333333], [0.4286132241076653], [0.5237955919641115], [0.5714842988102203], [0.5714842988102203], [0.5237955919641115], [0.4286132241076653], [0.38092451726155646], [0.38092451726155646], [0.4286132241076653], [0.5714842988102203], [0.6666666666666666], [0.7142578505948898], [0.6666666666666666], [0.5714842988102203], [0.4286132241076653], [0.2857421494051102], [0.19046225863077823], [0.14287107470255517], [0.14287107470255517], [0.2857421494051102], [0.4286132241076653], [0.5714842988102203], [0.6190754827384435], [0.5714842988102203], [0.4286132241076653], [0.3333333333333333], [0.23815096547688705], [0.2857421494051102], [0.38092451726155646], [0.5714842988102203], [0.6666666666666666], [0.6190754827384435], [0.5237955919641115], [0.38092451726155646], [0.3333333333333333], [0.2857421494051102], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.5237955919641115], [0.5714842988102203], [0.5714842988102203], [0.5714842988102203], [0.5714842988102203], [0.5714842988102203], [0.6190754827384435], [0.6666666666666666], [0.7142578505948898], [0.6666666666666666], [0.5714842988102203], [0.4762044080358885], [0.4762044080358885], [0.4762044080358885], [0.5237955919641115], [0.5714842988102203], [0.6190754827384435], [0.6190754827384435], [0.6190754827384435], [0.6190754827384435], [0.5714842988102203], [0.5237955919641115], [0.4762044080358885], [0.4762044080358885], [0.5714842988102203], [0.6666666666666666], [0.7142578505948898], [0.6666666666666666], [0.5237955919641115], [0.38092451726155646], [0.23815096547688705], [0.23815096547688705], [0.3333333333333333], [0.5237955919641115], [0.7142578505948898], [0.8095377413692216], [0.7142578505948898], [0.5237955919641115], [0.3333333333333333], [0.19046225863077823], [0.23815096547688705], [0.38092451726155646], [0.6190754827384435], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.5237955919641115], [0.3333333333333333], [0.09527989077433198], [0.0], [0.0476887068461089], [0.3333333333333333], [0.6190754827384435], [0.9048176321435537], [1.0], [0.9048176321435537], [0.6190754827384435]], "masks": [[1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [1], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1]], "evals": [[0.7619465574409986], [0.8095377413692216], [0.8571289252974448], [0.8571289252974448], [0.8571289252974448], [0.7619465574409986], [0.6190754827384435], [0.5237955919641115], [0.4762044080358885], [0.5237955919641115], [0.6190754827384435], [0.6666666666666666], [0.7142578505948898], [0.6666666666666666], [0.6190754827384435], [0.5237955919641115], [0.5237955919641115], [0.5714842988102203], [0.6666666666666666], [0.7619465574409986], [0.8571289252974448], [0.8571289252974448], [0.8095377413692216], [0.7619465574409986], [0.7142578505948898], [0.6190754827384435], [0.6666666666666666], [0.6666666666666666], [0.7142578505948898], [0.6666666666666666], [0.5714842988102203], [0.4762044080358885], [0.38092451726155646], [0.3333333333333333], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.6190754827384435], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.4286132241076653], [0.38092451726155646], [0.4286132241076653], [0.5237955919641115], [0.5714842988102203], [0.5714842988102203], [0.5237955919641115], [0.4762044080358885], [0.4762044080358885], [0.5237955919641115], [0.6190754827384435], [0.6666666666666666], [0.6666666666666666], [0.5714842988102203], [0.5237955919641115], [0.4286132241076653], [0.4762044080358885], [0.6190754827384435], [0.7142578505948898], [0.8095377413692216], [0.7619465574409986], [0.6666666666666666], [0.4286132241076653], [0.23815096547688705], [0.14287107470255517], [0.23815096547688705], [0.4286132241076653], [0.6190754827384435], [0.7619465574409986], [0.7619465574409986], [0.6666666666666666], [0.5714842988102203], [0.4762044080358885], [0.4286132241076653], [0.4762044080358885], [0.5237955919641115], [0.5714842988102203], [0.5714842988102203], [0.5714842988102203], [0.5237955919641115], [0.5237955919641115], [0.4762044080358885], [0.4762044080358885], [0.5237955919641115], [0.5714842988102203], [0.6666666666666666], [0.7142578505948898], [0.6666666666666666], [0.5714842988102203], [0.4762044080358885], [0.4286132241076653], [0.4286132241076653], [0.4762044080358885], [0.6190754827384435], [0.6666666666666666], [0.7142578505948898], [0.7619465574409986], [0.8095377413692216], [0.8095377413692216], [0.7619465574409986], [0.7142578505948898], [0.6190754827384435], [0.5714842988102203], [0.5714842988102203], [0.6190754827384435], [0.7142578505948898], [0.7142578505948898], [0.7142578505948898], [0.7142578505948898], [0.6666666666666666], [0.6190754827384435], [0.5714842988102203], [0.5237955919641115], [0.5237955919641115], [0.4762044080358885], [0.4286132241076653], [0.4286132241076653], [0.4286132241076653], [0.4286132241076653], [0.4762044080358885], [0.5237955919641115], [0.6190754827384435], [0.6190754827384435], [0.6190754827384435], [0.5714842988102203], [0.4762044080358885], [0.4286132241076653], [0.3333333333333333], [0.2857421494051102], [0.2857421494051102], [0.3333333333333333], [0.4286132241076653], [0.5237955919641115], [0.5714842988102203], [0.5714842988102203], [0.5237955919641115], [0.4286132241076653], [0.38092451726155646], [0.38092451726155646], [0.4286132241076653], [0.5714842988102203], [0.6666666666666666], [0.7142578505948898], [0.6666666666666666], [0.5714842988102203], [0.4286132241076653], [0.2857421494051102], [0.19046225863077823], [0.14287107470255517], [0.14287107470255517], [0.2857421494051102], [0.4286132241076653], [0.5714842988102203], [0.6190754827384435], [0.5714842988102203], [0.4286132241076653], [0.3333333333333333], [0.23815096547688705], [0.2857421494051102], [0.38092451726155646], [0.5714842988102203], [0.6666666666666666], [0.6190754827384435], [0.5237955919641115], [0.38092451726155646], [0.3333333333333333], [0.2857421494051102], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.5237955919641115], [0.5714842988102203], [0.5714842988102203], [0.5714842988102203], [0.5714842988102203], [0.5714842988102203], [0.6190754827384435], [0.6666666666666666], [0.7142578505948898], [0.6666666666666666], [0.5714842988102203], [0.4762044080358885], [0.4762044080358885], [0.4762044080358885], [0.5237955919641115], [0.5714842988102203], [0.6190754827384435], [0.6190754827384435], [0.6190754827384435], [0.6190754827384435], [0.5714842988102203], [0.5237955919641115], [0.4762044080358885], [0.4762044080358885], [0.5714842988102203], [0.6666666666666666], [0.7142578505948898], [0.6666666666666666], [0.5237955919641115], [0.38092451726155646], [0.23815096547688705], [0.23815096547688705], [0.3333333333333333], [0.5237955919641115], [0.7142578505948898], [0.8095377413692216], [0.7142578505948898], [0.5237955919641115], [0.3333333333333333], [0.19046225863077823], [0.23815096547688705], [0.38092451726155646], [0.6190754827384435], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.5237955919641115], [0.3333333333333333], [0.09527989077433198], [0.0], [0.0476887068461089], [0.3333333333333333], [0.6190754827384435], [0.9048176321435537], [1.0], [0.9048176321435537], [0.6190754827384435]], "eval_masks": [[0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0]], "forwards": [[0.7619465574409986], [0.8095377413692216], [0.8571289252974448], [0.8571289252974448], [0.8571289252974448], [0.7619465574409986], [0.6190754827384435], [0.5237955919641115], [0.4762044080358885], [0.5237955919641115], [0.6190754827384435], [0.6666666666666666], [0.7142578505948898], [0.6666666666666666], [0.6190754827384435], [0.5237955919641115], [0.5237955919641115], [0.5714842988102203], [0.6666666666666666], [0.7619465574409986], [0.8571289252974448], [0.8571289252974448], [0.8095377413692216], [0.7619465574409986], [0.7142578505948898], [0.6190754827384435], [0.6666666666666666], [0.6666666666666666], [0.7142578505948898], [0.6666666666666666], [0.5714842988102203], [0.4762044080358885], [0.38092451726155646], [0.3333333333333333], [0.3333333333333333], [0.3333333333333333], [0.3333333333333333], [0.3333333333333333], [0.3333333333333333], [0.3333333333333333], [0.3333333333333333], [0.3333333333333333], [0.3333333333333333], [0.3333333333333333], [0.6190754827384435], [0.6190754827384435], [0.6190754827384435], [0.6190754827384435], [0.6190754827384435], [0.6190754827384435], [0.6190754827384435], [0.6190754827384435], [0.6190754827384435], [0.6190754827384435], [0.6190754827384435], [0.4286132241076653], [0.38092451726155646], [0.4286132241076653], [0.5237955919641115], [0.5714842988102203], [0.5714842988102203], [0.5237955919641115], [0.4762044080358885], [0.4762044080358885], [0.5237955919641115], [0.6190754827384435], [0.6666666666666666], [0.6666666666666666], [0.5714842988102203], [0.5237955919641115], [0.4286132241076653], [0.4762044080358885], [0.6190754827384435], [0.7142578505948898], [0.8095377413692216], [0.7619465574409986], [0.6666666666666666], [0.4286132241076653], [0.23815096547688705], [0.14287107470255517], [0.23815096547688705], [0.4286132241076653], [0.6190754827384435], [0.7619465574409986], [0.7619465574409986], [0.6666666666666666], [0.5714842988102203], [0.4762044080358885], [0.4286132241076653], [0.4762044080358885], [0.5237955919641115], [0.5714842988102203], [0.5714842988102203], [0.5714842988102203], [0.5237955919641115], [0.5237955919641115], [0.4762044080358885], [0.4762044080358885], [0.5237955919641115], [0.5714842988102203], [0.6666666666666666], [0.7142578505948898], [0.6666666666666666], [0.5714842988102203], [0.4762044080358885], [0.4286132241076653], [0.4286132241076653], [0.4762044080358885], [0.6190754827384435], [0.6666666666666666], [0.7142578505948898], [0.7619465574409986], [0.8095377413692216], [0.8095377413692216], [0.7619465574409986], [0.7142578505948898], [0.6190754827384435], [0.5714842988102203], [0.5714842988102203], [0.6190754827384435], [0.7142578505948898], [0.7142578505948898], [0.7142578505948898], [0.7142578505948898], [0.6666666666666666], [0.6190754827384435], [0.5714842988102203], [0.5237955919641115], [0.5237955919641115], [0.4762044080358885], [0.4286132241076653], [0.4286132241076653], [0.4286132241076653], [0.4286132241076653], [0.4762044080358885], [0.5237955919641115], [0.6190754827384435], [0.6190754827384435], [0.6190754827384435], [0.5714842988102203], [0.4762044080358885], [0.4286132241076653], [0.3333333333333333], [0.2857421494051102], [0.2857421494051102], [0.3333333333333333], [0.4286132241076653], [0.5237955919641115], [0.5714842988102203], [0.5714842988102203], [0.5237955919641115], [0.4286132241076653], [0.38092451726155646], [0.38092451726155646], [0.4286132241076653], [0.5714842988102203], [0.6666666666666666], [0.7142578505948898], [0.6666666666666666], [0.5714842988102203], [0.4286132241076653], [0.2857421494051102], [0.19046225863077823], [0.14287107470255517], [0.14287107470255517], [0.2857421494051102], [0.4286132241076653], [0.5714842988102203], [0.6190754827384435], [0.5714842988102203], [0.4286132241076653], [0.3333333333333333], [0.23815096547688705], [0.2857421494051102], [0.38092451726155646], [0.5714842988102203], [0.6666666666666666], [0.6190754827384435], [0.5237955919641115], [0.38092451726155646], [0.3333333333333333], [0.2857421494051102], [0.2857421494051102], [0.2857421494051102], [0.2857421494051102], [0.2857421494051102], [0.2857421494051102], [0.2857421494051102], [0.2857421494051102], [0.2857421494051102], [0.2857421494051102], [0.2857421494051102], [0.5237955919641115], [0.5714842988102203], [0.5714842988102203], [0.5714842988102203], [0.5714842988102203], [0.5714842988102203], [0.6190754827384435], [0.6666666666666666], [0.7142578505948898], [0.6666666666666666], [0.5714842988102203], [0.4762044080358885], [0.4762044080358885], [0.4762044080358885], [0.5237955919641115], [0.5714842988102203], [0.6190754827384435], [0.6190754827384435], [0.6190754827384435], [0.6190754827384435], [0.5714842988102203], [0.5237955919641115], [0.4762044080358885], [0.4762044080358885], [0.5714842988102203], [0.6666666666666666], [0.7142578505948898], [0.6666666666666666], [0.5237955919641115], [0.38092451726155646], [0.23815096547688705], [0.23815096547688705], [0.3333333333333333], [0.5237955919641115], [0.7142578505948898], [0.8095377413692216], [0.7142578505948898], [0.5237955919641115], [0.3333333333333333], [0.19046225863077823], [0.23815096547688705], [0.38092451726155646], [0.6190754827384435], [0.6190754827384435], [0.6190754827384435], [0.6190754827384435], [0.6190754827384435], [0.6190754827384435], [0.6190754827384435], [0.6190754827384435], [0.6190754827384435], [0.6190754827384435], [0.6190754827384435], [0.5237955919641115], [0.3333333333333333], [0.09527989077433198], [0.0], [0.0476887068461089], [0.3333333333333333], [0.6190754827384435], [0.9048176321435537], [1.0], [0.9048176321435537], [0.6190754827384435]], "deltas": [[1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [2.0], [3.0], [4.0], [5.0], [6.0], [7.0], [8.0], [9.0], [10.0], [11.0], [1.0], [2.0], [3.0], [4.0], [5.0], [6.0], [7.0], [8.0], [9.0], [10.0], [11.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [2.0], [3.0], [4.0], [5.0], [6.0], [7.0], [8.0], [9.0], [10.0], [11.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [2.0], [3.0], [4.0], [5.0], [6.0], [7.0], [8.0], [9.0], [10.0], [11.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0]]}, "backward": {"values": [[0.6190754827384435], [0.9048176321435537], [1.0], [0.9048176321435537], [0.6190754827384435], [0.3333333333333333], [0.0476887068461089], [0.0], [0.09527989077433198], [0.3333333333333333], [0.5237955919641115], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.6190754827384435], [0.38092451726155646], [0.23815096547688705], [0.19046225863077823], [0.3333333333333333], [0.5237955919641115], [0.7142578505948898], [0.8095377413692216], [0.7142578505948898], [0.5237955919641115], [0.3333333333333333], [0.23815096547688705], [0.23815096547688705], [0.38092451726155646], [0.5237955919641115], [0.6666666666666666], [0.7142578505948898], [0.6666666666666666], [0.5714842988102203], [0.4762044080358885], [0.4762044080358885], [0.5237955919641115], [0.5714842988102203], [0.6190754827384435], [0.6190754827384435], [0.6190754827384435], [0.6190754827384435], [0.5714842988102203], [0.5237955919641115], [0.4762044080358885], [0.4762044080358885], [0.4762044080358885], [0.5714842988102203], [0.6666666666666666], [0.7142578505948898], [0.6666666666666666], [0.6190754827384435], [0.5714842988102203], [0.5714842988102203], [0.5714842988102203], [0.5714842988102203], [0.5714842988102203], [0.5237955919641115], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.2857421494051102], [0.3333333333333333], [0.38092451726155646], [0.5237955919641115], [0.6190754827384435], [0.6666666666666666], [0.5714842988102203], [0.38092451726155646], [0.2857421494051102], [0.23815096547688705], [0.3333333333333333], [0.4286132241076653], [0.5714842988102203], [0.6190754827384435], [0.5714842988102203], [0.4286132241076653], [0.2857421494051102], [0.14287107470255517], [0.14287107470255517], [0.19046225863077823], [0.2857421494051102], [0.4286132241076653], [0.5714842988102203], [0.6666666666666666], [0.7142578505948898], [0.6666666666666666], [0.5714842988102203], [0.4286132241076653], [0.38092451726155646], [0.38092451726155646], [0.4286132241076653], [0.5237955919641115], [0.5714842988102203], [0.5714842988102203], [0.5237955919641115], [0.4286132241076653], [0.3333333333333333], [0.2857421494051102], [0.2857421494051102], [0.3333333333333333], [0.4286132241076653], [0.4762044080358885], [0.5714842988102203], [0.6190754827384435], [0.6190754827384435], [0.6190754827384435], [0.5237955919641115], [0.4762044080358885], [0.4286132241076653], [0.4286132241076653], [0.4286132241076653], [0.4286132241076653], [0.4762044080358885], [0.5237955919641115], [0.5237955919641115], [0.5714842988102203], [0.6190754827384435], [0.6666666666666666], [0.7142578505948898], [0.7142578505948898], [0.7142578505948898], [0.7142578505948898], [0.6190754827384435], [0.5714842988102203], [0.5714842988102203], [0.6190754827384435], [0.7142578505948898], [0.7619465574409986], [0.8095377413692216], [0.8095377413692216], [0.7619465574409986], [0.7142578505948898], [0.6666666666666666], [0.6190754827384435], [0.4762044080358885], [0.4286132241076653], [0.4286132241076653], [0.4762044080358885], [0.5714842988102203], [0.6666666666666666], [0.7142578505948898], [0.6666666666666666], [0.5714842988102203], [0.5237955919641115], [0.4762044080358885], [0.4762044080358885], [0.5237955919641115], [0.5237955919641115], [0.5714842988102203], [0.5714842988102203], [0.5714842988102203], [0.5237955919641115], [0.4762044080358885], [0.4286132241076653], [0.4762044080358885], [0.5714842988102203], [0.6666666666666666], [0.7619465574409986], [0.7619465574409986], [0.6190754827384435], [0.4286132241076653], [0.23815096547688705], [0.14287107470255517], [0.23815096547688705], [0.4286132241076653], [0.6666666666666666], [0.7619465574409986], [0.8095377413692216], [0.7142578505948898], [0.6190754827384435], [0.4762044080358885], [0.4286132241076653], [0.5237955919641115], [0.5714842988102203], [0.6666666666666666], [0.6666666666666666], [0.6190754827384435], [0.5237955919641115], [0.4762044080358885], [0.4762044080358885], [0.5237955919641115], [0.5714842988102203], [0.5714842988102203], [0.5237955919641115], [0.4286132241076653], [0.38092451726155646], [0.4286132241076653], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.6190754827384435], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.3333333333333333], [0.38092451726155646], [0.4762044080358885], [0.5714842988102203], [0.6666666666666666], [0.7142578505948898], [0.6666666666666666], [0.6666666666666666], [0.6190754827384435], [0.7142578505948898], [0.7619465574409986], [0.8095377413692216], [0.8571289252974448], [0.8571289252974448], [0.7619465574409986], [0.6666666666666666], [0.5714842988102203], [0.5237955919641115], [0.5237955919641115], [0.6190754827384435], [0.6666666666666666], [0.7142578505948898], [0.6666666666666666], [0.6190754827384435], [0.5237955919641115], [0.4762044080358885], [0.5237955919641115], [0.6190754827384435], [0.7619465574409986], [0.8571289252974448], [0.8571289252974448], [0.8571289252974448], [0.8095377413692216], [0.7619465574409986]], "masks": [[1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [1], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1]], "evals": [[0.6190754827384435], [0.9048176321435537], [1.0], [0.9048176321435537], [0.6190754827384435], [0.3333333333333333], [0.0476887068461089], [0.0], [0.09527989077433198], [0.3333333333333333], [0.5237955919641115], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.6190754827384435], [0.38092451726155646], [0.23815096547688705], [0.19046225863077823], [0.3333333333333333], [0.5237955919641115], [0.7142578505948898], [0.8095377413692216], [0.7142578505948898], [0.5237955919641115], [0.3333333333333333], [0.23815096547688705], [0.23815096547688705], [0.38092451726155646], [0.5237955919641115], [0.6666666666666666], [0.7142578505948898], [0.6666666666666666], [0.5714842988102203], [0.4762044080358885], [0.4762044080358885], [0.5237955919641115], [0.5714842988102203], [0.6190754827384435], [0.6190754827384435], [0.6190754827384435], [0.6190754827384435], [0.5714842988102203], [0.5237955919641115], [0.4762044080358885], [0.4762044080358885], [0.4762044080358885], [0.5714842988102203], [0.6666666666666666], [0.7142578505948898], [0.6666666666666666], [0.6190754827384435], [0.5714842988102203], [0.5714842988102203], [0.5714842988102203], [0.5714842988102203], [0.5714842988102203], [0.5237955919641115], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.2857421494051102], [0.3333333333333333], [0.38092451726155646], [0.5237955919641115], [0.6190754827384435], [0.6666666666666666], [0.5714842988102203], [0.38092451726155646], [0.2857421494051102], [0.23815096547688705], [0.3333333333333333], [0.4286132241076653], [0.5714842988102203], [0.6190754827384435], [0.5714842988102203], [0.4286132241076653], [0.2857421494051102], [0.14287107470255517], [0.14287107470255517], [0.19046225863077823], [0.2857421494051102], [0.4286132241076653], [0.5714842988102203], [0.6666666666666666], [0.7142578505948898], [0.6666666666666666], [0.5714842988102203], [0.4286132241076653], [0.38092451726155646], [0.38092451726155646], [0.4286132241076653], [0.5237955919641115], [0.5714842988102203], [0.5714842988102203], [0.5237955919641115], [0.4286132241076653], [0.3333333333333333], [0.2857421494051102], [0.2857421494051102], [0.3333333333333333], [0.4286132241076653], [0.4762044080358885], [0.5714842988102203], [0.6190754827384435], [0.6190754827384435], [0.6190754827384435], [0.5237955919641115], [0.4762044080358885], [0.4286132241076653], [0.4286132241076653], [0.4286132241076653], [0.4286132241076653], [0.4762044080358885], [0.5237955919641115], [0.5237955919641115], [0.5714842988102203], [0.6190754827384435], [0.6666666666666666], [0.7142578505948898], [0.7142578505948898], [0.7142578505948898], [0.7142578505948898], [0.6190754827384435], [0.5714842988102203], [0.5714842988102203], [0.6190754827384435], [0.7142578505948898], [0.7619465574409986], [0.8095377413692216], [0.8095377413692216], [0.7619465574409986], [0.7142578505948898], [0.6666666666666666], [0.6190754827384435], [0.4762044080358885], [0.4286132241076653], [0.4286132241076653], [0.4762044080358885], [0.5714842988102203], [0.6666666666666666], [0.7142578505948898], [0.6666666666666666], [0.5714842988102203], [0.5237955919641115], [0.4762044080358885], [0.4762044080358885], [0.5237955919641115], [0.5237955919641115], [0.5714842988102203], [0.5714842988102203], [0.5714842988102203], [0.5237955919641115], [0.4762044080358885], [0.4286132241076653], [0.4762044080358885], [0.5714842988102203], [0.6666666666666666], [0.7619465574409986], [0.7619465574409986], [0.6190754827384435], [0.4286132241076653], [0.23815096547688705], [0.14287107470255517], [0.23815096547688705], [0.4286132241076653], [0.6666666666666666], [0.7619465574409986], [0.8095377413692216], [0.7142578505948898], [0.6190754827384435], [0.4762044080358885], [0.4286132241076653], [0.5237955919641115], [0.5714842988102203], [0.6666666666666666], [0.6666666666666666], [0.6190754827384435], [0.5237955919641115], [0.4762044080358885], [0.4762044080358885], [0.5237955919641115], [0.5714842988102203], [0.5714842988102203], [0.5237955919641115], [0.4286132241076653], [0.38092451726155646], [0.4286132241076653], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.6190754827384435], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.3333333333333333], [0.38092451726155646], [0.4762044080358885], [0.5714842988102203], [0.6666666666666666], [0.7142578505948898], [0.6666666666666666], [0.6666666666666666], [0.6190754827384435], [0.7142578505948898], [0.7619465574409986], [0.8095377413692216], [0.8571289252974448], [0.8571289252974448], [0.7619465574409986], [0.6666666666666666], [0.5714842988102203], [0.5237955919641115], [0.5237955919641115], [0.6190754827384435], [0.6666666666666666], [0.7142578505948898], [0.6666666666666666], [0.6190754827384435], [0.5237955919641115], [0.4762044080358885], [0.5237955919641115], [0.6190754827384435], [0.7619465574409986], [0.8571289252974448], [0.8571289252974448], [0.8571289252974448], [0.8095377413692216], [0.7619465574409986]], "eval_masks": [[0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0]], "forwards": [[0.6190754827384435], [0.9048176321435537], [1.0], [0.9048176321435537], [0.6190754827384435], [0.3333333333333333], [0.0476887068461089], [0.0], [0.09527989077433198], [0.3333333333333333], [0.5237955919641115], [0.5237955919641115], [0.5237955919641115], [0.5237955919641115], [0.5237955919641115], [0.5237955919641115], [0.5237955919641115], [0.5237955919641115], [0.5237955919641115], [0.5237955919641115], [0.5237955919641115], [0.6190754827384435], [0.38092451726155646], [0.23815096547688705], [0.19046225863077823], [0.3333333333333333], [0.5237955919641115], [0.7142578505948898], [0.8095377413692216], [0.7142578505948898], [0.5237955919641115], [0.3333333333333333], [0.23815096547688705], [0.23815096547688705], [0.38092451726155646], [0.5237955919641115], [0.6666666666666666], [0.7142578505948898], [0.6666666666666666], [0.5714842988102203], [0.4762044080358885], [0.4762044080358885], [0.5237955919641115], [0.5714842988102203], [0.6190754827384435], [0.6190754827384435], [0.6190754827384435], [0.6190754827384435], [0.5714842988102203], [0.5237955919641115], [0.4762044080358885], [0.4762044080358885], [0.4762044080358885], [0.5714842988102203], [0.6666666666666666], [0.7142578505948898], [0.6666666666666666], [0.6190754827384435], [0.5714842988102203], [0.5714842988102203], [0.5714842988102203], [0.5714842988102203], [0.5714842988102203], [0.5237955919641115], [0.5237955919641115], [0.5237955919641115], [0.5237955919641115], [0.5237955919641115], [0.5237955919641115], [0.5237955919641115], [0.5237955919641115], [0.5237955919641115], [0.5237955919641115], [0.5237955919641115], [0.2857421494051102], [0.3333333333333333], [0.38092451726155646], [0.5237955919641115], [0.6190754827384435], [0.6666666666666666], [0.5714842988102203], [0.38092451726155646], [0.2857421494051102], [0.23815096547688705], [0.3333333333333333], [0.4286132241076653], [0.5714842988102203], [0.6190754827384435], [0.5714842988102203], [0.4286132241076653], [0.2857421494051102], [0.14287107470255517], [0.14287107470255517], [0.19046225863077823], [0.2857421494051102], [0.4286132241076653], [0.5714842988102203], [0.6666666666666666], [0.7142578505948898], [0.6666666666666666], [0.5714842988102203], [0.4286132241076653], [0.38092451726155646], [0.38092451726155646], [0.4286132241076653], [0.5237955919641115], [0.5714842988102203], [0.5714842988102203], [0.5237955919641115], [0.4286132241076653], [0.3333333333333333], [0.2857421494051102], [0.2857421494051102], [0.3333333333333333], [0.4286132241076653], [0.4762044080358885], [0.5714842988102203], [0.6190754827384435], [0.6190754827384435], [0.6190754827384435], [0.5237955919641115], [0.4762044080358885], [0.4286132241076653], [0.4286132241076653], [0.4286132241076653], [0.4286132241076653], [0.4762044080358885], [0.5237955919641115], [0.5237955919641115], [0.5714842988102203], [0.6190754827384435], [0.6666666666666666], [0.7142578505948898], [0.7142578505948898], [0.7142578505948898], [0.7142578505948898], [0.6190754827384435], [0.5714842988102203], [0.5714842988102203], [0.6190754827384435], [0.7142578505948898], [0.7619465574409986], [0.8095377413692216], [0.8095377413692216], [0.7619465574409986], [0.7142578505948898], [0.6666666666666666], [0.6190754827384435], [0.4762044080358885], [0.4286132241076653], [0.4286132241076653], [0.4762044080358885], [0.5714842988102203], [0.6666666666666666], [0.7142578505948898], [0.6666666666666666], [0.5714842988102203], [0.5237955919641115], [0.4762044080358885], [0.4762044080358885], [0.5237955919641115], [0.5237955919641115], [0.5714842988102203], [0.5714842988102203], [0.5714842988102203], [0.5237955919641115], [0.4762044080358885], [0.4286132241076653], [0.4762044080358885], [0.5714842988102203], [0.6666666666666666], [0.7619465574409986], [0.7619465574409986], [0.6190754827384435], [0.4286132241076653], [0.23815096547688705], [0.14287107470255517], [0.23815096547688705], [0.4286132241076653], [0.6666666666666666], [0.7619465574409986], [0.8095377413692216], [0.7142578505948898], [0.6190754827384435], [0.4762044080358885], [0.4286132241076653], [0.5237955919641115], [0.5714842988102203], [0.6666666666666666], [0.6666666666666666], [0.6190754827384435], [0.5237955919641115], [0.4762044080358885], [0.4762044080358885], [0.5237955919641115], [0.5714842988102203], [0.5714842988102203], [0.5237955919641115], [0.4286132241076653], [0.38092451726155646], [0.4286132241076653], [0.4286132241076653], [0.4286132241076653], [0.4286132241076653], [0.4286132241076653], [0.4286132241076653], [0.4286132241076653], [0.4286132241076653], [0.4286132241076653], [0.4286132241076653], [0.4286132241076653], [0.6190754827384435], [0.6190754827384435], [0.6190754827384435], [0.6190754827384435], [0.6190754827384435], [0.6190754827384435], [0.6190754827384435], [0.6190754827384435], [0.6190754827384435], [0.6190754827384435], [0.6190754827384435], [0.3333333333333333], [0.38092451726155646], [0.4762044080358885], [0.5714842988102203], [0.6666666666666666], [0.7142578505948898], [0.6666666666666666], [0.6666666666666666], [0.6190754827384435], [0.7142578505948898], [0.7619465574409986], [0.8095377413692216], [0.8571289252974448], [0.8571289252974448], [0.7619465574409986], [0.6666666666666666], [0.5714842988102203], [0.5237955919641115], [0.5237955919641115], [0.6190754827384435], [0.6666666666666666], [0.7142578505948898], [0.6666666666666666], [0.6190754827384435], [0.5237955919641115], [0.4762044080358885], [0.5237955919641115], [0.6190754827384435], [0.7619465574409986], [0.8571289252974448], [0.8571289252974448], [0.8571289252974448], [0.8095377413692216], [0.7619465574409986]], "deltas": [[1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [2.0], [3.0], [4.0], [5.0], [6.0], [7.0], [8.0], [9.0], [10.0], [11.0], [1.0], [2.0], [3.0], [4.0], [5.0], [6.0], [7.0], [8.0], [9.0], [10.0], [11.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [2.0], [3.0], [4.0], [5.0], [6.0], [7.0], [8.0], [9.0], [10.0], [11.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [2.0], [3.0], [4.0], [5.0], [6.0], [7.0], [8.0], [9.0], [10.0], [11.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0]]}} -{"label": 0, "forward": {"values": [[0.35296952174436813], [0.47054571738344775], [0.5294542826165521], [0.6470304782556319], [0.588242380436092], [0.588242380436092], [0.5294542826165521], [0.5294542826165521], [0.588242380436092], [0.6470304782556319], [0.6470304782556319], [0.5294542826165521], [0.41175761956390794], [0.17648476087218407], [0.05890856523310443], [0.0], [0.0], [0.11769666305264424], [0.2941814239248283], [0.41175761956390794], [0.41175761956390794], [0.41175761956390794], [0.35296952174436813], [0.2941814239248283], [0.2941814239248283], [0.35296952174436813], [0.41175761956390794], [0.47054571738344775], [0.5294542826165521], [0.47054571738344775], [0.47054571738344775], [0.47054571738344775], [0.41175761956390794], [0.41175761956390794], [0.41175761956390794], [0.35296952174436813], [0.2941814239248283], [0.23527285869172387], [0.11769666305264424], [0.11769666305264424], [0.17648476087218407], [0.2941814239248283], [0.35296952174436813], [0.41175761956390794], [0.41175761956390794], [0.35296952174436813], [0.23527285869172387], [0.11769666305264424], [0.11769666305264424], [0.23527285869172387], [0.35296952174436813], [0.41175761956390794], [0.41175761956390794], [0.35296952174436813], [0.2941814239248283], [0.23527285869172387], [0.2941814239248283], [0.35296952174436813], [0.41175761956390794], [0.47054571738344775], [0.41175761956390794], [0.35296952174436813], [0.35296952174436813], [0.35296952174436813], [0.35296952174436813], [0.41175761956390794], [0.41175761956390794], [0.47054571738344775], [0.41175761956390794], [0.41175761956390794], [0.35296952174436813], [0.35296952174436813], [0.2941814239248283], [0.2941814239248283], [0.2941814239248283], [0.2941814239248283], [0.2941814239248283], [0.2941814239248283], [0.2941814239248283], [0.35296952174436813], [0.47054571738344775], [0.5294542826165521], [0.588242380436092], [0.588242380436092], [0.47054571738344775], [0.2941814239248283], [0.23527285869172387], [0.23527285869172387], [0.2941814239248283], [0.41175761956390794], [0.47054571738344775], [0.5294542826165521], [0.588242380436092], [0.6470304782556319], [0.6470304782556319], [0.588242380436092], [0.47054571738344775], [0.2941814239248283], [0.17648476087218407], [0.11769666305264424], [0.11769666305264424], [0.2941814239248283], [0.41175761956390794], [0.5294542826165521], [0.588242380436092], [0.6470304782556319], [0.6470304782556319], [0.6470304782556319], [0.588242380436092], [0.5294542826165521], [0.47054571738344775], [0.47054571738344775], [0.47054571738344775], [0.47054571738344775], [0.588242380436092], [0.6470304782556319], [0.7059390434887363], [0.7059390434887363], [0.7647271413082761], [0.7647271413082761], [0.7647271413082761], [0.6470304782556319], [0.47054571738344775], [0.35296952174436813], [0.23527285869172387], [0.2941814239248283], [0.41175761956390794], [0.588242380436092], [0.7647271413082761], [0.823515239127816], [0.7647271413082761], [0.6470304782556319], [0.47054571738344775], [0.35296952174436813], [0.35296952174436813], [0.35296952174436813], [0.41175761956390794], [0.41175761956390794], [0.41175761956390794], [0.47054571738344775], [0.47054571738344775], [0.47054571738344775], [0.47054571738344775], [0.41175761956390794], [0.35296952174436813], [0.35296952174436813], [0.2941814239248283], [0.35296952174436813], [0.41175761956390794], [0.47054571738344775], [0.41175761956390794], [0.41175761956390794], [0.35296952174436813], [0.35296952174436813], [0.47054571738344775], [0.5294542826165521], [0.588242380436092], [0.588242380436092], [0.588242380436092], [0.5294542826165521], [0.47054571738344775], [0.47054571738344775], [0.5294542826165521], [0.588242380436092], [0.7647271413082761], [0.8823033369473557], [1.0], [0.9412119021804602], [0.7647271413082761], [0.588242380436092], [0.47054571738344775], [0.41175761956390794], [0.41175761956390794], [0.47054571738344775], [0.588242380436092], [0.7059390434887363], [0.7059390434887363], [0.6470304782556319], [0.588242380436092], [0.588242380436092], [0.6470304782556319], [0.6470304782556319], [0.6470304782556319], [0.588242380436092], [0.41175761956390794], [0.2941814239248283], [0.23527285869172387], [0.2941814239248283], [0.41175761956390794], [0.5294542826165521], [0.6470304782556319], [0.6470304782556319], [0.588242380436092], [0.5294542826165521], [0.5294542826165521], [0.5294542826165521], [0.588242380436092], [0.6470304782556319], [0.6470304782556319], [0.588242380436092], [0.47054571738344775], [0.35296952174436813], [0.2941814239248283], [0.23527285869172387], [0.2941814239248283], [0.35296952174436813], [0.41175761956390794], [0.47054571738344775], [0.47054571738344775], [0.35296952174436813], [0.35296952174436813], [0.35296952174436813], [0.41175761956390794], [0.5294542826165521], [0.588242380436092], [0.588242380436092], [0.5294542826165521], [0.41175761956390794], [0.35296952174436813], [0.2941814239248283], [0.2941814239248283], [0.35296952174436813], [0.2941814239248283], [0.2941814239248283], [0.23527285869172387], [0.23527285869172387], [0.23527285869172387], [0.2941814239248283], [0.35296952174436813], [0.47054571738344775], [0.588242380436092], [0.588242380436092], [0.588242380436092], [0.5294542826165521], [0.41175761956390794], [0.35296952174436813], [0.23527285869172387], [0.23527285869172387], [0.17648476087218407], [0.17648476087218407], [0.23527285869172387], [0.17648476087218407], [0.17648476087218407], [0.17648476087218407], [0.23527285869172387], [0.35296952174436813], [0.47054571738344775], [0.588242380436092], [0.7059390434887363], [0.6470304782556319], [0.5294542826165521], [0.35296952174436813], [0.23527285869172387], [0.17648476087218407], [0.17648476087218407], [0.2941814239248283]], "masks": [[1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1]], "evals": [[0.35296952174436813], [0.47054571738344775], [0.5294542826165521], [0.6470304782556319], [0.588242380436092], [0.588242380436092], [0.5294542826165521], [0.5294542826165521], [0.588242380436092], [0.6470304782556319], [0.6470304782556319], [0.5294542826165521], [0.41175761956390794], [0.17648476087218407], [0.05890856523310443], [0.0], [0.0], [0.11769666305264424], [0.2941814239248283], [0.41175761956390794], [0.41175761956390794], [0.41175761956390794], [0.35296952174436813], [0.2941814239248283], [0.2941814239248283], [0.35296952174436813], [0.41175761956390794], [0.47054571738344775], [0.5294542826165521], [0.47054571738344775], [0.47054571738344775], [0.47054571738344775], [0.41175761956390794], [0.41175761956390794], [0.41175761956390794], [0.35296952174436813], [0.2941814239248283], [0.23527285869172387], [0.11769666305264424], [0.11769666305264424], [0.17648476087218407], [0.2941814239248283], [0.35296952174436813], [0.41175761956390794], [0.41175761956390794], [0.35296952174436813], [0.23527285869172387], [0.11769666305264424], [0.11769666305264424], [0.23527285869172387], [0.35296952174436813], [0.41175761956390794], [0.41175761956390794], [0.35296952174436813], [0.2941814239248283], [0.23527285869172387], [0.2941814239248283], [0.35296952174436813], [0.41175761956390794], [0.47054571738344775], [0.41175761956390794], [0.35296952174436813], [0.35296952174436813], [0.35296952174436813], [0.35296952174436813], [0.41175761956390794], [0.41175761956390794], [0.47054571738344775], [0.41175761956390794], [0.41175761956390794], [0.35296952174436813], [0.35296952174436813], [0.2941814239248283], [0.2941814239248283], [0.2941814239248283], [0.2941814239248283], [0.2941814239248283], [0.2941814239248283], [0.2941814239248283], [0.35296952174436813], [0.47054571738344775], [0.5294542826165521], [0.588242380436092], [0.588242380436092], [0.47054571738344775], [0.2941814239248283], [0.23527285869172387], [0.23527285869172387], [0.2941814239248283], [0.41175761956390794], [0.47054571738344775], [0.5294542826165521], [0.588242380436092], [0.6470304782556319], [0.6470304782556319], [0.588242380436092], [0.47054571738344775], [0.2941814239248283], [0.17648476087218407], [0.11769666305264424], [0.11769666305264424], [0.2941814239248283], [0.41175761956390794], [0.5294542826165521], [0.588242380436092], [0.6470304782556319], [0.6470304782556319], [0.6470304782556319], [0.588242380436092], [0.5294542826165521], [0.47054571738344775], [0.47054571738344775], [0.47054571738344775], [0.47054571738344775], [0.588242380436092], [0.6470304782556319], [0.7059390434887363], [0.7059390434887363], [0.7647271413082761], [0.7647271413082761], [0.7647271413082761], [0.6470304782556319], [0.47054571738344775], [0.35296952174436813], [0.23527285869172387], [0.2941814239248283], [0.41175761956390794], [0.588242380436092], [0.7647271413082761], [0.823515239127816], [0.7647271413082761], [0.6470304782556319], [0.47054571738344775], [0.35296952174436813], [0.35296952174436813], [0.35296952174436813], [0.41175761956390794], [0.41175761956390794], [0.41175761956390794], [0.47054571738344775], [0.47054571738344775], [0.47054571738344775], [0.47054571738344775], [0.41175761956390794], [0.35296952174436813], [0.35296952174436813], [0.2941814239248283], [0.35296952174436813], [0.41175761956390794], [0.47054571738344775], [0.41175761956390794], [0.41175761956390794], [0.35296952174436813], [0.35296952174436813], [0.47054571738344775], [0.5294542826165521], [0.588242380436092], [0.588242380436092], [0.588242380436092], [0.5294542826165521], [0.47054571738344775], [0.47054571738344775], [0.5294542826165521], [0.588242380436092], [0.7647271413082761], [0.8823033369473557], [1.0], [0.9412119021804602], [0.7647271413082761], [0.588242380436092], [0.47054571738344775], [0.41175761956390794], [0.41175761956390794], [0.47054571738344775], [0.588242380436092], [0.7059390434887363], [0.7059390434887363], [0.6470304782556319], [0.588242380436092], [0.588242380436092], [0.6470304782556319], [0.6470304782556319], [0.6470304782556319], [0.588242380436092], [0.41175761956390794], [0.2941814239248283], [0.23527285869172387], [0.2941814239248283], [0.41175761956390794], [0.5294542826165521], [0.6470304782556319], [0.6470304782556319], [0.588242380436092], [0.5294542826165521], [0.5294542826165521], [0.5294542826165521], [0.588242380436092], [0.6470304782556319], [0.6470304782556319], [0.588242380436092], [0.47054571738344775], [0.35296952174436813], [0.2941814239248283], [0.23527285869172387], [0.2941814239248283], [0.35296952174436813], [0.41175761956390794], [0.47054571738344775], [0.47054571738344775], [0.35296952174436813], [0.35296952174436813], [0.35296952174436813], [0.41175761956390794], [0.5294542826165521], [0.588242380436092], [0.588242380436092], [0.5294542826165521], [0.41175761956390794], [0.35296952174436813], [0.2941814239248283], [0.2941814239248283], [0.35296952174436813], [0.2941814239248283], [0.2941814239248283], [0.23527285869172387], [0.23527285869172387], [0.23527285869172387], [0.2941814239248283], [0.35296952174436813], [0.47054571738344775], [0.588242380436092], [0.588242380436092], [0.588242380436092], [0.5294542826165521], [0.41175761956390794], [0.35296952174436813], [0.23527285869172387], [0.23527285869172387], [0.17648476087218407], [0.17648476087218407], [0.23527285869172387], [0.17648476087218407], [0.17648476087218407], [0.17648476087218407], [0.23527285869172387], [0.35296952174436813], [0.47054571738344775], [0.588242380436092], [0.7059390434887363], [0.6470304782556319], [0.5294542826165521], [0.35296952174436813], [0.23527285869172387], [0.17648476087218407], [0.17648476087218407], [0.2941814239248283]], "eval_masks": [[0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0]], "forwards": [[0.35296952174436813], [0.47054571738344775], [0.5294542826165521], [0.6470304782556319], [0.588242380436092], [0.588242380436092], [0.5294542826165521], [0.5294542826165521], [0.588242380436092], [0.6470304782556319], [0.6470304782556319], [0.5294542826165521], [0.41175761956390794], [0.17648476087218407], [0.05890856523310443], [0.0], [0.0], [0.11769666305264424], [0.2941814239248283], [0.41175761956390794], [0.41175761956390794], [0.41175761956390794], [0.35296952174436813], [0.2941814239248283], [0.2941814239248283], [0.35296952174436813], [0.41175761956390794], [0.47054571738344775], [0.5294542826165521], [0.47054571738344775], [0.47054571738344775], [0.47054571738344775], [0.41175761956390794], [0.41175761956390794], [0.41175761956390794], [0.35296952174436813], [0.2941814239248283], [0.23527285869172387], [0.11769666305264424], [0.11769666305264424], [0.17648476087218407], [0.2941814239248283], [0.35296952174436813], [0.41175761956390794], [0.41175761956390794], [0.35296952174436813], [0.23527285869172387], [0.11769666305264424], [0.11769666305264424], [0.23527285869172387], [0.35296952174436813], [0.41175761956390794], [0.41175761956390794], [0.35296952174436813], [0.2941814239248283], [0.23527285869172387], [0.2941814239248283], [0.35296952174436813], [0.41175761956390794], [0.47054571738344775], [0.41175761956390794], [0.35296952174436813], [0.35296952174436813], [0.35296952174436813], [0.35296952174436813], [0.41175761956390794], [0.41175761956390794], [0.47054571738344775], [0.41175761956390794], [0.41175761956390794], [0.35296952174436813], [0.35296952174436813], [0.2941814239248283], [0.2941814239248283], [0.2941814239248283], [0.2941814239248283], [0.2941814239248283], [0.2941814239248283], [0.2941814239248283], [0.35296952174436813], [0.47054571738344775], [0.5294542826165521], [0.588242380436092], [0.588242380436092], [0.47054571738344775], [0.2941814239248283], [0.23527285869172387], [0.23527285869172387], [0.2941814239248283], [0.41175761956390794], [0.47054571738344775], [0.5294542826165521], [0.588242380436092], [0.6470304782556319], [0.6470304782556319], [0.588242380436092], [0.47054571738344775], [0.2941814239248283], [0.17648476087218407], [0.11769666305264424], [0.11769666305264424], [0.2941814239248283], [0.41175761956390794], [0.5294542826165521], [0.588242380436092], [0.6470304782556319], [0.6470304782556319], [0.6470304782556319], [0.588242380436092], [0.5294542826165521], [0.47054571738344775], [0.47054571738344775], [0.47054571738344775], [0.47054571738344775], [0.588242380436092], [0.6470304782556319], [0.7059390434887363], [0.7059390434887363], [0.7647271413082761], [0.7647271413082761], [0.7647271413082761], [0.6470304782556319], [0.47054571738344775], [0.35296952174436813], [0.23527285869172387], [0.2941814239248283], [0.41175761956390794], [0.588242380436092], [0.7647271413082761], [0.823515239127816], [0.7647271413082761], [0.6470304782556319], [0.47054571738344775], [0.35296952174436813], [0.35296952174436813], [0.35296952174436813], [0.41175761956390794], [0.41175761956390794], [0.41175761956390794], [0.47054571738344775], [0.47054571738344775], [0.47054571738344775], [0.47054571738344775], [0.41175761956390794], [0.35296952174436813], [0.35296952174436813], [0.2941814239248283], [0.35296952174436813], [0.41175761956390794], [0.47054571738344775], [0.41175761956390794], [0.41175761956390794], [0.35296952174436813], [0.35296952174436813], [0.47054571738344775], [0.5294542826165521], [0.588242380436092], [0.588242380436092], [0.588242380436092], [0.5294542826165521], [0.47054571738344775], [0.47054571738344775], [0.5294542826165521], [0.588242380436092], [0.7647271413082761], [0.8823033369473557], [1.0], [0.9412119021804602], [0.7647271413082761], [0.588242380436092], [0.47054571738344775], [0.41175761956390794], [0.41175761956390794], [0.47054571738344775], [0.588242380436092], [0.7059390434887363], [0.7059390434887363], [0.6470304782556319], [0.588242380436092], [0.588242380436092], [0.6470304782556319], [0.6470304782556319], [0.6470304782556319], [0.588242380436092], [0.41175761956390794], [0.2941814239248283], [0.23527285869172387], [0.2941814239248283], [0.41175761956390794], [0.5294542826165521], [0.6470304782556319], [0.6470304782556319], [0.588242380436092], [0.5294542826165521], [0.5294542826165521], [0.5294542826165521], [0.588242380436092], [0.6470304782556319], [0.6470304782556319], [0.588242380436092], [0.47054571738344775], [0.35296952174436813], [0.2941814239248283], [0.23527285869172387], [0.2941814239248283], [0.35296952174436813], [0.41175761956390794], [0.47054571738344775], [0.47054571738344775], [0.35296952174436813], [0.35296952174436813], [0.35296952174436813], [0.41175761956390794], [0.5294542826165521], [0.588242380436092], [0.588242380436092], [0.5294542826165521], [0.41175761956390794], [0.35296952174436813], [0.2941814239248283], [0.2941814239248283], [0.35296952174436813], [0.2941814239248283], [0.2941814239248283], [0.23527285869172387], [0.23527285869172387], [0.23527285869172387], [0.2941814239248283], [0.35296952174436813], [0.47054571738344775], [0.588242380436092], [0.588242380436092], [0.588242380436092], [0.5294542826165521], [0.41175761956390794], [0.35296952174436813], [0.23527285869172387], [0.23527285869172387], [0.17648476087218407], [0.17648476087218407], [0.23527285869172387], [0.17648476087218407], [0.17648476087218407], [0.17648476087218407], [0.23527285869172387], [0.35296952174436813], [0.47054571738344775], [0.588242380436092], [0.7059390434887363], [0.6470304782556319], [0.5294542826165521], [0.35296952174436813], [0.23527285869172387], [0.17648476087218407], [0.17648476087218407], [0.2941814239248283]], "deltas": [[1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0]]}, "backward": {"values": [[0.2941814239248283], [0.17648476087218407], [0.17648476087218407], [0.23527285869172387], [0.35296952174436813], [0.5294542826165521], [0.6470304782556319], [0.7059390434887363], [0.588242380436092], [0.47054571738344775], [0.35296952174436813], [0.23527285869172387], [0.17648476087218407], [0.17648476087218407], [0.17648476087218407], [0.23527285869172387], [0.17648476087218407], [0.17648476087218407], [0.23527285869172387], [0.23527285869172387], [0.35296952174436813], [0.41175761956390794], [0.5294542826165521], [0.588242380436092], [0.588242380436092], [0.588242380436092], [0.47054571738344775], [0.35296952174436813], [0.2941814239248283], [0.23527285869172387], [0.23527285869172387], [0.23527285869172387], [0.2941814239248283], [0.2941814239248283], [0.35296952174436813], [0.2941814239248283], [0.2941814239248283], [0.35296952174436813], [0.41175761956390794], [0.5294542826165521], [0.588242380436092], [0.588242380436092], [0.5294542826165521], [0.41175761956390794], [0.35296952174436813], [0.35296952174436813], [0.35296952174436813], [0.47054571738344775], [0.47054571738344775], [0.41175761956390794], [0.35296952174436813], [0.2941814239248283], [0.23527285869172387], [0.2941814239248283], [0.35296952174436813], [0.47054571738344775], [0.588242380436092], [0.6470304782556319], [0.6470304782556319], [0.588242380436092], [0.5294542826165521], [0.5294542826165521], [0.5294542826165521], [0.588242380436092], [0.6470304782556319], [0.6470304782556319], [0.5294542826165521], [0.41175761956390794], [0.2941814239248283], [0.23527285869172387], [0.2941814239248283], [0.41175761956390794], [0.588242380436092], [0.6470304782556319], [0.6470304782556319], [0.6470304782556319], [0.588242380436092], [0.588242380436092], [0.6470304782556319], [0.7059390434887363], [0.7059390434887363], [0.588242380436092], [0.47054571738344775], [0.41175761956390794], [0.41175761956390794], [0.47054571738344775], [0.588242380436092], [0.7647271413082761], [0.9412119021804602], [1.0], [0.8823033369473557], [0.7647271413082761], [0.588242380436092], [0.5294542826165521], [0.47054571738344775], [0.47054571738344775], [0.5294542826165521], [0.588242380436092], [0.588242380436092], [0.588242380436092], [0.5294542826165521], [0.47054571738344775], [0.35296952174436813], [0.35296952174436813], [0.41175761956390794], [0.41175761956390794], [0.47054571738344775], [0.41175761956390794], [0.35296952174436813], [0.2941814239248283], [0.35296952174436813], [0.35296952174436813], [0.41175761956390794], [0.47054571738344775], [0.47054571738344775], [0.47054571738344775], [0.47054571738344775], [0.41175761956390794], [0.41175761956390794], [0.41175761956390794], [0.35296952174436813], [0.35296952174436813], [0.35296952174436813], [0.47054571738344775], [0.6470304782556319], [0.7647271413082761], [0.823515239127816], [0.7647271413082761], [0.588242380436092], [0.41175761956390794], [0.2941814239248283], [0.23527285869172387], [0.35296952174436813], [0.47054571738344775], [0.6470304782556319], [0.7647271413082761], [0.7647271413082761], [0.7647271413082761], [0.7059390434887363], [0.7059390434887363], [0.6470304782556319], [0.588242380436092], [0.47054571738344775], [0.47054571738344775], [0.47054571738344775], [0.47054571738344775], [0.5294542826165521], [0.588242380436092], [0.6470304782556319], [0.6470304782556319], [0.6470304782556319], [0.588242380436092], [0.5294542826165521], [0.41175761956390794], [0.2941814239248283], [0.11769666305264424], [0.11769666305264424], [0.17648476087218407], [0.2941814239248283], [0.47054571738344775], [0.588242380436092], [0.6470304782556319], [0.6470304782556319], [0.588242380436092], [0.5294542826165521], [0.47054571738344775], [0.41175761956390794], [0.2941814239248283], [0.23527285869172387], [0.23527285869172387], [0.2941814239248283], [0.47054571738344775], [0.588242380436092], [0.588242380436092], [0.5294542826165521], [0.47054571738344775], [0.35296952174436813], [0.2941814239248283], [0.2941814239248283], [0.2941814239248283], [0.2941814239248283], [0.2941814239248283], [0.2941814239248283], [0.2941814239248283], [0.35296952174436813], [0.35296952174436813], [0.41175761956390794], [0.41175761956390794], [0.47054571738344775], [0.41175761956390794], [0.41175761956390794], [0.35296952174436813], [0.35296952174436813], [0.35296952174436813], [0.35296952174436813], [0.41175761956390794], [0.47054571738344775], [0.41175761956390794], [0.35296952174436813], [0.2941814239248283], [0.23527285869172387], [0.2941814239248283], [0.35296952174436813], [0.41175761956390794], [0.41175761956390794], [0.35296952174436813], [0.23527285869172387], [0.11769666305264424], [0.11769666305264424], [0.23527285869172387], [0.35296952174436813], [0.41175761956390794], [0.41175761956390794], [0.35296952174436813], [0.2941814239248283], [0.17648476087218407], [0.11769666305264424], [0.11769666305264424], [0.23527285869172387], [0.2941814239248283], [0.35296952174436813], [0.41175761956390794], [0.41175761956390794], [0.41175761956390794], [0.47054571738344775], [0.47054571738344775], [0.47054571738344775], [0.5294542826165521], [0.47054571738344775], [0.41175761956390794], [0.35296952174436813], [0.2941814239248283], [0.2941814239248283], [0.35296952174436813], [0.41175761956390794], [0.41175761956390794], [0.41175761956390794], [0.2941814239248283], [0.11769666305264424], [0.0], [0.0], [0.05890856523310443], [0.17648476087218407], [0.41175761956390794], [0.5294542826165521], [0.6470304782556319], [0.6470304782556319], [0.588242380436092], [0.5294542826165521], [0.5294542826165521], [0.588242380436092], [0.588242380436092], [0.6470304782556319], [0.5294542826165521], [0.47054571738344775], [0.35296952174436813]], "masks": [[1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1]], "evals": [[0.2941814239248283], [0.17648476087218407], [0.17648476087218407], [0.23527285869172387], [0.35296952174436813], [0.5294542826165521], [0.6470304782556319], [0.7059390434887363], [0.588242380436092], [0.47054571738344775], [0.35296952174436813], [0.23527285869172387], [0.17648476087218407], [0.17648476087218407], [0.17648476087218407], [0.23527285869172387], [0.17648476087218407], [0.17648476087218407], [0.23527285869172387], [0.23527285869172387], [0.35296952174436813], [0.41175761956390794], [0.5294542826165521], [0.588242380436092], [0.588242380436092], [0.588242380436092], [0.47054571738344775], [0.35296952174436813], [0.2941814239248283], [0.23527285869172387], [0.23527285869172387], [0.23527285869172387], [0.2941814239248283], [0.2941814239248283], [0.35296952174436813], [0.2941814239248283], [0.2941814239248283], [0.35296952174436813], [0.41175761956390794], [0.5294542826165521], [0.588242380436092], [0.588242380436092], [0.5294542826165521], [0.41175761956390794], [0.35296952174436813], [0.35296952174436813], [0.35296952174436813], [0.47054571738344775], [0.47054571738344775], [0.41175761956390794], [0.35296952174436813], [0.2941814239248283], [0.23527285869172387], [0.2941814239248283], [0.35296952174436813], [0.47054571738344775], [0.588242380436092], [0.6470304782556319], [0.6470304782556319], [0.588242380436092], [0.5294542826165521], [0.5294542826165521], [0.5294542826165521], [0.588242380436092], [0.6470304782556319], [0.6470304782556319], [0.5294542826165521], [0.41175761956390794], [0.2941814239248283], [0.23527285869172387], [0.2941814239248283], [0.41175761956390794], [0.588242380436092], [0.6470304782556319], [0.6470304782556319], [0.6470304782556319], [0.588242380436092], [0.588242380436092], [0.6470304782556319], [0.7059390434887363], [0.7059390434887363], [0.588242380436092], [0.47054571738344775], [0.41175761956390794], [0.41175761956390794], [0.47054571738344775], [0.588242380436092], [0.7647271413082761], [0.9412119021804602], [1.0], [0.8823033369473557], [0.7647271413082761], [0.588242380436092], [0.5294542826165521], [0.47054571738344775], [0.47054571738344775], [0.5294542826165521], [0.588242380436092], [0.588242380436092], [0.588242380436092], [0.5294542826165521], [0.47054571738344775], [0.35296952174436813], [0.35296952174436813], [0.41175761956390794], [0.41175761956390794], [0.47054571738344775], [0.41175761956390794], [0.35296952174436813], [0.2941814239248283], [0.35296952174436813], [0.35296952174436813], [0.41175761956390794], [0.47054571738344775], [0.47054571738344775], [0.47054571738344775], [0.47054571738344775], [0.41175761956390794], [0.41175761956390794], [0.41175761956390794], [0.35296952174436813], [0.35296952174436813], [0.35296952174436813], [0.47054571738344775], [0.6470304782556319], [0.7647271413082761], [0.823515239127816], [0.7647271413082761], [0.588242380436092], [0.41175761956390794], [0.2941814239248283], [0.23527285869172387], [0.35296952174436813], [0.47054571738344775], [0.6470304782556319], [0.7647271413082761], [0.7647271413082761], [0.7647271413082761], [0.7059390434887363], [0.7059390434887363], [0.6470304782556319], [0.588242380436092], [0.47054571738344775], [0.47054571738344775], [0.47054571738344775], [0.47054571738344775], [0.5294542826165521], [0.588242380436092], [0.6470304782556319], [0.6470304782556319], [0.6470304782556319], [0.588242380436092], [0.5294542826165521], [0.41175761956390794], [0.2941814239248283], [0.11769666305264424], [0.11769666305264424], [0.17648476087218407], [0.2941814239248283], [0.47054571738344775], [0.588242380436092], [0.6470304782556319], [0.6470304782556319], [0.588242380436092], [0.5294542826165521], [0.47054571738344775], [0.41175761956390794], [0.2941814239248283], [0.23527285869172387], [0.23527285869172387], [0.2941814239248283], [0.47054571738344775], [0.588242380436092], [0.588242380436092], [0.5294542826165521], [0.47054571738344775], [0.35296952174436813], [0.2941814239248283], [0.2941814239248283], [0.2941814239248283], [0.2941814239248283], [0.2941814239248283], [0.2941814239248283], [0.2941814239248283], [0.35296952174436813], [0.35296952174436813], [0.41175761956390794], [0.41175761956390794], [0.47054571738344775], [0.41175761956390794], [0.41175761956390794], [0.35296952174436813], [0.35296952174436813], [0.35296952174436813], [0.35296952174436813], [0.41175761956390794], [0.47054571738344775], [0.41175761956390794], [0.35296952174436813], [0.2941814239248283], [0.23527285869172387], [0.2941814239248283], [0.35296952174436813], [0.41175761956390794], [0.41175761956390794], [0.35296952174436813], [0.23527285869172387], [0.11769666305264424], [0.11769666305264424], [0.23527285869172387], [0.35296952174436813], [0.41175761956390794], [0.41175761956390794], [0.35296952174436813], [0.2941814239248283], [0.17648476087218407], [0.11769666305264424], [0.11769666305264424], [0.23527285869172387], [0.2941814239248283], [0.35296952174436813], [0.41175761956390794], [0.41175761956390794], [0.41175761956390794], [0.47054571738344775], [0.47054571738344775], [0.47054571738344775], [0.5294542826165521], [0.47054571738344775], [0.41175761956390794], [0.35296952174436813], [0.2941814239248283], [0.2941814239248283], [0.35296952174436813], [0.41175761956390794], [0.41175761956390794], [0.41175761956390794], [0.2941814239248283], [0.11769666305264424], [0.0], [0.0], [0.05890856523310443], [0.17648476087218407], [0.41175761956390794], [0.5294542826165521], [0.6470304782556319], [0.6470304782556319], [0.588242380436092], [0.5294542826165521], [0.5294542826165521], [0.588242380436092], [0.588242380436092], [0.6470304782556319], [0.5294542826165521], [0.47054571738344775], [0.35296952174436813]], "eval_masks": [[0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0]], "forwards": [[0.2941814239248283], [0.17648476087218407], [0.17648476087218407], [0.23527285869172387], [0.35296952174436813], [0.5294542826165521], [0.6470304782556319], [0.7059390434887363], [0.588242380436092], [0.47054571738344775], [0.35296952174436813], [0.23527285869172387], [0.17648476087218407], [0.17648476087218407], [0.17648476087218407], [0.23527285869172387], [0.17648476087218407], [0.17648476087218407], [0.23527285869172387], [0.23527285869172387], [0.35296952174436813], [0.41175761956390794], [0.5294542826165521], [0.588242380436092], [0.588242380436092], [0.588242380436092], [0.47054571738344775], [0.35296952174436813], [0.2941814239248283], [0.23527285869172387], [0.23527285869172387], [0.23527285869172387], [0.2941814239248283], [0.2941814239248283], [0.35296952174436813], [0.2941814239248283], [0.2941814239248283], [0.35296952174436813], [0.41175761956390794], [0.5294542826165521], [0.588242380436092], [0.588242380436092], [0.5294542826165521], [0.41175761956390794], [0.35296952174436813], [0.35296952174436813], [0.35296952174436813], [0.47054571738344775], [0.47054571738344775], [0.41175761956390794], [0.35296952174436813], [0.2941814239248283], [0.23527285869172387], [0.2941814239248283], [0.35296952174436813], [0.47054571738344775], [0.588242380436092], [0.6470304782556319], [0.6470304782556319], [0.588242380436092], [0.5294542826165521], [0.5294542826165521], [0.5294542826165521], [0.588242380436092], [0.6470304782556319], [0.6470304782556319], [0.5294542826165521], [0.41175761956390794], [0.2941814239248283], [0.23527285869172387], [0.2941814239248283], [0.41175761956390794], [0.588242380436092], [0.6470304782556319], [0.6470304782556319], [0.6470304782556319], [0.588242380436092], [0.588242380436092], [0.6470304782556319], [0.7059390434887363], [0.7059390434887363], [0.588242380436092], [0.47054571738344775], [0.41175761956390794], [0.41175761956390794], [0.47054571738344775], [0.588242380436092], [0.7647271413082761], [0.9412119021804602], [1.0], [0.8823033369473557], [0.7647271413082761], [0.588242380436092], [0.5294542826165521], [0.47054571738344775], [0.47054571738344775], [0.5294542826165521], [0.588242380436092], [0.588242380436092], [0.588242380436092], [0.5294542826165521], [0.47054571738344775], [0.35296952174436813], [0.35296952174436813], [0.41175761956390794], [0.41175761956390794], [0.47054571738344775], [0.41175761956390794], [0.35296952174436813], [0.2941814239248283], [0.35296952174436813], [0.35296952174436813], [0.41175761956390794], [0.47054571738344775], [0.47054571738344775], [0.47054571738344775], [0.47054571738344775], [0.41175761956390794], [0.41175761956390794], [0.41175761956390794], [0.35296952174436813], [0.35296952174436813], [0.35296952174436813], [0.47054571738344775], [0.6470304782556319], [0.7647271413082761], [0.823515239127816], [0.7647271413082761], [0.588242380436092], [0.41175761956390794], [0.2941814239248283], [0.23527285869172387], [0.35296952174436813], [0.47054571738344775], [0.6470304782556319], [0.7647271413082761], [0.7647271413082761], [0.7647271413082761], [0.7059390434887363], [0.7059390434887363], [0.6470304782556319], [0.588242380436092], [0.47054571738344775], [0.47054571738344775], [0.47054571738344775], [0.47054571738344775], [0.5294542826165521], [0.588242380436092], [0.6470304782556319], [0.6470304782556319], [0.6470304782556319], [0.588242380436092], [0.5294542826165521], [0.41175761956390794], [0.2941814239248283], [0.11769666305264424], [0.11769666305264424], [0.17648476087218407], [0.2941814239248283], [0.47054571738344775], [0.588242380436092], [0.6470304782556319], [0.6470304782556319], [0.588242380436092], [0.5294542826165521], [0.47054571738344775], [0.41175761956390794], [0.2941814239248283], [0.23527285869172387], [0.23527285869172387], [0.2941814239248283], [0.47054571738344775], [0.588242380436092], [0.588242380436092], [0.5294542826165521], [0.47054571738344775], [0.35296952174436813], [0.2941814239248283], [0.2941814239248283], [0.2941814239248283], [0.2941814239248283], [0.2941814239248283], [0.2941814239248283], [0.2941814239248283], [0.35296952174436813], [0.35296952174436813], [0.41175761956390794], [0.41175761956390794], [0.47054571738344775], [0.41175761956390794], [0.41175761956390794], [0.35296952174436813], [0.35296952174436813], [0.35296952174436813], [0.35296952174436813], [0.41175761956390794], [0.47054571738344775], [0.41175761956390794], [0.35296952174436813], [0.2941814239248283], [0.23527285869172387], [0.2941814239248283], [0.35296952174436813], [0.41175761956390794], [0.41175761956390794], [0.35296952174436813], [0.23527285869172387], [0.11769666305264424], [0.11769666305264424], [0.23527285869172387], [0.35296952174436813], [0.41175761956390794], [0.41175761956390794], [0.35296952174436813], [0.2941814239248283], [0.17648476087218407], [0.11769666305264424], [0.11769666305264424], [0.23527285869172387], [0.2941814239248283], [0.35296952174436813], [0.41175761956390794], [0.41175761956390794], [0.41175761956390794], [0.47054571738344775], [0.47054571738344775], [0.47054571738344775], [0.5294542826165521], [0.47054571738344775], [0.41175761956390794], [0.35296952174436813], [0.2941814239248283], [0.2941814239248283], [0.35296952174436813], [0.41175761956390794], [0.41175761956390794], [0.41175761956390794], [0.2941814239248283], [0.11769666305264424], [0.0], [0.0], [0.05890856523310443], [0.17648476087218407], [0.41175761956390794], [0.5294542826165521], [0.6470304782556319], [0.6470304782556319], [0.588242380436092], [0.5294542826165521], [0.5294542826165521], [0.588242380436092], [0.588242380436092], [0.6470304782556319], [0.5294542826165521], [0.47054571738344775], [0.35296952174436813]], "deltas": [[1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0]]}} -{"label": 0, "forward": {"values": [[0.6056305526710511], [0.6760413061036115], [0.7605572862582208], [0.8168916580131533], [0.8168916580131533], [0.7605572862582208], [0.6619649244259836], [0.5774489442713743], [0.507038190838814], [0.47885658243913704], [0.47885658243913704], [0.4929329641167648], [0.47885658243913704], [0.43659859236183235], [0.3802642206068998], [0.3239298488519673], [0.3098534671743395], [0.3521114572516442], [0.47885658243913704], [0.647888542748356], [0.8309680396907811], [0.9577420099226954], [1.0], [0.9718183916003231], [0.8873024114457138], [0.7746336679358486], [0.6901176877812392], [0.647888542748356], [0.6056305526710511], [0.5351909541940695], [0.43659859236183235], [0.3098534671743395], [0.1971847236644745], [0.16900311526479755], [0.21126110534210227], [0.2816718587746626], [0.3239298488519673], [0.3239298488519673], [0.2957770854967117], [0.26759547709703474], [0.2816718587746626], [0.3239298488519673], [0.3802642206068998], [0.4084458290065767], [0.39434060228452755], [0.36618783892927204], [0.3239298488519673], [0.33800623052959505], [0.3802642206068998], [0.43659859236183235], [0.47885658243913704], [0.47885658243913704], [0.45070381908388146], [0.4084458290065767], [0.3802642206068998], [0.3802642206068998], [0.4084458290065767], [0.46478020076150917], [0.5211145725164418], [0.5492961809161188], [0.5492961809161188], [0.5492961809161188], [0.591525325949002], [0.6619649244259836], [0.7464809045805931], [0.8168916580131533], [0.7887100496134766], [0.6619649244259836], [0.507038190838814], [0.3802642206068998], [0.33800623052959505], [0.4084458290065767], [0.5351909541940695], [0.6760413061036115], [0.7464809045805931], [0.6901176877812392], [0.507038190838814], [0.2816718587746626], [0.07041075343256036], [0.0], [0.08448713511018813], [0.3098534671743395], [0.5633725625937465], [0.7605572862582208], [0.8168916580131533], [0.7464809045805931], [0.5774489442713743], [0.39434060228452755], [0.253519095419407], [0.21126110534210227], [0.26759547709703474], [0.39434060228452755], [0.5351909541940695], [0.6337833160263068], [0.6760413061036115], [0.647888542748356], [0.6056305526710511], [0.5774489442713743], [0.5633725625937465], [0.5774489442713743], [0.591525325949002], [0.619706934348679], [0.6337833160263068], [0.647888542748356], [0.6760413061036115], [0.7042229145032884], [0.732375677858544], [0.7464809045805931], [0.7605572862582208], [0.7887100496134766], [0.845044421368409], [0.8873024114457138], [0.9014076381677628], [0.8873024114457138], [0.845044421368409], [0.8168916580131533], [0.8028152763355256], [0.8309680396907811], [0.845044421368409], [0.8591496480904581], [0.8309680396907811], [0.7887100496134766], [0.7182992961809161], [0.6619649244259836], [0.6337833160263068], [0.647888542748356], [0.6901176877812392], [0.7605572862582208], [0.8028152763355256], [0.7887100496134766], [0.7182992961809161], [0.6056305526710511], [0.5211145725164418], [0.507038190838814], [0.5633725625937465], [0.6337833160263068], [0.6760413061036115], [0.6901176877812392], [0.647888542748356], [0.619706934348679], [0.5774489442713743], [0.5351909541940695], [0.46478020076150917], [0.39434060228452755], [0.3521114572516442], [0.33800623052959505], [0.4084458290065767], [0.5211145725164418], [0.619706934348679], [0.6901176877812392], [0.7042229145032884], [0.6760413061036115], [0.6337833160263068], [0.5774489442713743], [0.5633725625937465], [0.5633725625937465], [0.591525325949002], [0.6056305526710511], [0.6056305526710511], [0.5633725625937465], [0.47885658243913704], [0.3802642206068998], [0.33800623052959505], [0.36618783892927204], [0.46478020076150917], [0.6056305526710511], [0.732375677858544], [0.8028152763355256], [0.7605572862582208], [0.647888542748356], [0.4929329641167648], [0.36618783892927204], [0.3521114572516442], [0.45070381908388146], [0.591525325949002], [0.7182992961809161], [0.7464809045805931], [0.6760413061036115], [0.5633725625937465], [0.47885658243913704], [0.45070381908388146], [0.47885658243913704], [0.5492961809161188], [0.6056305526710511], [0.647888542748356], [0.647888542748356], [0.647888542748356], [0.6619649244259836], [0.732375677858544], [0.8168916580131533], [0.8732260297680859], [0.9154840198453905], [0.8732260297680859], [0.7887100496134766], [0.6901176877812392], [0.6760413061036115], [0.732375677858544], [0.8309680396907811], [0.9295604015230183], [0.9295604015230183], [0.8309680396907811], [0.647888542748356], [0.46478020076150917], [0.3521114572516442], [0.3098534671743395], [0.3239298488519673], [0.3802642206068998], [0.4225222106842045], [0.43659859236183235], [0.4225222106842045], [0.4084458290065767], [0.4225222106842045], [0.43659859236183235], [0.47885658243913704], [0.507038190838814], [0.5492961809161188], [0.6056305526710511], [0.6619649244259836], [0.6901176877812392], [0.6619649244259836], [0.6056305526710511], [0.5211145725164418], [0.46478020076150917], [0.46478020076150917], [0.5351909541940695], [0.619706934348679], [0.6901176877812392], [0.7182992961809161], [0.6619649244259836], [0.5633725625937465], [0.43659859236183235], [0.3521114572516442], [0.3239298488519673], [0.3802642206068998], [0.47885658243913704], [0.5633725625937465], [0.591525325949002], [0.5351909541940695], [0.43659859236183235], [0.33800623052959505], [0.3098534671743395], [0.36618783892927204], [0.47885658243913704], [0.5774489442713743], [0.619706934348679], [0.6056305526710511], [0.5211145725164418], [0.43659859236183235], [0.39434060228452755], [0.4225222106842045], [0.507038190838814], [0.619706934348679], [0.732375677858544], [0.7746336679358486], [0.7464809045805931], [0.647888542748356]], "masks": [[1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1]], "evals": [[0.6056305526710511], [0.6760413061036115], [0.7605572862582208], [0.8168916580131533], [0.8168916580131533], [0.7605572862582208], [0.6619649244259836], [0.5774489442713743], [0.507038190838814], [0.47885658243913704], [0.47885658243913704], [0.4929329641167648], [0.47885658243913704], [0.43659859236183235], [0.3802642206068998], [0.3239298488519673], [0.3098534671743395], [0.3521114572516442], [0.47885658243913704], [0.647888542748356], [0.8309680396907811], [0.9577420099226954], [1.0], [0.9718183916003231], [0.8873024114457138], [0.7746336679358486], [0.6901176877812392], [0.647888542748356], [0.6056305526710511], [0.5351909541940695], [0.43659859236183235], [0.3098534671743395], [0.1971847236644745], [0.16900311526479755], [0.21126110534210227], [0.2816718587746626], [0.3239298488519673], [0.3239298488519673], [0.2957770854967117], [0.26759547709703474], [0.2816718587746626], [0.3239298488519673], [0.3802642206068998], [0.4084458290065767], [0.39434060228452755], [0.36618783892927204], [0.3239298488519673], [0.33800623052959505], [0.3802642206068998], [0.43659859236183235], [0.47885658243913704], [0.47885658243913704], [0.45070381908388146], [0.4084458290065767], [0.3802642206068998], [0.3802642206068998], [0.4084458290065767], [0.46478020076150917], [0.5211145725164418], [0.5492961809161188], [0.5492961809161188], [0.5492961809161188], [0.591525325949002], [0.6619649244259836], [0.7464809045805931], [0.8168916580131533], [0.7887100496134766], [0.6619649244259836], [0.507038190838814], [0.3802642206068998], [0.33800623052959505], [0.4084458290065767], [0.5351909541940695], [0.6760413061036115], [0.7464809045805931], [0.6901176877812392], [0.507038190838814], [0.2816718587746626], [0.07041075343256036], [0.0], [0.08448713511018813], [0.3098534671743395], [0.5633725625937465], [0.7605572862582208], [0.8168916580131533], [0.7464809045805931], [0.5774489442713743], [0.39434060228452755], [0.253519095419407], [0.21126110534210227], [0.26759547709703474], [0.39434060228452755], [0.5351909541940695], [0.6337833160263068], [0.6760413061036115], [0.647888542748356], [0.6056305526710511], [0.5774489442713743], [0.5633725625937465], [0.5774489442713743], [0.591525325949002], [0.619706934348679], [0.6337833160263068], [0.647888542748356], [0.6760413061036115], [0.7042229145032884], [0.732375677858544], [0.7464809045805931], [0.7605572862582208], [0.7887100496134766], [0.845044421368409], [0.8873024114457138], [0.9014076381677628], [0.8873024114457138], [0.845044421368409], [0.8168916580131533], [0.8028152763355256], [0.8309680396907811], [0.845044421368409], [0.8591496480904581], [0.8309680396907811], [0.7887100496134766], [0.7182992961809161], [0.6619649244259836], [0.6337833160263068], [0.647888542748356], [0.6901176877812392], [0.7605572862582208], [0.8028152763355256], [0.7887100496134766], [0.7182992961809161], [0.6056305526710511], [0.5211145725164418], [0.507038190838814], [0.5633725625937465], [0.6337833160263068], [0.6760413061036115], [0.6901176877812392], [0.647888542748356], [0.619706934348679], [0.5774489442713743], [0.5351909541940695], [0.46478020076150917], [0.39434060228452755], [0.3521114572516442], [0.33800623052959505], [0.4084458290065767], [0.5211145725164418], [0.619706934348679], [0.6901176877812392], [0.7042229145032884], [0.6760413061036115], [0.6337833160263068], [0.5774489442713743], [0.5633725625937465], [0.5633725625937465], [0.591525325949002], [0.6056305526710511], [0.6056305526710511], [0.5633725625937465], [0.47885658243913704], [0.3802642206068998], [0.33800623052959505], [0.36618783892927204], [0.46478020076150917], [0.6056305526710511], [0.732375677858544], [0.8028152763355256], [0.7605572862582208], [0.647888542748356], [0.4929329641167648], [0.36618783892927204], [0.3521114572516442], [0.45070381908388146], [0.591525325949002], [0.7182992961809161], [0.7464809045805931], [0.6760413061036115], [0.5633725625937465], [0.47885658243913704], [0.45070381908388146], [0.47885658243913704], [0.5492961809161188], [0.6056305526710511], [0.647888542748356], [0.647888542748356], [0.647888542748356], [0.6619649244259836], [0.732375677858544], [0.8168916580131533], [0.8732260297680859], [0.9154840198453905], [0.8732260297680859], [0.7887100496134766], [0.6901176877812392], [0.6760413061036115], [0.732375677858544], [0.8309680396907811], [0.9295604015230183], [0.9295604015230183], [0.8309680396907811], [0.647888542748356], [0.46478020076150917], [0.3521114572516442], [0.3098534671743395], [0.3239298488519673], [0.3802642206068998], [0.4225222106842045], [0.43659859236183235], [0.4225222106842045], [0.4084458290065767], [0.4225222106842045], [0.43659859236183235], [0.47885658243913704], [0.507038190838814], [0.5492961809161188], [0.6056305526710511], [0.6619649244259836], [0.6901176877812392], [0.6619649244259836], [0.6056305526710511], [0.5211145725164418], [0.46478020076150917], [0.46478020076150917], [0.5351909541940695], [0.619706934348679], [0.6901176877812392], [0.7182992961809161], [0.6619649244259836], [0.5633725625937465], [0.43659859236183235], [0.3521114572516442], [0.3239298488519673], [0.3802642206068998], [0.47885658243913704], [0.5633725625937465], [0.591525325949002], [0.5351909541940695], [0.43659859236183235], [0.33800623052959505], [0.3098534671743395], [0.36618783892927204], [0.47885658243913704], [0.5774489442713743], [0.619706934348679], [0.6056305526710511], [0.5211145725164418], [0.43659859236183235], [0.39434060228452755], [0.4225222106842045], [0.507038190838814], [0.619706934348679], [0.732375677858544], [0.7746336679358486], [0.7464809045805931], [0.647888542748356]], "eval_masks": [[0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0]], "forwards": [[0.6056305526710511], [0.6760413061036115], [0.7605572862582208], [0.8168916580131533], [0.8168916580131533], [0.7605572862582208], [0.6619649244259836], [0.5774489442713743], [0.507038190838814], [0.47885658243913704], [0.47885658243913704], [0.4929329641167648], [0.47885658243913704], [0.43659859236183235], [0.3802642206068998], [0.3239298488519673], [0.3098534671743395], [0.3521114572516442], [0.47885658243913704], [0.647888542748356], [0.8309680396907811], [0.9577420099226954], [1.0], [0.9718183916003231], [0.8873024114457138], [0.7746336679358486], [0.6901176877812392], [0.647888542748356], [0.6056305526710511], [0.5351909541940695], [0.43659859236183235], [0.3098534671743395], [0.1971847236644745], [0.16900311526479755], [0.21126110534210227], [0.2816718587746626], [0.3239298488519673], [0.3239298488519673], [0.2957770854967117], [0.26759547709703474], [0.2816718587746626], [0.3239298488519673], [0.3802642206068998], [0.4084458290065767], [0.39434060228452755], [0.36618783892927204], [0.3239298488519673], [0.33800623052959505], [0.3802642206068998], [0.43659859236183235], [0.47885658243913704], [0.47885658243913704], [0.45070381908388146], [0.4084458290065767], [0.3802642206068998], [0.3802642206068998], [0.4084458290065767], [0.46478020076150917], [0.5211145725164418], [0.5492961809161188], [0.5492961809161188], [0.5492961809161188], [0.591525325949002], [0.6619649244259836], [0.7464809045805931], [0.8168916580131533], [0.7887100496134766], [0.6619649244259836], [0.507038190838814], [0.3802642206068998], [0.33800623052959505], [0.4084458290065767], [0.5351909541940695], [0.6760413061036115], [0.7464809045805931], [0.6901176877812392], [0.507038190838814], [0.2816718587746626], [0.07041075343256036], [0.0], [0.08448713511018813], [0.3098534671743395], [0.5633725625937465], [0.7605572862582208], [0.8168916580131533], [0.7464809045805931], [0.5774489442713743], [0.39434060228452755], [0.253519095419407], [0.21126110534210227], [0.26759547709703474], [0.39434060228452755], [0.5351909541940695], [0.6337833160263068], [0.6760413061036115], [0.647888542748356], [0.6056305526710511], [0.5774489442713743], [0.5633725625937465], [0.5774489442713743], [0.591525325949002], [0.619706934348679], [0.6337833160263068], [0.647888542748356], [0.6760413061036115], [0.7042229145032884], [0.732375677858544], [0.7464809045805931], [0.7605572862582208], [0.7887100496134766], [0.845044421368409], [0.8873024114457138], [0.9014076381677628], [0.8873024114457138], [0.845044421368409], [0.8168916580131533], [0.8028152763355256], [0.8309680396907811], [0.845044421368409], [0.8591496480904581], [0.8309680396907811], [0.7887100496134766], [0.7182992961809161], [0.6619649244259836], [0.6337833160263068], [0.647888542748356], [0.6901176877812392], [0.7605572862582208], [0.8028152763355256], [0.7887100496134766], [0.7182992961809161], [0.6056305526710511], [0.5211145725164418], [0.507038190838814], [0.5633725625937465], [0.6337833160263068], [0.6760413061036115], [0.6901176877812392], [0.647888542748356], [0.619706934348679], [0.5774489442713743], [0.5351909541940695], [0.46478020076150917], [0.39434060228452755], [0.3521114572516442], [0.33800623052959505], [0.4084458290065767], [0.5211145725164418], [0.619706934348679], [0.6901176877812392], [0.7042229145032884], [0.6760413061036115], [0.6337833160263068], [0.5774489442713743], [0.5633725625937465], [0.5633725625937465], [0.591525325949002], [0.6056305526710511], [0.6056305526710511], [0.5633725625937465], [0.47885658243913704], [0.3802642206068998], [0.33800623052959505], [0.36618783892927204], [0.46478020076150917], [0.6056305526710511], [0.732375677858544], [0.8028152763355256], [0.7605572862582208], [0.647888542748356], [0.4929329641167648], [0.36618783892927204], [0.3521114572516442], [0.45070381908388146], [0.591525325949002], [0.7182992961809161], [0.7464809045805931], [0.6760413061036115], [0.5633725625937465], [0.47885658243913704], [0.45070381908388146], [0.47885658243913704], [0.5492961809161188], [0.6056305526710511], [0.647888542748356], [0.647888542748356], [0.647888542748356], [0.6619649244259836], [0.732375677858544], [0.8168916580131533], [0.8732260297680859], [0.9154840198453905], [0.8732260297680859], [0.7887100496134766], [0.6901176877812392], [0.6760413061036115], [0.732375677858544], [0.8309680396907811], [0.9295604015230183], [0.9295604015230183], [0.8309680396907811], [0.647888542748356], [0.46478020076150917], [0.3521114572516442], [0.3098534671743395], [0.3239298488519673], [0.3802642206068998], [0.4225222106842045], [0.43659859236183235], [0.4225222106842045], [0.4084458290065767], [0.4225222106842045], [0.43659859236183235], [0.47885658243913704], [0.507038190838814], [0.5492961809161188], [0.6056305526710511], [0.6619649244259836], [0.6901176877812392], [0.6619649244259836], [0.6056305526710511], [0.5211145725164418], [0.46478020076150917], [0.46478020076150917], [0.5351909541940695], [0.619706934348679], [0.6901176877812392], [0.7182992961809161], [0.6619649244259836], [0.5633725625937465], [0.43659859236183235], [0.3521114572516442], [0.3239298488519673], [0.3802642206068998], [0.47885658243913704], [0.5633725625937465], [0.591525325949002], [0.5351909541940695], [0.43659859236183235], [0.33800623052959505], [0.3098534671743395], [0.36618783892927204], [0.47885658243913704], [0.5774489442713743], [0.619706934348679], [0.6056305526710511], [0.5211145725164418], [0.43659859236183235], [0.39434060228452755], [0.4225222106842045], [0.507038190838814], [0.619706934348679], [0.732375677858544], [0.7746336679358486], [0.7464809045805931], [0.647888542748356]], "deltas": [[1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0]]}, "backward": {"values": [[0.647888542748356], [0.7464809045805931], [0.7746336679358486], [0.732375677858544], [0.619706934348679], [0.507038190838814], [0.4225222106842045], [0.39434060228452755], [0.43659859236183235], [0.5211145725164418], [0.6056305526710511], [0.619706934348679], [0.5774489442713743], [0.47885658243913704], [0.36618783892927204], [0.3098534671743395], [0.33800623052959505], [0.43659859236183235], [0.5351909541940695], [0.591525325949002], [0.5633725625937465], [0.47885658243913704], [0.3802642206068998], [0.3239298488519673], [0.3521114572516442], [0.43659859236183235], [0.5633725625937465], [0.6619649244259836], [0.7182992961809161], [0.6901176877812392], [0.619706934348679], [0.5351909541940695], [0.46478020076150917], [0.46478020076150917], [0.5211145725164418], [0.6056305526710511], [0.6619649244259836], [0.6901176877812392], [0.6619649244259836], [0.6056305526710511], [0.5492961809161188], [0.507038190838814], [0.47885658243913704], [0.43659859236183235], [0.4225222106842045], [0.4084458290065767], [0.4225222106842045], [0.43659859236183235], [0.4225222106842045], [0.3802642206068998], [0.3239298488519673], [0.3098534671743395], [0.3521114572516442], [0.46478020076150917], [0.647888542748356], [0.8309680396907811], [0.9295604015230183], [0.9295604015230183], [0.8309680396907811], [0.732375677858544], [0.6760413061036115], [0.6901176877812392], [0.7887100496134766], [0.8732260297680859], [0.9154840198453905], [0.8732260297680859], [0.8168916580131533], [0.732375677858544], [0.6619649244259836], [0.647888542748356], [0.647888542748356], [0.647888542748356], [0.6056305526710511], [0.5492961809161188], [0.47885658243913704], [0.45070381908388146], [0.47885658243913704], [0.5633725625937465], [0.6760413061036115], [0.7464809045805931], [0.7182992961809161], [0.591525325949002], [0.45070381908388146], [0.3521114572516442], [0.36618783892927204], [0.4929329641167648], [0.647888542748356], [0.7605572862582208], [0.8028152763355256], [0.732375677858544], [0.6056305526710511], [0.46478020076150917], [0.36618783892927204], [0.33800623052959505], [0.3802642206068998], [0.47885658243913704], [0.5633725625937465], [0.6056305526710511], [0.6056305526710511], [0.591525325949002], [0.5633725625937465], [0.5633725625937465], [0.5774489442713743], [0.6337833160263068], [0.6760413061036115], [0.7042229145032884], [0.6901176877812392], [0.619706934348679], [0.5211145725164418], [0.4084458290065767], [0.33800623052959505], [0.3521114572516442], [0.39434060228452755], [0.46478020076150917], [0.5351909541940695], [0.5774489442713743], [0.619706934348679], [0.647888542748356], [0.6901176877812392], [0.6760413061036115], [0.6337833160263068], [0.5633725625937465], [0.507038190838814], [0.5211145725164418], [0.6056305526710511], [0.7182992961809161], [0.7887100496134766], [0.8028152763355256], [0.7605572862582208], [0.6901176877812392], [0.647888542748356], [0.6337833160263068], [0.6619649244259836], [0.7182992961809161], [0.7887100496134766], [0.8309680396907811], [0.8591496480904581], [0.845044421368409], [0.8309680396907811], [0.8028152763355256], [0.8168916580131533], [0.845044421368409], [0.8873024114457138], [0.9014076381677628], [0.8873024114457138], [0.845044421368409], [0.7887100496134766], [0.7605572862582208], [0.7464809045805931], [0.732375677858544], [0.7042229145032884], [0.6760413061036115], [0.647888542748356], [0.6337833160263068], [0.619706934348679], [0.591525325949002], [0.5774489442713743], [0.5633725625937465], [0.5774489442713743], [0.6056305526710511], [0.647888542748356], [0.6760413061036115], [0.6337833160263068], [0.5351909541940695], [0.39434060228452755], [0.26759547709703474], [0.21126110534210227], [0.253519095419407], [0.39434060228452755], [0.5774489442713743], [0.7464809045805931], [0.8168916580131533], [0.7605572862582208], [0.5633725625937465], [0.3098534671743395], [0.08448713511018813], [0.0], [0.07041075343256036], [0.2816718587746626], [0.507038190838814], [0.6901176877812392], [0.7464809045805931], [0.6760413061036115], [0.5351909541940695], [0.4084458290065767], [0.33800623052959505], [0.3802642206068998], [0.507038190838814], [0.6619649244259836], [0.7887100496134766], [0.8168916580131533], [0.7464809045805931], [0.6619649244259836], [0.591525325949002], [0.5492961809161188], [0.5492961809161188], [0.5492961809161188], [0.5211145725164418], [0.46478020076150917], [0.4084458290065767], [0.3802642206068998], [0.3802642206068998], [0.4084458290065767], [0.45070381908388146], [0.47885658243913704], [0.47885658243913704], [0.43659859236183235], [0.3802642206068998], [0.33800623052959505], [0.3239298488519673], [0.36618783892927204], [0.39434060228452755], [0.4084458290065767], [0.3802642206068998], [0.3239298488519673], [0.2816718587746626], [0.26759547709703474], [0.2957770854967117], [0.3239298488519673], [0.3239298488519673], [0.2816718587746626], [0.21126110534210227], [0.16900311526479755], [0.1971847236644745], [0.3098534671743395], [0.43659859236183235], [0.5351909541940695], [0.6056305526710511], [0.647888542748356], [0.6901176877812392], [0.7746336679358486], [0.8873024114457138], [0.9718183916003231], [1.0], [0.9577420099226954], [0.8309680396907811], [0.647888542748356], [0.47885658243913704], [0.3521114572516442], [0.3098534671743395], [0.3239298488519673], [0.3802642206068998], [0.43659859236183235], [0.47885658243913704], [0.4929329641167648], [0.47885658243913704], [0.47885658243913704], [0.507038190838814], [0.5774489442713743], [0.6619649244259836], [0.7605572862582208], [0.8168916580131533], [0.8168916580131533], [0.7605572862582208], [0.6760413061036115], [0.6056305526710511]], "masks": [[1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1]], "evals": [[0.647888542748356], [0.7464809045805931], [0.7746336679358486], [0.732375677858544], [0.619706934348679], [0.507038190838814], [0.4225222106842045], [0.39434060228452755], [0.43659859236183235], [0.5211145725164418], [0.6056305526710511], [0.619706934348679], [0.5774489442713743], [0.47885658243913704], [0.36618783892927204], [0.3098534671743395], [0.33800623052959505], [0.43659859236183235], [0.5351909541940695], [0.591525325949002], [0.5633725625937465], [0.47885658243913704], [0.3802642206068998], [0.3239298488519673], [0.3521114572516442], [0.43659859236183235], [0.5633725625937465], [0.6619649244259836], [0.7182992961809161], [0.6901176877812392], [0.619706934348679], [0.5351909541940695], [0.46478020076150917], [0.46478020076150917], [0.5211145725164418], [0.6056305526710511], [0.6619649244259836], [0.6901176877812392], [0.6619649244259836], [0.6056305526710511], [0.5492961809161188], [0.507038190838814], [0.47885658243913704], [0.43659859236183235], [0.4225222106842045], [0.4084458290065767], [0.4225222106842045], [0.43659859236183235], [0.4225222106842045], [0.3802642206068998], [0.3239298488519673], [0.3098534671743395], [0.3521114572516442], [0.46478020076150917], [0.647888542748356], [0.8309680396907811], [0.9295604015230183], [0.9295604015230183], [0.8309680396907811], [0.732375677858544], [0.6760413061036115], [0.6901176877812392], [0.7887100496134766], [0.8732260297680859], [0.9154840198453905], [0.8732260297680859], [0.8168916580131533], [0.732375677858544], [0.6619649244259836], [0.647888542748356], [0.647888542748356], [0.647888542748356], [0.6056305526710511], [0.5492961809161188], [0.47885658243913704], [0.45070381908388146], [0.47885658243913704], [0.5633725625937465], [0.6760413061036115], [0.7464809045805931], [0.7182992961809161], [0.591525325949002], [0.45070381908388146], [0.3521114572516442], [0.36618783892927204], [0.4929329641167648], [0.647888542748356], [0.7605572862582208], [0.8028152763355256], [0.732375677858544], [0.6056305526710511], [0.46478020076150917], [0.36618783892927204], [0.33800623052959505], [0.3802642206068998], [0.47885658243913704], [0.5633725625937465], [0.6056305526710511], [0.6056305526710511], [0.591525325949002], [0.5633725625937465], [0.5633725625937465], [0.5774489442713743], [0.6337833160263068], [0.6760413061036115], [0.7042229145032884], [0.6901176877812392], [0.619706934348679], [0.5211145725164418], [0.4084458290065767], [0.33800623052959505], [0.3521114572516442], [0.39434060228452755], [0.46478020076150917], [0.5351909541940695], [0.5774489442713743], [0.619706934348679], [0.647888542748356], [0.6901176877812392], [0.6760413061036115], [0.6337833160263068], [0.5633725625937465], [0.507038190838814], [0.5211145725164418], [0.6056305526710511], [0.7182992961809161], [0.7887100496134766], [0.8028152763355256], [0.7605572862582208], [0.6901176877812392], [0.647888542748356], [0.6337833160263068], [0.6619649244259836], [0.7182992961809161], [0.7887100496134766], [0.8309680396907811], [0.8591496480904581], [0.845044421368409], [0.8309680396907811], [0.8028152763355256], [0.8168916580131533], [0.845044421368409], [0.8873024114457138], [0.9014076381677628], [0.8873024114457138], [0.845044421368409], [0.7887100496134766], [0.7605572862582208], [0.7464809045805931], [0.732375677858544], [0.7042229145032884], [0.6760413061036115], [0.647888542748356], [0.6337833160263068], [0.619706934348679], [0.591525325949002], [0.5774489442713743], [0.5633725625937465], [0.5774489442713743], [0.6056305526710511], [0.647888542748356], [0.6760413061036115], [0.6337833160263068], [0.5351909541940695], [0.39434060228452755], [0.26759547709703474], [0.21126110534210227], [0.253519095419407], [0.39434060228452755], [0.5774489442713743], [0.7464809045805931], [0.8168916580131533], [0.7605572862582208], [0.5633725625937465], [0.3098534671743395], [0.08448713511018813], [0.0], [0.07041075343256036], [0.2816718587746626], [0.507038190838814], [0.6901176877812392], [0.7464809045805931], [0.6760413061036115], [0.5351909541940695], [0.4084458290065767], [0.33800623052959505], [0.3802642206068998], [0.507038190838814], [0.6619649244259836], [0.7887100496134766], [0.8168916580131533], [0.7464809045805931], [0.6619649244259836], [0.591525325949002], [0.5492961809161188], [0.5492961809161188], [0.5492961809161188], [0.5211145725164418], [0.46478020076150917], [0.4084458290065767], [0.3802642206068998], [0.3802642206068998], [0.4084458290065767], [0.45070381908388146], [0.47885658243913704], [0.47885658243913704], [0.43659859236183235], [0.3802642206068998], [0.33800623052959505], [0.3239298488519673], [0.36618783892927204], [0.39434060228452755], [0.4084458290065767], [0.3802642206068998], [0.3239298488519673], [0.2816718587746626], [0.26759547709703474], [0.2957770854967117], [0.3239298488519673], [0.3239298488519673], [0.2816718587746626], [0.21126110534210227], [0.16900311526479755], [0.1971847236644745], [0.3098534671743395], [0.43659859236183235], [0.5351909541940695], [0.6056305526710511], [0.647888542748356], [0.6901176877812392], [0.7746336679358486], [0.8873024114457138], [0.9718183916003231], [1.0], [0.9577420099226954], [0.8309680396907811], [0.647888542748356], [0.47885658243913704], [0.3521114572516442], [0.3098534671743395], [0.3239298488519673], [0.3802642206068998], [0.43659859236183235], [0.47885658243913704], [0.4929329641167648], [0.47885658243913704], [0.47885658243913704], [0.507038190838814], [0.5774489442713743], [0.6619649244259836], [0.7605572862582208], [0.8168916580131533], [0.8168916580131533], [0.7605572862582208], [0.6760413061036115], [0.6056305526710511]], "eval_masks": [[0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0]], "forwards": [[0.647888542748356], [0.7464809045805931], [0.7746336679358486], [0.732375677858544], [0.619706934348679], [0.507038190838814], [0.4225222106842045], [0.39434060228452755], [0.43659859236183235], [0.5211145725164418], [0.6056305526710511], [0.619706934348679], [0.5774489442713743], [0.47885658243913704], [0.36618783892927204], [0.3098534671743395], [0.33800623052959505], [0.43659859236183235], [0.5351909541940695], [0.591525325949002], [0.5633725625937465], [0.47885658243913704], [0.3802642206068998], [0.3239298488519673], [0.3521114572516442], [0.43659859236183235], [0.5633725625937465], [0.6619649244259836], [0.7182992961809161], [0.6901176877812392], [0.619706934348679], [0.5351909541940695], [0.46478020076150917], [0.46478020076150917], [0.5211145725164418], [0.6056305526710511], [0.6619649244259836], [0.6901176877812392], [0.6619649244259836], [0.6056305526710511], [0.5492961809161188], [0.507038190838814], [0.47885658243913704], [0.43659859236183235], [0.4225222106842045], [0.4084458290065767], [0.4225222106842045], [0.43659859236183235], [0.4225222106842045], [0.3802642206068998], [0.3239298488519673], [0.3098534671743395], [0.3521114572516442], [0.46478020076150917], [0.647888542748356], [0.8309680396907811], [0.9295604015230183], [0.9295604015230183], [0.8309680396907811], [0.732375677858544], [0.6760413061036115], [0.6901176877812392], [0.7887100496134766], [0.8732260297680859], [0.9154840198453905], [0.8732260297680859], [0.8168916580131533], [0.732375677858544], [0.6619649244259836], [0.647888542748356], [0.647888542748356], [0.647888542748356], [0.6056305526710511], [0.5492961809161188], [0.47885658243913704], [0.45070381908388146], [0.47885658243913704], [0.5633725625937465], [0.6760413061036115], [0.7464809045805931], [0.7182992961809161], [0.591525325949002], [0.45070381908388146], [0.3521114572516442], [0.36618783892927204], [0.4929329641167648], [0.647888542748356], [0.7605572862582208], [0.8028152763355256], [0.732375677858544], [0.6056305526710511], [0.46478020076150917], [0.36618783892927204], [0.33800623052959505], [0.3802642206068998], [0.47885658243913704], [0.5633725625937465], [0.6056305526710511], [0.6056305526710511], [0.591525325949002], [0.5633725625937465], [0.5633725625937465], [0.5774489442713743], [0.6337833160263068], [0.6760413061036115], [0.7042229145032884], [0.6901176877812392], [0.619706934348679], [0.5211145725164418], [0.4084458290065767], [0.33800623052959505], [0.3521114572516442], [0.39434060228452755], [0.46478020076150917], [0.5351909541940695], [0.5774489442713743], [0.619706934348679], [0.647888542748356], [0.6901176877812392], [0.6760413061036115], [0.6337833160263068], [0.5633725625937465], [0.507038190838814], [0.5211145725164418], [0.6056305526710511], [0.7182992961809161], [0.7887100496134766], [0.8028152763355256], [0.7605572862582208], [0.6901176877812392], [0.647888542748356], [0.6337833160263068], [0.6619649244259836], [0.7182992961809161], [0.7887100496134766], [0.8309680396907811], [0.8591496480904581], [0.845044421368409], [0.8309680396907811], [0.8028152763355256], [0.8168916580131533], [0.845044421368409], [0.8873024114457138], [0.9014076381677628], [0.8873024114457138], [0.845044421368409], [0.7887100496134766], [0.7605572862582208], [0.7464809045805931], [0.732375677858544], [0.7042229145032884], [0.6760413061036115], [0.647888542748356], [0.6337833160263068], [0.619706934348679], [0.591525325949002], [0.5774489442713743], [0.5633725625937465], [0.5774489442713743], [0.6056305526710511], [0.647888542748356], [0.6760413061036115], [0.6337833160263068], [0.5351909541940695], [0.39434060228452755], [0.26759547709703474], [0.21126110534210227], [0.253519095419407], [0.39434060228452755], [0.5774489442713743], [0.7464809045805931], [0.8168916580131533], [0.7605572862582208], [0.5633725625937465], [0.3098534671743395], [0.08448713511018813], [0.0], [0.07041075343256036], [0.2816718587746626], [0.507038190838814], [0.6901176877812392], [0.7464809045805931], [0.6760413061036115], [0.5351909541940695], [0.4084458290065767], [0.33800623052959505], [0.3802642206068998], [0.507038190838814], [0.6619649244259836], [0.7887100496134766], [0.8168916580131533], [0.7464809045805931], [0.6619649244259836], [0.591525325949002], [0.5492961809161188], [0.5492961809161188], [0.5492961809161188], [0.5211145725164418], [0.46478020076150917], [0.4084458290065767], [0.3802642206068998], [0.3802642206068998], [0.4084458290065767], [0.45070381908388146], [0.47885658243913704], [0.47885658243913704], [0.43659859236183235], [0.3802642206068998], [0.33800623052959505], [0.3239298488519673], [0.36618783892927204], [0.39434060228452755], [0.4084458290065767], [0.3802642206068998], [0.3239298488519673], [0.2816718587746626], [0.26759547709703474], [0.2957770854967117], [0.3239298488519673], [0.3239298488519673], [0.2816718587746626], [0.21126110534210227], [0.16900311526479755], [0.1971847236644745], [0.3098534671743395], [0.43659859236183235], [0.5351909541940695], [0.6056305526710511], [0.647888542748356], [0.6901176877812392], [0.7746336679358486], [0.8873024114457138], [0.9718183916003231], [1.0], [0.9577420099226954], [0.8309680396907811], [0.647888542748356], [0.47885658243913704], [0.3521114572516442], [0.3098534671743395], [0.3239298488519673], [0.3802642206068998], [0.43659859236183235], [0.47885658243913704], [0.4929329641167648], [0.47885658243913704], [0.47885658243913704], [0.507038190838814], [0.5774489442713743], [0.6619649244259836], [0.7605572862582208], [0.8168916580131533], [0.8168916580131533], [0.7605572862582208], [0.6760413061036115], [0.6056305526710511]], "deltas": [[1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0]]}} -{"label": 0, "forward": {"values": [[0.6024132060108075], [0.6506033015027018], [0.7469834924864904], [0.8433636834702791], [0.9036198090162113], [0.8915537789621732], [0.8433636834702791], [0.7951735879783848], [0.7349421373405383], [0.6987933969945961], [0.6626446566486539], [0.5903471759567694], [0.506008340118933], [0.40962814913514445], [0.337355343351346], [0.30120660300540375], [0.31324795815135587], [0.3734794087892022], [0.4939669849729809], [0.6385619463567498], [0.7831322328324327], [0.9156611641621634], [0.9758926148000098], [0.9758926148000098], [0.9156611641621634], [0.8433636834702791], [0.8072149431243368], [0.7831322328324327], [0.7831322328324327], [0.7469834924864904], [0.6746860117946061], [0.5783058208108174], [0.4939669849729809], [0.45781824462703874], [0.4698842746810768], [0.48192562982702886], [0.45781824462703874], [0.3734794087892022], [0.2770992178054136], [0.20480173711352917], [0.20480173711352917], [0.2650578626594615], [0.337355343351346], [0.3734794087892022], [0.3614380536432501], [0.30120660300540375], [0.24095047745947137], [0.21686776716756725], [0.24095047745947137], [0.28914057295136575], [0.3614380536432501], [0.3975867939891924], [0.3855454388432403], [0.337355343351346], [0.28914057295136575], [0.2770992178054136], [0.30120660300540375], [0.3614380536432501], [0.4216695042810965], [0.4457768894810866], [0.4337355343351345], [0.40962814913514445], [0.3975867939891924], [0.4337355343351345], [0.4939669849729809], [0.5421570804648752], [0.5421570804648752], [0.48192562982702886], [0.3614380536432501], [0.2650578626594615], [0.21686776716756725], [0.25301650751350946], [0.3734794087892022], [0.506008340118933], [0.5903471759567694], [0.5662644656648653], [0.4337355343351345], [0.22890912231351931], [0.060231450637846344], [0.0], [0.08433883583783648], [0.2650578626594615], [0.4698842746810768], [0.5903471759567694], [0.6264959163027117], [0.5542231105189133], [0.4337355343351345], [0.30120660300540375], [0.21686776716756725], [0.18071902682162505], [0.21686776716756725], [0.3252893132973079], [0.4698842746810768], [0.6024132060108075], [0.686752041848644], [0.7108347521405483], [0.686752041848644], [0.6385619463567498], [0.6144545611567596], [0.6264959163027117], [0.6506033015027018], [0.6506033015027018], [0.6385619463567498], [0.6144545611567596], [0.6144545611567596], [0.6264959163027117], [0.6385619463567498], [0.6144545611567596], [0.5662644656648653], [0.5180743701729711], [0.506008340118933], [0.5301157253189231], [0.5662644656648653], [0.5903471759567694], [0.6024132060108075], [0.6024132060108075], [0.6385619463567498], [0.7108347521405483], [0.7951735879783848], [0.8554297135243171], [0.8674710686702691], [0.8072149431243368], [0.7349421373405383], [0.686752041848644], [0.6626446566486539], [0.6987933969945961], [0.7710908776864805], [0.8433636834702791], [0.8795124238162212], [0.8674710686702691], [0.7951735879783848], [0.686752041848644], [0.5662644656648653], [0.506008340118933], [0.5180743701729711], [0.5783058208108174], [0.6385619463567498], [0.6506033015027018], [0.6024132060108075], [0.5421570804648752], [0.4939669849729809], [0.4698842746810768], [0.4457768894810866], [0.4216695042810965], [0.3614380536432501], [0.31324795815135587], [0.3252893132973079], [0.3975867939891924], [0.506008340118933], [0.6144545611567596], [0.6506033015027018], [0.6264959163027117], [0.5542231105189133], [0.4939669849729809], [0.48192562982702886], [0.5180743701729711], [0.5783058208108174], [0.6144545611567596], [0.6024132060108075], [0.5180743701729711], [0.4216695042810965], [0.3252893132973079], [0.3252893132973079], [0.4337355343351345], [0.6144545611567596], [0.7831322328324327], [0.8674710686702691], [0.8313223283243268], [0.6746860117946061], [0.48192562982702886], [0.31324795815135587], [0.25301650751350946], [0.28914057295136575], [0.40962814913514445], [0.5301157253189231], [0.6144545611567596], [0.6264959163027117], [0.5903471759567694], [0.5301157253189231], [0.506008340118933], [0.4939669849729809], [0.506008340118933], [0.5180743701729711], [0.506008340118933], [0.4698842746810768], [0.4216695042810965], [0.3975867939891924], [0.4457768894810866], [0.5542231105189133], [0.7229007821945862], [0.8915537789621732], [1.0], [1.0], [0.9277025193081154], [0.8192809731783748], [0.7349421373405383], [0.6987933969945961], [0.7108347521405483], [0.7229007821945862], [0.6746860117946061], [0.5542231105189133], [0.40962814913514445], [0.2770992178054136], [0.24095047745947137], [0.28914057295136575], [0.40962814913514445], [0.506008340118933], [0.5542231105189133], [0.5180743701729711], [0.4337355343351345], [0.3614380536432501], [0.337355343351346], [0.3855454388432403], [0.4698842746810768], [0.5662644656648653], [0.6385619463567498], [0.6746860117946061], [0.686752041848644], [0.6746860117946061], [0.6385619463567498], [0.5783058208108174], [0.5180743701729711], [0.4698842746810768], [0.48192562982702886], [0.5180743701729711], [0.5783058208108174], [0.6144545611567596], [0.6264959163027117], [0.6024132060108075], [0.5421570804648752], [0.48192562982702886], [0.4216695042810965], [0.3855454388432403], [0.3734794087892022], [0.40962814913514445], [0.4457768894810866], [0.48192562982702886], [0.4939669849729809], [0.48192562982702886], [0.4457768894810866], [0.4457768894810866], [0.4698842746810768], [0.506008340118933], [0.5421570804648752], [0.5421570804648752], [0.5301157253189231], [0.506008340118933], [0.48192562982702886], [0.4698842746810768], [0.4698842746810768], [0.48192562982702886], [0.506008340118933], [0.5662644656648653], [0.6264959163027117], [0.686752041848644], [0.7108347521405483]], "masks": [[1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1]], "evals": [[0.6024132060108075], [0.6506033015027018], [0.7469834924864904], [0.8433636834702791], [0.9036198090162113], [0.8915537789621732], [0.8433636834702791], [0.7951735879783848], [0.7349421373405383], [0.6987933969945961], [0.6626446566486539], [0.5903471759567694], [0.506008340118933], [0.40962814913514445], [0.337355343351346], [0.30120660300540375], [0.31324795815135587], [0.3734794087892022], [0.4939669849729809], [0.6385619463567498], [0.7831322328324327], [0.9156611641621634], [0.9758926148000098], [0.9758926148000098], [0.9156611641621634], [0.8433636834702791], [0.8072149431243368], [0.7831322328324327], [0.7831322328324327], [0.7469834924864904], [0.6746860117946061], [0.5783058208108174], [0.4939669849729809], [0.45781824462703874], [0.4698842746810768], [0.48192562982702886], [0.45781824462703874], [0.3734794087892022], [0.2770992178054136], [0.20480173711352917], [0.20480173711352917], [0.2650578626594615], [0.337355343351346], [0.3734794087892022], [0.3614380536432501], [0.30120660300540375], [0.24095047745947137], [0.21686776716756725], [0.24095047745947137], [0.28914057295136575], [0.3614380536432501], [0.3975867939891924], [0.3855454388432403], [0.337355343351346], [0.28914057295136575], [0.2770992178054136], [0.30120660300540375], [0.3614380536432501], [0.4216695042810965], [0.4457768894810866], [0.4337355343351345], [0.40962814913514445], [0.3975867939891924], [0.4337355343351345], [0.4939669849729809], [0.5421570804648752], [0.5421570804648752], [0.48192562982702886], [0.3614380536432501], [0.2650578626594615], [0.21686776716756725], [0.25301650751350946], [0.3734794087892022], [0.506008340118933], [0.5903471759567694], [0.5662644656648653], [0.4337355343351345], [0.22890912231351931], [0.060231450637846344], [0.0], [0.08433883583783648], [0.2650578626594615], [0.4698842746810768], [0.5903471759567694], [0.6264959163027117], [0.5542231105189133], [0.4337355343351345], [0.30120660300540375], [0.21686776716756725], [0.18071902682162505], [0.21686776716756725], [0.3252893132973079], [0.4698842746810768], [0.6024132060108075], [0.686752041848644], [0.7108347521405483], [0.686752041848644], [0.6385619463567498], [0.6144545611567596], [0.6264959163027117], [0.6506033015027018], [0.6506033015027018], [0.6385619463567498], [0.6144545611567596], [0.6144545611567596], [0.6264959163027117], [0.6385619463567498], [0.6144545611567596], [0.5662644656648653], [0.5180743701729711], [0.506008340118933], [0.5301157253189231], [0.5662644656648653], [0.5903471759567694], [0.6024132060108075], [0.6024132060108075], [0.6385619463567498], [0.7108347521405483], [0.7951735879783848], [0.8554297135243171], [0.8674710686702691], [0.8072149431243368], [0.7349421373405383], [0.686752041848644], [0.6626446566486539], [0.6987933969945961], [0.7710908776864805], [0.8433636834702791], [0.8795124238162212], [0.8674710686702691], [0.7951735879783848], [0.686752041848644], [0.5662644656648653], [0.506008340118933], [0.5180743701729711], [0.5783058208108174], [0.6385619463567498], [0.6506033015027018], [0.6024132060108075], [0.5421570804648752], [0.4939669849729809], [0.4698842746810768], [0.4457768894810866], [0.4216695042810965], [0.3614380536432501], [0.31324795815135587], [0.3252893132973079], [0.3975867939891924], [0.506008340118933], [0.6144545611567596], [0.6506033015027018], [0.6264959163027117], [0.5542231105189133], [0.4939669849729809], [0.48192562982702886], [0.5180743701729711], [0.5783058208108174], [0.6144545611567596], [0.6024132060108075], [0.5180743701729711], [0.4216695042810965], [0.3252893132973079], [0.3252893132973079], [0.4337355343351345], [0.6144545611567596], [0.7831322328324327], [0.8674710686702691], [0.8313223283243268], [0.6746860117946061], [0.48192562982702886], [0.31324795815135587], [0.25301650751350946], [0.28914057295136575], [0.40962814913514445], [0.5301157253189231], [0.6144545611567596], [0.6264959163027117], [0.5903471759567694], [0.5301157253189231], [0.506008340118933], [0.4939669849729809], [0.506008340118933], [0.5180743701729711], [0.506008340118933], [0.4698842746810768], [0.4216695042810965], [0.3975867939891924], [0.4457768894810866], [0.5542231105189133], [0.7229007821945862], [0.8915537789621732], [1.0], [1.0], [0.9277025193081154], [0.8192809731783748], [0.7349421373405383], [0.6987933969945961], [0.7108347521405483], [0.7229007821945862], [0.6746860117946061], [0.5542231105189133], [0.40962814913514445], [0.2770992178054136], [0.24095047745947137], [0.28914057295136575], [0.40962814913514445], [0.506008340118933], [0.5542231105189133], [0.5180743701729711], [0.4337355343351345], [0.3614380536432501], [0.337355343351346], [0.3855454388432403], [0.4698842746810768], [0.5662644656648653], [0.6385619463567498], [0.6746860117946061], [0.686752041848644], [0.6746860117946061], [0.6385619463567498], [0.5783058208108174], [0.5180743701729711], [0.4698842746810768], [0.48192562982702886], [0.5180743701729711], [0.5783058208108174], [0.6144545611567596], [0.6264959163027117], [0.6024132060108075], [0.5421570804648752], [0.48192562982702886], [0.4216695042810965], [0.3855454388432403], [0.3734794087892022], [0.40962814913514445], [0.4457768894810866], [0.48192562982702886], [0.4939669849729809], [0.48192562982702886], [0.4457768894810866], [0.4457768894810866], [0.4698842746810768], [0.506008340118933], [0.5421570804648752], [0.5421570804648752], [0.5301157253189231], [0.506008340118933], [0.48192562982702886], [0.4698842746810768], [0.4698842746810768], [0.48192562982702886], [0.506008340118933], [0.5662644656648653], [0.6264959163027117], [0.686752041848644], [0.7108347521405483]], "eval_masks": [[0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0]], "forwards": [[0.6024132060108075], [0.6506033015027018], [0.7469834924864904], [0.8433636834702791], [0.9036198090162113], [0.8915537789621732], [0.8433636834702791], [0.7951735879783848], [0.7349421373405383], [0.6987933969945961], [0.6626446566486539], [0.5903471759567694], [0.506008340118933], [0.40962814913514445], [0.337355343351346], [0.30120660300540375], [0.31324795815135587], [0.3734794087892022], [0.4939669849729809], [0.6385619463567498], [0.7831322328324327], [0.9156611641621634], [0.9758926148000098], [0.9758926148000098], [0.9156611641621634], [0.8433636834702791], [0.8072149431243368], [0.7831322328324327], [0.7831322328324327], [0.7469834924864904], [0.6746860117946061], [0.5783058208108174], [0.4939669849729809], [0.45781824462703874], [0.4698842746810768], [0.48192562982702886], [0.45781824462703874], [0.3734794087892022], [0.2770992178054136], [0.20480173711352917], [0.20480173711352917], [0.2650578626594615], [0.337355343351346], [0.3734794087892022], [0.3614380536432501], [0.30120660300540375], [0.24095047745947137], [0.21686776716756725], [0.24095047745947137], [0.28914057295136575], [0.3614380536432501], [0.3975867939891924], [0.3855454388432403], [0.337355343351346], [0.28914057295136575], [0.2770992178054136], [0.30120660300540375], [0.3614380536432501], [0.4216695042810965], [0.4457768894810866], [0.4337355343351345], [0.40962814913514445], [0.3975867939891924], [0.4337355343351345], [0.4939669849729809], [0.5421570804648752], [0.5421570804648752], [0.48192562982702886], [0.3614380536432501], [0.2650578626594615], [0.21686776716756725], [0.25301650751350946], [0.3734794087892022], [0.506008340118933], [0.5903471759567694], [0.5662644656648653], [0.4337355343351345], [0.22890912231351931], [0.060231450637846344], [0.0], [0.08433883583783648], [0.2650578626594615], [0.4698842746810768], [0.5903471759567694], [0.6264959163027117], [0.5542231105189133], [0.4337355343351345], [0.30120660300540375], [0.21686776716756725], [0.18071902682162505], [0.21686776716756725], [0.3252893132973079], [0.4698842746810768], [0.6024132060108075], [0.686752041848644], [0.7108347521405483], [0.686752041848644], [0.6385619463567498], [0.6144545611567596], [0.6264959163027117], [0.6506033015027018], [0.6506033015027018], [0.6385619463567498], [0.6144545611567596], [0.6144545611567596], [0.6264959163027117], [0.6385619463567498], [0.6144545611567596], [0.5662644656648653], [0.5180743701729711], [0.506008340118933], [0.5301157253189231], [0.5662644656648653], [0.5903471759567694], [0.6024132060108075], [0.6024132060108075], [0.6385619463567498], [0.7108347521405483], [0.7951735879783848], [0.8554297135243171], [0.8674710686702691], [0.8072149431243368], [0.7349421373405383], [0.686752041848644], [0.6626446566486539], [0.6987933969945961], [0.7710908776864805], [0.8433636834702791], [0.8795124238162212], [0.8674710686702691], [0.7951735879783848], [0.686752041848644], [0.5662644656648653], [0.506008340118933], [0.5180743701729711], [0.5783058208108174], [0.6385619463567498], [0.6506033015027018], [0.6024132060108075], [0.5421570804648752], [0.4939669849729809], [0.4698842746810768], [0.4457768894810866], [0.4216695042810965], [0.3614380536432501], [0.31324795815135587], [0.3252893132973079], [0.3975867939891924], [0.506008340118933], [0.6144545611567596], [0.6506033015027018], [0.6264959163027117], [0.5542231105189133], [0.4939669849729809], [0.48192562982702886], [0.5180743701729711], [0.5783058208108174], [0.6144545611567596], [0.6024132060108075], [0.5180743701729711], [0.4216695042810965], [0.3252893132973079], [0.3252893132973079], [0.4337355343351345], [0.6144545611567596], [0.7831322328324327], [0.8674710686702691], [0.8313223283243268], [0.6746860117946061], [0.48192562982702886], [0.31324795815135587], [0.25301650751350946], [0.28914057295136575], [0.40962814913514445], [0.5301157253189231], [0.6144545611567596], [0.6264959163027117], [0.5903471759567694], [0.5301157253189231], [0.506008340118933], [0.4939669849729809], [0.506008340118933], [0.5180743701729711], [0.506008340118933], [0.4698842746810768], [0.4216695042810965], [0.3975867939891924], [0.4457768894810866], [0.5542231105189133], [0.7229007821945862], [0.8915537789621732], [1.0], [1.0], [0.9277025193081154], [0.8192809731783748], [0.7349421373405383], [0.6987933969945961], [0.7108347521405483], [0.7229007821945862], [0.6746860117946061], [0.5542231105189133], [0.40962814913514445], [0.2770992178054136], [0.24095047745947137], [0.28914057295136575], [0.40962814913514445], [0.506008340118933], [0.5542231105189133], [0.5180743701729711], [0.4337355343351345], [0.3614380536432501], [0.337355343351346], [0.3855454388432403], [0.4698842746810768], [0.5662644656648653], [0.6385619463567498], [0.6746860117946061], [0.686752041848644], [0.6746860117946061], [0.6385619463567498], [0.5783058208108174], [0.5180743701729711], [0.4698842746810768], [0.48192562982702886], [0.5180743701729711], [0.5783058208108174], [0.6144545611567596], [0.6264959163027117], [0.6024132060108075], [0.5421570804648752], [0.48192562982702886], [0.4216695042810965], [0.3855454388432403], [0.3734794087892022], [0.40962814913514445], [0.4457768894810866], [0.48192562982702886], [0.4939669849729809], [0.48192562982702886], [0.4457768894810866], [0.4457768894810866], [0.4698842746810768], [0.506008340118933], [0.5421570804648752], [0.5421570804648752], [0.5301157253189231], [0.506008340118933], [0.48192562982702886], [0.4698842746810768], [0.4698842746810768], [0.48192562982702886], [0.506008340118933], [0.5662644656648653], [0.6264959163027117], [0.686752041848644], [0.7108347521405483]], "deltas": [[1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0]]}, "backward": {"values": [[0.7108347521405483], [0.686752041848644], [0.6264959163027117], [0.5662644656648653], [0.506008340118933], [0.48192562982702886], [0.4698842746810768], [0.4698842746810768], [0.48192562982702886], [0.506008340118933], [0.5301157253189231], [0.5421570804648752], [0.5421570804648752], [0.506008340118933], [0.4698842746810768], [0.4457768894810866], [0.4457768894810866], [0.48192562982702886], [0.4939669849729809], [0.48192562982702886], [0.4457768894810866], [0.40962814913514445], [0.3734794087892022], [0.3855454388432403], [0.4216695042810965], [0.48192562982702886], [0.5421570804648752], [0.6024132060108075], [0.6264959163027117], [0.6144545611567596], [0.5783058208108174], [0.5180743701729711], [0.48192562982702886], [0.4698842746810768], [0.5180743701729711], [0.5783058208108174], [0.6385619463567498], [0.6746860117946061], [0.686752041848644], [0.6746860117946061], [0.6385619463567498], [0.5662644656648653], [0.4698842746810768], [0.3855454388432403], [0.337355343351346], [0.3614380536432501], [0.4337355343351345], [0.5180743701729711], [0.5542231105189133], [0.506008340118933], [0.40962814913514445], [0.28914057295136575], [0.24095047745947137], [0.2770992178054136], [0.40962814913514445], [0.5542231105189133], [0.6746860117946061], [0.7229007821945862], [0.7108347521405483], [0.6987933969945961], [0.7349421373405383], [0.8192809731783748], [0.9277025193081154], [1.0], [1.0], [0.8915537789621732], [0.7229007821945862], [0.5542231105189133], [0.4457768894810866], [0.3975867939891924], [0.4216695042810965], [0.4698842746810768], [0.506008340118933], [0.5180743701729711], [0.506008340118933], [0.4939669849729809], [0.506008340118933], [0.5301157253189231], [0.5903471759567694], [0.6264959163027117], [0.6144545611567596], [0.5301157253189231], [0.40962814913514445], [0.28914057295136575], [0.25301650751350946], [0.31324795815135587], [0.48192562982702886], [0.6746860117946061], [0.8313223283243268], [0.8674710686702691], [0.7831322328324327], [0.6144545611567596], [0.4337355343351345], [0.3252893132973079], [0.3252893132973079], [0.4216695042810965], [0.5180743701729711], [0.6024132060108075], [0.6144545611567596], [0.5783058208108174], [0.5180743701729711], [0.48192562982702886], [0.4939669849729809], [0.5542231105189133], [0.6264959163027117], [0.6506033015027018], [0.6144545611567596], [0.506008340118933], [0.3975867939891924], [0.3252893132973079], [0.31324795815135587], [0.3614380536432501], [0.4216695042810965], [0.4457768894810866], [0.4698842746810768], [0.4939669849729809], [0.5421570804648752], [0.6024132060108075], [0.6506033015027018], [0.6385619463567498], [0.5783058208108174], [0.5180743701729711], [0.506008340118933], [0.5662644656648653], [0.686752041848644], [0.7951735879783848], [0.8674710686702691], [0.8795124238162212], [0.8433636834702791], [0.7710908776864805], [0.6987933969945961], [0.6626446566486539], [0.686752041848644], [0.7349421373405383], [0.8072149431243368], [0.8674710686702691], [0.8554297135243171], [0.7951735879783848], [0.7108347521405483], [0.6385619463567498], [0.6024132060108075], [0.6024132060108075], [0.5903471759567694], [0.5662644656648653], [0.5301157253189231], [0.506008340118933], [0.5180743701729711], [0.5662644656648653], [0.6144545611567596], [0.6385619463567498], [0.6264959163027117], [0.6144545611567596], [0.6144545611567596], [0.6385619463567498], [0.6506033015027018], [0.6506033015027018], [0.6264959163027117], [0.6144545611567596], [0.6385619463567498], [0.686752041848644], [0.7108347521405483], [0.686752041848644], [0.6024132060108075], [0.4698842746810768], [0.3252893132973079], [0.21686776716756725], [0.18071902682162505], [0.21686776716756725], [0.30120660300540375], [0.4337355343351345], [0.5542231105189133], [0.6264959163027117], [0.5903471759567694], [0.4698842746810768], [0.2650578626594615], [0.08433883583783648], [0.0], [0.060231450637846344], [0.22890912231351931], [0.4337355343351345], [0.5662644656648653], [0.5903471759567694], [0.506008340118933], [0.3734794087892022], [0.25301650751350946], [0.21686776716756725], [0.2650578626594615], [0.3614380536432501], [0.48192562982702886], [0.5421570804648752], [0.5421570804648752], [0.4939669849729809], [0.4337355343351345], [0.3975867939891924], [0.40962814913514445], [0.4337355343351345], [0.4457768894810866], [0.4216695042810965], [0.3614380536432501], [0.30120660300540375], [0.2770992178054136], [0.28914057295136575], [0.337355343351346], [0.3855454388432403], [0.3975867939891924], [0.3614380536432501], [0.28914057295136575], [0.24095047745947137], [0.21686776716756725], [0.24095047745947137], [0.30120660300540375], [0.3614380536432501], [0.3734794087892022], [0.337355343351346], [0.2650578626594615], [0.20480173711352917], [0.20480173711352917], [0.2770992178054136], [0.3734794087892022], [0.45781824462703874], [0.48192562982702886], [0.4698842746810768], [0.45781824462703874], [0.4939669849729809], [0.5783058208108174], [0.6746860117946061], [0.7469834924864904], [0.7831322328324327], [0.7831322328324327], [0.8072149431243368], [0.8433636834702791], [0.9156611641621634], [0.9758926148000098], [0.9758926148000098], [0.9156611641621634], [0.7831322328324327], [0.6385619463567498], [0.4939669849729809], [0.3734794087892022], [0.31324795815135587], [0.30120660300540375], [0.337355343351346], [0.40962814913514445], [0.506008340118933], [0.5903471759567694], [0.6626446566486539], [0.6987933969945961], [0.7349421373405383], [0.7951735879783848], [0.8433636834702791], [0.8915537789621732], [0.9036198090162113], [0.8433636834702791], [0.7469834924864904], [0.6506033015027018], [0.6024132060108075]], "masks": [[1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1]], "evals": [[0.7108347521405483], [0.686752041848644], [0.6264959163027117], [0.5662644656648653], [0.506008340118933], [0.48192562982702886], [0.4698842746810768], [0.4698842746810768], [0.48192562982702886], [0.506008340118933], [0.5301157253189231], [0.5421570804648752], [0.5421570804648752], [0.506008340118933], [0.4698842746810768], [0.4457768894810866], [0.4457768894810866], [0.48192562982702886], [0.4939669849729809], [0.48192562982702886], [0.4457768894810866], [0.40962814913514445], [0.3734794087892022], [0.3855454388432403], [0.4216695042810965], [0.48192562982702886], [0.5421570804648752], [0.6024132060108075], [0.6264959163027117], [0.6144545611567596], [0.5783058208108174], [0.5180743701729711], [0.48192562982702886], [0.4698842746810768], [0.5180743701729711], [0.5783058208108174], [0.6385619463567498], [0.6746860117946061], [0.686752041848644], [0.6746860117946061], [0.6385619463567498], [0.5662644656648653], [0.4698842746810768], [0.3855454388432403], [0.337355343351346], [0.3614380536432501], [0.4337355343351345], [0.5180743701729711], [0.5542231105189133], [0.506008340118933], [0.40962814913514445], [0.28914057295136575], [0.24095047745947137], [0.2770992178054136], [0.40962814913514445], [0.5542231105189133], [0.6746860117946061], [0.7229007821945862], [0.7108347521405483], [0.6987933969945961], [0.7349421373405383], [0.8192809731783748], [0.9277025193081154], [1.0], [1.0], [0.8915537789621732], [0.7229007821945862], [0.5542231105189133], [0.4457768894810866], [0.3975867939891924], [0.4216695042810965], [0.4698842746810768], [0.506008340118933], [0.5180743701729711], [0.506008340118933], [0.4939669849729809], [0.506008340118933], [0.5301157253189231], [0.5903471759567694], [0.6264959163027117], [0.6144545611567596], [0.5301157253189231], [0.40962814913514445], [0.28914057295136575], [0.25301650751350946], [0.31324795815135587], [0.48192562982702886], [0.6746860117946061], [0.8313223283243268], [0.8674710686702691], [0.7831322328324327], [0.6144545611567596], [0.4337355343351345], [0.3252893132973079], [0.3252893132973079], [0.4216695042810965], [0.5180743701729711], [0.6024132060108075], [0.6144545611567596], [0.5783058208108174], [0.5180743701729711], [0.48192562982702886], [0.4939669849729809], [0.5542231105189133], [0.6264959163027117], [0.6506033015027018], [0.6144545611567596], [0.506008340118933], [0.3975867939891924], [0.3252893132973079], [0.31324795815135587], [0.3614380536432501], [0.4216695042810965], [0.4457768894810866], [0.4698842746810768], [0.4939669849729809], [0.5421570804648752], [0.6024132060108075], [0.6506033015027018], [0.6385619463567498], [0.5783058208108174], [0.5180743701729711], [0.506008340118933], [0.5662644656648653], [0.686752041848644], [0.7951735879783848], [0.8674710686702691], [0.8795124238162212], [0.8433636834702791], [0.7710908776864805], [0.6987933969945961], [0.6626446566486539], [0.686752041848644], [0.7349421373405383], [0.8072149431243368], [0.8674710686702691], [0.8554297135243171], [0.7951735879783848], [0.7108347521405483], [0.6385619463567498], [0.6024132060108075], [0.6024132060108075], [0.5903471759567694], [0.5662644656648653], [0.5301157253189231], [0.506008340118933], [0.5180743701729711], [0.5662644656648653], [0.6144545611567596], [0.6385619463567498], [0.6264959163027117], [0.6144545611567596], [0.6144545611567596], [0.6385619463567498], [0.6506033015027018], [0.6506033015027018], [0.6264959163027117], [0.6144545611567596], [0.6385619463567498], [0.686752041848644], [0.7108347521405483], [0.686752041848644], [0.6024132060108075], [0.4698842746810768], [0.3252893132973079], [0.21686776716756725], [0.18071902682162505], [0.21686776716756725], [0.30120660300540375], [0.4337355343351345], [0.5542231105189133], [0.6264959163027117], [0.5903471759567694], [0.4698842746810768], [0.2650578626594615], [0.08433883583783648], [0.0], [0.060231450637846344], [0.22890912231351931], [0.4337355343351345], [0.5662644656648653], [0.5903471759567694], [0.506008340118933], [0.3734794087892022], [0.25301650751350946], [0.21686776716756725], [0.2650578626594615], [0.3614380536432501], [0.48192562982702886], [0.5421570804648752], [0.5421570804648752], [0.4939669849729809], [0.4337355343351345], [0.3975867939891924], [0.40962814913514445], [0.4337355343351345], [0.4457768894810866], [0.4216695042810965], [0.3614380536432501], [0.30120660300540375], [0.2770992178054136], [0.28914057295136575], [0.337355343351346], [0.3855454388432403], [0.3975867939891924], [0.3614380536432501], [0.28914057295136575], [0.24095047745947137], [0.21686776716756725], [0.24095047745947137], [0.30120660300540375], [0.3614380536432501], [0.3734794087892022], [0.337355343351346], [0.2650578626594615], [0.20480173711352917], [0.20480173711352917], [0.2770992178054136], [0.3734794087892022], [0.45781824462703874], [0.48192562982702886], [0.4698842746810768], [0.45781824462703874], [0.4939669849729809], [0.5783058208108174], [0.6746860117946061], [0.7469834924864904], [0.7831322328324327], [0.7831322328324327], [0.8072149431243368], [0.8433636834702791], [0.9156611641621634], [0.9758926148000098], [0.9758926148000098], [0.9156611641621634], [0.7831322328324327], [0.6385619463567498], [0.4939669849729809], [0.3734794087892022], [0.31324795815135587], [0.30120660300540375], [0.337355343351346], [0.40962814913514445], [0.506008340118933], [0.5903471759567694], [0.6626446566486539], [0.6987933969945961], [0.7349421373405383], [0.7951735879783848], [0.8433636834702791], [0.8915537789621732], [0.9036198090162113], [0.8433636834702791], [0.7469834924864904], [0.6506033015027018], [0.6024132060108075]], "eval_masks": [[0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0]], "forwards": [[0.7108347521405483], [0.686752041848644], [0.6264959163027117], [0.5662644656648653], [0.506008340118933], [0.48192562982702886], [0.4698842746810768], [0.4698842746810768], [0.48192562982702886], [0.506008340118933], [0.5301157253189231], [0.5421570804648752], [0.5421570804648752], [0.506008340118933], [0.4698842746810768], [0.4457768894810866], [0.4457768894810866], [0.48192562982702886], [0.4939669849729809], [0.48192562982702886], [0.4457768894810866], [0.40962814913514445], [0.3734794087892022], [0.3855454388432403], [0.4216695042810965], [0.48192562982702886], [0.5421570804648752], [0.6024132060108075], [0.6264959163027117], [0.6144545611567596], [0.5783058208108174], [0.5180743701729711], [0.48192562982702886], [0.4698842746810768], [0.5180743701729711], [0.5783058208108174], [0.6385619463567498], [0.6746860117946061], [0.686752041848644], [0.6746860117946061], [0.6385619463567498], [0.5662644656648653], [0.4698842746810768], [0.3855454388432403], [0.337355343351346], [0.3614380536432501], [0.4337355343351345], [0.5180743701729711], [0.5542231105189133], [0.506008340118933], [0.40962814913514445], [0.28914057295136575], [0.24095047745947137], [0.2770992178054136], [0.40962814913514445], [0.5542231105189133], [0.6746860117946061], [0.7229007821945862], [0.7108347521405483], [0.6987933969945961], [0.7349421373405383], [0.8192809731783748], [0.9277025193081154], [1.0], [1.0], [0.8915537789621732], [0.7229007821945862], [0.5542231105189133], [0.4457768894810866], [0.3975867939891924], [0.4216695042810965], [0.4698842746810768], [0.506008340118933], [0.5180743701729711], [0.506008340118933], [0.4939669849729809], [0.506008340118933], [0.5301157253189231], [0.5903471759567694], [0.6264959163027117], [0.6144545611567596], [0.5301157253189231], [0.40962814913514445], [0.28914057295136575], [0.25301650751350946], [0.31324795815135587], [0.48192562982702886], [0.6746860117946061], [0.8313223283243268], [0.8674710686702691], [0.7831322328324327], [0.6144545611567596], [0.4337355343351345], [0.3252893132973079], [0.3252893132973079], [0.4216695042810965], [0.5180743701729711], [0.6024132060108075], [0.6144545611567596], [0.5783058208108174], [0.5180743701729711], [0.48192562982702886], [0.4939669849729809], [0.5542231105189133], [0.6264959163027117], [0.6506033015027018], [0.6144545611567596], [0.506008340118933], [0.3975867939891924], [0.3252893132973079], [0.31324795815135587], [0.3614380536432501], [0.4216695042810965], [0.4457768894810866], [0.4698842746810768], [0.4939669849729809], [0.5421570804648752], [0.6024132060108075], [0.6506033015027018], [0.6385619463567498], [0.5783058208108174], [0.5180743701729711], [0.506008340118933], [0.5662644656648653], [0.686752041848644], [0.7951735879783848], [0.8674710686702691], [0.8795124238162212], [0.8433636834702791], [0.7710908776864805], [0.6987933969945961], [0.6626446566486539], [0.686752041848644], [0.7349421373405383], [0.8072149431243368], [0.8674710686702691], [0.8554297135243171], [0.7951735879783848], [0.7108347521405483], [0.6385619463567498], [0.6024132060108075], [0.6024132060108075], [0.5903471759567694], [0.5662644656648653], [0.5301157253189231], [0.506008340118933], [0.5180743701729711], [0.5662644656648653], [0.6144545611567596], [0.6385619463567498], [0.6264959163027117], [0.6144545611567596], [0.6144545611567596], [0.6385619463567498], [0.6506033015027018], [0.6506033015027018], [0.6264959163027117], [0.6144545611567596], [0.6385619463567498], [0.686752041848644], [0.7108347521405483], [0.686752041848644], [0.6024132060108075], [0.4698842746810768], [0.3252893132973079], [0.21686776716756725], [0.18071902682162505], [0.21686776716756725], [0.30120660300540375], [0.4337355343351345], [0.5542231105189133], [0.6264959163027117], [0.5903471759567694], [0.4698842746810768], [0.2650578626594615], [0.08433883583783648], [0.0], [0.060231450637846344], [0.22890912231351931], [0.4337355343351345], [0.5662644656648653], [0.5903471759567694], [0.506008340118933], [0.3734794087892022], [0.25301650751350946], [0.21686776716756725], [0.2650578626594615], [0.3614380536432501], [0.48192562982702886], [0.5421570804648752], [0.5421570804648752], [0.4939669849729809], [0.4337355343351345], [0.3975867939891924], [0.40962814913514445], [0.4337355343351345], [0.4457768894810866], [0.4216695042810965], [0.3614380536432501], [0.30120660300540375], [0.2770992178054136], [0.28914057295136575], [0.337355343351346], [0.3855454388432403], [0.3975867939891924], [0.3614380536432501], [0.28914057295136575], [0.24095047745947137], [0.21686776716756725], [0.24095047745947137], [0.30120660300540375], [0.3614380536432501], [0.3734794087892022], [0.337355343351346], [0.2650578626594615], [0.20480173711352917], [0.20480173711352917], [0.2770992178054136], [0.3734794087892022], [0.45781824462703874], [0.48192562982702886], [0.4698842746810768], [0.45781824462703874], [0.4939669849729809], [0.5783058208108174], [0.6746860117946061], [0.7469834924864904], [0.7831322328324327], [0.7831322328324327], [0.8072149431243368], [0.8433636834702791], [0.9156611641621634], [0.9758926148000098], [0.9758926148000098], [0.9156611641621634], [0.7831322328324327], [0.6385619463567498], [0.4939669849729809], [0.3734794087892022], [0.31324795815135587], [0.30120660300540375], [0.337355343351346], [0.40962814913514445], [0.506008340118933], [0.5903471759567694], [0.6626446566486539], [0.6987933969945961], [0.7349421373405383], [0.7951735879783848], [0.8433636834702791], [0.8915537789621732], [0.9036198090162113], [0.8433636834702791], [0.7469834924864904], [0.6506033015027018], [0.6024132060108075]], "deltas": [[1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0]]}} -{"label": 0, "forward": {"values": [[0.911757619563908], [0.823515239127816], [0.7352728586917238], [0.6470304782556318], [0.588242380436092], [0.6176364293458619], [0.6764847608721839], [0.6764847608721839], [0.6470304782556318], [0.5587880978195398], [0.47060595109023], [0.44115166847367787], [0.5], [0.6470304782556318], [0.823515239127816], [0.9411516684736778], [1.0], [0.9705457173834477], [0.823515239127816], [0.6764847608721839], [0.5293940489097699], [0.44115166847367787], [0.4117576195639079], [0.44115166847367787], [0.5], [0.5587880978195398], [0.588242380436092], [0.5587880978195398], [0.5], [0.47060595109023], [0.47060595109023], [0.5293940489097699], [0.6176364293458619], [0.7058788097819539], [0.7058788097819539], [0.6764847608721839], [0.6176364293458619], [0.5587880978195398], [0.5], [0.4117576195639079], [0.3529092880375858], [0.3235152391278158], [0.382363570654138], [0.5], [0.6470304782556318], [0.7352728586917238], [0.7352728586917238], [0.6764847608721839], [0.6176364293458619], [0.588242380436092], [0.6470304782556318], [0.7058788097819539], [0.794121190218046], [0.7646669076014938], [0.7352728586917238], [0.6470304782556318], [0.588242380436092], [0.5587880978195398], [0.5587880978195398], [0.6176364293458619], [0.6764847608721839], [0.7646669076014938], [0.794121190218046], [0.823515239127816], [0.794121190218046], [0.7352728586917238], [0.7058788097819539], [0.7352728586917238], [0.823515239127816], [0.911757619563908], [0.9705457173834477], [0.9411516684736778], [0.823515239127816], [0.6176364293458619], [0.47060595109023], [0.382363570654138], [0.4117576195639079], [0.5293940489097699], [0.6470304782556318], [0.7646669076014938], [0.7646669076014938], [0.7058788097819539], [0.5587880978195398], [0.382363570654138], [0.23527285869172382], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.23527285869172382], [0.26472714130827607], [0.29412119021804595], [0.3235152391278158], [0.29412119021804595], [0.26472714130827607], [0.26472714130827607], [0.26472714130827607], [0.26472714130827607], [0.26472714130827607], [0.23527285869172382], [0.20587880978195394], [0.20587880978195394], [0.20587880978195394], [0.23527285869172382], [0.20587880978195394], [0.17648476087218407], [0.11763642934586191], [0.08824238043609203], [0.11763642934586191], [0.14703047825563179], [0.17648476087218407], [0.20587880978195394], [0.17648476087218407], [0.14703047825563179], [0.11763642934586191], [0.11763642934586191], [0.14703047825563179], [0.11763642934586191], [0.11763642934586191], [0.05884833152632215], [0.05884833152632215], [0.08824238043609203], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.3529092880375858], [0.23527285869172382], [0.17648476087218407], [0.17648476087218407], [0.26472714130827607], [0.382363570654138], [0.47060595109023], [0.5], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.26472714130827607], [0.3235152391278158], [0.4117576195639079], [0.5], [0.5293940489097699], [0.5587880978195398], [0.5293940489097699], [0.47060595109023], [0.4117576195639079], [0.382363570654138], [0.382363570654138], [0.44115166847367787], [0.5293940489097699], [0.588242380436092], [0.588242380436092], [0.5293940489097699], [0.47060595109023], [0.4117576195639079], [0.382363570654138], [0.382363570654138], [0.4117576195639079], [0.382363570654138], [0.382363570654138], [0.3529092880375858], [0.3235152391278158], [0.3235152391278158], [0.382363570654138], [0.47060595109023], [0.588242380436092], [0.6470304782556318], [0.6176364293458619], [0.5], [0.3235152391278158], [0.29412119021804595], [0.382363570654138], [0.588242380436092], [0.823515239127816], [0.9705457173834477], [0.9705457173834477], [0.823515239127816], [0.6176364293458619], [0.47060595109023], [0.44115166847367787], [0.47060595109023], [0.588242380436092], [0.6470304782556318], [0.6764847608721839], [0.6470304782556318], [0.5587880978195398], [0.4117576195639079], [0.23527285869172382], [0.14703047825563179], [0.17648476087218407], [0.29412119021804595], [0.47060595109023], [0.5587880978195398], [0.5], [0.3235152391278158], [0.11763642934586191], [0.0], [0.05884833152632215], [0.23527285869172382], [0.47060595109023], [0.6176364293458619], [0.6176364293458619], [0.47060595109023], [0.29412119021804595], [0.17648476087218407], [0.14703047825563179], [0.23527285869172382], [0.382363570654138], [0.47060595109023], [0.5293940489097699], [0.47060595109023], [0.4117576195639079], [0.382363570654138], [0.4117576195639079], [0.5], [0.588242380436092], [0.588242380436092], [0.5293940489097699], [0.4117576195639079], [0.29412119021804595], [0.23527285869172382], [0.29412119021804595], [0.44115166847367787], [0.6176364293458619], [0.794121190218046], [0.823515239127816], [0.7352728586917238]], "masks": [[1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [1], [1], [1], [1], [1], [1], [1], [1], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1]], "evals": [[0.911757619563908], [0.823515239127816], [0.7352728586917238], [0.6470304782556318], [0.588242380436092], [0.6176364293458619], [0.6764847608721839], [0.6764847608721839], [0.6470304782556318], [0.5587880978195398], [0.47060595109023], [0.44115166847367787], [0.5], [0.6470304782556318], [0.823515239127816], [0.9411516684736778], [1.0], [0.9705457173834477], [0.823515239127816], [0.6764847608721839], [0.5293940489097699], [0.44115166847367787], [0.4117576195639079], [0.44115166847367787], [0.5], [0.5587880978195398], [0.588242380436092], [0.5587880978195398], [0.5], [0.47060595109023], [0.47060595109023], [0.5293940489097699], [0.6176364293458619], [0.7058788097819539], [0.7058788097819539], [0.6764847608721839], [0.6176364293458619], [0.5587880978195398], [0.5], [0.4117576195639079], [0.3529092880375858], [0.3235152391278158], [0.382363570654138], [0.5], [0.6470304782556318], [0.7352728586917238], [0.7352728586917238], [0.6764847608721839], [0.6176364293458619], [0.588242380436092], [0.6470304782556318], [0.7058788097819539], [0.794121190218046], [0.7646669076014938], [0.7352728586917238], [0.6470304782556318], [0.588242380436092], [0.5587880978195398], [0.5587880978195398], [0.6176364293458619], [0.6764847608721839], [0.7646669076014938], [0.794121190218046], [0.823515239127816], [0.794121190218046], [0.7352728586917238], [0.7058788097819539], [0.7352728586917238], [0.823515239127816], [0.911757619563908], [0.9705457173834477], [0.9411516684736778], [0.823515239127816], [0.6176364293458619], [0.47060595109023], [0.382363570654138], [0.4117576195639079], [0.5293940489097699], [0.6470304782556318], [0.7646669076014938], [0.7646669076014938], [0.7058788097819539], [0.5587880978195398], [0.382363570654138], [0.23527285869172382], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.23527285869172382], [0.26472714130827607], [0.29412119021804595], [0.3235152391278158], [0.29412119021804595], [0.26472714130827607], [0.26472714130827607], [0.26472714130827607], [0.26472714130827607], [0.26472714130827607], [0.23527285869172382], [0.20587880978195394], [0.20587880978195394], [0.20587880978195394], [0.23527285869172382], [0.20587880978195394], [0.17648476087218407], [0.11763642934586191], [0.08824238043609203], [0.11763642934586191], [0.14703047825563179], [0.17648476087218407], [0.20587880978195394], [0.17648476087218407], [0.14703047825563179], [0.11763642934586191], [0.11763642934586191], [0.14703047825563179], [0.11763642934586191], [0.11763642934586191], [0.05884833152632215], [0.05884833152632215], [0.08824238043609203], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.3529092880375858], [0.23527285869172382], [0.17648476087218407], [0.17648476087218407], [0.26472714130827607], [0.382363570654138], [0.47060595109023], [0.5], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.26472714130827607], [0.3235152391278158], [0.4117576195639079], [0.5], [0.5293940489097699], [0.5587880978195398], [0.5293940489097699], [0.47060595109023], [0.4117576195639079], [0.382363570654138], [0.382363570654138], [0.44115166847367787], [0.5293940489097699], [0.588242380436092], [0.588242380436092], [0.5293940489097699], [0.47060595109023], [0.4117576195639079], [0.382363570654138], [0.382363570654138], [0.4117576195639079], [0.382363570654138], [0.382363570654138], [0.3529092880375858], [0.3235152391278158], [0.3235152391278158], [0.382363570654138], [0.47060595109023], [0.588242380436092], [0.6470304782556318], [0.6176364293458619], [0.5], [0.3235152391278158], [0.29412119021804595], [0.382363570654138], [0.588242380436092], [0.823515239127816], [0.9705457173834477], [0.9705457173834477], [0.823515239127816], [0.6176364293458619], [0.47060595109023], [0.44115166847367787], [0.47060595109023], [0.588242380436092], [0.6470304782556318], [0.6764847608721839], [0.6470304782556318], [0.5587880978195398], [0.4117576195639079], [0.23527285869172382], [0.14703047825563179], [0.17648476087218407], [0.29412119021804595], [0.47060595109023], [0.5587880978195398], [0.5], [0.3235152391278158], [0.11763642934586191], [0.0], [0.05884833152632215], [0.23527285869172382], [0.47060595109023], [0.6176364293458619], [0.6176364293458619], [0.47060595109023], [0.29412119021804595], [0.17648476087218407], [0.14703047825563179], [0.23527285869172382], [0.382363570654138], [0.47060595109023], [0.5293940489097699], [0.47060595109023], [0.4117576195639079], [0.382363570654138], [0.4117576195639079], [0.5], [0.588242380436092], [0.588242380436092], [0.5293940489097699], [0.4117576195639079], [0.29412119021804595], [0.23527285869172382], [0.29412119021804595], [0.44115166847367787], [0.6176364293458619], [0.794121190218046], [0.823515239127816], [0.7352728586917238]], "eval_masks": [[0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0]], "forwards": [[0.911757619563908], [0.823515239127816], [0.7352728586917238], [0.6470304782556318], [0.588242380436092], [0.6176364293458619], [0.6764847608721839], [0.6764847608721839], [0.6470304782556318], [0.5587880978195398], [0.47060595109023], [0.44115166847367787], [0.5], [0.6470304782556318], [0.823515239127816], [0.9411516684736778], [1.0], [0.9705457173834477], [0.823515239127816], [0.6764847608721839], [0.5293940489097699], [0.44115166847367787], [0.4117576195639079], [0.44115166847367787], [0.5], [0.5587880978195398], [0.588242380436092], [0.5587880978195398], [0.5], [0.47060595109023], [0.47060595109023], [0.5293940489097699], [0.6176364293458619], [0.7058788097819539], [0.7058788097819539], [0.6764847608721839], [0.6176364293458619], [0.5587880978195398], [0.5], [0.4117576195639079], [0.3529092880375858], [0.3235152391278158], [0.382363570654138], [0.5], [0.6470304782556318], [0.7352728586917238], [0.7352728586917238], [0.6764847608721839], [0.6176364293458619], [0.588242380436092], [0.6470304782556318], [0.7058788097819539], [0.794121190218046], [0.7646669076014938], [0.7352728586917238], [0.6470304782556318], [0.588242380436092], [0.5587880978195398], [0.5587880978195398], [0.6176364293458619], [0.6764847608721839], [0.7646669076014938], [0.794121190218046], [0.823515239127816], [0.794121190218046], [0.7352728586917238], [0.7058788097819539], [0.7352728586917238], [0.823515239127816], [0.911757619563908], [0.9705457173834477], [0.9411516684736778], [0.823515239127816], [0.6176364293458619], [0.47060595109023], [0.382363570654138], [0.4117576195639079], [0.5293940489097699], [0.6470304782556318], [0.7646669076014938], [0.7646669076014938], [0.7058788097819539], [0.5587880978195398], [0.382363570654138], [0.23527285869172382], [0.23527285869172382], [0.23527285869172382], [0.23527285869172382], [0.23527285869172382], [0.23527285869172382], [0.23527285869172382], [0.23527285869172382], [0.23527285869172382], [0.23527285869172382], [0.23527285869172382], [0.23527285869172382], [0.23527285869172382], [0.23527285869172382], [0.23527285869172382], [0.23527285869172382], [0.23527285869172382], [0.23527285869172382], [0.23527285869172382], [0.23527285869172382], [0.23527285869172382], [0.23527285869172382], [0.26472714130827607], [0.29412119021804595], [0.3235152391278158], [0.29412119021804595], [0.26472714130827607], [0.26472714130827607], [0.26472714130827607], [0.26472714130827607], [0.26472714130827607], [0.23527285869172382], [0.20587880978195394], [0.20587880978195394], [0.20587880978195394], [0.23527285869172382], [0.20587880978195394], [0.17648476087218407], [0.11763642934586191], [0.08824238043609203], [0.11763642934586191], [0.14703047825563179], [0.17648476087218407], [0.20587880978195394], [0.17648476087218407], [0.14703047825563179], [0.11763642934586191], [0.11763642934586191], [0.14703047825563179], [0.11763642934586191], [0.11763642934586191], [0.05884833152632215], [0.05884833152632215], [0.08824238043609203], [0.08824238043609203], [0.08824238043609203], [0.08824238043609203], [0.08824238043609203], [0.08824238043609203], [0.08824238043609203], [0.08824238043609203], [0.08824238043609203], [0.08824238043609203], [0.08824238043609203], [0.3529092880375858], [0.23527285869172382], [0.17648476087218407], [0.17648476087218407], [0.26472714130827607], [0.382363570654138], [0.47060595109023], [0.5], [0.5], [0.5], [0.5], [0.5], [0.5], [0.5], [0.5], [0.5], [0.5], [0.5], [0.26472714130827607], [0.3235152391278158], [0.4117576195639079], [0.5], [0.5293940489097699], [0.5587880978195398], [0.5293940489097699], [0.47060595109023], [0.4117576195639079], [0.382363570654138], [0.382363570654138], [0.44115166847367787], [0.5293940489097699], [0.588242380436092], [0.588242380436092], [0.5293940489097699], [0.47060595109023], [0.4117576195639079], [0.382363570654138], [0.382363570654138], [0.4117576195639079], [0.382363570654138], [0.382363570654138], [0.3529092880375858], [0.3235152391278158], [0.3235152391278158], [0.382363570654138], [0.47060595109023], [0.588242380436092], [0.6470304782556318], [0.6176364293458619], [0.5], [0.3235152391278158], [0.29412119021804595], [0.382363570654138], [0.588242380436092], [0.823515239127816], [0.9705457173834477], [0.9705457173834477], [0.823515239127816], [0.6176364293458619], [0.47060595109023], [0.44115166847367787], [0.47060595109023], [0.588242380436092], [0.6470304782556318], [0.6764847608721839], [0.6470304782556318], [0.5587880978195398], [0.4117576195639079], [0.23527285869172382], [0.14703047825563179], [0.17648476087218407], [0.29412119021804595], [0.47060595109023], [0.5587880978195398], [0.5], [0.3235152391278158], [0.11763642934586191], [0.0], [0.05884833152632215], [0.23527285869172382], [0.47060595109023], [0.6176364293458619], [0.6176364293458619], [0.47060595109023], [0.29412119021804595], [0.17648476087218407], [0.14703047825563179], [0.23527285869172382], [0.382363570654138], [0.47060595109023], [0.5293940489097699], [0.47060595109023], [0.4117576195639079], [0.382363570654138], [0.4117576195639079], [0.5], [0.588242380436092], [0.588242380436092], [0.5293940489097699], [0.4117576195639079], [0.29412119021804595], [0.23527285869172382], [0.29412119021804595], [0.44115166847367787], [0.6176364293458619], [0.794121190218046], [0.823515239127816], [0.7352728586917238]], "deltas": [[1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [2.0], [3.0], [4.0], [5.0], [6.0], [7.0], [8.0], [9.0], [10.0], [11.0], [12.0], [13.0], [14.0], [15.0], [16.0], [17.0], [18.0], [19.0], [20.0], [21.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [2.0], [3.0], [4.0], [5.0], [6.0], [7.0], [8.0], [9.0], [10.0], [11.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [2.0], [3.0], [4.0], [5.0], [6.0], [7.0], [8.0], [9.0], [10.0], [11.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0]]}, "backward": {"values": [[0.7352728586917238], [0.823515239127816], [0.794121190218046], [0.6176364293458619], [0.44115166847367787], [0.29412119021804595], [0.23527285869172382], [0.29412119021804595], [0.4117576195639079], [0.5293940489097699], [0.588242380436092], [0.588242380436092], [0.5], [0.4117576195639079], [0.382363570654138], [0.4117576195639079], [0.47060595109023], [0.5293940489097699], [0.47060595109023], [0.382363570654138], [0.23527285869172382], [0.14703047825563179], [0.17648476087218407], [0.29412119021804595], [0.47060595109023], [0.6176364293458619], [0.6176364293458619], [0.47060595109023], [0.23527285869172382], [0.05884833152632215], [0.0], [0.11763642934586191], [0.3235152391278158], [0.5], [0.5587880978195398], [0.47060595109023], [0.29412119021804595], [0.17648476087218407], [0.14703047825563179], [0.23527285869172382], [0.4117576195639079], [0.5587880978195398], [0.6470304782556318], [0.6764847608721839], [0.6470304782556318], [0.588242380436092], [0.47060595109023], [0.44115166847367787], [0.47060595109023], [0.6176364293458619], [0.823515239127816], [0.9705457173834477], [0.9705457173834477], [0.823515239127816], [0.588242380436092], [0.382363570654138], [0.29412119021804595], [0.3235152391278158], [0.5], [0.6176364293458619], [0.6470304782556318], [0.588242380436092], [0.47060595109023], [0.382363570654138], [0.3235152391278158], [0.3235152391278158], [0.3529092880375858], [0.382363570654138], [0.382363570654138], [0.4117576195639079], [0.382363570654138], [0.382363570654138], [0.4117576195639079], [0.47060595109023], [0.5293940489097699], [0.588242380436092], [0.588242380436092], [0.5293940489097699], [0.44115166847367787], [0.382363570654138], [0.382363570654138], [0.4117576195639079], [0.47060595109023], [0.5293940489097699], [0.5587880978195398], [0.5293940489097699], [0.5], [0.4117576195639079], [0.3235152391278158], [0.26472714130827607], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.5], [0.47060595109023], [0.382363570654138], [0.26472714130827607], [0.17648476087218407], [0.17648476087218407], [0.23527285869172382], [0.3529092880375858], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.08824238043609203], [0.05884833152632215], [0.05884833152632215], [0.11763642934586191], [0.11763642934586191], [0.14703047825563179], [0.11763642934586191], [0.11763642934586191], [0.14703047825563179], [0.17648476087218407], [0.20587880978195394], [0.17648476087218407], [0.14703047825563179], [0.11763642934586191], [0.08824238043609203], [0.11763642934586191], [0.17648476087218407], [0.20587880978195394], [0.23527285869172382], [0.20587880978195394], [0.20587880978195394], [0.20587880978195394], [0.23527285869172382], [0.26472714130827607], [0.26472714130827607], [0.26472714130827607], [0.26472714130827607], [0.26472714130827607], [0.29412119021804595], [0.3235152391278158], [0.29412119021804595], [0.26472714130827607], [0.23527285869172382], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.23527285869172382], [0.382363570654138], [0.5587880978195398], [0.7058788097819539], [0.7646669076014938], [0.7646669076014938], [0.6470304782556318], [0.5293940489097699], [0.4117576195639079], [0.382363570654138], [0.47060595109023], [0.6176364293458619], [0.823515239127816], [0.9411516684736778], [0.9705457173834477], [0.911757619563908], [0.823515239127816], [0.7352728586917238], [0.7058788097819539], [0.7352728586917238], [0.794121190218046], [0.823515239127816], [0.794121190218046], [0.7646669076014938], [0.6764847608721839], [0.6176364293458619], [0.5587880978195398], [0.5587880978195398], [0.588242380436092], [0.6470304782556318], [0.7352728586917238], [0.7646669076014938], [0.794121190218046], [0.7058788097819539], [0.6470304782556318], [0.588242380436092], [0.6176364293458619], [0.6764847608721839], [0.7352728586917238], [0.7352728586917238], [0.6470304782556318], [0.5], [0.382363570654138], [0.3235152391278158], [0.3529092880375858], [0.4117576195639079], [0.5], [0.5587880978195398], [0.6176364293458619], [0.6764847608721839], [0.7058788097819539], [0.7058788097819539], [0.6176364293458619], [0.5293940489097699], [0.47060595109023], [0.47060595109023], [0.5], [0.5587880978195398], [0.588242380436092], [0.5587880978195398], [0.5], [0.44115166847367787], [0.4117576195639079], [0.44115166847367787], [0.5293940489097699], [0.6764847608721839], [0.823515239127816], [0.9705457173834477], [1.0], [0.9411516684736778], [0.823515239127816], [0.6470304782556318], [0.5], [0.44115166847367787], [0.47060595109023], [0.5587880978195398], [0.6470304782556318], [0.6764847608721839], [0.6764847608721839], [0.6176364293458619], [0.588242380436092], [0.6470304782556318], [0.7352728586917238], [0.823515239127816], [0.911757619563908]], "masks": [[1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [1], [1], [1], [1], [1], [1], [1], [1], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1]], "evals": [[0.7352728586917238], [0.823515239127816], [0.794121190218046], [0.6176364293458619], [0.44115166847367787], [0.29412119021804595], [0.23527285869172382], [0.29412119021804595], [0.4117576195639079], [0.5293940489097699], [0.588242380436092], [0.588242380436092], [0.5], [0.4117576195639079], [0.382363570654138], [0.4117576195639079], [0.47060595109023], [0.5293940489097699], [0.47060595109023], [0.382363570654138], [0.23527285869172382], [0.14703047825563179], [0.17648476087218407], [0.29412119021804595], [0.47060595109023], [0.6176364293458619], [0.6176364293458619], [0.47060595109023], [0.23527285869172382], [0.05884833152632215], [0.0], [0.11763642934586191], [0.3235152391278158], [0.5], [0.5587880978195398], [0.47060595109023], [0.29412119021804595], [0.17648476087218407], [0.14703047825563179], [0.23527285869172382], [0.4117576195639079], [0.5587880978195398], [0.6470304782556318], [0.6764847608721839], [0.6470304782556318], [0.588242380436092], [0.47060595109023], [0.44115166847367787], [0.47060595109023], [0.6176364293458619], [0.823515239127816], [0.9705457173834477], [0.9705457173834477], [0.823515239127816], [0.588242380436092], [0.382363570654138], [0.29412119021804595], [0.3235152391278158], [0.5], [0.6176364293458619], [0.6470304782556318], [0.588242380436092], [0.47060595109023], [0.382363570654138], [0.3235152391278158], [0.3235152391278158], [0.3529092880375858], [0.382363570654138], [0.382363570654138], [0.4117576195639079], [0.382363570654138], [0.382363570654138], [0.4117576195639079], [0.47060595109023], [0.5293940489097699], [0.588242380436092], [0.588242380436092], [0.5293940489097699], [0.44115166847367787], [0.382363570654138], [0.382363570654138], [0.4117576195639079], [0.47060595109023], [0.5293940489097699], [0.5587880978195398], [0.5293940489097699], [0.5], [0.4117576195639079], [0.3235152391278158], [0.26472714130827607], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.5], [0.47060595109023], [0.382363570654138], [0.26472714130827607], [0.17648476087218407], [0.17648476087218407], [0.23527285869172382], [0.3529092880375858], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.08824238043609203], [0.05884833152632215], [0.05884833152632215], [0.11763642934586191], [0.11763642934586191], [0.14703047825563179], [0.11763642934586191], [0.11763642934586191], [0.14703047825563179], [0.17648476087218407], [0.20587880978195394], [0.17648476087218407], [0.14703047825563179], [0.11763642934586191], [0.08824238043609203], [0.11763642934586191], [0.17648476087218407], [0.20587880978195394], [0.23527285869172382], [0.20587880978195394], [0.20587880978195394], [0.20587880978195394], [0.23527285869172382], [0.26472714130827607], [0.26472714130827607], [0.26472714130827607], [0.26472714130827607], [0.26472714130827607], [0.29412119021804595], [0.3235152391278158], [0.29412119021804595], [0.26472714130827607], [0.23527285869172382], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.23527285869172382], [0.382363570654138], [0.5587880978195398], [0.7058788097819539], [0.7646669076014938], [0.7646669076014938], [0.6470304782556318], [0.5293940489097699], [0.4117576195639079], [0.382363570654138], [0.47060595109023], [0.6176364293458619], [0.823515239127816], [0.9411516684736778], [0.9705457173834477], [0.911757619563908], [0.823515239127816], [0.7352728586917238], [0.7058788097819539], [0.7352728586917238], [0.794121190218046], [0.823515239127816], [0.794121190218046], [0.7646669076014938], [0.6764847608721839], [0.6176364293458619], [0.5587880978195398], [0.5587880978195398], [0.588242380436092], [0.6470304782556318], [0.7352728586917238], [0.7646669076014938], [0.794121190218046], [0.7058788097819539], [0.6470304782556318], [0.588242380436092], [0.6176364293458619], [0.6764847608721839], [0.7352728586917238], [0.7352728586917238], [0.6470304782556318], [0.5], [0.382363570654138], [0.3235152391278158], [0.3529092880375858], [0.4117576195639079], [0.5], [0.5587880978195398], [0.6176364293458619], [0.6764847608721839], [0.7058788097819539], [0.7058788097819539], [0.6176364293458619], [0.5293940489097699], [0.47060595109023], [0.47060595109023], [0.5], [0.5587880978195398], [0.588242380436092], [0.5587880978195398], [0.5], [0.44115166847367787], [0.4117576195639079], [0.44115166847367787], [0.5293940489097699], [0.6764847608721839], [0.823515239127816], [0.9705457173834477], [1.0], [0.9411516684736778], [0.823515239127816], [0.6470304782556318], [0.5], [0.44115166847367787], [0.47060595109023], [0.5587880978195398], [0.6470304782556318], [0.6764847608721839], [0.6764847608721839], [0.6176364293458619], [0.588242380436092], [0.6470304782556318], [0.7352728586917238], [0.823515239127816], [0.911757619563908]], "eval_masks": [[0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0]], "forwards": [[0.7352728586917238], [0.823515239127816], [0.794121190218046], [0.6176364293458619], [0.44115166847367787], [0.29412119021804595], [0.23527285869172382], [0.29412119021804595], [0.4117576195639079], [0.5293940489097699], [0.588242380436092], [0.588242380436092], [0.5], [0.4117576195639079], [0.382363570654138], [0.4117576195639079], [0.47060595109023], [0.5293940489097699], [0.47060595109023], [0.382363570654138], [0.23527285869172382], [0.14703047825563179], [0.17648476087218407], [0.29412119021804595], [0.47060595109023], [0.6176364293458619], [0.6176364293458619], [0.47060595109023], [0.23527285869172382], [0.05884833152632215], [0.0], [0.11763642934586191], [0.3235152391278158], [0.5], [0.5587880978195398], [0.47060595109023], [0.29412119021804595], [0.17648476087218407], [0.14703047825563179], [0.23527285869172382], [0.4117576195639079], [0.5587880978195398], [0.6470304782556318], [0.6764847608721839], [0.6470304782556318], [0.588242380436092], [0.47060595109023], [0.44115166847367787], [0.47060595109023], [0.6176364293458619], [0.823515239127816], [0.9705457173834477], [0.9705457173834477], [0.823515239127816], [0.588242380436092], [0.382363570654138], [0.29412119021804595], [0.3235152391278158], [0.5], [0.6176364293458619], [0.6470304782556318], [0.588242380436092], [0.47060595109023], [0.382363570654138], [0.3235152391278158], [0.3235152391278158], [0.3529092880375858], [0.382363570654138], [0.382363570654138], [0.4117576195639079], [0.382363570654138], [0.382363570654138], [0.4117576195639079], [0.47060595109023], [0.5293940489097699], [0.588242380436092], [0.588242380436092], [0.5293940489097699], [0.44115166847367787], [0.382363570654138], [0.382363570654138], [0.4117576195639079], [0.47060595109023], [0.5293940489097699], [0.5587880978195398], [0.5293940489097699], [0.5], [0.4117576195639079], [0.3235152391278158], [0.26472714130827607], [0.26472714130827607], [0.26472714130827607], [0.26472714130827607], [0.26472714130827607], [0.26472714130827607], [0.26472714130827607], [0.26472714130827607], [0.26472714130827607], [0.26472714130827607], [0.26472714130827607], [0.5], [0.47060595109023], [0.382363570654138], [0.26472714130827607], [0.17648476087218407], [0.17648476087218407], [0.23527285869172382], [0.3529092880375858], [0.3529092880375858], [0.3529092880375858], [0.3529092880375858], [0.3529092880375858], [0.3529092880375858], [0.3529092880375858], [0.3529092880375858], [0.3529092880375858], [0.3529092880375858], [0.3529092880375858], [0.08824238043609203], [0.05884833152632215], [0.05884833152632215], [0.11763642934586191], [0.11763642934586191], [0.14703047825563179], [0.11763642934586191], [0.11763642934586191], [0.14703047825563179], [0.17648476087218407], [0.20587880978195394], [0.17648476087218407], [0.14703047825563179], [0.11763642934586191], [0.08824238043609203], [0.11763642934586191], [0.17648476087218407], [0.20587880978195394], [0.23527285869172382], [0.20587880978195394], [0.20587880978195394], [0.20587880978195394], [0.23527285869172382], [0.26472714130827607], [0.26472714130827607], [0.26472714130827607], [0.26472714130827607], [0.26472714130827607], [0.29412119021804595], [0.3235152391278158], [0.29412119021804595], [0.26472714130827607], [0.23527285869172382], [0.23527285869172382], [0.23527285869172382], [0.23527285869172382], [0.23527285869172382], [0.23527285869172382], [0.23527285869172382], [0.23527285869172382], [0.23527285869172382], [0.23527285869172382], [0.23527285869172382], [0.23527285869172382], [0.23527285869172382], [0.23527285869172382], [0.23527285869172382], [0.23527285869172382], [0.23527285869172382], [0.23527285869172382], [0.23527285869172382], [0.23527285869172382], [0.23527285869172382], [0.23527285869172382], [0.382363570654138], [0.5587880978195398], [0.7058788097819539], [0.7646669076014938], [0.7646669076014938], [0.6470304782556318], [0.5293940489097699], [0.4117576195639079], [0.382363570654138], [0.47060595109023], [0.6176364293458619], [0.823515239127816], [0.9411516684736778], [0.9705457173834477], [0.911757619563908], [0.823515239127816], [0.7352728586917238], [0.7058788097819539], [0.7352728586917238], [0.794121190218046], [0.823515239127816], [0.794121190218046], [0.7646669076014938], [0.6764847608721839], [0.6176364293458619], [0.5587880978195398], [0.5587880978195398], [0.588242380436092], [0.6470304782556318], [0.7352728586917238], [0.7646669076014938], [0.794121190218046], [0.7058788097819539], [0.6470304782556318], [0.588242380436092], [0.6176364293458619], [0.6764847608721839], [0.7352728586917238], [0.7352728586917238], [0.6470304782556318], [0.5], [0.382363570654138], [0.3235152391278158], [0.3529092880375858], [0.4117576195639079], [0.5], [0.5587880978195398], [0.6176364293458619], [0.6764847608721839], [0.7058788097819539], [0.7058788097819539], [0.6176364293458619], [0.5293940489097699], [0.47060595109023], [0.47060595109023], [0.5], [0.5587880978195398], [0.588242380436092], [0.5587880978195398], [0.5], [0.44115166847367787], [0.4117576195639079], [0.44115166847367787], [0.5293940489097699], [0.6764847608721839], [0.823515239127816], [0.9705457173834477], [1.0], [0.9411516684736778], [0.823515239127816], [0.6470304782556318], [0.5], [0.44115166847367787], [0.47060595109023], [0.5587880978195398], [0.6470304782556318], [0.6764847608721839], [0.6764847608721839], [0.6176364293458619], [0.588242380436092], [0.6470304782556318], [0.7352728586917238], [0.823515239127816], [0.911757619563908]], "deltas": [[1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [2.0], [3.0], [4.0], [5.0], [6.0], [7.0], [8.0], [9.0], [10.0], [11.0], [12.0], [13.0], [14.0], [15.0], [16.0], [17.0], [18.0], [19.0], [20.0], [21.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [2.0], [3.0], [4.0], [5.0], [6.0], [7.0], [8.0], [9.0], [10.0], [11.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [2.0], [3.0], [4.0], [5.0], [6.0], [7.0], [8.0], [9.0], [10.0], [11.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0]]}} -{"label": 0, "forward": {"values": [[0.6000109226946287], [0.6533409792195735], [0.7333497173752764], [0.8133584555309795], [0.8400098304251659], [0.8000054613473143], [0.7466754048223697], [0.6800196608503318], [0.6400152917724803], [0.626689604325387], [0.6000109226946287], [0.5733322410638705], [0.5200021845389257], [0.41334207148903634], [0.32000764588624014], [0.22667322028344392], [0.20002184538925755], [0.2533519019142022], [0.37333770241118486], [0.5200021845389257], [0.6533409792195735], [0.7600010922694629], [0.8266841429780727], [0.853335517872259], [0.853335517872259], [0.8266841429780727], [0.8133584555309795], [0.7866797739002211], [0.7600010922694629], [0.7200240299281833], [0.626689604325387], [0.5333551787225909], [0.45334644056688783], [0.41334207148903634], [0.41334207148903634], [0.45334644056688783], [0.4799978154610743], [0.4799978154610743], [0.44002075311979466], [0.4266677589361295], [0.4266677589361295], [0.466672128013981], [0.5066764970918325], [0.5333551787225909], [0.5200021845389257], [0.45334644056688783], [0.38669069659484995], [0.36001201496409163], [0.38669069659484995], [0.44002075311979466], [0.4933508096447393], [0.5066764970918325], [0.466672128013981], [0.41334207148903634], [0.36001201496409163], [0.34668632751699846], [0.37333770241118486], [0.41334207148903634], [0.44002075311979466], [0.41334207148903634], [0.37333770241118486], [0.3333333333333333], [0.32000764588624014], [0.36001201496409163], [0.41334207148903634], [0.4799978154610743], [0.4799978154610743], [0.41334207148903634], [0.32000764588624014], [0.22667322028344392], [0.18666885120559243], [0.22667322028344392], [0.3333333333333333], [0.45334644056688783], [0.5333551787225909], [0.5200021845389257], [0.4000163840419432], [0.22667322028344392], [0.06668305070860982], [0.0], [0.06668305070860982], [0.21334753283635075], [0.4000163840419432], [0.546680866169684], [0.613336610141722], [0.5600065536167773], [0.44002075311979466], [0.28000327680838866], [0.16001747631140606], [0.09333442560279619], [0.14666448212774097], [0.26667758936129543], [0.44002075311979466], [0.5866852352475355], [0.6800196608503318], [0.6666666666666666], [0.6000109226946287], [0.5066764970918325], [0.44002075311979466], [0.4266677589361295], [0.44002075311979466], [0.466672128013981], [0.5066764970918325], [0.5200021845389257], [0.5600065536167773], [0.5866852352475355], [0.613336610141722], [0.6533409792195735], [0.6666666666666666], [0.6800196608503318], [0.693345348297425], [0.7066710357445182], [0.7200240299281833], [0.7466754048223697], [0.7866797739002211], [0.8266841429780727], [0.8666885120559241], [0.9200185685808688], [0.9600229376587203], [0.9866743125529068], [0.9600229376587203], [0.9066655743972039], [0.853335517872259], [0.8000054613473143], [0.773354086453128], [0.7866797739002211], [0.8266841429780727], [0.8800141995030174], [0.9200185685808688], [0.8933398869501107], [0.8266841429780727], [0.7466754048223697], [0.6666666666666666], [0.6400152917724803], [0.6533409792195735], [0.7066710357445182], [0.7333497173752764], [0.7600010922694629], [0.7466754048223697], [0.7200240299281833], [0.693345348297425], [0.6666666666666666], [0.613336610141722], [0.5600065536167773], [0.5066764970918325], [0.4933508096447393], [0.5200021845389257], [0.6000109226946287], [0.693345348297425], [0.773354086453128], [0.7866797739002211], [0.7600010922694629], [0.693345348297425], [0.6533409792195735], [0.626689604325387], [0.6533409792195735], [0.7066710357445182], [0.7600010922694629], [0.773354086453128], [0.7333497173752764], [0.6533409792195735], [0.5733322410638705], [0.546680866169684], [0.6000109226946287], [0.7066710357445182], [0.853335517872259], [0.9733486251058137], [1.0], [0.9200185685808688], [0.7600010922694629], [0.6000109226946287], [0.4933508096447393], [0.4933508096447393], [0.5866852352475355], [0.7066710357445182], [0.8000054613473143], [0.8133584555309795], [0.7600010922694629], [0.6533409792195735], [0.5866852352475355], [0.5733322410638705], [0.613336610141722], [0.6800196608503318], [0.7200240299281833], [0.7066710357445182], [0.6533409792195735], [0.613336610141722], [0.613336610141722], [0.6666666666666666], [0.773354086453128], [0.8800141995030174], [0.933344256027962], [0.9200185685808688], [0.853335517872259], [0.7866797739002211], [0.7600010922694629], [0.8000054613473143], [0.8800141995030174], [0.9200185685808688], [0.8800141995030174], [0.773354086453128], [0.613336610141722], [0.4799978154610743], [0.41334207148903634], [0.4266677589361295], [0.4799978154610743], [0.546680866169684], [0.5733322410638705], [0.5333551787225909], [0.4799978154610743], [0.44002075311979466], [0.44002075311979466], [0.4799978154610743], [0.5200021845389257], [0.5733322410638705], [0.613336610141722], [0.6400152917724803], [0.6533409792195735], [0.6666666666666666], [0.6533409792195735], [0.626689604325387], [0.5866852352475355], [0.5866852352475355], [0.613336610141722], [0.6800196608503318], [0.7466754048223697], [0.7866797739002211], [0.7866797739002211], [0.7200240299281833], [0.626689604325387], [0.5200021845389257], [0.45334644056688783], [0.44002075311979466], [0.45334644056688783], [0.5200021845389257], [0.5733322410638705], [0.613336610141722], [0.626689604325387], [0.5866852352475355], [0.5200021845389257], [0.4799978154610743], [0.4799978154610743], [0.5066764970918325], [0.5600065536167773], [0.5733322410638705], [0.5600065536167773], [0.5066764970918325], [0.45334644056688783], [0.44002075311979466], [0.4799978154610743], [0.5600065536167773], [0.6533409792195735], [0.7200240299281833], [0.773354086453128], [0.7866797739002211], [0.7866797739002211]], "masks": [[1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1]], "evals": [[0.6000109226946287], [0.6533409792195735], [0.7333497173752764], [0.8133584555309795], [0.8400098304251659], [0.8000054613473143], [0.7466754048223697], [0.6800196608503318], [0.6400152917724803], [0.626689604325387], [0.6000109226946287], [0.5733322410638705], [0.5200021845389257], [0.41334207148903634], [0.32000764588624014], [0.22667322028344392], [0.20002184538925755], [0.2533519019142022], [0.37333770241118486], [0.5200021845389257], [0.6533409792195735], [0.7600010922694629], [0.8266841429780727], [0.853335517872259], [0.853335517872259], [0.8266841429780727], [0.8133584555309795], [0.7866797739002211], [0.7600010922694629], [0.7200240299281833], [0.626689604325387], [0.5333551787225909], [0.45334644056688783], [0.41334207148903634], [0.41334207148903634], [0.45334644056688783], [0.4799978154610743], [0.4799978154610743], [0.44002075311979466], [0.4266677589361295], [0.4266677589361295], [0.466672128013981], [0.5066764970918325], [0.5333551787225909], [0.5200021845389257], [0.45334644056688783], [0.38669069659484995], [0.36001201496409163], [0.38669069659484995], [0.44002075311979466], [0.4933508096447393], [0.5066764970918325], [0.466672128013981], [0.41334207148903634], [0.36001201496409163], [0.34668632751699846], [0.37333770241118486], [0.41334207148903634], [0.44002075311979466], [0.41334207148903634], [0.37333770241118486], [0.3333333333333333], [0.32000764588624014], [0.36001201496409163], [0.41334207148903634], [0.4799978154610743], [0.4799978154610743], [0.41334207148903634], [0.32000764588624014], [0.22667322028344392], [0.18666885120559243], [0.22667322028344392], [0.3333333333333333], [0.45334644056688783], [0.5333551787225909], [0.5200021845389257], [0.4000163840419432], [0.22667322028344392], [0.06668305070860982], [0.0], [0.06668305070860982], [0.21334753283635075], [0.4000163840419432], [0.546680866169684], [0.613336610141722], [0.5600065536167773], [0.44002075311979466], [0.28000327680838866], [0.16001747631140606], [0.09333442560279619], [0.14666448212774097], [0.26667758936129543], [0.44002075311979466], [0.5866852352475355], [0.6800196608503318], [0.6666666666666666], [0.6000109226946287], [0.5066764970918325], [0.44002075311979466], [0.4266677589361295], [0.44002075311979466], [0.466672128013981], [0.5066764970918325], [0.5200021845389257], [0.5600065536167773], [0.5866852352475355], [0.613336610141722], [0.6533409792195735], [0.6666666666666666], [0.6800196608503318], [0.693345348297425], [0.7066710357445182], [0.7200240299281833], [0.7466754048223697], [0.7866797739002211], [0.8266841429780727], [0.8666885120559241], [0.9200185685808688], [0.9600229376587203], [0.9866743125529068], [0.9600229376587203], [0.9066655743972039], [0.853335517872259], [0.8000054613473143], [0.773354086453128], [0.7866797739002211], [0.8266841429780727], [0.8800141995030174], [0.9200185685808688], [0.8933398869501107], [0.8266841429780727], [0.7466754048223697], [0.6666666666666666], [0.6400152917724803], [0.6533409792195735], [0.7066710357445182], [0.7333497173752764], [0.7600010922694629], [0.7466754048223697], [0.7200240299281833], [0.693345348297425], [0.6666666666666666], [0.613336610141722], [0.5600065536167773], [0.5066764970918325], [0.4933508096447393], [0.5200021845389257], [0.6000109226946287], [0.693345348297425], [0.773354086453128], [0.7866797739002211], [0.7600010922694629], [0.693345348297425], [0.6533409792195735], [0.626689604325387], [0.6533409792195735], [0.7066710357445182], [0.7600010922694629], [0.773354086453128], [0.7333497173752764], [0.6533409792195735], [0.5733322410638705], [0.546680866169684], [0.6000109226946287], [0.7066710357445182], [0.853335517872259], [0.9733486251058137], [1.0], [0.9200185685808688], [0.7600010922694629], [0.6000109226946287], [0.4933508096447393], [0.4933508096447393], [0.5866852352475355], [0.7066710357445182], [0.8000054613473143], [0.8133584555309795], [0.7600010922694629], [0.6533409792195735], [0.5866852352475355], [0.5733322410638705], [0.613336610141722], [0.6800196608503318], [0.7200240299281833], [0.7066710357445182], [0.6533409792195735], [0.613336610141722], [0.613336610141722], [0.6666666666666666], [0.773354086453128], [0.8800141995030174], [0.933344256027962], [0.9200185685808688], [0.853335517872259], [0.7866797739002211], [0.7600010922694629], [0.8000054613473143], [0.8800141995030174], [0.9200185685808688], [0.8800141995030174], [0.773354086453128], [0.613336610141722], [0.4799978154610743], [0.41334207148903634], [0.4266677589361295], [0.4799978154610743], [0.546680866169684], [0.5733322410638705], [0.5333551787225909], [0.4799978154610743], [0.44002075311979466], [0.44002075311979466], [0.4799978154610743], [0.5200021845389257], [0.5733322410638705], [0.613336610141722], [0.6400152917724803], [0.6533409792195735], [0.6666666666666666], [0.6533409792195735], [0.626689604325387], [0.5866852352475355], [0.5866852352475355], [0.613336610141722], [0.6800196608503318], [0.7466754048223697], [0.7866797739002211], [0.7866797739002211], [0.7200240299281833], [0.626689604325387], [0.5200021845389257], [0.45334644056688783], [0.44002075311979466], [0.45334644056688783], [0.5200021845389257], [0.5733322410638705], [0.613336610141722], [0.626689604325387], [0.5866852352475355], [0.5200021845389257], [0.4799978154610743], [0.4799978154610743], [0.5066764970918325], [0.5600065536167773], [0.5733322410638705], [0.5600065536167773], [0.5066764970918325], [0.45334644056688783], [0.44002075311979466], [0.4799978154610743], [0.5600065536167773], [0.6533409792195735], [0.7200240299281833], [0.773354086453128], [0.7866797739002211], [0.7866797739002211]], "eval_masks": [[0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0]], "forwards": [[0.6000109226946287], [0.6533409792195735], [0.7333497173752764], [0.8133584555309795], [0.8400098304251659], [0.8000054613473143], [0.7466754048223697], [0.6800196608503318], [0.6400152917724803], [0.626689604325387], [0.6000109226946287], [0.5733322410638705], [0.5200021845389257], [0.41334207148903634], [0.32000764588624014], [0.22667322028344392], [0.20002184538925755], [0.2533519019142022], [0.37333770241118486], [0.5200021845389257], [0.6533409792195735], [0.7600010922694629], [0.8266841429780727], [0.853335517872259], [0.853335517872259], [0.8266841429780727], [0.8133584555309795], [0.7866797739002211], [0.7600010922694629], [0.7200240299281833], [0.626689604325387], [0.5333551787225909], [0.45334644056688783], [0.41334207148903634], [0.41334207148903634], [0.45334644056688783], [0.4799978154610743], [0.4799978154610743], [0.44002075311979466], [0.4266677589361295], [0.4266677589361295], [0.466672128013981], [0.5066764970918325], [0.5333551787225909], [0.5200021845389257], [0.45334644056688783], [0.38669069659484995], [0.36001201496409163], [0.38669069659484995], [0.44002075311979466], [0.4933508096447393], [0.5066764970918325], [0.466672128013981], [0.41334207148903634], [0.36001201496409163], [0.34668632751699846], [0.37333770241118486], [0.41334207148903634], [0.44002075311979466], [0.41334207148903634], [0.37333770241118486], [0.3333333333333333], [0.32000764588624014], [0.36001201496409163], [0.41334207148903634], [0.4799978154610743], [0.4799978154610743], [0.41334207148903634], [0.32000764588624014], [0.22667322028344392], [0.18666885120559243], [0.22667322028344392], [0.3333333333333333], [0.45334644056688783], [0.5333551787225909], [0.5200021845389257], [0.4000163840419432], [0.22667322028344392], [0.06668305070860982], [0.0], [0.06668305070860982], [0.21334753283635075], [0.4000163840419432], [0.546680866169684], [0.613336610141722], [0.5600065536167773], [0.44002075311979466], [0.28000327680838866], [0.16001747631140606], [0.09333442560279619], [0.14666448212774097], [0.26667758936129543], [0.44002075311979466], [0.5866852352475355], [0.6800196608503318], [0.6666666666666666], [0.6000109226946287], [0.5066764970918325], [0.44002075311979466], [0.4266677589361295], [0.44002075311979466], [0.466672128013981], [0.5066764970918325], [0.5200021845389257], [0.5600065536167773], [0.5866852352475355], [0.613336610141722], [0.6533409792195735], [0.6666666666666666], [0.6800196608503318], [0.693345348297425], [0.7066710357445182], [0.7200240299281833], [0.7466754048223697], [0.7866797739002211], [0.8266841429780727], [0.8666885120559241], [0.9200185685808688], [0.9600229376587203], [0.9866743125529068], [0.9600229376587203], [0.9066655743972039], [0.853335517872259], [0.8000054613473143], [0.773354086453128], [0.7866797739002211], [0.8266841429780727], [0.8800141995030174], [0.9200185685808688], [0.8933398869501107], [0.8266841429780727], [0.7466754048223697], [0.6666666666666666], [0.6400152917724803], [0.6533409792195735], [0.7066710357445182], [0.7333497173752764], [0.7600010922694629], [0.7466754048223697], [0.7200240299281833], [0.693345348297425], [0.6666666666666666], [0.613336610141722], [0.5600065536167773], [0.5066764970918325], [0.4933508096447393], [0.5200021845389257], [0.6000109226946287], [0.693345348297425], [0.773354086453128], [0.7866797739002211], [0.7600010922694629], [0.693345348297425], [0.6533409792195735], [0.626689604325387], [0.6533409792195735], [0.7066710357445182], [0.7600010922694629], [0.773354086453128], [0.7333497173752764], [0.6533409792195735], [0.5733322410638705], [0.546680866169684], [0.6000109226946287], [0.7066710357445182], [0.853335517872259], [0.9733486251058137], [1.0], [0.9200185685808688], [0.7600010922694629], [0.6000109226946287], [0.4933508096447393], [0.4933508096447393], [0.5866852352475355], [0.7066710357445182], [0.8000054613473143], [0.8133584555309795], [0.7600010922694629], [0.6533409792195735], [0.5866852352475355], [0.5733322410638705], [0.613336610141722], [0.6800196608503318], [0.7200240299281833], [0.7066710357445182], [0.6533409792195735], [0.613336610141722], [0.613336610141722], [0.6666666666666666], [0.773354086453128], [0.8800141995030174], [0.933344256027962], [0.9200185685808688], [0.853335517872259], [0.7866797739002211], [0.7600010922694629], [0.8000054613473143], [0.8800141995030174], [0.9200185685808688], [0.8800141995030174], [0.773354086453128], [0.613336610141722], [0.4799978154610743], [0.41334207148903634], [0.4266677589361295], [0.4799978154610743], [0.546680866169684], [0.5733322410638705], [0.5333551787225909], [0.4799978154610743], [0.44002075311979466], [0.44002075311979466], [0.4799978154610743], [0.5200021845389257], [0.5733322410638705], [0.613336610141722], [0.6400152917724803], [0.6533409792195735], [0.6666666666666666], [0.6533409792195735], [0.626689604325387], [0.5866852352475355], [0.5866852352475355], [0.613336610141722], [0.6800196608503318], [0.7466754048223697], [0.7866797739002211], [0.7866797739002211], [0.7200240299281833], [0.626689604325387], [0.5200021845389257], [0.45334644056688783], [0.44002075311979466], [0.45334644056688783], [0.5200021845389257], [0.5733322410638705], [0.613336610141722], [0.626689604325387], [0.5866852352475355], [0.5200021845389257], [0.4799978154610743], [0.4799978154610743], [0.5066764970918325], [0.5600065536167773], [0.5733322410638705], [0.5600065536167773], [0.5066764970918325], [0.45334644056688783], [0.44002075311979466], [0.4799978154610743], [0.5600065536167773], [0.6533409792195735], [0.7200240299281833], [0.773354086453128], [0.7866797739002211], [0.7866797739002211]], "deltas": [[1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0]]}, "backward": {"values": [[0.7866797739002211], [0.7866797739002211], [0.773354086453128], [0.7200240299281833], [0.6533409792195735], [0.5600065536167773], [0.4799978154610743], [0.44002075311979466], [0.45334644056688783], [0.5066764970918325], [0.5600065536167773], [0.5733322410638705], [0.5600065536167773], [0.5066764970918325], [0.4799978154610743], [0.4799978154610743], [0.5200021845389257], [0.5866852352475355], [0.626689604325387], [0.613336610141722], [0.5733322410638705], [0.5200021845389257], [0.45334644056688783], [0.44002075311979466], [0.45334644056688783], [0.5200021845389257], [0.626689604325387], [0.7200240299281833], [0.7866797739002211], [0.7866797739002211], [0.7466754048223697], [0.6800196608503318], [0.613336610141722], [0.5866852352475355], [0.5866852352475355], [0.626689604325387], [0.6533409792195735], [0.6666666666666666], [0.6533409792195735], [0.6400152917724803], [0.613336610141722], [0.5733322410638705], [0.5200021845389257], [0.4799978154610743], [0.44002075311979466], [0.44002075311979466], [0.4799978154610743], [0.5333551787225909], [0.5733322410638705], [0.546680866169684], [0.4799978154610743], [0.4266677589361295], [0.41334207148903634], [0.4799978154610743], [0.613336610141722], [0.773354086453128], [0.8800141995030174], [0.9200185685808688], [0.8800141995030174], [0.8000054613473143], [0.7600010922694629], [0.7866797739002211], [0.853335517872259], [0.9200185685808688], [0.933344256027962], [0.8800141995030174], [0.773354086453128], [0.6666666666666666], [0.613336610141722], [0.613336610141722], [0.6533409792195735], [0.7066710357445182], [0.7200240299281833], [0.6800196608503318], [0.613336610141722], [0.5733322410638705], [0.5866852352475355], [0.6533409792195735], [0.7600010922694629], [0.8133584555309795], [0.8000054613473143], [0.7066710357445182], [0.5866852352475355], [0.4933508096447393], [0.4933508096447393], [0.6000109226946287], [0.7600010922694629], [0.9200185685808688], [1.0], [0.9733486251058137], [0.853335517872259], [0.7066710357445182], [0.6000109226946287], [0.546680866169684], [0.5733322410638705], [0.6533409792195735], [0.7333497173752764], [0.773354086453128], [0.7600010922694629], [0.7066710357445182], [0.6533409792195735], [0.626689604325387], [0.6533409792195735], [0.693345348297425], [0.7600010922694629], [0.7866797739002211], [0.773354086453128], [0.693345348297425], [0.6000109226946287], [0.5200021845389257], [0.4933508096447393], [0.5066764970918325], [0.5600065536167773], [0.613336610141722], [0.6666666666666666], [0.693345348297425], [0.7200240299281833], [0.7466754048223697], [0.7600010922694629], [0.7333497173752764], [0.7066710357445182], [0.6533409792195735], [0.6400152917724803], [0.6666666666666666], [0.7466754048223697], [0.8266841429780727], [0.8933398869501107], [0.9200185685808688], [0.8800141995030174], [0.8266841429780727], [0.7866797739002211], [0.773354086453128], [0.8000054613473143], [0.853335517872259], [0.9066655743972039], [0.9600229376587203], [0.9866743125529068], [0.9600229376587203], [0.9200185685808688], [0.8666885120559241], [0.8266841429780727], [0.7866797739002211], [0.7466754048223697], [0.7200240299281833], [0.7066710357445182], [0.693345348297425], [0.6800196608503318], [0.6666666666666666], [0.6533409792195735], [0.613336610141722], [0.5866852352475355], [0.5600065536167773], [0.5200021845389257], [0.5066764970918325], [0.466672128013981], [0.44002075311979466], [0.4266677589361295], [0.44002075311979466], [0.5066764970918325], [0.6000109226946287], [0.6666666666666666], [0.6800196608503318], [0.5866852352475355], [0.44002075311979466], [0.26667758936129543], [0.14666448212774097], [0.09333442560279619], [0.16001747631140606], [0.28000327680838866], [0.44002075311979466], [0.5600065536167773], [0.613336610141722], [0.546680866169684], [0.4000163840419432], [0.21334753283635075], [0.06668305070860982], [0.0], [0.06668305070860982], [0.22667322028344392], [0.4000163840419432], [0.5200021845389257], [0.5333551787225909], [0.45334644056688783], [0.3333333333333333], [0.22667322028344392], [0.18666885120559243], [0.22667322028344392], [0.32000764588624014], [0.41334207148903634], [0.4799978154610743], [0.4799978154610743], [0.41334207148903634], [0.36001201496409163], [0.32000764588624014], [0.3333333333333333], [0.37333770241118486], [0.41334207148903634], [0.44002075311979466], [0.41334207148903634], [0.37333770241118486], [0.34668632751699846], [0.36001201496409163], [0.41334207148903634], [0.466672128013981], [0.5066764970918325], [0.4933508096447393], [0.44002075311979466], [0.38669069659484995], [0.36001201496409163], [0.38669069659484995], [0.45334644056688783], [0.5200021845389257], [0.5333551787225909], [0.5066764970918325], [0.466672128013981], [0.4266677589361295], [0.4266677589361295], [0.44002075311979466], [0.4799978154610743], [0.4799978154610743], [0.45334644056688783], [0.41334207148903634], [0.41334207148903634], [0.45334644056688783], [0.5333551787225909], [0.626689604325387], [0.7200240299281833], [0.7600010922694629], [0.7866797739002211], [0.8133584555309795], [0.8266841429780727], [0.853335517872259], [0.853335517872259], [0.8266841429780727], [0.7600010922694629], [0.6533409792195735], [0.5200021845389257], [0.37333770241118486], [0.2533519019142022], [0.20002184538925755], [0.22667322028344392], [0.32000764588624014], [0.41334207148903634], [0.5200021845389257], [0.5733322410638705], [0.6000109226946287], [0.626689604325387], [0.6400152917724803], [0.6800196608503318], [0.7466754048223697], [0.8000054613473143], [0.8400098304251659], [0.8133584555309795], [0.7333497173752764], [0.6533409792195735], [0.6000109226946287]], "masks": [[1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1]], "evals": [[0.7866797739002211], [0.7866797739002211], [0.773354086453128], [0.7200240299281833], [0.6533409792195735], [0.5600065536167773], [0.4799978154610743], [0.44002075311979466], [0.45334644056688783], [0.5066764970918325], [0.5600065536167773], [0.5733322410638705], [0.5600065536167773], [0.5066764970918325], [0.4799978154610743], [0.4799978154610743], [0.5200021845389257], [0.5866852352475355], [0.626689604325387], [0.613336610141722], [0.5733322410638705], [0.5200021845389257], [0.45334644056688783], [0.44002075311979466], [0.45334644056688783], [0.5200021845389257], [0.626689604325387], [0.7200240299281833], [0.7866797739002211], [0.7866797739002211], [0.7466754048223697], [0.6800196608503318], [0.613336610141722], [0.5866852352475355], [0.5866852352475355], [0.626689604325387], [0.6533409792195735], [0.6666666666666666], [0.6533409792195735], [0.6400152917724803], [0.613336610141722], [0.5733322410638705], [0.5200021845389257], [0.4799978154610743], [0.44002075311979466], [0.44002075311979466], [0.4799978154610743], [0.5333551787225909], [0.5733322410638705], [0.546680866169684], [0.4799978154610743], [0.4266677589361295], [0.41334207148903634], [0.4799978154610743], [0.613336610141722], [0.773354086453128], [0.8800141995030174], [0.9200185685808688], [0.8800141995030174], [0.8000054613473143], [0.7600010922694629], [0.7866797739002211], [0.853335517872259], [0.9200185685808688], [0.933344256027962], [0.8800141995030174], [0.773354086453128], [0.6666666666666666], [0.613336610141722], [0.613336610141722], [0.6533409792195735], [0.7066710357445182], [0.7200240299281833], [0.6800196608503318], [0.613336610141722], [0.5733322410638705], [0.5866852352475355], [0.6533409792195735], [0.7600010922694629], [0.8133584555309795], [0.8000054613473143], [0.7066710357445182], [0.5866852352475355], [0.4933508096447393], [0.4933508096447393], [0.6000109226946287], [0.7600010922694629], [0.9200185685808688], [1.0], [0.9733486251058137], [0.853335517872259], [0.7066710357445182], [0.6000109226946287], [0.546680866169684], [0.5733322410638705], [0.6533409792195735], [0.7333497173752764], [0.773354086453128], [0.7600010922694629], [0.7066710357445182], [0.6533409792195735], [0.626689604325387], [0.6533409792195735], [0.693345348297425], [0.7600010922694629], [0.7866797739002211], [0.773354086453128], [0.693345348297425], [0.6000109226946287], [0.5200021845389257], [0.4933508096447393], [0.5066764970918325], [0.5600065536167773], [0.613336610141722], [0.6666666666666666], [0.693345348297425], [0.7200240299281833], [0.7466754048223697], [0.7600010922694629], [0.7333497173752764], [0.7066710357445182], [0.6533409792195735], [0.6400152917724803], [0.6666666666666666], [0.7466754048223697], [0.8266841429780727], [0.8933398869501107], [0.9200185685808688], [0.8800141995030174], [0.8266841429780727], [0.7866797739002211], [0.773354086453128], [0.8000054613473143], [0.853335517872259], [0.9066655743972039], [0.9600229376587203], [0.9866743125529068], [0.9600229376587203], [0.9200185685808688], [0.8666885120559241], [0.8266841429780727], [0.7866797739002211], [0.7466754048223697], [0.7200240299281833], [0.7066710357445182], [0.693345348297425], [0.6800196608503318], [0.6666666666666666], [0.6533409792195735], [0.613336610141722], [0.5866852352475355], [0.5600065536167773], [0.5200021845389257], [0.5066764970918325], [0.466672128013981], [0.44002075311979466], [0.4266677589361295], [0.44002075311979466], [0.5066764970918325], [0.6000109226946287], [0.6666666666666666], [0.6800196608503318], [0.5866852352475355], [0.44002075311979466], [0.26667758936129543], [0.14666448212774097], [0.09333442560279619], [0.16001747631140606], [0.28000327680838866], [0.44002075311979466], [0.5600065536167773], [0.613336610141722], [0.546680866169684], [0.4000163840419432], [0.21334753283635075], [0.06668305070860982], [0.0], [0.06668305070860982], [0.22667322028344392], [0.4000163840419432], [0.5200021845389257], [0.5333551787225909], [0.45334644056688783], [0.3333333333333333], [0.22667322028344392], [0.18666885120559243], [0.22667322028344392], [0.32000764588624014], [0.41334207148903634], [0.4799978154610743], [0.4799978154610743], [0.41334207148903634], [0.36001201496409163], [0.32000764588624014], [0.3333333333333333], [0.37333770241118486], [0.41334207148903634], [0.44002075311979466], [0.41334207148903634], [0.37333770241118486], [0.34668632751699846], [0.36001201496409163], [0.41334207148903634], [0.466672128013981], [0.5066764970918325], [0.4933508096447393], [0.44002075311979466], [0.38669069659484995], [0.36001201496409163], [0.38669069659484995], [0.45334644056688783], [0.5200021845389257], [0.5333551787225909], [0.5066764970918325], [0.466672128013981], [0.4266677589361295], [0.4266677589361295], [0.44002075311979466], [0.4799978154610743], [0.4799978154610743], [0.45334644056688783], [0.41334207148903634], [0.41334207148903634], [0.45334644056688783], [0.5333551787225909], [0.626689604325387], [0.7200240299281833], [0.7600010922694629], [0.7866797739002211], [0.8133584555309795], [0.8266841429780727], [0.853335517872259], [0.853335517872259], [0.8266841429780727], [0.7600010922694629], [0.6533409792195735], [0.5200021845389257], [0.37333770241118486], [0.2533519019142022], [0.20002184538925755], [0.22667322028344392], [0.32000764588624014], [0.41334207148903634], [0.5200021845389257], [0.5733322410638705], [0.6000109226946287], [0.626689604325387], [0.6400152917724803], [0.6800196608503318], [0.7466754048223697], [0.8000054613473143], [0.8400098304251659], [0.8133584555309795], [0.7333497173752764], [0.6533409792195735], [0.6000109226946287]], "eval_masks": [[0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0]], "forwards": [[0.7866797739002211], [0.7866797739002211], [0.773354086453128], [0.7200240299281833], [0.6533409792195735], [0.5600065536167773], [0.4799978154610743], [0.44002075311979466], [0.45334644056688783], [0.5066764970918325], [0.5600065536167773], [0.5733322410638705], [0.5600065536167773], [0.5066764970918325], [0.4799978154610743], [0.4799978154610743], [0.5200021845389257], [0.5866852352475355], [0.626689604325387], [0.613336610141722], [0.5733322410638705], [0.5200021845389257], [0.45334644056688783], [0.44002075311979466], [0.45334644056688783], [0.5200021845389257], [0.626689604325387], [0.7200240299281833], [0.7866797739002211], [0.7866797739002211], [0.7466754048223697], [0.6800196608503318], [0.613336610141722], [0.5866852352475355], [0.5866852352475355], [0.626689604325387], [0.6533409792195735], [0.6666666666666666], [0.6533409792195735], [0.6400152917724803], [0.613336610141722], [0.5733322410638705], [0.5200021845389257], [0.4799978154610743], [0.44002075311979466], [0.44002075311979466], [0.4799978154610743], [0.5333551787225909], [0.5733322410638705], [0.546680866169684], [0.4799978154610743], [0.4266677589361295], [0.41334207148903634], [0.4799978154610743], [0.613336610141722], [0.773354086453128], [0.8800141995030174], [0.9200185685808688], [0.8800141995030174], [0.8000054613473143], [0.7600010922694629], [0.7866797739002211], [0.853335517872259], [0.9200185685808688], [0.933344256027962], [0.8800141995030174], [0.773354086453128], [0.6666666666666666], [0.613336610141722], [0.613336610141722], [0.6533409792195735], [0.7066710357445182], [0.7200240299281833], [0.6800196608503318], [0.613336610141722], [0.5733322410638705], [0.5866852352475355], [0.6533409792195735], [0.7600010922694629], [0.8133584555309795], [0.8000054613473143], [0.7066710357445182], [0.5866852352475355], [0.4933508096447393], [0.4933508096447393], [0.6000109226946287], [0.7600010922694629], [0.9200185685808688], [1.0], [0.9733486251058137], [0.853335517872259], [0.7066710357445182], [0.6000109226946287], [0.546680866169684], [0.5733322410638705], [0.6533409792195735], [0.7333497173752764], [0.773354086453128], [0.7600010922694629], [0.7066710357445182], [0.6533409792195735], [0.626689604325387], [0.6533409792195735], [0.693345348297425], [0.7600010922694629], [0.7866797739002211], [0.773354086453128], [0.693345348297425], [0.6000109226946287], [0.5200021845389257], [0.4933508096447393], [0.5066764970918325], [0.5600065536167773], [0.613336610141722], [0.6666666666666666], [0.693345348297425], [0.7200240299281833], [0.7466754048223697], [0.7600010922694629], [0.7333497173752764], [0.7066710357445182], [0.6533409792195735], [0.6400152917724803], [0.6666666666666666], [0.7466754048223697], [0.8266841429780727], [0.8933398869501107], [0.9200185685808688], [0.8800141995030174], [0.8266841429780727], [0.7866797739002211], [0.773354086453128], [0.8000054613473143], [0.853335517872259], [0.9066655743972039], [0.9600229376587203], [0.9866743125529068], [0.9600229376587203], [0.9200185685808688], [0.8666885120559241], [0.8266841429780727], [0.7866797739002211], [0.7466754048223697], [0.7200240299281833], [0.7066710357445182], [0.693345348297425], [0.6800196608503318], [0.6666666666666666], [0.6533409792195735], [0.613336610141722], [0.5866852352475355], [0.5600065536167773], [0.5200021845389257], [0.5066764970918325], [0.466672128013981], [0.44002075311979466], [0.4266677589361295], [0.44002075311979466], [0.5066764970918325], [0.6000109226946287], [0.6666666666666666], [0.6800196608503318], [0.5866852352475355], [0.44002075311979466], [0.26667758936129543], [0.14666448212774097], [0.09333442560279619], [0.16001747631140606], [0.28000327680838866], [0.44002075311979466], [0.5600065536167773], [0.613336610141722], [0.546680866169684], [0.4000163840419432], [0.21334753283635075], [0.06668305070860982], [0.0], [0.06668305070860982], [0.22667322028344392], [0.4000163840419432], [0.5200021845389257], [0.5333551787225909], [0.45334644056688783], [0.3333333333333333], [0.22667322028344392], [0.18666885120559243], [0.22667322028344392], [0.32000764588624014], [0.41334207148903634], [0.4799978154610743], [0.4799978154610743], [0.41334207148903634], [0.36001201496409163], [0.32000764588624014], [0.3333333333333333], [0.37333770241118486], [0.41334207148903634], [0.44002075311979466], [0.41334207148903634], [0.37333770241118486], [0.34668632751699846], [0.36001201496409163], [0.41334207148903634], [0.466672128013981], [0.5066764970918325], [0.4933508096447393], [0.44002075311979466], [0.38669069659484995], [0.36001201496409163], [0.38669069659484995], [0.45334644056688783], [0.5200021845389257], [0.5333551787225909], [0.5066764970918325], [0.466672128013981], [0.4266677589361295], [0.4266677589361295], [0.44002075311979466], [0.4799978154610743], [0.4799978154610743], [0.45334644056688783], [0.41334207148903634], [0.41334207148903634], [0.45334644056688783], [0.5333551787225909], [0.626689604325387], [0.7200240299281833], [0.7600010922694629], [0.7866797739002211], [0.8133584555309795], [0.8266841429780727], [0.853335517872259], [0.853335517872259], [0.8266841429780727], [0.7600010922694629], [0.6533409792195735], [0.5200021845389257], [0.37333770241118486], [0.2533519019142022], [0.20002184538925755], [0.22667322028344392], [0.32000764588624014], [0.41334207148903634], [0.5200021845389257], [0.5733322410638705], [0.6000109226946287], [0.626689604325387], [0.6400152917724803], [0.6800196608503318], [0.7466754048223697], [0.8000054613473143], [0.8400098304251659], [0.8133584555309795], [0.7333497173752764], [0.6533409792195735], [0.6000109226946287]], "deltas": [[1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0]]}} -{"label": 0, "forward": {"values": [[0.6578997008811879], [0.7105284432347948], [0.7763076342666201], [0.8552642216173975], [0.8815920666145679], [0.8421137729391793], [0.7631571855884018], [0.6973779945565766], [0.6447492522029696], [0.6184214072057992], [0.6184214072057992], [0.6184214072057992], [0.5920935622086286], [0.5394648198550217], [0.4736856288231966], [0.4210568864695896], [0.40790643779137137], [0.46053518014497835], [0.552642216173974], [0.6710501495594061], [0.7894850305855723], [0.8947425152927864], [0.9473712576463932], [0.9473712576463932], [0.9078929639710045], [0.8157859279420088], [0.7236788919130132], [0.6578997008811879], [0.605270958527581], [0.5657926648521923], [0.499986526179633], [0.4210568864695896], [0.3421002991188122], [0.30262200544342344], [0.31579940176237575], [0.3552507477970304], [0.38157859279420087], [0.38157859279420087], [0.32894985044059394], [0.28947155676520525], [0.30262200544342344], [0.3552507477970304], [0.4210568864695896], [0.46053518014497835], [0.4210568864695896], [0.3552507477970304], [0.28947155676520525], [0.27632110808698696], [0.32894985044059394], [0.40790643779137137], [0.4736856288231966], [0.499986526179633], [0.4736856288231966], [0.39472904147241916], [0.3421002991188122], [0.32894985044059394], [0.3684281441159827], [0.4210568864695896], [0.4736856288231966], [0.4736856288231966], [0.4473577838260261], [0.40790643779137137], [0.43420733514780785], [0.5263143711768035], [0.6315718558840174], [0.7105284432347948], [0.6842005982376244], [0.5657926648521923], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.07892963971004335], [0.0], [0.052628742353606935], [0.22369236573338003], [0.4473577838260261], [0.6315718558840174], [0.6973779945565766], [0.6184214072057992], [0.46053518014497835], [0.26314371176803475], [0.13158532970438439], [0.09210703602899566], [0.1578862270608208], [0.28947155676520525], [0.46053518014497835], [0.5920935622086286], [0.6710501495594061], [0.6842005982376244], [0.6447492522029696], [0.5789431135304105], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.5394648198550217], [0.552642216173974], [0.5789431135304105], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.8289633242609611], [0.7763076342666201], [0.7236788919130132], [0.6973779945565766], [0.6973779945565766], [0.7368562882319654], [0.7763076342666201], [0.8026354792637905], [0.7763076342666201], [0.6973779945565766], [0.5789431135304105], [0.4868360775014148], [0.4473577838260261], [0.4736856288231966], [0.5394648198550217], [0.605270958527581], [0.6184214072057992], [0.5789431135304105], [0.5263143711768035], [0.4736856288231966], [0.43420733514780785], [0.40790643779137137], [0.38157859279420087], [0.3421002991188122], [0.32894985044059394], [0.3552507477970304], [0.4473577838260261], [0.5657926648521923], [0.6710501495594061], [0.7105284432347948], [0.6842005982376244], [0.6184214072057992], [0.552642216173974], [0.5263143711768035], [0.5394648198550217], [0.5920935622086286], [0.6315718558840174], [0.6447492522029696], [0.6184214072057992], [0.5394648198550217], [0.46053518014497835], [0.40790643779137137], [0.43420733514780785], [0.5394648198550217], [0.6710501495594061], [0.8026354792637905], [0.8421137729391793], [0.7894850305855723], [0.6315718558840174], [0.4473577838260261], [0.31579940176237575], [0.30262200544342344], [0.39472904147241916], [0.5657926648521923], [0.6973779945565766], [0.7368562882319654], [0.6842005982376244], [0.5920935622086286], [0.5131639224985853], [0.499986526179633], [0.5263143711768035], [0.5657926648521923], [0.605270958527581], [0.605270958527581], [0.5920935622086286], [0.5920935622086286], [0.6315718558840174], [0.7105284432347948], [0.8157859279420088], [0.9342208089681749], [1.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.4736856288231966], [0.3684281441159827], [0.3552507477970304], [0.40790643779137137], [0.4736856288231966], [0.499986526179633], [0.4736856288231966], [0.4210568864695896], [0.39472904147241916], [0.39472904147241916], [0.43420733514780785], [0.4868360775014148], [0.5263143711768035], [0.5657926648521923], [0.5920935622086286], [0.6184214072057992], [0.6315718558840174], [0.5920935622086286], [0.5131639224985853], [0.4210568864695896], [0.3684281441159827], [0.39472904147241916], [0.4868360775014148], [0.6184214072057992], [0.6973779945565766], [0.7105284432347948], [0.6447492522029696], [0.5263143711768035], [0.43420733514780785], [0.40790643779137137], [0.4210568864695896], [0.4868360775014148], [0.5394648198550217], [0.5657926648521923], [0.5657926648521923], [0.5131639224985853], [0.46053518014497835], [0.40790643779137137], [0.38157859279420087], [0.40790643779137137], [0.4736856288231966], [0.5394648198550217], [0.5789431135304105], [0.5920935622086286], [0.552642216173974], [0.499986526179633], [0.46053518014497835], [0.46053518014497835], [0.499986526179633], [0.5789431135304105], [0.6578997008811879], [0.7105284432347948], [0.7368562882319654], [0.7105284432347948]], "masks": [[1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [1], [1], [1], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1]], "evals": [[0.6578997008811879], [0.7105284432347948], [0.7763076342666201], [0.8552642216173975], [0.8815920666145679], [0.8421137729391793], [0.7631571855884018], [0.6973779945565766], [0.6447492522029696], [0.6184214072057992], [0.6184214072057992], [0.6184214072057992], [0.5920935622086286], [0.5394648198550217], [0.4736856288231966], [0.4210568864695896], [0.40790643779137137], [0.46053518014497835], [0.552642216173974], [0.6710501495594061], [0.7894850305855723], [0.8947425152927864], [0.9473712576463932], [0.9473712576463932], [0.9078929639710045], [0.8157859279420088], [0.7236788919130132], [0.6578997008811879], [0.605270958527581], [0.5657926648521923], [0.499986526179633], [0.4210568864695896], [0.3421002991188122], [0.30262200544342344], [0.31579940176237575], [0.3552507477970304], [0.38157859279420087], [0.38157859279420087], [0.32894985044059394], [0.28947155676520525], [0.30262200544342344], [0.3552507477970304], [0.4210568864695896], [0.46053518014497835], [0.4210568864695896], [0.3552507477970304], [0.28947155676520525], [0.27632110808698696], [0.32894985044059394], [0.40790643779137137], [0.4736856288231966], [0.499986526179633], [0.4736856288231966], [0.39472904147241916], [0.3421002991188122], [0.32894985044059394], [0.3684281441159827], [0.4210568864695896], [0.4736856288231966], [0.4736856288231966], [0.4473577838260261], [0.40790643779137137], [0.43420733514780785], [0.5263143711768035], [0.6315718558840174], [0.7105284432347948], [0.6842005982376244], [0.5657926648521923], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.07892963971004335], [0.0], [0.052628742353606935], [0.22369236573338003], [0.4473577838260261], [0.6315718558840174], [0.6973779945565766], [0.6184214072057992], [0.46053518014497835], [0.26314371176803475], [0.13158532970438439], [0.09210703602899566], [0.1578862270608208], [0.28947155676520525], [0.46053518014497835], [0.5920935622086286], [0.6710501495594061], [0.6842005982376244], [0.6447492522029696], [0.5789431135304105], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.5394648198550217], [0.552642216173974], [0.5789431135304105], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.8289633242609611], [0.7763076342666201], [0.7236788919130132], [0.6973779945565766], [0.6973779945565766], [0.7368562882319654], [0.7763076342666201], [0.8026354792637905], [0.7763076342666201], [0.6973779945565766], [0.5789431135304105], [0.4868360775014148], [0.4473577838260261], [0.4736856288231966], [0.5394648198550217], [0.605270958527581], [0.6184214072057992], [0.5789431135304105], [0.5263143711768035], [0.4736856288231966], [0.43420733514780785], [0.40790643779137137], [0.38157859279420087], [0.3421002991188122], [0.32894985044059394], [0.3552507477970304], [0.4473577838260261], [0.5657926648521923], [0.6710501495594061], [0.7105284432347948], [0.6842005982376244], [0.6184214072057992], [0.552642216173974], [0.5263143711768035], [0.5394648198550217], [0.5920935622086286], [0.6315718558840174], [0.6447492522029696], [0.6184214072057992], [0.5394648198550217], [0.46053518014497835], [0.40790643779137137], [0.43420733514780785], [0.5394648198550217], [0.6710501495594061], [0.8026354792637905], [0.8421137729391793], [0.7894850305855723], [0.6315718558840174], [0.4473577838260261], [0.31579940176237575], [0.30262200544342344], [0.39472904147241916], [0.5657926648521923], [0.6973779945565766], [0.7368562882319654], [0.6842005982376244], [0.5920935622086286], [0.5131639224985853], [0.499986526179633], [0.5263143711768035], [0.5657926648521923], [0.605270958527581], [0.605270958527581], [0.5920935622086286], [0.5920935622086286], [0.6315718558840174], [0.7105284432347948], [0.8157859279420088], [0.9342208089681749], [1.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.4736856288231966], [0.3684281441159827], [0.3552507477970304], [0.40790643779137137], [0.4736856288231966], [0.499986526179633], [0.4736856288231966], [0.4210568864695896], [0.39472904147241916], [0.39472904147241916], [0.43420733514780785], [0.4868360775014148], [0.5263143711768035], [0.5657926648521923], [0.5920935622086286], [0.6184214072057992], [0.6315718558840174], [0.5920935622086286], [0.5131639224985853], [0.4210568864695896], [0.3684281441159827], [0.39472904147241916], [0.4868360775014148], [0.6184214072057992], [0.6973779945565766], [0.7105284432347948], [0.6447492522029696], [0.5263143711768035], [0.43420733514780785], [0.40790643779137137], [0.4210568864695896], [0.4868360775014148], [0.5394648198550217], [0.5657926648521923], [0.5657926648521923], [0.5131639224985853], [0.46053518014497835], [0.40790643779137137], [0.38157859279420087], [0.40790643779137137], [0.4736856288231966], [0.5394648198550217], [0.5789431135304105], [0.5920935622086286], [0.552642216173974], [0.499986526179633], [0.46053518014497835], [0.46053518014497835], [0.499986526179633], [0.5789431135304105], [0.6578997008811879], [0.7105284432347948], [0.7368562882319654], [0.7105284432347948]], "eval_masks": [[0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0]], "forwards": [[0.6578997008811879], [0.7105284432347948], [0.7763076342666201], [0.8552642216173975], [0.8815920666145679], [0.8421137729391793], [0.7631571855884018], [0.6973779945565766], [0.6447492522029696], [0.6184214072057992], [0.6184214072057992], [0.6184214072057992], [0.5920935622086286], [0.5394648198550217], [0.4736856288231966], [0.4210568864695896], [0.40790643779137137], [0.46053518014497835], [0.552642216173974], [0.6710501495594061], [0.7894850305855723], [0.8947425152927864], [0.9473712576463932], [0.9473712576463932], [0.9078929639710045], [0.8157859279420088], [0.7236788919130132], [0.6578997008811879], [0.605270958527581], [0.5657926648521923], [0.499986526179633], [0.4210568864695896], [0.3421002991188122], [0.30262200544342344], [0.31579940176237575], [0.3552507477970304], [0.38157859279420087], [0.38157859279420087], [0.32894985044059394], [0.28947155676520525], [0.30262200544342344], [0.3552507477970304], [0.4210568864695896], [0.46053518014497835], [0.4210568864695896], [0.3552507477970304], [0.28947155676520525], [0.27632110808698696], [0.32894985044059394], [0.40790643779137137], [0.4736856288231966], [0.499986526179633], [0.4736856288231966], [0.39472904147241916], [0.3421002991188122], [0.32894985044059394], [0.3684281441159827], [0.4210568864695896], [0.4736856288231966], [0.4736856288231966], [0.4473577838260261], [0.40790643779137137], [0.43420733514780785], [0.5263143711768035], [0.6315718558840174], [0.7105284432347948], [0.6842005982376244], [0.5657926648521923], [0.5657926648521923], [0.5657926648521923], [0.5657926648521923], [0.5657926648521923], [0.5657926648521923], [0.5657926648521923], [0.5657926648521923], [0.5657926648521923], [0.5657926648521923], [0.5657926648521923], [0.07892963971004335], [0.0], [0.052628742353606935], [0.22369236573338003], [0.4473577838260261], [0.6315718558840174], [0.6973779945565766], [0.6184214072057992], [0.46053518014497835], [0.26314371176803475], [0.13158532970438439], [0.09210703602899566], [0.1578862270608208], [0.28947155676520525], [0.46053518014497835], [0.5920935622086286], [0.6710501495594061], [0.6842005982376244], [0.6447492522029696], [0.5789431135304105], [0.5789431135304105], [0.5789431135304105], [0.5789431135304105], [0.5789431135304105], [0.5789431135304105], [0.5789431135304105], [0.5789431135304105], [0.5789431135304105], [0.5789431135304105], [0.5789431135304105], [0.5394648198550217], [0.552642216173974], [0.5789431135304105], [0.5789431135304105], [0.5789431135304105], [0.5789431135304105], [0.5789431135304105], [0.5789431135304105], [0.5789431135304105], [0.5789431135304105], [0.5789431135304105], [0.5789431135304105], [0.5789431135304105], [0.8289633242609611], [0.7763076342666201], [0.7236788919130132], [0.6973779945565766], [0.6973779945565766], [0.7368562882319654], [0.7763076342666201], [0.8026354792637905], [0.7763076342666201], [0.6973779945565766], [0.5789431135304105], [0.4868360775014148], [0.4473577838260261], [0.4736856288231966], [0.5394648198550217], [0.605270958527581], [0.6184214072057992], [0.5789431135304105], [0.5263143711768035], [0.4736856288231966], [0.43420733514780785], [0.40790643779137137], [0.38157859279420087], [0.3421002991188122], [0.32894985044059394], [0.3552507477970304], [0.4473577838260261], [0.5657926648521923], [0.6710501495594061], [0.7105284432347948], [0.6842005982376244], [0.6184214072057992], [0.552642216173974], [0.5263143711768035], [0.5394648198550217], [0.5920935622086286], [0.6315718558840174], [0.6447492522029696], [0.6184214072057992], [0.5394648198550217], [0.46053518014497835], [0.40790643779137137], [0.43420733514780785], [0.5394648198550217], [0.6710501495594061], [0.8026354792637905], [0.8421137729391793], [0.7894850305855723], [0.6315718558840174], [0.4473577838260261], [0.31579940176237575], [0.30262200544342344], [0.39472904147241916], [0.5657926648521923], [0.6973779945565766], [0.7368562882319654], [0.6842005982376244], [0.5920935622086286], [0.5131639224985853], [0.499986526179633], [0.5263143711768035], [0.5657926648521923], [0.605270958527581], [0.605270958527581], [0.5920935622086286], [0.5920935622086286], [0.6315718558840174], [0.7105284432347948], [0.8157859279420088], [0.9342208089681749], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [0.4736856288231966], [0.3684281441159827], [0.3552507477970304], [0.40790643779137137], [0.4736856288231966], [0.499986526179633], [0.4736856288231966], [0.4210568864695896], [0.39472904147241916], [0.39472904147241916], [0.43420733514780785], [0.4868360775014148], [0.5263143711768035], [0.5657926648521923], [0.5920935622086286], [0.6184214072057992], [0.6315718558840174], [0.5920935622086286], [0.5131639224985853], [0.4210568864695896], [0.3684281441159827], [0.39472904147241916], [0.4868360775014148], [0.6184214072057992], [0.6973779945565766], [0.7105284432347948], [0.6447492522029696], [0.5263143711768035], [0.43420733514780785], [0.40790643779137137], [0.4210568864695896], [0.4868360775014148], [0.5394648198550217], [0.5657926648521923], [0.5657926648521923], [0.5131639224985853], [0.46053518014497835], [0.40790643779137137], [0.38157859279420087], [0.40790643779137137], [0.4736856288231966], [0.5394648198550217], [0.5789431135304105], [0.5920935622086286], [0.552642216173974], [0.499986526179633], [0.46053518014497835], [0.46053518014497835], [0.499986526179633], [0.5789431135304105], [0.6578997008811879], [0.7105284432347948], [0.7368562882319654], [0.7105284432347948]], "deltas": [[1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [2.0], [3.0], [4.0], [5.0], [6.0], [7.0], [8.0], [9.0], [10.0], [11.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [2.0], [3.0], [4.0], [5.0], [6.0], [7.0], [8.0], [9.0], [10.0], [11.0], [1.0], [1.0], [1.0], [2.0], [3.0], [4.0], [5.0], [6.0], [7.0], [8.0], [9.0], [10.0], [11.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [2.0], [3.0], [4.0], [5.0], [6.0], [7.0], [8.0], [9.0], [10.0], [11.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0]]}, "backward": {"values": [[0.7105284432347948], [0.7368562882319654], [0.7105284432347948], [0.6578997008811879], [0.5789431135304105], [0.499986526179633], [0.46053518014497835], [0.46053518014497835], [0.499986526179633], [0.552642216173974], [0.5920935622086286], [0.5789431135304105], [0.5394648198550217], [0.4736856288231966], [0.40790643779137137], [0.38157859279420087], [0.40790643779137137], [0.46053518014497835], [0.5131639224985853], [0.5657926648521923], [0.5657926648521923], [0.5394648198550217], [0.4868360775014148], [0.4210568864695896], [0.40790643779137137], [0.43420733514780785], [0.5263143711768035], [0.6447492522029696], [0.7105284432347948], [0.6973779945565766], [0.6184214072057992], [0.4868360775014148], [0.39472904147241916], [0.3684281441159827], [0.4210568864695896], [0.5131639224985853], [0.5920935622086286], [0.6315718558840174], [0.6184214072057992], [0.5920935622086286], [0.5657926648521923], [0.5263143711768035], [0.4868360775014148], [0.43420733514780785], [0.39472904147241916], [0.39472904147241916], [0.4210568864695896], [0.4736856288231966], [0.499986526179633], [0.4736856288231966], [0.40790643779137137], [0.3552507477970304], [0.3684281441159827], [0.4736856288231966], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [1.0], [0.9342208089681749], [0.8157859279420088], [0.7105284432347948], [0.6315718558840174], [0.5920935622086286], [0.5920935622086286], [0.605270958527581], [0.605270958527581], [0.5657926648521923], [0.5263143711768035], [0.499986526179633], [0.5131639224985853], [0.5920935622086286], [0.6842005982376244], [0.7368562882319654], [0.6973779945565766], [0.5657926648521923], [0.39472904147241916], [0.30262200544342344], [0.31579940176237575], [0.4473577838260261], [0.6315718558840174], [0.7894850305855723], [0.8421137729391793], [0.8026354792637905], [0.6710501495594061], [0.5394648198550217], [0.43420733514780785], [0.40790643779137137], [0.46053518014497835], [0.5394648198550217], [0.6184214072057992], [0.6447492522029696], [0.6315718558840174], [0.5920935622086286], [0.5394648198550217], [0.5263143711768035], [0.552642216173974], [0.6184214072057992], [0.6842005982376244], [0.7105284432347948], [0.6710501495594061], [0.5657926648521923], [0.4473577838260261], [0.3552507477970304], [0.32894985044059394], [0.3421002991188122], [0.38157859279420087], [0.40790643779137137], [0.43420733514780785], [0.4736856288231966], [0.5263143711768035], [0.5789431135304105], [0.6184214072057992], [0.605270958527581], [0.5394648198550217], [0.4736856288231966], [0.4473577838260261], [0.4868360775014148], [0.5789431135304105], [0.6973779945565766], [0.7763076342666201], [0.8026354792637905], [0.7763076342666201], [0.7368562882319654], [0.6973779945565766], [0.6973779945565766], [0.7236788919130132], [0.7763076342666201], [0.8289633242609611], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.5789431135304105], [0.552642216173974], [0.5394648198550217], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.5789431135304105], [0.6447492522029696], [0.6842005982376244], [0.6710501495594061], [0.5920935622086286], [0.46053518014497835], [0.28947155676520525], [0.1578862270608208], [0.09210703602899566], [0.13158532970438439], [0.26314371176803475], [0.46053518014497835], [0.6184214072057992], [0.6973779945565766], [0.6315718558840174], [0.4473577838260261], [0.22369236573338003], [0.052628742353606935], [0.0], [0.07892963971004335], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.5657926648521923], [0.6842005982376244], [0.7105284432347948], [0.6315718558840174], [0.5263143711768035], [0.43420733514780785], [0.40790643779137137], [0.4473577838260261], [0.4736856288231966], [0.4736856288231966], [0.4210568864695896], [0.3684281441159827], [0.32894985044059394], [0.3421002991188122], [0.39472904147241916], [0.4736856288231966], [0.499986526179633], [0.4736856288231966], [0.40790643779137137], [0.32894985044059394], [0.27632110808698696], [0.28947155676520525], [0.3552507477970304], [0.4210568864695896], [0.46053518014497835], [0.4210568864695896], [0.3552507477970304], [0.30262200544342344], [0.28947155676520525], [0.32894985044059394], [0.38157859279420087], [0.38157859279420087], [0.3552507477970304], [0.31579940176237575], [0.30262200544342344], [0.3421002991188122], [0.4210568864695896], [0.499986526179633], [0.5657926648521923], [0.605270958527581], [0.6578997008811879], [0.7236788919130132], [0.8157859279420088], [0.9078929639710045], [0.9473712576463932], [0.9473712576463932], [0.8947425152927864], [0.7894850305855723], [0.6710501495594061], [0.552642216173974], [0.46053518014497835], [0.40790643779137137], [0.4210568864695896], [0.4736856288231966], [0.5394648198550217], [0.5920935622086286], [0.6184214072057992], [0.6184214072057992], [0.6184214072057992], [0.6447492522029696], [0.6973779945565766], [0.7631571855884018], [0.8421137729391793], [0.8815920666145679], [0.8552642216173975], [0.7763076342666201], [0.7105284432347948], [0.6578997008811879]], "masks": [[1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [1], [1], [1], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1]], "evals": [[0.7105284432347948], [0.7368562882319654], [0.7105284432347948], [0.6578997008811879], [0.5789431135304105], [0.499986526179633], [0.46053518014497835], [0.46053518014497835], [0.499986526179633], [0.552642216173974], [0.5920935622086286], [0.5789431135304105], [0.5394648198550217], [0.4736856288231966], [0.40790643779137137], [0.38157859279420087], [0.40790643779137137], [0.46053518014497835], [0.5131639224985853], [0.5657926648521923], [0.5657926648521923], [0.5394648198550217], [0.4868360775014148], [0.4210568864695896], [0.40790643779137137], [0.43420733514780785], [0.5263143711768035], [0.6447492522029696], [0.7105284432347948], [0.6973779945565766], [0.6184214072057992], [0.4868360775014148], [0.39472904147241916], [0.3684281441159827], [0.4210568864695896], [0.5131639224985853], [0.5920935622086286], [0.6315718558840174], [0.6184214072057992], [0.5920935622086286], [0.5657926648521923], [0.5263143711768035], [0.4868360775014148], [0.43420733514780785], [0.39472904147241916], [0.39472904147241916], [0.4210568864695896], [0.4736856288231966], [0.499986526179633], [0.4736856288231966], [0.40790643779137137], [0.3552507477970304], [0.3684281441159827], [0.4736856288231966], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [1.0], [0.9342208089681749], [0.8157859279420088], [0.7105284432347948], [0.6315718558840174], [0.5920935622086286], [0.5920935622086286], [0.605270958527581], [0.605270958527581], [0.5657926648521923], [0.5263143711768035], [0.499986526179633], [0.5131639224985853], [0.5920935622086286], [0.6842005982376244], [0.7368562882319654], [0.6973779945565766], [0.5657926648521923], [0.39472904147241916], [0.30262200544342344], [0.31579940176237575], [0.4473577838260261], [0.6315718558840174], [0.7894850305855723], [0.8421137729391793], [0.8026354792637905], [0.6710501495594061], [0.5394648198550217], [0.43420733514780785], [0.40790643779137137], [0.46053518014497835], [0.5394648198550217], [0.6184214072057992], [0.6447492522029696], [0.6315718558840174], [0.5920935622086286], [0.5394648198550217], [0.5263143711768035], [0.552642216173974], [0.6184214072057992], [0.6842005982376244], [0.7105284432347948], [0.6710501495594061], [0.5657926648521923], [0.4473577838260261], [0.3552507477970304], [0.32894985044059394], [0.3421002991188122], [0.38157859279420087], [0.40790643779137137], [0.43420733514780785], [0.4736856288231966], [0.5263143711768035], [0.5789431135304105], [0.6184214072057992], [0.605270958527581], [0.5394648198550217], [0.4736856288231966], [0.4473577838260261], [0.4868360775014148], [0.5789431135304105], [0.6973779945565766], [0.7763076342666201], [0.8026354792637905], [0.7763076342666201], [0.7368562882319654], [0.6973779945565766], [0.6973779945565766], [0.7236788919130132], [0.7763076342666201], [0.8289633242609611], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.5789431135304105], [0.552642216173974], [0.5394648198550217], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.5789431135304105], [0.6447492522029696], [0.6842005982376244], [0.6710501495594061], [0.5920935622086286], [0.46053518014497835], [0.28947155676520525], [0.1578862270608208], [0.09210703602899566], [0.13158532970438439], [0.26314371176803475], [0.46053518014497835], [0.6184214072057992], [0.6973779945565766], [0.6315718558840174], [0.4473577838260261], [0.22369236573338003], [0.052628742353606935], [0.0], [0.07892963971004335], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.5657926648521923], [0.6842005982376244], [0.7105284432347948], [0.6315718558840174], [0.5263143711768035], [0.43420733514780785], [0.40790643779137137], [0.4473577838260261], [0.4736856288231966], [0.4736856288231966], [0.4210568864695896], [0.3684281441159827], [0.32894985044059394], [0.3421002991188122], [0.39472904147241916], [0.4736856288231966], [0.499986526179633], [0.4736856288231966], [0.40790643779137137], [0.32894985044059394], [0.27632110808698696], [0.28947155676520525], [0.3552507477970304], [0.4210568864695896], [0.46053518014497835], [0.4210568864695896], [0.3552507477970304], [0.30262200544342344], [0.28947155676520525], [0.32894985044059394], [0.38157859279420087], [0.38157859279420087], [0.3552507477970304], [0.31579940176237575], [0.30262200544342344], [0.3421002991188122], [0.4210568864695896], [0.499986526179633], [0.5657926648521923], [0.605270958527581], [0.6578997008811879], [0.7236788919130132], [0.8157859279420088], [0.9078929639710045], [0.9473712576463932], [0.9473712576463932], [0.8947425152927864], [0.7894850305855723], [0.6710501495594061], [0.552642216173974], [0.46053518014497835], [0.40790643779137137], [0.4210568864695896], [0.4736856288231966], [0.5394648198550217], [0.5920935622086286], [0.6184214072057992], [0.6184214072057992], [0.6184214072057992], [0.6447492522029696], [0.6973779945565766], [0.7631571855884018], [0.8421137729391793], [0.8815920666145679], [0.8552642216173975], [0.7763076342666201], [0.7105284432347948], [0.6578997008811879]], "eval_masks": [[0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0]], "forwards": [[0.7105284432347948], [0.7368562882319654], [0.7105284432347948], [0.6578997008811879], [0.5789431135304105], [0.499986526179633], [0.46053518014497835], [0.46053518014497835], [0.499986526179633], [0.552642216173974], [0.5920935622086286], [0.5789431135304105], [0.5394648198550217], [0.4736856288231966], [0.40790643779137137], [0.38157859279420087], [0.40790643779137137], [0.46053518014497835], [0.5131639224985853], [0.5657926648521923], [0.5657926648521923], [0.5394648198550217], [0.4868360775014148], [0.4210568864695896], [0.40790643779137137], [0.43420733514780785], [0.5263143711768035], [0.6447492522029696], [0.7105284432347948], [0.6973779945565766], [0.6184214072057992], [0.4868360775014148], [0.39472904147241916], [0.3684281441159827], [0.4210568864695896], [0.5131639224985853], [0.5920935622086286], [0.6315718558840174], [0.6184214072057992], [0.5920935622086286], [0.5657926648521923], [0.5263143711768035], [0.4868360775014148], [0.43420733514780785], [0.39472904147241916], [0.39472904147241916], [0.4210568864695896], [0.4736856288231966], [0.499986526179633], [0.4736856288231966], [0.40790643779137137], [0.3552507477970304], [0.3684281441159827], [0.4736856288231966], [0.4736856288231966], [0.4736856288231966], [0.4736856288231966], [0.4736856288231966], [0.4736856288231966], [0.4736856288231966], [0.4736856288231966], [0.4736856288231966], [0.4736856288231966], [0.4736856288231966], [1.0], [0.9342208089681749], [0.8157859279420088], [0.7105284432347948], [0.6315718558840174], [0.5920935622086286], [0.5920935622086286], [0.605270958527581], [0.605270958527581], [0.5657926648521923], [0.5263143711768035], [0.499986526179633], [0.5131639224985853], [0.5920935622086286], [0.6842005982376244], [0.7368562882319654], [0.6973779945565766], [0.5657926648521923], [0.39472904147241916], [0.30262200544342344], [0.31579940176237575], [0.4473577838260261], [0.6315718558840174], [0.7894850305855723], [0.8421137729391793], [0.8026354792637905], [0.6710501495594061], [0.5394648198550217], [0.43420733514780785], [0.40790643779137137], [0.46053518014497835], [0.5394648198550217], [0.6184214072057992], [0.6447492522029696], [0.6315718558840174], [0.5920935622086286], [0.5394648198550217], [0.5263143711768035], [0.552642216173974], [0.6184214072057992], [0.6842005982376244], [0.7105284432347948], [0.6710501495594061], [0.5657926648521923], [0.4473577838260261], [0.3552507477970304], [0.32894985044059394], [0.3421002991188122], [0.38157859279420087], [0.40790643779137137], [0.43420733514780785], [0.4736856288231966], [0.5263143711768035], [0.5789431135304105], [0.6184214072057992], [0.605270958527581], [0.5394648198550217], [0.4736856288231966], [0.4473577838260261], [0.4868360775014148], [0.5789431135304105], [0.6973779945565766], [0.7763076342666201], [0.8026354792637905], [0.7763076342666201], [0.7368562882319654], [0.6973779945565766], [0.6973779945565766], [0.7236788919130132], [0.7763076342666201], [0.8289633242609611], [0.8289633242609611], [0.8289633242609611], [0.8289633242609611], [0.8289633242609611], [0.8289633242609611], [0.8289633242609611], [0.8289633242609611], [0.8289633242609611], [0.8289633242609611], [0.8289633242609611], [0.5789431135304105], [0.552642216173974], [0.5394648198550217], [0.5394648198550217], [0.5394648198550217], [0.5394648198550217], [0.5394648198550217], [0.5394648198550217], [0.5394648198550217], [0.5394648198550217], [0.5394648198550217], [0.5394648198550217], [0.5394648198550217], [0.5789431135304105], [0.6447492522029696], [0.6842005982376244], [0.6710501495594061], [0.5920935622086286], [0.46053518014497835], [0.28947155676520525], [0.1578862270608208], [0.09210703602899566], [0.13158532970438439], [0.26314371176803475], [0.46053518014497835], [0.6184214072057992], [0.6973779945565766], [0.6315718558840174], [0.4473577838260261], [0.22369236573338003], [0.052628742353606935], [0.0], [0.07892963971004335], [0.07892963971004335], [0.07892963971004335], [0.07892963971004335], [0.07892963971004335], [0.07892963971004335], [0.07892963971004335], [0.07892963971004335], [0.07892963971004335], [0.07892963971004335], [0.07892963971004335], [0.5657926648521923], [0.6842005982376244], [0.7105284432347948], [0.6315718558840174], [0.5263143711768035], [0.43420733514780785], [0.40790643779137137], [0.4473577838260261], [0.4736856288231966], [0.4736856288231966], [0.4210568864695896], [0.3684281441159827], [0.32894985044059394], [0.3421002991188122], [0.39472904147241916], [0.4736856288231966], [0.499986526179633], [0.4736856288231966], [0.40790643779137137], [0.32894985044059394], [0.27632110808698696], [0.28947155676520525], [0.3552507477970304], [0.4210568864695896], [0.46053518014497835], [0.4210568864695896], [0.3552507477970304], [0.30262200544342344], [0.28947155676520525], [0.32894985044059394], [0.38157859279420087], [0.38157859279420087], [0.3552507477970304], [0.31579940176237575], [0.30262200544342344], [0.3421002991188122], [0.4210568864695896], [0.499986526179633], [0.5657926648521923], [0.605270958527581], [0.6578997008811879], [0.7236788919130132], [0.8157859279420088], [0.9078929639710045], [0.9473712576463932], [0.9473712576463932], [0.8947425152927864], [0.7894850305855723], [0.6710501495594061], [0.552642216173974], [0.46053518014497835], [0.40790643779137137], [0.4210568864695896], [0.4736856288231966], [0.5394648198550217], [0.5920935622086286], [0.6184214072057992], [0.6184214072057992], [0.6184214072057992], [0.6447492522029696], [0.6973779945565766], [0.7631571855884018], [0.8421137729391793], [0.8815920666145679], [0.8552642216173975], [0.7763076342666201], [0.7105284432347948], [0.6578997008811879]], "deltas": [[1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [2.0], [3.0], [4.0], [5.0], [6.0], [7.0], [8.0], [9.0], [10.0], [11.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [2.0], [3.0], [4.0], [5.0], [6.0], [7.0], [8.0], [9.0], [10.0], [11.0], [1.0], [1.0], [1.0], [2.0], [3.0], [4.0], [5.0], [6.0], [7.0], [8.0], [9.0], [10.0], [11.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [2.0], [3.0], [4.0], [5.0], [6.0], [7.0], [8.0], [9.0], [10.0], [11.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0]]}} -{"label": 0, "forward": {"values": [[0.46552028530066036], [0.5344797146993397], [0.6206701740757742], [0.706895942939868], [0.7586243423607923], [0.7413580028953781], [0.706895942939868], [0.6551675435189436], [0.6379365135411885], [0.6206701740757742], [0.6206701740757742], [0.5862081141202642], [0.48275131527841536], [0.37932982592422587], [0.24137565763920768], [0.12068782881960387], [0.1034567988418488], [0.15518519826277327], [0.2758730270823771], [0.44828925532290537], [0.5862081141202642], [0.689664912962113], [0.7413580028953781], [0.7413580028953781], [0.7241269729176231], [0.7241269729176231], [0.706895942939868], [0.706895942939868], [0.689664912962113], [0.6551675435189436], [0.5862081141202642], [0.48275131527841536], [0.413791885879736], [0.37932982592422587], [0.37932982592422587], [0.413791885879736], [0.44828925532290537], [0.431022915857491], [0.37932982592422587], [0.34483245648105654], [0.34483245648105654], [0.39656085590198087], [0.44828925532290537], [0.48275131527841536], [0.44828925532290537], [0.37932982592422587], [0.31033508703788715], [0.2758730270823771], [0.31033508703788715], [0.36206348645881153], [0.413791885879736], [0.431022915857491], [0.37932982592422587], [0.3276014265033015], [0.2758730270823771], [0.2758730270823771], [0.2931040570601321], [0.34483245648105654], [0.37932982592422587], [0.37932982592422587], [0.34483245648105654], [0.31033508703788715], [0.2931040570601321], [0.31033508703788715], [0.37932982592422587], [0.413791885879736], [0.431022915857491], [0.37932982592422587], [0.2931040570601321], [0.20691359768369766], [0.15518519826277327], [0.1896472582182833], [0.2931040570601321], [0.431022915857491], [0.5172486847215848], [0.49998234525617036], [0.39656085590198087], [0.22414462766145268], [0.0517283994209244], [0.0], [0.0517283994209244], [0.22414462766145268], [0.413791885879736], [0.5689770841425091], [0.6379365135411885], [0.6034391440980191], [0.48275131527841536], [0.31033508703788715], [0.17241622824052827], [0.06895942939867947], [0.1034567988418488], [0.22414462766145268], [0.413791885879736], [0.6034391440980191], [0.7413580028953781], [0.7413580028953781], [0.6551675435189436], [0.5344797146993397], [0.413791885879736], [0.36206348645881153], [0.37932982592422587], [0.413791885879736], [0.46552028530066036], [0.49998234525617036], [0.5344797146993397], [0.5689770841425091], [0.6034391440980191], [0.6379365135411885], [0.6379365135411885], [0.6379365135411885], [0.6206701740757742], [0.6206701740757742], [0.6551675435189436], [0.6723985734966986], [0.7241269729176231], [0.7586243423607923], [0.827583771759472], [0.8793121711803962], [0.9137742311359063], [0.9482716005790758], [0.9310405706013207], [0.8793121711803962], [0.8103527417817168], [0.7413580028953781], [0.689664912962113], [0.706895942939868], [0.7758553723385474], [0.862045831714982], [0.9310405706013207], [0.9137742311359063], [0.8448148017372269], [0.7413580028953781], [0.6551675435189436], [0.6206701740757742], [0.6206701740757742], [0.6723985734966986], [0.7241269729176231], [0.7413580028953781], [0.7241269729176231], [0.706895942939868], [0.6723985734966986], [0.6379365135411885], [0.5862081141202642], [0.5172486847215848], [0.46552028530066036], [0.431022915857491], [0.44828925532290537], [0.5344797146993397], [0.6206701740757742], [0.689664912962113], [0.706895942939868], [0.6551675435189436], [0.5862081141202642], [0.5344797146993397], [0.5172486847215848], [0.5517107446770948], [0.6379365135411885], [0.706895942939868], [0.7241269729176231], [0.689664912962113], [0.6034391440980191], [0.5344797146993397], [0.5172486847215848], [0.5689770841425091], [0.7241269729176231], [0.8793121711803962], [0.9827336605345858], [1.0], [0.8793121711803962], [0.706895942939868], [0.5344797146993397], [0.413791885879736], [0.413791885879736], [0.49998234525617036], [0.6551675435189436], [0.7586243423607923], [0.7758553723385474], [0.706895942939868], [0.6034391440980191], [0.5172486847215848], [0.49998234525617036], [0.5517107446770948], [0.6206701740757742], [0.6551675435189436], [0.6379365135411885], [0.5862081141202642], [0.5344797146993397], [0.5172486847215848], [0.5862081141202642], [0.706895942939868], [0.8103527417817168], [0.8793121711803962], [0.862045831714982], [0.7930864023163023], [0.706895942939868], [0.689664912962113], [0.7241269729176231], [0.7930864023163023], [0.827583771759472], [0.7930864023163023], [0.6723985734966986], [0.49998234525617036], [0.34483245648105654], [0.2758730270823771], [0.31033508703788715], [0.39656085590198087], [0.49998234525617036], [0.5689770841425091], [0.5517107446770948], [0.48275131527841536], [0.413791885879736], [0.37932982592422587], [0.37932982592422587], [0.431022915857491], [0.48275131527841536], [0.5344797146993397], [0.5689770841425091], [0.5689770841425091], [0.5517107446770948], [0.5344797146993397], [0.49998234525617036], [0.48275131527841536], [0.48275131527841536], [0.5517107446770948], [0.5862081141202642], [0.6551675435189436], [0.6723985734966986], [0.6723985734966986], [0.6206701740757742], [0.5344797146993397], [0.44828925532290537], [0.39656085590198087], [0.37932982592422587], [0.39656085590198087], [0.431022915857491], [0.48275131527841536], [0.5344797146993397], [0.5344797146993397], [0.49998234525617036], [0.46552028530066036], [0.44828925532290537], [0.431022915857491], [0.431022915857491], [0.44828925532290537], [0.44828925532290537], [0.413791885879736], [0.39656085590198087], [0.37932982592422587], [0.37932982592422587], [0.413791885879736], [0.46552028530066036], [0.49998234525617036], [0.5344797146993397], [0.5862081141202642], [0.6206701740757742], [0.6551675435189436]], "masks": [[1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1]], "evals": [[0.46552028530066036], [0.5344797146993397], [0.6206701740757742], [0.706895942939868], [0.7586243423607923], [0.7413580028953781], [0.706895942939868], [0.6551675435189436], [0.6379365135411885], [0.6206701740757742], [0.6206701740757742], [0.5862081141202642], [0.48275131527841536], [0.37932982592422587], [0.24137565763920768], [0.12068782881960387], [0.1034567988418488], [0.15518519826277327], [0.2758730270823771], [0.44828925532290537], [0.5862081141202642], [0.689664912962113], [0.7413580028953781], [0.7413580028953781], [0.7241269729176231], [0.7241269729176231], [0.706895942939868], [0.706895942939868], [0.689664912962113], [0.6551675435189436], [0.5862081141202642], [0.48275131527841536], [0.413791885879736], [0.37932982592422587], [0.37932982592422587], [0.413791885879736], [0.44828925532290537], [0.431022915857491], [0.37932982592422587], [0.34483245648105654], [0.34483245648105654], [0.39656085590198087], [0.44828925532290537], [0.48275131527841536], [0.44828925532290537], [0.37932982592422587], [0.31033508703788715], [0.2758730270823771], [0.31033508703788715], [0.36206348645881153], [0.413791885879736], [0.431022915857491], [0.37932982592422587], [0.3276014265033015], [0.2758730270823771], [0.2758730270823771], [0.2931040570601321], [0.34483245648105654], [0.37932982592422587], [0.37932982592422587], [0.34483245648105654], [0.31033508703788715], [0.2931040570601321], [0.31033508703788715], [0.37932982592422587], [0.413791885879736], [0.431022915857491], [0.37932982592422587], [0.2931040570601321], [0.20691359768369766], [0.15518519826277327], [0.1896472582182833], [0.2931040570601321], [0.431022915857491], [0.5172486847215848], [0.49998234525617036], [0.39656085590198087], [0.22414462766145268], [0.0517283994209244], [0.0], [0.0517283994209244], [0.22414462766145268], [0.413791885879736], [0.5689770841425091], [0.6379365135411885], [0.6034391440980191], [0.48275131527841536], [0.31033508703788715], [0.17241622824052827], [0.06895942939867947], [0.1034567988418488], [0.22414462766145268], [0.413791885879736], [0.6034391440980191], [0.7413580028953781], [0.7413580028953781], [0.6551675435189436], [0.5344797146993397], [0.413791885879736], [0.36206348645881153], [0.37932982592422587], [0.413791885879736], [0.46552028530066036], [0.49998234525617036], [0.5344797146993397], [0.5689770841425091], [0.6034391440980191], [0.6379365135411885], [0.6379365135411885], [0.6379365135411885], [0.6206701740757742], [0.6206701740757742], [0.6551675435189436], [0.6723985734966986], [0.7241269729176231], [0.7586243423607923], [0.827583771759472], [0.8793121711803962], [0.9137742311359063], [0.9482716005790758], [0.9310405706013207], [0.8793121711803962], [0.8103527417817168], [0.7413580028953781], [0.689664912962113], [0.706895942939868], [0.7758553723385474], [0.862045831714982], [0.9310405706013207], [0.9137742311359063], [0.8448148017372269], [0.7413580028953781], [0.6551675435189436], [0.6206701740757742], [0.6206701740757742], [0.6723985734966986], [0.7241269729176231], [0.7413580028953781], [0.7241269729176231], [0.706895942939868], [0.6723985734966986], [0.6379365135411885], [0.5862081141202642], [0.5172486847215848], [0.46552028530066036], [0.431022915857491], [0.44828925532290537], [0.5344797146993397], [0.6206701740757742], [0.689664912962113], [0.706895942939868], [0.6551675435189436], [0.5862081141202642], [0.5344797146993397], [0.5172486847215848], [0.5517107446770948], [0.6379365135411885], [0.706895942939868], [0.7241269729176231], [0.689664912962113], [0.6034391440980191], [0.5344797146993397], [0.5172486847215848], [0.5689770841425091], [0.7241269729176231], [0.8793121711803962], [0.9827336605345858], [1.0], [0.8793121711803962], [0.706895942939868], [0.5344797146993397], [0.413791885879736], [0.413791885879736], [0.49998234525617036], [0.6551675435189436], [0.7586243423607923], [0.7758553723385474], [0.706895942939868], [0.6034391440980191], [0.5172486847215848], [0.49998234525617036], [0.5517107446770948], [0.6206701740757742], [0.6551675435189436], [0.6379365135411885], [0.5862081141202642], [0.5344797146993397], [0.5172486847215848], [0.5862081141202642], [0.706895942939868], [0.8103527417817168], [0.8793121711803962], [0.862045831714982], [0.7930864023163023], [0.706895942939868], [0.689664912962113], [0.7241269729176231], [0.7930864023163023], [0.827583771759472], [0.7930864023163023], [0.6723985734966986], [0.49998234525617036], [0.34483245648105654], [0.2758730270823771], [0.31033508703788715], [0.39656085590198087], [0.49998234525617036], [0.5689770841425091], [0.5517107446770948], [0.48275131527841536], [0.413791885879736], [0.37932982592422587], [0.37932982592422587], [0.431022915857491], [0.48275131527841536], [0.5344797146993397], [0.5689770841425091], [0.5689770841425091], [0.5517107446770948], [0.5344797146993397], [0.49998234525617036], [0.48275131527841536], [0.48275131527841536], [0.5517107446770948], [0.5862081141202642], [0.6551675435189436], [0.6723985734966986], [0.6723985734966986], [0.6206701740757742], [0.5344797146993397], [0.44828925532290537], [0.39656085590198087], [0.37932982592422587], [0.39656085590198087], [0.431022915857491], [0.48275131527841536], [0.5344797146993397], [0.5344797146993397], [0.49998234525617036], [0.46552028530066036], [0.44828925532290537], [0.431022915857491], [0.431022915857491], [0.44828925532290537], [0.44828925532290537], [0.413791885879736], [0.39656085590198087], [0.37932982592422587], [0.37932982592422587], [0.413791885879736], [0.46552028530066036], [0.49998234525617036], [0.5344797146993397], [0.5862081141202642], [0.6206701740757742], [0.6551675435189436]], "eval_masks": [[0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0]], "forwards": [[0.46552028530066036], [0.5344797146993397], [0.6206701740757742], [0.706895942939868], [0.7586243423607923], [0.7413580028953781], [0.706895942939868], [0.6551675435189436], [0.6379365135411885], [0.6206701740757742], [0.6206701740757742], [0.5862081141202642], [0.48275131527841536], [0.37932982592422587], [0.24137565763920768], [0.12068782881960387], [0.1034567988418488], [0.15518519826277327], [0.2758730270823771], [0.44828925532290537], [0.5862081141202642], [0.689664912962113], [0.7413580028953781], [0.7413580028953781], [0.7241269729176231], [0.7241269729176231], [0.706895942939868], [0.706895942939868], [0.689664912962113], [0.6551675435189436], [0.5862081141202642], [0.48275131527841536], [0.413791885879736], [0.37932982592422587], [0.37932982592422587], [0.413791885879736], [0.44828925532290537], [0.431022915857491], [0.37932982592422587], [0.34483245648105654], [0.34483245648105654], [0.39656085590198087], [0.44828925532290537], [0.48275131527841536], [0.44828925532290537], [0.37932982592422587], [0.31033508703788715], [0.2758730270823771], [0.31033508703788715], [0.36206348645881153], [0.413791885879736], [0.431022915857491], [0.37932982592422587], [0.3276014265033015], [0.2758730270823771], [0.2758730270823771], [0.2931040570601321], [0.34483245648105654], [0.37932982592422587], [0.37932982592422587], [0.34483245648105654], [0.31033508703788715], [0.2931040570601321], [0.31033508703788715], [0.37932982592422587], [0.413791885879736], [0.431022915857491], [0.37932982592422587], [0.2931040570601321], [0.20691359768369766], [0.15518519826277327], [0.1896472582182833], [0.2931040570601321], [0.431022915857491], [0.5172486847215848], [0.49998234525617036], [0.39656085590198087], [0.22414462766145268], [0.0517283994209244], [0.0], [0.0517283994209244], [0.22414462766145268], [0.413791885879736], [0.5689770841425091], [0.6379365135411885], [0.6034391440980191], [0.48275131527841536], [0.31033508703788715], [0.17241622824052827], [0.06895942939867947], [0.1034567988418488], [0.22414462766145268], [0.413791885879736], [0.6034391440980191], [0.7413580028953781], [0.7413580028953781], [0.6551675435189436], [0.5344797146993397], [0.413791885879736], [0.36206348645881153], [0.37932982592422587], [0.413791885879736], [0.46552028530066036], [0.49998234525617036], [0.5344797146993397], [0.5689770841425091], [0.6034391440980191], [0.6379365135411885], [0.6379365135411885], [0.6379365135411885], [0.6206701740757742], [0.6206701740757742], [0.6551675435189436], [0.6723985734966986], [0.7241269729176231], [0.7586243423607923], [0.827583771759472], [0.8793121711803962], [0.9137742311359063], [0.9482716005790758], [0.9310405706013207], [0.8793121711803962], [0.8103527417817168], [0.7413580028953781], [0.689664912962113], [0.706895942939868], [0.7758553723385474], [0.862045831714982], [0.9310405706013207], [0.9137742311359063], [0.8448148017372269], [0.7413580028953781], [0.6551675435189436], [0.6206701740757742], [0.6206701740757742], [0.6723985734966986], [0.7241269729176231], [0.7413580028953781], [0.7241269729176231], [0.706895942939868], [0.6723985734966986], [0.6379365135411885], [0.5862081141202642], [0.5172486847215848], [0.46552028530066036], [0.431022915857491], [0.44828925532290537], [0.5344797146993397], [0.6206701740757742], [0.689664912962113], [0.706895942939868], [0.6551675435189436], [0.5862081141202642], [0.5344797146993397], [0.5172486847215848], [0.5517107446770948], [0.6379365135411885], [0.706895942939868], [0.7241269729176231], [0.689664912962113], [0.6034391440980191], [0.5344797146993397], [0.5172486847215848], [0.5689770841425091], [0.7241269729176231], [0.8793121711803962], [0.9827336605345858], [1.0], [0.8793121711803962], [0.706895942939868], [0.5344797146993397], [0.413791885879736], [0.413791885879736], [0.49998234525617036], [0.6551675435189436], [0.7586243423607923], [0.7758553723385474], [0.706895942939868], [0.6034391440980191], [0.5172486847215848], [0.49998234525617036], [0.5517107446770948], [0.6206701740757742], [0.6551675435189436], [0.6379365135411885], [0.5862081141202642], [0.5344797146993397], [0.5172486847215848], [0.5862081141202642], [0.706895942939868], [0.8103527417817168], [0.8793121711803962], [0.862045831714982], [0.7930864023163023], [0.706895942939868], [0.689664912962113], [0.7241269729176231], [0.7930864023163023], [0.827583771759472], [0.7930864023163023], [0.6723985734966986], [0.49998234525617036], [0.34483245648105654], [0.2758730270823771], [0.31033508703788715], [0.39656085590198087], [0.49998234525617036], [0.5689770841425091], [0.5517107446770948], [0.48275131527841536], [0.413791885879736], [0.37932982592422587], [0.37932982592422587], [0.431022915857491], [0.48275131527841536], [0.5344797146993397], [0.5689770841425091], [0.5689770841425091], [0.5517107446770948], [0.5344797146993397], [0.49998234525617036], [0.48275131527841536], [0.48275131527841536], [0.5517107446770948], [0.5862081141202642], [0.6551675435189436], [0.6723985734966986], [0.6723985734966986], [0.6206701740757742], [0.5344797146993397], [0.44828925532290537], [0.39656085590198087], [0.37932982592422587], [0.39656085590198087], [0.431022915857491], [0.48275131527841536], [0.5344797146993397], [0.5344797146993397], [0.49998234525617036], [0.46552028530066036], [0.44828925532290537], [0.431022915857491], [0.431022915857491], [0.44828925532290537], [0.44828925532290537], [0.413791885879736], [0.39656085590198087], [0.37932982592422587], [0.37932982592422587], [0.413791885879736], [0.46552028530066036], [0.49998234525617036], [0.5344797146993397], [0.5862081141202642], [0.6206701740757742], [0.6551675435189436]], "deltas": [[1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0]]}, "backward": {"values": [[0.6551675435189436], [0.6206701740757742], [0.5862081141202642], [0.5344797146993397], [0.49998234525617036], [0.46552028530066036], [0.413791885879736], [0.37932982592422587], [0.37932982592422587], [0.39656085590198087], [0.413791885879736], [0.44828925532290537], [0.44828925532290537], [0.431022915857491], [0.431022915857491], [0.44828925532290537], [0.46552028530066036], [0.49998234525617036], [0.5344797146993397], [0.5344797146993397], [0.48275131527841536], [0.431022915857491], [0.39656085590198087], [0.37932982592422587], [0.39656085590198087], [0.44828925532290537], [0.5344797146993397], [0.6206701740757742], [0.6723985734966986], [0.6723985734966986], [0.6551675435189436], [0.5862081141202642], [0.5517107446770948], [0.48275131527841536], [0.48275131527841536], [0.49998234525617036], [0.5344797146993397], [0.5517107446770948], [0.5689770841425091], [0.5689770841425091], [0.5344797146993397], [0.48275131527841536], [0.431022915857491], [0.37932982592422587], [0.37932982592422587], [0.413791885879736], [0.48275131527841536], [0.5517107446770948], [0.5689770841425091], [0.49998234525617036], [0.39656085590198087], [0.31033508703788715], [0.2758730270823771], [0.34483245648105654], [0.49998234525617036], [0.6723985734966986], [0.7930864023163023], [0.827583771759472], [0.7930864023163023], [0.7241269729176231], [0.689664912962113], [0.706895942939868], [0.7930864023163023], [0.862045831714982], [0.8793121711803962], [0.8103527417817168], [0.706895942939868], [0.5862081141202642], [0.5172486847215848], [0.5344797146993397], [0.5862081141202642], [0.6379365135411885], [0.6551675435189436], [0.6206701740757742], [0.5517107446770948], [0.49998234525617036], [0.5172486847215848], [0.6034391440980191], [0.706895942939868], [0.7758553723385474], [0.7586243423607923], [0.6551675435189436], [0.49998234525617036], [0.413791885879736], [0.413791885879736], [0.5344797146993397], [0.706895942939868], [0.8793121711803962], [1.0], [0.9827336605345858], [0.8793121711803962], [0.7241269729176231], [0.5689770841425091], [0.5172486847215848], [0.5344797146993397], [0.6034391440980191], [0.689664912962113], [0.7241269729176231], [0.706895942939868], [0.6379365135411885], [0.5517107446770948], [0.5172486847215848], [0.5344797146993397], [0.5862081141202642], [0.6551675435189436], [0.706895942939868], [0.689664912962113], [0.6206701740757742], [0.5344797146993397], [0.44828925532290537], [0.431022915857491], [0.46552028530066036], [0.5172486847215848], [0.5862081141202642], [0.6379365135411885], [0.6723985734966986], [0.706895942939868], [0.7241269729176231], [0.7413580028953781], [0.7241269729176231], [0.6723985734966986], [0.6206701740757742], [0.6206701740757742], [0.6551675435189436], [0.7413580028953781], [0.8448148017372269], [0.9137742311359063], [0.9310405706013207], [0.862045831714982], [0.7758553723385474], [0.706895942939868], [0.689664912962113], [0.7413580028953781], [0.8103527417817168], [0.8793121711803962], [0.9310405706013207], [0.9482716005790758], [0.9137742311359063], [0.8793121711803962], [0.827583771759472], [0.7586243423607923], [0.7241269729176231], [0.6723985734966986], [0.6551675435189436], [0.6206701740757742], [0.6206701740757742], [0.6379365135411885], [0.6379365135411885], [0.6379365135411885], [0.6034391440980191], [0.5689770841425091], [0.5344797146993397], [0.49998234525617036], [0.46552028530066036], [0.413791885879736], [0.37932982592422587], [0.36206348645881153], [0.413791885879736], [0.5344797146993397], [0.6551675435189436], [0.7413580028953781], [0.7413580028953781], [0.6034391440980191], [0.413791885879736], [0.22414462766145268], [0.1034567988418488], [0.06895942939867947], [0.17241622824052827], [0.31033508703788715], [0.48275131527841536], [0.6034391440980191], [0.6379365135411885], [0.5689770841425091], [0.413791885879736], [0.22414462766145268], [0.0517283994209244], [0.0], [0.0517283994209244], [0.22414462766145268], [0.39656085590198087], [0.49998234525617036], [0.5172486847215848], [0.431022915857491], [0.2931040570601321], [0.1896472582182833], [0.15518519826277327], [0.20691359768369766], [0.2931040570601321], [0.37932982592422587], [0.431022915857491], [0.413791885879736], [0.37932982592422587], [0.31033508703788715], [0.2931040570601321], [0.31033508703788715], [0.34483245648105654], [0.37932982592422587], [0.37932982592422587], [0.34483245648105654], [0.2931040570601321], [0.2758730270823771], [0.2758730270823771], [0.3276014265033015], [0.37932982592422587], [0.431022915857491], [0.413791885879736], [0.36206348645881153], [0.31033508703788715], [0.2758730270823771], [0.31033508703788715], [0.37932982592422587], [0.44828925532290537], [0.48275131527841536], [0.44828925532290537], [0.39656085590198087], [0.34483245648105654], [0.34483245648105654], [0.37932982592422587], [0.431022915857491], [0.44828925532290537], [0.413791885879736], [0.37932982592422587], [0.37932982592422587], [0.413791885879736], [0.48275131527841536], [0.5862081141202642], [0.6551675435189436], [0.689664912962113], [0.706895942939868], [0.706895942939868], [0.7241269729176231], [0.7241269729176231], [0.7413580028953781], [0.7413580028953781], [0.689664912962113], [0.5862081141202642], [0.44828925532290537], [0.2758730270823771], [0.15518519826277327], [0.1034567988418488], [0.12068782881960387], [0.24137565763920768], [0.37932982592422587], [0.48275131527841536], [0.5862081141202642], [0.6206701740757742], [0.6206701740757742], [0.6379365135411885], [0.6551675435189436], [0.706895942939868], [0.7413580028953781], [0.7586243423607923], [0.706895942939868], [0.6206701740757742], [0.5344797146993397], [0.46552028530066036]], "masks": [[1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1]], "evals": [[0.6551675435189436], [0.6206701740757742], [0.5862081141202642], [0.5344797146993397], [0.49998234525617036], [0.46552028530066036], [0.413791885879736], [0.37932982592422587], [0.37932982592422587], [0.39656085590198087], [0.413791885879736], [0.44828925532290537], [0.44828925532290537], [0.431022915857491], [0.431022915857491], [0.44828925532290537], [0.46552028530066036], [0.49998234525617036], [0.5344797146993397], [0.5344797146993397], [0.48275131527841536], [0.431022915857491], [0.39656085590198087], [0.37932982592422587], [0.39656085590198087], [0.44828925532290537], [0.5344797146993397], [0.6206701740757742], [0.6723985734966986], [0.6723985734966986], [0.6551675435189436], [0.5862081141202642], [0.5517107446770948], [0.48275131527841536], [0.48275131527841536], [0.49998234525617036], [0.5344797146993397], [0.5517107446770948], [0.5689770841425091], [0.5689770841425091], [0.5344797146993397], [0.48275131527841536], [0.431022915857491], [0.37932982592422587], [0.37932982592422587], [0.413791885879736], [0.48275131527841536], [0.5517107446770948], [0.5689770841425091], [0.49998234525617036], [0.39656085590198087], [0.31033508703788715], [0.2758730270823771], [0.34483245648105654], [0.49998234525617036], [0.6723985734966986], [0.7930864023163023], [0.827583771759472], [0.7930864023163023], [0.7241269729176231], [0.689664912962113], [0.706895942939868], [0.7930864023163023], [0.862045831714982], [0.8793121711803962], [0.8103527417817168], [0.706895942939868], [0.5862081141202642], [0.5172486847215848], [0.5344797146993397], [0.5862081141202642], [0.6379365135411885], [0.6551675435189436], [0.6206701740757742], [0.5517107446770948], [0.49998234525617036], [0.5172486847215848], [0.6034391440980191], [0.706895942939868], [0.7758553723385474], [0.7586243423607923], [0.6551675435189436], [0.49998234525617036], [0.413791885879736], [0.413791885879736], [0.5344797146993397], [0.706895942939868], [0.8793121711803962], [1.0], [0.9827336605345858], [0.8793121711803962], [0.7241269729176231], [0.5689770841425091], [0.5172486847215848], [0.5344797146993397], [0.6034391440980191], [0.689664912962113], [0.7241269729176231], [0.706895942939868], [0.6379365135411885], [0.5517107446770948], [0.5172486847215848], [0.5344797146993397], [0.5862081141202642], [0.6551675435189436], [0.706895942939868], [0.689664912962113], [0.6206701740757742], [0.5344797146993397], [0.44828925532290537], [0.431022915857491], [0.46552028530066036], [0.5172486847215848], [0.5862081141202642], [0.6379365135411885], [0.6723985734966986], [0.706895942939868], [0.7241269729176231], [0.7413580028953781], [0.7241269729176231], [0.6723985734966986], [0.6206701740757742], [0.6206701740757742], [0.6551675435189436], [0.7413580028953781], [0.8448148017372269], [0.9137742311359063], [0.9310405706013207], [0.862045831714982], [0.7758553723385474], [0.706895942939868], [0.689664912962113], [0.7413580028953781], [0.8103527417817168], [0.8793121711803962], [0.9310405706013207], [0.9482716005790758], [0.9137742311359063], [0.8793121711803962], [0.827583771759472], [0.7586243423607923], [0.7241269729176231], [0.6723985734966986], [0.6551675435189436], [0.6206701740757742], [0.6206701740757742], [0.6379365135411885], [0.6379365135411885], [0.6379365135411885], [0.6034391440980191], [0.5689770841425091], [0.5344797146993397], [0.49998234525617036], [0.46552028530066036], [0.413791885879736], [0.37932982592422587], [0.36206348645881153], [0.413791885879736], [0.5344797146993397], [0.6551675435189436], [0.7413580028953781], [0.7413580028953781], [0.6034391440980191], [0.413791885879736], [0.22414462766145268], [0.1034567988418488], [0.06895942939867947], [0.17241622824052827], [0.31033508703788715], [0.48275131527841536], [0.6034391440980191], [0.6379365135411885], [0.5689770841425091], [0.413791885879736], [0.22414462766145268], [0.0517283994209244], [0.0], [0.0517283994209244], [0.22414462766145268], [0.39656085590198087], [0.49998234525617036], [0.5172486847215848], [0.431022915857491], [0.2931040570601321], [0.1896472582182833], [0.15518519826277327], [0.20691359768369766], [0.2931040570601321], [0.37932982592422587], [0.431022915857491], [0.413791885879736], [0.37932982592422587], [0.31033508703788715], [0.2931040570601321], [0.31033508703788715], [0.34483245648105654], [0.37932982592422587], [0.37932982592422587], [0.34483245648105654], [0.2931040570601321], [0.2758730270823771], [0.2758730270823771], [0.3276014265033015], [0.37932982592422587], [0.431022915857491], [0.413791885879736], [0.36206348645881153], [0.31033508703788715], [0.2758730270823771], [0.31033508703788715], [0.37932982592422587], [0.44828925532290537], [0.48275131527841536], [0.44828925532290537], [0.39656085590198087], [0.34483245648105654], [0.34483245648105654], [0.37932982592422587], [0.431022915857491], [0.44828925532290537], [0.413791885879736], [0.37932982592422587], [0.37932982592422587], [0.413791885879736], [0.48275131527841536], [0.5862081141202642], [0.6551675435189436], [0.689664912962113], [0.706895942939868], [0.706895942939868], [0.7241269729176231], [0.7241269729176231], [0.7413580028953781], [0.7413580028953781], [0.689664912962113], [0.5862081141202642], [0.44828925532290537], [0.2758730270823771], [0.15518519826277327], [0.1034567988418488], [0.12068782881960387], [0.24137565763920768], [0.37932982592422587], [0.48275131527841536], [0.5862081141202642], [0.6206701740757742], [0.6206701740757742], [0.6379365135411885], [0.6551675435189436], [0.706895942939868], [0.7413580028953781], [0.7586243423607923], [0.706895942939868], [0.6206701740757742], [0.5344797146993397], [0.46552028530066036]], "eval_masks": [[0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0]], "forwards": [[0.6551675435189436], [0.6206701740757742], [0.5862081141202642], [0.5344797146993397], [0.49998234525617036], [0.46552028530066036], [0.413791885879736], [0.37932982592422587], [0.37932982592422587], [0.39656085590198087], [0.413791885879736], [0.44828925532290537], [0.44828925532290537], [0.431022915857491], [0.431022915857491], [0.44828925532290537], [0.46552028530066036], [0.49998234525617036], [0.5344797146993397], [0.5344797146993397], [0.48275131527841536], [0.431022915857491], [0.39656085590198087], [0.37932982592422587], [0.39656085590198087], [0.44828925532290537], [0.5344797146993397], [0.6206701740757742], [0.6723985734966986], [0.6723985734966986], [0.6551675435189436], [0.5862081141202642], [0.5517107446770948], [0.48275131527841536], [0.48275131527841536], [0.49998234525617036], [0.5344797146993397], [0.5517107446770948], [0.5689770841425091], [0.5689770841425091], [0.5344797146993397], [0.48275131527841536], [0.431022915857491], [0.37932982592422587], [0.37932982592422587], [0.413791885879736], [0.48275131527841536], [0.5517107446770948], [0.5689770841425091], [0.49998234525617036], [0.39656085590198087], [0.31033508703788715], [0.2758730270823771], [0.34483245648105654], [0.49998234525617036], [0.6723985734966986], [0.7930864023163023], [0.827583771759472], [0.7930864023163023], [0.7241269729176231], [0.689664912962113], [0.706895942939868], [0.7930864023163023], [0.862045831714982], [0.8793121711803962], [0.8103527417817168], [0.706895942939868], [0.5862081141202642], [0.5172486847215848], [0.5344797146993397], [0.5862081141202642], [0.6379365135411885], [0.6551675435189436], [0.6206701740757742], [0.5517107446770948], [0.49998234525617036], [0.5172486847215848], [0.6034391440980191], [0.706895942939868], [0.7758553723385474], [0.7586243423607923], [0.6551675435189436], [0.49998234525617036], [0.413791885879736], [0.413791885879736], [0.5344797146993397], [0.706895942939868], [0.8793121711803962], [1.0], [0.9827336605345858], [0.8793121711803962], [0.7241269729176231], [0.5689770841425091], [0.5172486847215848], [0.5344797146993397], [0.6034391440980191], [0.689664912962113], [0.7241269729176231], [0.706895942939868], [0.6379365135411885], [0.5517107446770948], [0.5172486847215848], [0.5344797146993397], [0.5862081141202642], [0.6551675435189436], [0.706895942939868], [0.689664912962113], [0.6206701740757742], [0.5344797146993397], [0.44828925532290537], [0.431022915857491], [0.46552028530066036], [0.5172486847215848], [0.5862081141202642], [0.6379365135411885], [0.6723985734966986], [0.706895942939868], [0.7241269729176231], [0.7413580028953781], [0.7241269729176231], [0.6723985734966986], [0.6206701740757742], [0.6206701740757742], [0.6551675435189436], [0.7413580028953781], [0.8448148017372269], [0.9137742311359063], [0.9310405706013207], [0.862045831714982], [0.7758553723385474], [0.706895942939868], [0.689664912962113], [0.7413580028953781], [0.8103527417817168], [0.8793121711803962], [0.9310405706013207], [0.9482716005790758], [0.9137742311359063], [0.8793121711803962], [0.827583771759472], [0.7586243423607923], [0.7241269729176231], [0.6723985734966986], [0.6551675435189436], [0.6206701740757742], [0.6206701740757742], [0.6379365135411885], [0.6379365135411885], [0.6379365135411885], [0.6034391440980191], [0.5689770841425091], [0.5344797146993397], [0.49998234525617036], [0.46552028530066036], [0.413791885879736], [0.37932982592422587], [0.36206348645881153], [0.413791885879736], [0.5344797146993397], [0.6551675435189436], [0.7413580028953781], [0.7413580028953781], [0.6034391440980191], [0.413791885879736], [0.22414462766145268], [0.1034567988418488], [0.06895942939867947], [0.17241622824052827], [0.31033508703788715], [0.48275131527841536], [0.6034391440980191], [0.6379365135411885], [0.5689770841425091], [0.413791885879736], [0.22414462766145268], [0.0517283994209244], [0.0], [0.0517283994209244], [0.22414462766145268], [0.39656085590198087], [0.49998234525617036], [0.5172486847215848], [0.431022915857491], [0.2931040570601321], [0.1896472582182833], [0.15518519826277327], [0.20691359768369766], [0.2931040570601321], [0.37932982592422587], [0.431022915857491], [0.413791885879736], [0.37932982592422587], [0.31033508703788715], [0.2931040570601321], [0.31033508703788715], [0.34483245648105654], [0.37932982592422587], [0.37932982592422587], [0.34483245648105654], [0.2931040570601321], [0.2758730270823771], [0.2758730270823771], [0.3276014265033015], [0.37932982592422587], [0.431022915857491], [0.413791885879736], [0.36206348645881153], [0.31033508703788715], [0.2758730270823771], [0.31033508703788715], [0.37932982592422587], [0.44828925532290537], [0.48275131527841536], [0.44828925532290537], [0.39656085590198087], [0.34483245648105654], [0.34483245648105654], [0.37932982592422587], [0.431022915857491], [0.44828925532290537], [0.413791885879736], [0.37932982592422587], [0.37932982592422587], [0.413791885879736], [0.48275131527841536], [0.5862081141202642], [0.6551675435189436], [0.689664912962113], [0.706895942939868], [0.706895942939868], [0.7241269729176231], [0.7241269729176231], [0.7413580028953781], [0.7413580028953781], [0.689664912962113], [0.5862081141202642], [0.44828925532290537], [0.2758730270823771], [0.15518519826277327], [0.1034567988418488], [0.12068782881960387], [0.24137565763920768], [0.37932982592422587], [0.48275131527841536], [0.5862081141202642], [0.6206701740757742], [0.6206701740757742], [0.6379365135411885], [0.6551675435189436], [0.706895942939868], [0.7413580028953781], [0.7586243423607923], [0.706895942939868], [0.6206701740757742], [0.5344797146993397], [0.46552028530066036]], "deltas": [[1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0]]}} -{"label": 0, "forward": {"values": [[0.5740888231501499], [0.648158683202488], [0.7407744529146281], [0.8148443129669664], [0.8148443129669664], [0.7592824363788069], [0.6852125763264688], [0.6111427162741305], [0.5555808396859712], [0.5555808396859712], [0.5555808396859712], [0.5555808396859712], [0.5000189630978116], [0.40740319338567144], [0.2963173664049759], [0.20370159669283572], [0.16668562976447826], [0.2222475063526377], [0.37038722645731403], [0.5555808396859712], [0.7222285432548261], [0.8333522964311451], [0.8889141730193045], [0.8889141730193045], [0.8518602798953238], [0.7962984033071643], [0.7592824363788069], [0.7407744529146281], [0.7037205597906475], [0.6296506997383092], [0.5370349300261691], [0.42594910304547345], [0.3333333333333333], [0.2963173664049759], [0.3148253498691546], [0.38889520992149273], [0.44445708650965216], [0.4629650699738309], [0.44445708650965216], [0.42594910304547345], [0.42594910304547345], [0.48151097963363293], [0.5185269465619904], [0.5370349300261691], [0.5000189630978116], [0.42594910304547345], [0.37038722645731403], [0.37038722645731403], [0.40740319338567144], [0.48151097963363293], [0.5370349300261691], [0.5370349300261691], [0.5000189630978116], [0.42594910304547345], [0.37038722645731403], [0.37038722645731403], [0.38889520992149273], [0.44445708650965216], [0.5000189630978116], [0.5000189630978116], [0.4629650699738309], [0.42594910304547345], [0.40740319338567144], [0.44445708650965216], [0.5370349300261691], [0.6111427162741305], [0.6296506997383092], [0.5555808396859712], [0.42594910304547345], [0.2963173664049759], [0.24075548981681646], [0.2963173664049759], [0.44445708650965216], [0.6111427162741305], [0.6852125763264688], [0.648158683202488], [0.5000189630978116], [0.25926347328099514], [0.07406986005233807], [0.0], [0.07406986005233807], [0.27777145674517384], [0.5185269465619904], [0.7037205597906475], [0.7777904198429856], [0.7222285432548261], [0.5740888231501499], [0.38889520992149273], [0.2222475063526377], [0.16668562976447826], [0.18519361322865702], [0.3148253498691546], [0.5000189630978116], [0.6666666666666667], [0.7592824363788069], [0.7407744529146281], [0.6666666666666667], [0.5555808396859712], [0.5000189630978116], [0.48151097963363293], [0.5000189630978116], [0.5555808396859712], [0.5740888231501499], [0.5925968066143286], [0.6111427162741305], [0.648158683202488], [0.7037205597906475], [0.7222285432548261], [0.7407744529146281], [0.7592824363788069], [0.7777904198429856], [0.8148443129669664], [0.8518602798953238], [0.8703682633595025], [0.8889141730193045], [0.8889141730193045], [0.9074221564834831], [0.9444760496074639], [0.9814920165358213], [1.0], [1.0], [0.9444760496074639], [0.8889141730193045], [0.8333522964311451], [0.7962984033071643], [0.7962984033071643], [0.8518602798953238], [0.9074221564834831], [0.9629840330716426], [0.9444760496074639], [0.8703682633595025], [0.7592824363788069], [0.6852125763264688], [0.6666666666666667], [0.7037205597906475], [0.7592824363788069], [0.7777904198429856], [0.7962984033071643], [0.7777904198429856], [0.7407744529146281], [0.7037205597906475], [0.6852125763264688], [0.6111427162741305], [0.5370349300261691], [0.48151097963363293], [0.44445708650965216], [0.48151097963363293], [0.5740888231501499], [0.6666666666666667], [0.7592824363788069], [0.7777904198429856], [0.7407744529146281], [0.6666666666666667], [0.6111427162741305], [0.5925968066143286], [0.6296506997383092], [0.6852125763264688], [0.7407744529146281], [0.7592824363788069], [0.7037205597906475], [0.6111427162741305], [0.5000189630978116], [0.4629650699738309], [0.5000189630978116], [0.6296506997383092], [0.7962984033071643], [0.9259301399476618], [0.9629840330716426], [0.8889141730193045], [0.7222285432548261], [0.5370349300261691], [0.42594910304547345], [0.40740319338567144], [0.5000189630978116], [0.648158683202488], [0.7592824363788069], [0.7962984033071643], [0.7407744529146281], [0.6111427162741305], [0.5185269465619904], [0.5000189630978116], [0.5555808396859712], [0.648158683202488], [0.7222285432548261], [0.7407744529146281], [0.6852125763264688], [0.6296506997383092], [0.6111427162741305], [0.6666666666666667], [0.7592824363788069], [0.8333522964311451], [0.8889141730193045], [0.8518602798953238], [0.7777904198429856], [0.7222285432548261], [0.7037205597906475], [0.7592824363788069], [0.8703682633595025], [0.9444760496074639], [0.9444760496074639], [0.8148443129669664], [0.648158683202488], [0.4629650699738309], [0.35187924299313533], [0.35187924299313533], [0.38889520992149273], [0.48151097963363293], [0.5370349300261691], [0.5370349300261691], [0.5000189630978116], [0.4629650699738309], [0.44445708650965216], [0.44445708650965216], [0.48151097963363293], [0.5185269465619904], [0.5555808396859712], [0.5925968066143286], [0.6296506997383092], [0.648158683202488], [0.6296506997383092], [0.5740888231501499], [0.5370349300261691], [0.5185269465619904], [0.5370349300261691], [0.6111427162741305], [0.7037205597906475], [0.7592824363788069], [0.7592824363788069], [0.6852125763264688], [0.5555808396859712], [0.42594910304547345], [0.35187924299313533], [0.35187924299313533], [0.40740319338567144], [0.5000189630978116], [0.6111427162741305], [0.6296506997383092], [0.5925968066143286], [0.5000189630978116], [0.42594910304547345], [0.35187924299313533], [0.37038722645731403], [0.42594910304547345], [0.48151097963363293], [0.5185269465619904], [0.48151097963363293], [0.42594910304547345], [0.35187924299313533], [0.35187924299313533], [0.40740319338567144], [0.5185269465619904], [0.6296506997383092], [0.7407744529146281], [0.7777904198429856], [0.7592824363788069], [0.7037205597906475]], "masks": [[1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1]], "evals": [[0.5740888231501499], [0.648158683202488], [0.7407744529146281], [0.8148443129669664], [0.8148443129669664], [0.7592824363788069], [0.6852125763264688], [0.6111427162741305], [0.5555808396859712], [0.5555808396859712], [0.5555808396859712], [0.5555808396859712], [0.5000189630978116], [0.40740319338567144], [0.2963173664049759], [0.20370159669283572], [0.16668562976447826], [0.2222475063526377], [0.37038722645731403], [0.5555808396859712], [0.7222285432548261], [0.8333522964311451], [0.8889141730193045], [0.8889141730193045], [0.8518602798953238], [0.7962984033071643], [0.7592824363788069], [0.7407744529146281], [0.7037205597906475], [0.6296506997383092], [0.5370349300261691], [0.42594910304547345], [0.3333333333333333], [0.2963173664049759], [0.3148253498691546], [0.38889520992149273], [0.44445708650965216], [0.4629650699738309], [0.44445708650965216], [0.42594910304547345], [0.42594910304547345], [0.48151097963363293], [0.5185269465619904], [0.5370349300261691], [0.5000189630978116], [0.42594910304547345], [0.37038722645731403], [0.37038722645731403], [0.40740319338567144], [0.48151097963363293], [0.5370349300261691], [0.5370349300261691], [0.5000189630978116], [0.42594910304547345], [0.37038722645731403], [0.37038722645731403], [0.38889520992149273], [0.44445708650965216], [0.5000189630978116], [0.5000189630978116], [0.4629650699738309], [0.42594910304547345], [0.40740319338567144], [0.44445708650965216], [0.5370349300261691], [0.6111427162741305], [0.6296506997383092], [0.5555808396859712], [0.42594910304547345], [0.2963173664049759], [0.24075548981681646], [0.2963173664049759], [0.44445708650965216], [0.6111427162741305], [0.6852125763264688], [0.648158683202488], [0.5000189630978116], [0.25926347328099514], [0.07406986005233807], [0.0], [0.07406986005233807], [0.27777145674517384], [0.5185269465619904], [0.7037205597906475], [0.7777904198429856], [0.7222285432548261], [0.5740888231501499], [0.38889520992149273], [0.2222475063526377], [0.16668562976447826], [0.18519361322865702], [0.3148253498691546], [0.5000189630978116], [0.6666666666666667], [0.7592824363788069], [0.7407744529146281], [0.6666666666666667], [0.5555808396859712], [0.5000189630978116], [0.48151097963363293], [0.5000189630978116], [0.5555808396859712], [0.5740888231501499], [0.5925968066143286], [0.6111427162741305], [0.648158683202488], [0.7037205597906475], [0.7222285432548261], [0.7407744529146281], [0.7592824363788069], [0.7777904198429856], [0.8148443129669664], [0.8518602798953238], [0.8703682633595025], [0.8889141730193045], [0.8889141730193045], [0.9074221564834831], [0.9444760496074639], [0.9814920165358213], [1.0], [1.0], [0.9444760496074639], [0.8889141730193045], [0.8333522964311451], [0.7962984033071643], [0.7962984033071643], [0.8518602798953238], [0.9074221564834831], [0.9629840330716426], [0.9444760496074639], [0.8703682633595025], [0.7592824363788069], [0.6852125763264688], [0.6666666666666667], [0.7037205597906475], [0.7592824363788069], [0.7777904198429856], [0.7962984033071643], [0.7777904198429856], [0.7407744529146281], [0.7037205597906475], [0.6852125763264688], [0.6111427162741305], [0.5370349300261691], [0.48151097963363293], [0.44445708650965216], [0.48151097963363293], [0.5740888231501499], [0.6666666666666667], [0.7592824363788069], [0.7777904198429856], [0.7407744529146281], [0.6666666666666667], [0.6111427162741305], [0.5925968066143286], [0.6296506997383092], [0.6852125763264688], [0.7407744529146281], [0.7592824363788069], [0.7037205597906475], [0.6111427162741305], [0.5000189630978116], [0.4629650699738309], [0.5000189630978116], [0.6296506997383092], [0.7962984033071643], [0.9259301399476618], [0.9629840330716426], [0.8889141730193045], [0.7222285432548261], [0.5370349300261691], [0.42594910304547345], [0.40740319338567144], [0.5000189630978116], [0.648158683202488], [0.7592824363788069], [0.7962984033071643], [0.7407744529146281], [0.6111427162741305], [0.5185269465619904], [0.5000189630978116], [0.5555808396859712], [0.648158683202488], [0.7222285432548261], [0.7407744529146281], [0.6852125763264688], [0.6296506997383092], [0.6111427162741305], [0.6666666666666667], [0.7592824363788069], [0.8333522964311451], [0.8889141730193045], [0.8518602798953238], [0.7777904198429856], [0.7222285432548261], [0.7037205597906475], [0.7592824363788069], [0.8703682633595025], [0.9444760496074639], [0.9444760496074639], [0.8148443129669664], [0.648158683202488], [0.4629650699738309], [0.35187924299313533], [0.35187924299313533], [0.38889520992149273], [0.48151097963363293], [0.5370349300261691], [0.5370349300261691], [0.5000189630978116], [0.4629650699738309], [0.44445708650965216], [0.44445708650965216], [0.48151097963363293], [0.5185269465619904], [0.5555808396859712], [0.5925968066143286], [0.6296506997383092], [0.648158683202488], [0.6296506997383092], [0.5740888231501499], [0.5370349300261691], [0.5185269465619904], [0.5370349300261691], [0.6111427162741305], [0.7037205597906475], [0.7592824363788069], [0.7592824363788069], [0.6852125763264688], [0.5555808396859712], [0.42594910304547345], [0.35187924299313533], [0.35187924299313533], [0.40740319338567144], [0.5000189630978116], [0.6111427162741305], [0.6296506997383092], [0.5925968066143286], [0.5000189630978116], [0.42594910304547345], [0.35187924299313533], [0.37038722645731403], [0.42594910304547345], [0.48151097963363293], [0.5185269465619904], [0.48151097963363293], [0.42594910304547345], [0.35187924299313533], [0.35187924299313533], [0.40740319338567144], [0.5185269465619904], [0.6296506997383092], [0.7407744529146281], [0.7777904198429856], [0.7592824363788069], [0.7037205597906475]], "eval_masks": [[0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0]], "forwards": [[0.5740888231501499], [0.648158683202488], [0.7407744529146281], [0.8148443129669664], [0.8148443129669664], [0.7592824363788069], [0.6852125763264688], [0.6111427162741305], [0.5555808396859712], [0.5555808396859712], [0.5555808396859712], [0.5555808396859712], [0.5000189630978116], [0.40740319338567144], [0.2963173664049759], [0.20370159669283572], [0.16668562976447826], [0.2222475063526377], [0.37038722645731403], [0.5555808396859712], [0.7222285432548261], [0.8333522964311451], [0.8889141730193045], [0.8889141730193045], [0.8518602798953238], [0.7962984033071643], [0.7592824363788069], [0.7407744529146281], [0.7037205597906475], [0.6296506997383092], [0.5370349300261691], [0.42594910304547345], [0.3333333333333333], [0.2963173664049759], [0.3148253498691546], [0.38889520992149273], [0.44445708650965216], [0.4629650699738309], [0.44445708650965216], [0.42594910304547345], [0.42594910304547345], [0.48151097963363293], [0.5185269465619904], [0.5370349300261691], [0.5000189630978116], [0.42594910304547345], [0.37038722645731403], [0.37038722645731403], [0.40740319338567144], [0.48151097963363293], [0.5370349300261691], [0.5370349300261691], [0.5000189630978116], [0.42594910304547345], [0.37038722645731403], [0.37038722645731403], [0.38889520992149273], [0.44445708650965216], [0.5000189630978116], [0.5000189630978116], [0.4629650699738309], [0.42594910304547345], [0.40740319338567144], [0.44445708650965216], [0.5370349300261691], [0.6111427162741305], [0.6296506997383092], [0.5555808396859712], [0.42594910304547345], [0.2963173664049759], [0.24075548981681646], [0.2963173664049759], [0.44445708650965216], [0.6111427162741305], [0.6852125763264688], [0.648158683202488], [0.5000189630978116], [0.25926347328099514], [0.07406986005233807], [0.0], [0.07406986005233807], [0.27777145674517384], [0.5185269465619904], [0.7037205597906475], [0.7777904198429856], [0.7222285432548261], [0.5740888231501499], [0.38889520992149273], [0.2222475063526377], [0.16668562976447826], [0.18519361322865702], [0.3148253498691546], [0.5000189630978116], [0.6666666666666667], [0.7592824363788069], [0.7407744529146281], [0.6666666666666667], [0.5555808396859712], [0.5000189630978116], [0.48151097963363293], [0.5000189630978116], [0.5555808396859712], [0.5740888231501499], [0.5925968066143286], [0.6111427162741305], [0.648158683202488], [0.7037205597906475], [0.7222285432548261], [0.7407744529146281], [0.7592824363788069], [0.7777904198429856], [0.8148443129669664], [0.8518602798953238], [0.8703682633595025], [0.8889141730193045], [0.8889141730193045], [0.9074221564834831], [0.9444760496074639], [0.9814920165358213], [1.0], [1.0], [0.9444760496074639], [0.8889141730193045], [0.8333522964311451], [0.7962984033071643], [0.7962984033071643], [0.8518602798953238], [0.9074221564834831], [0.9629840330716426], [0.9444760496074639], [0.8703682633595025], [0.7592824363788069], [0.6852125763264688], [0.6666666666666667], [0.7037205597906475], [0.7592824363788069], [0.7777904198429856], [0.7962984033071643], [0.7777904198429856], [0.7407744529146281], [0.7037205597906475], [0.6852125763264688], [0.6111427162741305], [0.5370349300261691], [0.48151097963363293], [0.44445708650965216], [0.48151097963363293], [0.5740888231501499], [0.6666666666666667], [0.7592824363788069], [0.7777904198429856], [0.7407744529146281], [0.6666666666666667], [0.6111427162741305], [0.5925968066143286], [0.6296506997383092], [0.6852125763264688], [0.7407744529146281], [0.7592824363788069], [0.7037205597906475], [0.6111427162741305], [0.5000189630978116], [0.4629650699738309], [0.5000189630978116], [0.6296506997383092], [0.7962984033071643], [0.9259301399476618], [0.9629840330716426], [0.8889141730193045], [0.7222285432548261], [0.5370349300261691], [0.42594910304547345], [0.40740319338567144], [0.5000189630978116], [0.648158683202488], [0.7592824363788069], [0.7962984033071643], [0.7407744529146281], [0.6111427162741305], [0.5185269465619904], [0.5000189630978116], [0.5555808396859712], [0.648158683202488], [0.7222285432548261], [0.7407744529146281], [0.6852125763264688], [0.6296506997383092], [0.6111427162741305], [0.6666666666666667], [0.7592824363788069], [0.8333522964311451], [0.8889141730193045], [0.8518602798953238], [0.7777904198429856], [0.7222285432548261], [0.7037205597906475], [0.7592824363788069], [0.8703682633595025], [0.9444760496074639], [0.9444760496074639], [0.8148443129669664], [0.648158683202488], [0.4629650699738309], [0.35187924299313533], [0.35187924299313533], [0.38889520992149273], [0.48151097963363293], [0.5370349300261691], [0.5370349300261691], [0.5000189630978116], [0.4629650699738309], [0.44445708650965216], [0.44445708650965216], [0.48151097963363293], [0.5185269465619904], [0.5555808396859712], [0.5925968066143286], [0.6296506997383092], [0.648158683202488], [0.6296506997383092], [0.5740888231501499], [0.5370349300261691], [0.5185269465619904], [0.5370349300261691], [0.6111427162741305], [0.7037205597906475], [0.7592824363788069], [0.7592824363788069], [0.6852125763264688], [0.5555808396859712], [0.42594910304547345], [0.35187924299313533], [0.35187924299313533], [0.40740319338567144], [0.5000189630978116], [0.6111427162741305], [0.6296506997383092], [0.5925968066143286], [0.5000189630978116], [0.42594910304547345], [0.35187924299313533], [0.37038722645731403], [0.42594910304547345], [0.48151097963363293], [0.5185269465619904], [0.48151097963363293], [0.42594910304547345], [0.35187924299313533], [0.35187924299313533], [0.40740319338567144], [0.5185269465619904], [0.6296506997383092], [0.7407744529146281], [0.7777904198429856], [0.7592824363788069], [0.7037205597906475]], "deltas": [[1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0]]}, "backward": {"values": [[0.7037205597906475], [0.7592824363788069], [0.7777904198429856], [0.7407744529146281], [0.6296506997383092], [0.5185269465619904], [0.40740319338567144], [0.35187924299313533], [0.35187924299313533], [0.42594910304547345], [0.48151097963363293], [0.5185269465619904], [0.48151097963363293], [0.42594910304547345], [0.37038722645731403], [0.35187924299313533], [0.42594910304547345], [0.5000189630978116], [0.5925968066143286], [0.6296506997383092], [0.6111427162741305], [0.5000189630978116], [0.40740319338567144], [0.35187924299313533], [0.35187924299313533], [0.42594910304547345], [0.5555808396859712], [0.6852125763264688], [0.7592824363788069], [0.7592824363788069], [0.7037205597906475], [0.6111427162741305], [0.5370349300261691], [0.5185269465619904], [0.5370349300261691], [0.5740888231501499], [0.6296506997383092], [0.648158683202488], [0.6296506997383092], [0.5925968066143286], [0.5555808396859712], [0.5185269465619904], [0.48151097963363293], [0.44445708650965216], [0.44445708650965216], [0.4629650699738309], [0.5000189630978116], [0.5370349300261691], [0.5370349300261691], [0.48151097963363293], [0.38889520992149273], [0.35187924299313533], [0.35187924299313533], [0.4629650699738309], [0.648158683202488], [0.8148443129669664], [0.9444760496074639], [0.9444760496074639], [0.8703682633595025], [0.7592824363788069], [0.7037205597906475], [0.7222285432548261], [0.7777904198429856], [0.8518602798953238], [0.8889141730193045], [0.8333522964311451], [0.7592824363788069], [0.6666666666666667], [0.6111427162741305], [0.6296506997383092], [0.6852125763264688], [0.7407744529146281], [0.7222285432548261], [0.648158683202488], [0.5555808396859712], [0.5000189630978116], [0.5185269465619904], [0.6111427162741305], [0.7407744529146281], [0.7962984033071643], [0.7592824363788069], [0.648158683202488], [0.5000189630978116], [0.40740319338567144], [0.42594910304547345], [0.5370349300261691], [0.7222285432548261], [0.8889141730193045], [0.9629840330716426], [0.9259301399476618], [0.7962984033071643], [0.6296506997383092], [0.5000189630978116], [0.4629650699738309], [0.5000189630978116], [0.6111427162741305], [0.7037205597906475], [0.7592824363788069], [0.7407744529146281], [0.6852125763264688], [0.6296506997383092], [0.5925968066143286], [0.6111427162741305], [0.6666666666666667], [0.7407744529146281], [0.7777904198429856], [0.7592824363788069], [0.6666666666666667], [0.5740888231501499], [0.48151097963363293], [0.44445708650965216], [0.48151097963363293], [0.5370349300261691], [0.6111427162741305], [0.6852125763264688], [0.7037205597906475], [0.7407744529146281], [0.7777904198429856], [0.7962984033071643], [0.7777904198429856], [0.7592824363788069], [0.7037205597906475], [0.6666666666666667], [0.6852125763264688], [0.7592824363788069], [0.8703682633595025], [0.9444760496074639], [0.9629840330716426], [0.9074221564834831], [0.8518602798953238], [0.7962984033071643], [0.7962984033071643], [0.8333522964311451], [0.8889141730193045], [0.9444760496074639], [1.0], [1.0], [0.9814920165358213], [0.9444760496074639], [0.9074221564834831], [0.8889141730193045], [0.8889141730193045], [0.8703682633595025], [0.8518602798953238], [0.8148443129669664], [0.7777904198429856], [0.7592824363788069], [0.7407744529146281], [0.7222285432548261], [0.7037205597906475], [0.648158683202488], [0.6111427162741305], [0.5925968066143286], [0.5740888231501499], [0.5555808396859712], [0.5000189630978116], [0.48151097963363293], [0.5000189630978116], [0.5555808396859712], [0.6666666666666667], [0.7407744529146281], [0.7592824363788069], [0.6666666666666667], [0.5000189630978116], [0.3148253498691546], [0.18519361322865702], [0.16668562976447826], [0.2222475063526377], [0.38889520992149273], [0.5740888231501499], [0.7222285432548261], [0.7777904198429856], [0.7037205597906475], [0.5185269465619904], [0.27777145674517384], [0.07406986005233807], [0.0], [0.07406986005233807], [0.25926347328099514], [0.5000189630978116], [0.648158683202488], [0.6852125763264688], [0.6111427162741305], [0.44445708650965216], [0.2963173664049759], [0.24075548981681646], [0.2963173664049759], [0.42594910304547345], [0.5555808396859712], [0.6296506997383092], [0.6111427162741305], [0.5370349300261691], [0.44445708650965216], [0.40740319338567144], [0.42594910304547345], [0.4629650699738309], [0.5000189630978116], [0.5000189630978116], [0.44445708650965216], [0.38889520992149273], [0.37038722645731403], [0.37038722645731403], [0.42594910304547345], [0.5000189630978116], [0.5370349300261691], [0.5370349300261691], [0.48151097963363293], [0.40740319338567144], [0.37038722645731403], [0.37038722645731403], [0.42594910304547345], [0.5000189630978116], [0.5370349300261691], [0.5185269465619904], [0.48151097963363293], [0.42594910304547345], [0.42594910304547345], [0.44445708650965216], [0.4629650699738309], [0.44445708650965216], [0.38889520992149273], [0.3148253498691546], [0.2963173664049759], [0.3333333333333333], [0.42594910304547345], [0.5370349300261691], [0.6296506997383092], [0.7037205597906475], [0.7407744529146281], [0.7592824363788069], [0.7962984033071643], [0.8518602798953238], [0.8889141730193045], [0.8889141730193045], [0.8333522964311451], [0.7222285432548261], [0.5555808396859712], [0.37038722645731403], [0.2222475063526377], [0.16668562976447826], [0.20370159669283572], [0.2963173664049759], [0.40740319338567144], [0.5000189630978116], [0.5555808396859712], [0.5555808396859712], [0.5555808396859712], [0.5555808396859712], [0.6111427162741305], [0.6852125763264688], [0.7592824363788069], [0.8148443129669664], [0.8148443129669664], [0.7407744529146281], [0.648158683202488], [0.5740888231501499]], "masks": [[1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1]], "evals": [[0.7037205597906475], [0.7592824363788069], [0.7777904198429856], [0.7407744529146281], [0.6296506997383092], [0.5185269465619904], [0.40740319338567144], [0.35187924299313533], [0.35187924299313533], [0.42594910304547345], [0.48151097963363293], [0.5185269465619904], [0.48151097963363293], [0.42594910304547345], [0.37038722645731403], [0.35187924299313533], [0.42594910304547345], [0.5000189630978116], [0.5925968066143286], [0.6296506997383092], [0.6111427162741305], [0.5000189630978116], [0.40740319338567144], [0.35187924299313533], [0.35187924299313533], [0.42594910304547345], [0.5555808396859712], [0.6852125763264688], [0.7592824363788069], [0.7592824363788069], [0.7037205597906475], [0.6111427162741305], [0.5370349300261691], [0.5185269465619904], [0.5370349300261691], [0.5740888231501499], [0.6296506997383092], [0.648158683202488], [0.6296506997383092], [0.5925968066143286], [0.5555808396859712], [0.5185269465619904], [0.48151097963363293], [0.44445708650965216], [0.44445708650965216], [0.4629650699738309], [0.5000189630978116], [0.5370349300261691], [0.5370349300261691], [0.48151097963363293], [0.38889520992149273], [0.35187924299313533], [0.35187924299313533], [0.4629650699738309], [0.648158683202488], [0.8148443129669664], [0.9444760496074639], [0.9444760496074639], [0.8703682633595025], [0.7592824363788069], [0.7037205597906475], [0.7222285432548261], [0.7777904198429856], [0.8518602798953238], [0.8889141730193045], [0.8333522964311451], [0.7592824363788069], [0.6666666666666667], [0.6111427162741305], [0.6296506997383092], [0.6852125763264688], [0.7407744529146281], [0.7222285432548261], [0.648158683202488], [0.5555808396859712], [0.5000189630978116], [0.5185269465619904], [0.6111427162741305], [0.7407744529146281], [0.7962984033071643], [0.7592824363788069], [0.648158683202488], [0.5000189630978116], [0.40740319338567144], [0.42594910304547345], [0.5370349300261691], [0.7222285432548261], [0.8889141730193045], [0.9629840330716426], [0.9259301399476618], [0.7962984033071643], [0.6296506997383092], [0.5000189630978116], [0.4629650699738309], [0.5000189630978116], [0.6111427162741305], [0.7037205597906475], [0.7592824363788069], [0.7407744529146281], [0.6852125763264688], [0.6296506997383092], [0.5925968066143286], [0.6111427162741305], [0.6666666666666667], [0.7407744529146281], [0.7777904198429856], [0.7592824363788069], [0.6666666666666667], [0.5740888231501499], [0.48151097963363293], [0.44445708650965216], [0.48151097963363293], [0.5370349300261691], [0.6111427162741305], [0.6852125763264688], [0.7037205597906475], [0.7407744529146281], [0.7777904198429856], [0.7962984033071643], [0.7777904198429856], [0.7592824363788069], [0.7037205597906475], [0.6666666666666667], [0.6852125763264688], [0.7592824363788069], [0.8703682633595025], [0.9444760496074639], [0.9629840330716426], [0.9074221564834831], [0.8518602798953238], [0.7962984033071643], [0.7962984033071643], [0.8333522964311451], [0.8889141730193045], [0.9444760496074639], [1.0], [1.0], [0.9814920165358213], [0.9444760496074639], [0.9074221564834831], [0.8889141730193045], [0.8889141730193045], [0.8703682633595025], [0.8518602798953238], [0.8148443129669664], [0.7777904198429856], [0.7592824363788069], [0.7407744529146281], [0.7222285432548261], [0.7037205597906475], [0.648158683202488], [0.6111427162741305], [0.5925968066143286], [0.5740888231501499], [0.5555808396859712], [0.5000189630978116], [0.48151097963363293], [0.5000189630978116], [0.5555808396859712], [0.6666666666666667], [0.7407744529146281], [0.7592824363788069], [0.6666666666666667], [0.5000189630978116], [0.3148253498691546], [0.18519361322865702], [0.16668562976447826], [0.2222475063526377], [0.38889520992149273], [0.5740888231501499], [0.7222285432548261], [0.7777904198429856], [0.7037205597906475], [0.5185269465619904], [0.27777145674517384], [0.07406986005233807], [0.0], [0.07406986005233807], [0.25926347328099514], [0.5000189630978116], [0.648158683202488], [0.6852125763264688], [0.6111427162741305], [0.44445708650965216], [0.2963173664049759], [0.24075548981681646], [0.2963173664049759], [0.42594910304547345], [0.5555808396859712], [0.6296506997383092], [0.6111427162741305], [0.5370349300261691], [0.44445708650965216], [0.40740319338567144], [0.42594910304547345], [0.4629650699738309], [0.5000189630978116], [0.5000189630978116], [0.44445708650965216], [0.38889520992149273], [0.37038722645731403], [0.37038722645731403], [0.42594910304547345], [0.5000189630978116], [0.5370349300261691], [0.5370349300261691], [0.48151097963363293], [0.40740319338567144], [0.37038722645731403], [0.37038722645731403], [0.42594910304547345], [0.5000189630978116], [0.5370349300261691], [0.5185269465619904], [0.48151097963363293], [0.42594910304547345], [0.42594910304547345], [0.44445708650965216], [0.4629650699738309], [0.44445708650965216], [0.38889520992149273], [0.3148253498691546], [0.2963173664049759], [0.3333333333333333], [0.42594910304547345], [0.5370349300261691], [0.6296506997383092], [0.7037205597906475], [0.7407744529146281], [0.7592824363788069], [0.7962984033071643], [0.8518602798953238], [0.8889141730193045], [0.8889141730193045], [0.8333522964311451], [0.7222285432548261], [0.5555808396859712], [0.37038722645731403], [0.2222475063526377], [0.16668562976447826], [0.20370159669283572], [0.2963173664049759], [0.40740319338567144], [0.5000189630978116], [0.5555808396859712], [0.5555808396859712], [0.5555808396859712], [0.5555808396859712], [0.6111427162741305], [0.6852125763264688], [0.7592824363788069], [0.8148443129669664], [0.8148443129669664], [0.7407744529146281], [0.648158683202488], [0.5740888231501499]], "eval_masks": [[0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0]], "forwards": [[0.7037205597906475], [0.7592824363788069], [0.7777904198429856], [0.7407744529146281], [0.6296506997383092], [0.5185269465619904], [0.40740319338567144], [0.35187924299313533], [0.35187924299313533], [0.42594910304547345], [0.48151097963363293], [0.5185269465619904], [0.48151097963363293], [0.42594910304547345], [0.37038722645731403], [0.35187924299313533], [0.42594910304547345], [0.5000189630978116], [0.5925968066143286], [0.6296506997383092], [0.6111427162741305], [0.5000189630978116], [0.40740319338567144], [0.35187924299313533], [0.35187924299313533], [0.42594910304547345], [0.5555808396859712], [0.6852125763264688], [0.7592824363788069], [0.7592824363788069], [0.7037205597906475], [0.6111427162741305], [0.5370349300261691], [0.5185269465619904], [0.5370349300261691], [0.5740888231501499], [0.6296506997383092], [0.648158683202488], [0.6296506997383092], [0.5925968066143286], [0.5555808396859712], [0.5185269465619904], [0.48151097963363293], [0.44445708650965216], [0.44445708650965216], [0.4629650699738309], [0.5000189630978116], [0.5370349300261691], [0.5370349300261691], [0.48151097963363293], [0.38889520992149273], [0.35187924299313533], [0.35187924299313533], [0.4629650699738309], [0.648158683202488], [0.8148443129669664], [0.9444760496074639], [0.9444760496074639], [0.8703682633595025], [0.7592824363788069], [0.7037205597906475], [0.7222285432548261], [0.7777904198429856], [0.8518602798953238], [0.8889141730193045], [0.8333522964311451], [0.7592824363788069], [0.6666666666666667], [0.6111427162741305], [0.6296506997383092], [0.6852125763264688], [0.7407744529146281], [0.7222285432548261], [0.648158683202488], [0.5555808396859712], [0.5000189630978116], [0.5185269465619904], [0.6111427162741305], [0.7407744529146281], [0.7962984033071643], [0.7592824363788069], [0.648158683202488], [0.5000189630978116], [0.40740319338567144], [0.42594910304547345], [0.5370349300261691], [0.7222285432548261], [0.8889141730193045], [0.9629840330716426], [0.9259301399476618], [0.7962984033071643], [0.6296506997383092], [0.5000189630978116], [0.4629650699738309], [0.5000189630978116], [0.6111427162741305], [0.7037205597906475], [0.7592824363788069], [0.7407744529146281], [0.6852125763264688], [0.6296506997383092], [0.5925968066143286], [0.6111427162741305], [0.6666666666666667], [0.7407744529146281], [0.7777904198429856], [0.7592824363788069], [0.6666666666666667], [0.5740888231501499], [0.48151097963363293], [0.44445708650965216], [0.48151097963363293], [0.5370349300261691], [0.6111427162741305], [0.6852125763264688], [0.7037205597906475], [0.7407744529146281], [0.7777904198429856], [0.7962984033071643], [0.7777904198429856], [0.7592824363788069], [0.7037205597906475], [0.6666666666666667], [0.6852125763264688], [0.7592824363788069], [0.8703682633595025], [0.9444760496074639], [0.9629840330716426], [0.9074221564834831], [0.8518602798953238], [0.7962984033071643], [0.7962984033071643], [0.8333522964311451], [0.8889141730193045], [0.9444760496074639], [1.0], [1.0], [0.9814920165358213], [0.9444760496074639], [0.9074221564834831], [0.8889141730193045], [0.8889141730193045], [0.8703682633595025], [0.8518602798953238], [0.8148443129669664], [0.7777904198429856], [0.7592824363788069], [0.7407744529146281], [0.7222285432548261], [0.7037205597906475], [0.648158683202488], [0.6111427162741305], [0.5925968066143286], [0.5740888231501499], [0.5555808396859712], [0.5000189630978116], [0.48151097963363293], [0.5000189630978116], [0.5555808396859712], [0.6666666666666667], [0.7407744529146281], [0.7592824363788069], [0.6666666666666667], [0.5000189630978116], [0.3148253498691546], [0.18519361322865702], [0.16668562976447826], [0.2222475063526377], [0.38889520992149273], [0.5740888231501499], [0.7222285432548261], [0.7777904198429856], [0.7037205597906475], [0.5185269465619904], [0.27777145674517384], [0.07406986005233807], [0.0], [0.07406986005233807], [0.25926347328099514], [0.5000189630978116], [0.648158683202488], [0.6852125763264688], [0.6111427162741305], [0.44445708650965216], [0.2963173664049759], [0.24075548981681646], [0.2963173664049759], [0.42594910304547345], [0.5555808396859712], [0.6296506997383092], [0.6111427162741305], [0.5370349300261691], [0.44445708650965216], [0.40740319338567144], [0.42594910304547345], [0.4629650699738309], [0.5000189630978116], [0.5000189630978116], [0.44445708650965216], [0.38889520992149273], [0.37038722645731403], [0.37038722645731403], [0.42594910304547345], [0.5000189630978116], [0.5370349300261691], [0.5370349300261691], [0.48151097963363293], [0.40740319338567144], [0.37038722645731403], [0.37038722645731403], [0.42594910304547345], [0.5000189630978116], [0.5370349300261691], [0.5185269465619904], [0.48151097963363293], [0.42594910304547345], [0.42594910304547345], [0.44445708650965216], [0.4629650699738309], [0.44445708650965216], [0.38889520992149273], [0.3148253498691546], [0.2963173664049759], [0.3333333333333333], [0.42594910304547345], [0.5370349300261691], [0.6296506997383092], [0.7037205597906475], [0.7407744529146281], [0.7592824363788069], [0.7962984033071643], [0.8518602798953238], [0.8889141730193045], [0.8889141730193045], [0.8333522964311451], [0.7222285432548261], [0.5555808396859712], [0.37038722645731403], [0.2222475063526377], [0.16668562976447826], [0.20370159669283572], [0.2963173664049759], [0.40740319338567144], [0.5000189630978116], [0.5555808396859712], [0.5555808396859712], [0.5555808396859712], [0.5555808396859712], [0.6111427162741305], [0.6852125763264688], [0.7592824363788069], [0.8148443129669664], [0.8148443129669664], [0.7407744529146281], [0.648158683202488], [0.5740888231501499]], "deltas": [[1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0]]}} -{"label": 0, "forward": {"values": [[0.3103594378928041], [0.37928112421439164], [0.5172657298213402], [0.6206482593037214], [0.6206482593037214], [0.5861874161429277], [0.48273427017865966], [0.4138125838570722], [0.37928112421439164], [0.4138125838570722], [0.44827342701786593], [0.44827342701786593], [0.37928112421439164], [0.27589859473201045], [0.13798460560694867], [0.03453145964268059], [0.0], [0.06899230280347435], [0.2069062919285361], [0.34482028105359785], [0.48273427017865966], [0.5861874161429277], [0.5861874161429277], [0.5861874161429277], [0.551726572982134], [0.551726572982134], [0.551726572982134], [0.551726572982134], [0.48273427017865966], [0.44827342701786593], [0.37928112421439164], [0.27589859473201045], [0.2069062919285361], [0.2069062919285361], [0.24136713508932983], [0.3103594378928041], [0.37928112421439164], [0.37928112421439164], [0.37928112421439164], [0.37928112421439164], [0.37928112421439164], [0.4138125838570722], [0.48273427017865966], [0.48273427017865966], [0.37928112421439164], [0.3103594378928041], [0.24136713508932983], [0.2069062919285361], [0.24136713508932983], [0.34482028105359785], [0.4138125838570722], [0.37928112421439164], [0.34482028105359785], [0.27589859473201045], [0.24136713508932983], [0.24136713508932983], [0.27589859473201045], [0.34482028105359785], [0.37928112421439164], [0.4138125838570722], [0.37928112421439164], [0.34482028105359785], [0.3103594378928041], [0.27589859473201045], [0.34482028105359785], [0.4138125838570722], [0.44827342701786593], [0.4138125838570722], [0.3103594378928041], [0.2069062919285361], [0.10345314596426804], [0.13798460560694867], [0.27589859473201045], [0.44827342701786593], [0.6206482593037214], [0.6206482593037214], [0.551726572982134], [0.37928112421439164], [0.2069062919285361], [0.13798460560694867], [0.2069062919285361], [0.37928112421439164], [0.5861874161429277], [0.7586328649106701], [0.8275545512322576], [0.7930937080714638], [0.655179718946402], [0.44827342701786593], [0.24136713508932983], [0.10345314596426804], [0.10345314596426804], [0.24136713508932983], [0.44827342701786593], [0.6896405621071957], [0.8275545512322576], [0.8620153943930513], [0.7586328649106701], [0.6206482593037214], [0.5172657298213402], [0.44827342701786593], [0.44827342701786593], [0.48273427017865966], [0.551726572982134], [0.6206482593037214], [0.655179718946402], [0.6896405621071957], [0.6896405621071957], [0.6896405621071957], [0.6896405621071957], [0.7241014052679896], [0.7241014052679896], [0.7930937080714638], [0.8275545512322576], [0.8620153943930513], [0.8620153943930513], [0.8620153943930513], [0.8620153943930513], [0.8965468540357319], [0.8965468540357319], [0.9654685403573193], [0.9654685403573193], [0.9654685403573193], [0.8965468540357319], [0.8620153943930513], [0.8275545512322576], [0.8620153943930513], [0.8965468540357319], [0.9654685403573193], [1.0], [1.0], [0.8965468540357319], [0.7930937080714638], [0.7241014052679896], [0.7241014052679896], [0.7586328649106701], [0.7930937080714638], [0.7930937080714638], [0.7930937080714638], [0.7586328649106701], [0.7586328649106701], [0.7586328649106701], [0.7586328649106701], [0.6896405621071957], [0.5861874161429277], [0.5172657298213402], [0.44827342701786593], [0.48273427017865966], [0.5861874161429277], [0.655179718946402], [0.7241014052679896], [0.7241014052679896], [0.655179718946402], [0.5861874161429277], [0.5172657298213402], [0.48273427017865966], [0.5172657298213402], [0.5861874161429277], [0.6896405621071957], [0.7586328649106701], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.6206482593037214], [0.44827342701786593], [0.37928112421439164], [0.37928112421439164], [0.44827342701786593], [0.5861874161429277], [0.7241014052679896], [0.7586328649106701], [0.655179718946402], [0.5172657298213402], [0.37928112421439164], [0.34482028105359785], [0.37928112421439164], [0.48273427017865966], [0.5861874161429277], [0.6206482593037214], [0.6206482593037214], [0.551726572982134], [0.551726572982134], [0.5861874161429277], [0.655179718946402], [0.7241014052679896], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.44827342701786593], [0.24136713508932983], [0.13798460560694867], [0.10345314596426804], [0.24136713508932983], [0.34482028105359785], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.44827342701786593], [0.4138125838570722], [0.37928112421439164], [0.3103594378928041], [0.27589859473201045], [0.27589859473201045], [0.34482028105359785], [0.44827342701786593], [0.551726572982134], [0.5861874161429277], [0.5172657298213402], [0.44827342701786593], [0.3103594378928041], [0.24136713508932983], [0.24136713508932983], [0.27589859473201045], [0.37928112421439164], [0.48273427017865966], [0.5861874161429277], [0.5861874161429277], [0.5172657298213402], [0.4138125838570722], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.3103594378928041], [0.37928112421439164], [0.44827342701786593], [0.48273427017865966], [0.48273427017865966], [0.48273427017865966], [0.5172657298213402]], "masks": [[1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [1], [1], [1], [1], [1], [1], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [1], [1], [1], [1], [1], [1], [1]], "evals": [[0.3103594378928041], [0.37928112421439164], [0.5172657298213402], [0.6206482593037214], [0.6206482593037214], [0.5861874161429277], [0.48273427017865966], [0.4138125838570722], [0.37928112421439164], [0.4138125838570722], [0.44827342701786593], [0.44827342701786593], [0.37928112421439164], [0.27589859473201045], [0.13798460560694867], [0.03453145964268059], [0.0], [0.06899230280347435], [0.2069062919285361], [0.34482028105359785], [0.48273427017865966], [0.5861874161429277], [0.5861874161429277], [0.5861874161429277], [0.551726572982134], [0.551726572982134], [0.551726572982134], [0.551726572982134], [0.48273427017865966], [0.44827342701786593], [0.37928112421439164], [0.27589859473201045], [0.2069062919285361], [0.2069062919285361], [0.24136713508932983], [0.3103594378928041], [0.37928112421439164], [0.37928112421439164], [0.37928112421439164], [0.37928112421439164], [0.37928112421439164], [0.4138125838570722], [0.48273427017865966], [0.48273427017865966], [0.37928112421439164], [0.3103594378928041], [0.24136713508932983], [0.2069062919285361], [0.24136713508932983], [0.34482028105359785], [0.4138125838570722], [0.37928112421439164], [0.34482028105359785], [0.27589859473201045], [0.24136713508932983], [0.24136713508932983], [0.27589859473201045], [0.34482028105359785], [0.37928112421439164], [0.4138125838570722], [0.37928112421439164], [0.34482028105359785], [0.3103594378928041], [0.27589859473201045], [0.34482028105359785], [0.4138125838570722], [0.44827342701786593], [0.4138125838570722], [0.3103594378928041], [0.2069062919285361], [0.10345314596426804], [0.13798460560694867], [0.27589859473201045], [0.44827342701786593], [0.6206482593037214], [0.6206482593037214], [0.551726572982134], [0.37928112421439164], [0.2069062919285361], [0.13798460560694867], [0.2069062919285361], [0.37928112421439164], [0.5861874161429277], [0.7586328649106701], [0.8275545512322576], [0.7930937080714638], [0.655179718946402], [0.44827342701786593], [0.24136713508932983], [0.10345314596426804], [0.10345314596426804], [0.24136713508932983], [0.44827342701786593], [0.6896405621071957], [0.8275545512322576], [0.8620153943930513], [0.7586328649106701], [0.6206482593037214], [0.5172657298213402], [0.44827342701786593], [0.44827342701786593], [0.48273427017865966], [0.551726572982134], [0.6206482593037214], [0.655179718946402], [0.6896405621071957], [0.6896405621071957], [0.6896405621071957], [0.6896405621071957], [0.7241014052679896], [0.7241014052679896], [0.7930937080714638], [0.8275545512322576], [0.8620153943930513], [0.8620153943930513], [0.8620153943930513], [0.8620153943930513], [0.8965468540357319], [0.8965468540357319], [0.9654685403573193], [0.9654685403573193], [0.9654685403573193], [0.8965468540357319], [0.8620153943930513], [0.8275545512322576], [0.8620153943930513], [0.8965468540357319], [0.9654685403573193], [1.0], [1.0], [0.8965468540357319], [0.7930937080714638], [0.7241014052679896], [0.7241014052679896], [0.7586328649106701], [0.7930937080714638], [0.7930937080714638], [0.7930937080714638], [0.7586328649106701], [0.7586328649106701], [0.7586328649106701], [0.7586328649106701], [0.6896405621071957], [0.5861874161429277], [0.5172657298213402], [0.44827342701786593], [0.48273427017865966], [0.5861874161429277], [0.655179718946402], [0.7241014052679896], [0.7241014052679896], [0.655179718946402], [0.5861874161429277], [0.5172657298213402], [0.48273427017865966], [0.5172657298213402], [0.5861874161429277], [0.6896405621071957], [0.7586328649106701], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.6206482593037214], [0.44827342701786593], [0.37928112421439164], [0.37928112421439164], [0.44827342701786593], [0.5861874161429277], [0.7241014052679896], [0.7586328649106701], [0.655179718946402], [0.5172657298213402], [0.37928112421439164], [0.34482028105359785], [0.37928112421439164], [0.48273427017865966], [0.5861874161429277], [0.6206482593037214], [0.6206482593037214], [0.551726572982134], [0.551726572982134], [0.5861874161429277], [0.655179718946402], [0.7241014052679896], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.44827342701786593], [0.24136713508932983], [0.13798460560694867], [0.10345314596426804], [0.24136713508932983], [0.34482028105359785], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.44827342701786593], [0.4138125838570722], [0.37928112421439164], [0.3103594378928041], [0.27589859473201045], [0.27589859473201045], [0.34482028105359785], [0.44827342701786593], [0.551726572982134], [0.5861874161429277], [0.5172657298213402], [0.44827342701786593], [0.3103594378928041], [0.24136713508932983], [0.24136713508932983], [0.27589859473201045], [0.37928112421439164], [0.48273427017865966], [0.5861874161429277], [0.5861874161429277], [0.5172657298213402], [0.4138125838570722], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.3103594378928041], [0.37928112421439164], [0.44827342701786593], [0.48273427017865966], [0.48273427017865966], [0.48273427017865966], [0.5172657298213402]], "eval_masks": [[0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0]], "forwards": [[0.3103594378928041], [0.37928112421439164], [0.5172657298213402], [0.6206482593037214], [0.6206482593037214], [0.5861874161429277], [0.48273427017865966], [0.4138125838570722], [0.37928112421439164], [0.4138125838570722], [0.44827342701786593], [0.44827342701786593], [0.37928112421439164], [0.27589859473201045], [0.13798460560694867], [0.03453145964268059], [0.0], [0.06899230280347435], [0.2069062919285361], [0.34482028105359785], [0.48273427017865966], [0.5861874161429277], [0.5861874161429277], [0.5861874161429277], [0.551726572982134], [0.551726572982134], [0.551726572982134], [0.551726572982134], [0.48273427017865966], [0.44827342701786593], [0.37928112421439164], [0.27589859473201045], [0.2069062919285361], [0.2069062919285361], [0.24136713508932983], [0.3103594378928041], [0.37928112421439164], [0.37928112421439164], [0.37928112421439164], [0.37928112421439164], [0.37928112421439164], [0.4138125838570722], [0.48273427017865966], [0.48273427017865966], [0.37928112421439164], [0.3103594378928041], [0.24136713508932983], [0.2069062919285361], [0.24136713508932983], [0.34482028105359785], [0.4138125838570722], [0.37928112421439164], [0.34482028105359785], [0.27589859473201045], [0.24136713508932983], [0.24136713508932983], [0.27589859473201045], [0.34482028105359785], [0.37928112421439164], [0.4138125838570722], [0.37928112421439164], [0.34482028105359785], [0.3103594378928041], [0.27589859473201045], [0.34482028105359785], [0.4138125838570722], [0.44827342701786593], [0.4138125838570722], [0.3103594378928041], [0.2069062919285361], [0.10345314596426804], [0.13798460560694867], [0.27589859473201045], [0.44827342701786593], [0.6206482593037214], [0.6206482593037214], [0.551726572982134], [0.37928112421439164], [0.2069062919285361], [0.13798460560694867], [0.2069062919285361], [0.37928112421439164], [0.5861874161429277], [0.7586328649106701], [0.8275545512322576], [0.7930937080714638], [0.655179718946402], [0.44827342701786593], [0.24136713508932983], [0.10345314596426804], [0.10345314596426804], [0.24136713508932983], [0.44827342701786593], [0.6896405621071957], [0.8275545512322576], [0.8620153943930513], [0.7586328649106701], [0.6206482593037214], [0.5172657298213402], [0.44827342701786593], [0.44827342701786593], [0.48273427017865966], [0.551726572982134], [0.6206482593037214], [0.655179718946402], [0.6896405621071957], [0.6896405621071957], [0.6896405621071957], [0.6896405621071957], [0.7241014052679896], [0.7241014052679896], [0.7930937080714638], [0.8275545512322576], [0.8620153943930513], [0.8620153943930513], [0.8620153943930513], [0.8620153943930513], [0.8965468540357319], [0.8965468540357319], [0.9654685403573193], [0.9654685403573193], [0.9654685403573193], [0.8965468540357319], [0.8620153943930513], [0.8275545512322576], [0.8620153943930513], [0.8965468540357319], [0.9654685403573193], [1.0], [1.0], [0.8965468540357319], [0.7930937080714638], [0.7241014052679896], [0.7241014052679896], [0.7586328649106701], [0.7930937080714638], [0.7930937080714638], [0.7930937080714638], [0.7586328649106701], [0.7586328649106701], [0.7586328649106701], [0.7586328649106701], [0.6896405621071957], [0.5861874161429277], [0.5172657298213402], [0.44827342701786593], [0.48273427017865966], [0.5861874161429277], [0.655179718946402], [0.7241014052679896], [0.7241014052679896], [0.655179718946402], [0.5861874161429277], [0.5172657298213402], [0.48273427017865966], [0.5172657298213402], [0.5861874161429277], [0.6896405621071957], [0.7586328649106701], [0.7586328649106701], [0.7586328649106701], [0.7586328649106701], [0.7586328649106701], [0.7586328649106701], [0.7586328649106701], [0.7586328649106701], [0.7586328649106701], [0.7586328649106701], [0.7586328649106701], [0.6206482593037214], [0.44827342701786593], [0.37928112421439164], [0.37928112421439164], [0.44827342701786593], [0.5861874161429277], [0.7241014052679896], [0.7586328649106701], [0.655179718946402], [0.5172657298213402], [0.37928112421439164], [0.34482028105359785], [0.37928112421439164], [0.48273427017865966], [0.5861874161429277], [0.6206482593037214], [0.6206482593037214], [0.551726572982134], [0.551726572982134], [0.5861874161429277], [0.655179718946402], [0.7241014052679896], [0.7241014052679896], [0.7241014052679896], [0.7241014052679896], [0.7241014052679896], [0.7241014052679896], [0.7241014052679896], [0.7241014052679896], [0.7241014052679896], [0.7241014052679896], [0.7241014052679896], [0.44827342701786593], [0.24136713508932983], [0.13798460560694867], [0.10345314596426804], [0.24136713508932983], [0.34482028105359785], [0.34482028105359785], [0.34482028105359785], [0.34482028105359785], [0.34482028105359785], [0.34482028105359785], [0.34482028105359785], [0.34482028105359785], [0.34482028105359785], [0.34482028105359785], [0.34482028105359785], [0.44827342701786593], [0.4138125838570722], [0.37928112421439164], [0.3103594378928041], [0.27589859473201045], [0.27589859473201045], [0.34482028105359785], [0.44827342701786593], [0.551726572982134], [0.5861874161429277], [0.5172657298213402], [0.44827342701786593], [0.3103594378928041], [0.24136713508932983], [0.24136713508932983], [0.27589859473201045], [0.37928112421439164], [0.48273427017865966], [0.5861874161429277], [0.5861874161429277], [0.5172657298213402], [0.4138125838570722], [0.4138125838570722], [0.4138125838570722], [0.4138125838570722], [0.4138125838570722], [0.4138125838570722], [0.4138125838570722], [0.4138125838570722], [0.4138125838570722], [0.4138125838570722], [0.4138125838570722], [0.3103594378928041], [0.37928112421439164], [0.44827342701786593], [0.48273427017865966], [0.48273427017865966], [0.48273427017865966], [0.5172657298213402]], "deltas": [[1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [2.0], [3.0], [4.0], [5.0], [6.0], [7.0], [8.0], [9.0], [10.0], [11.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [2.0], [3.0], [4.0], [5.0], [6.0], [7.0], [8.0], [9.0], [10.0], [11.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [2.0], [3.0], [4.0], [5.0], [6.0], [7.0], [8.0], [9.0], [10.0], [11.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [2.0], [3.0], [4.0], [5.0], [6.0], [7.0], [8.0], [9.0], [10.0], [11.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0]]}, "backward": {"values": [[0.5172657298213402], [0.48273427017865966], [0.48273427017865966], [0.48273427017865966], [0.44827342701786593], [0.37928112421439164], [0.3103594378928041], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.4138125838570722], [0.5172657298213402], [0.5861874161429277], [0.5861874161429277], [0.48273427017865966], [0.37928112421439164], [0.27589859473201045], [0.24136713508932983], [0.24136713508932983], [0.3103594378928041], [0.44827342701786593], [0.5172657298213402], [0.5861874161429277], [0.551726572982134], [0.44827342701786593], [0.34482028105359785], [0.27589859473201045], [0.27589859473201045], [0.3103594378928041], [0.37928112421439164], [0.4138125838570722], [0.44827342701786593], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.34482028105359785], [0.24136713508932983], [0.10345314596426804], [0.13798460560694867], [0.24136713508932983], [0.44827342701786593], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.7241014052679896], [0.655179718946402], [0.5861874161429277], [0.551726572982134], [0.551726572982134], [0.6206482593037214], [0.6206482593037214], [0.5861874161429277], [0.48273427017865966], [0.37928112421439164], [0.34482028105359785], [0.37928112421439164], [0.5172657298213402], [0.655179718946402], [0.7586328649106701], [0.7241014052679896], [0.5861874161429277], [0.44827342701786593], [0.37928112421439164], [0.37928112421439164], [0.44827342701786593], [0.6206482593037214], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.7586328649106701], [0.6896405621071957], [0.5861874161429277], [0.5172657298213402], [0.48273427017865966], [0.5172657298213402], [0.5861874161429277], [0.655179718946402], [0.7241014052679896], [0.7241014052679896], [0.655179718946402], [0.5861874161429277], [0.48273427017865966], [0.44827342701786593], [0.5172657298213402], [0.5861874161429277], [0.6896405621071957], [0.7586328649106701], [0.7586328649106701], [0.7586328649106701], [0.7586328649106701], [0.7930937080714638], [0.7930937080714638], [0.7930937080714638], [0.7586328649106701], [0.7241014052679896], [0.7241014052679896], [0.7930937080714638], [0.8965468540357319], [1.0], [1.0], [0.9654685403573193], [0.8965468540357319], [0.8620153943930513], [0.8275545512322576], [0.8620153943930513], [0.8965468540357319], [0.9654685403573193], [0.9654685403573193], [0.9654685403573193], [0.8965468540357319], [0.8965468540357319], [0.8620153943930513], [0.8620153943930513], [0.8620153943930513], [0.8620153943930513], [0.8275545512322576], [0.7930937080714638], [0.7241014052679896], [0.7241014052679896], [0.6896405621071957], [0.6896405621071957], [0.6896405621071957], [0.6896405621071957], [0.655179718946402], [0.6206482593037214], [0.551726572982134], [0.48273427017865966], [0.44827342701786593], [0.44827342701786593], [0.5172657298213402], [0.6206482593037214], [0.7586328649106701], [0.8620153943930513], [0.8275545512322576], [0.6896405621071957], [0.44827342701786593], [0.24136713508932983], [0.10345314596426804], [0.10345314596426804], [0.24136713508932983], [0.44827342701786593], [0.655179718946402], [0.7930937080714638], [0.8275545512322576], [0.7586328649106701], [0.5861874161429277], [0.37928112421439164], [0.2069062919285361], [0.13798460560694867], [0.2069062919285361], [0.37928112421439164], [0.551726572982134], [0.6206482593037214], [0.6206482593037214], [0.44827342701786593], [0.27589859473201045], [0.13798460560694867], [0.10345314596426804], [0.2069062919285361], [0.3103594378928041], [0.4138125838570722], [0.44827342701786593], [0.4138125838570722], [0.34482028105359785], [0.27589859473201045], [0.3103594378928041], [0.34482028105359785], [0.37928112421439164], [0.4138125838570722], [0.37928112421439164], [0.34482028105359785], [0.27589859473201045], [0.24136713508932983], [0.24136713508932983], [0.27589859473201045], [0.34482028105359785], [0.37928112421439164], [0.4138125838570722], [0.34482028105359785], [0.24136713508932983], [0.2069062919285361], [0.24136713508932983], [0.3103594378928041], [0.37928112421439164], [0.48273427017865966], [0.48273427017865966], [0.4138125838570722], [0.37928112421439164], [0.37928112421439164], [0.37928112421439164], [0.37928112421439164], [0.37928112421439164], [0.3103594378928041], [0.24136713508932983], [0.2069062919285361], [0.2069062919285361], [0.27589859473201045], [0.37928112421439164], [0.44827342701786593], [0.48273427017865966], [0.551726572982134], [0.551726572982134], [0.551726572982134], [0.551726572982134], [0.5861874161429277], [0.5861874161429277], [0.5861874161429277], [0.48273427017865966], [0.34482028105359785], [0.2069062919285361], [0.06899230280347435], [0.0], [0.03453145964268059], [0.13798460560694867], [0.27589859473201045], [0.37928112421439164], [0.44827342701786593], [0.44827342701786593], [0.4138125838570722], [0.37928112421439164], [0.4138125838570722], [0.48273427017865966], [0.5861874161429277], [0.6206482593037214], [0.6206482593037214], [0.5172657298213402], [0.37928112421439164], [0.3103594378928041]], "masks": [[1], [1], [1], [1], [1], [1], [1], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [1], [1], [1], [1], [1], [1], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1]], "evals": [[0.5172657298213402], [0.48273427017865966], [0.48273427017865966], [0.48273427017865966], [0.44827342701786593], [0.37928112421439164], [0.3103594378928041], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.4138125838570722], [0.5172657298213402], [0.5861874161429277], [0.5861874161429277], [0.48273427017865966], [0.37928112421439164], [0.27589859473201045], [0.24136713508932983], [0.24136713508932983], [0.3103594378928041], [0.44827342701786593], [0.5172657298213402], [0.5861874161429277], [0.551726572982134], [0.44827342701786593], [0.34482028105359785], [0.27589859473201045], [0.27589859473201045], [0.3103594378928041], [0.37928112421439164], [0.4138125838570722], [0.44827342701786593], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.34482028105359785], [0.24136713508932983], [0.10345314596426804], [0.13798460560694867], [0.24136713508932983], [0.44827342701786593], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.7241014052679896], [0.655179718946402], [0.5861874161429277], [0.551726572982134], [0.551726572982134], [0.6206482593037214], [0.6206482593037214], [0.5861874161429277], [0.48273427017865966], [0.37928112421439164], [0.34482028105359785], [0.37928112421439164], [0.5172657298213402], [0.655179718946402], [0.7586328649106701], [0.7241014052679896], [0.5861874161429277], [0.44827342701786593], [0.37928112421439164], [0.37928112421439164], [0.44827342701786593], [0.6206482593037214], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.7586328649106701], [0.6896405621071957], [0.5861874161429277], [0.5172657298213402], [0.48273427017865966], [0.5172657298213402], [0.5861874161429277], [0.655179718946402], [0.7241014052679896], [0.7241014052679896], [0.655179718946402], [0.5861874161429277], [0.48273427017865966], [0.44827342701786593], [0.5172657298213402], [0.5861874161429277], [0.6896405621071957], [0.7586328649106701], [0.7586328649106701], [0.7586328649106701], [0.7586328649106701], [0.7930937080714638], [0.7930937080714638], [0.7930937080714638], [0.7586328649106701], [0.7241014052679896], [0.7241014052679896], [0.7930937080714638], [0.8965468540357319], [1.0], [1.0], [0.9654685403573193], [0.8965468540357319], [0.8620153943930513], [0.8275545512322576], [0.8620153943930513], [0.8965468540357319], [0.9654685403573193], [0.9654685403573193], [0.9654685403573193], [0.8965468540357319], [0.8965468540357319], [0.8620153943930513], [0.8620153943930513], [0.8620153943930513], [0.8620153943930513], [0.8275545512322576], [0.7930937080714638], [0.7241014052679896], [0.7241014052679896], [0.6896405621071957], [0.6896405621071957], [0.6896405621071957], [0.6896405621071957], [0.655179718946402], [0.6206482593037214], [0.551726572982134], [0.48273427017865966], [0.44827342701786593], [0.44827342701786593], [0.5172657298213402], [0.6206482593037214], [0.7586328649106701], [0.8620153943930513], [0.8275545512322576], [0.6896405621071957], [0.44827342701786593], [0.24136713508932983], [0.10345314596426804], [0.10345314596426804], [0.24136713508932983], [0.44827342701786593], [0.655179718946402], [0.7930937080714638], [0.8275545512322576], [0.7586328649106701], [0.5861874161429277], [0.37928112421439164], [0.2069062919285361], [0.13798460560694867], [0.2069062919285361], [0.37928112421439164], [0.551726572982134], [0.6206482593037214], [0.6206482593037214], [0.44827342701786593], [0.27589859473201045], [0.13798460560694867], [0.10345314596426804], [0.2069062919285361], [0.3103594378928041], [0.4138125838570722], [0.44827342701786593], [0.4138125838570722], [0.34482028105359785], [0.27589859473201045], [0.3103594378928041], [0.34482028105359785], [0.37928112421439164], [0.4138125838570722], [0.37928112421439164], [0.34482028105359785], [0.27589859473201045], [0.24136713508932983], [0.24136713508932983], [0.27589859473201045], [0.34482028105359785], [0.37928112421439164], [0.4138125838570722], [0.34482028105359785], [0.24136713508932983], [0.2069062919285361], [0.24136713508932983], [0.3103594378928041], [0.37928112421439164], [0.48273427017865966], [0.48273427017865966], [0.4138125838570722], [0.37928112421439164], [0.37928112421439164], [0.37928112421439164], [0.37928112421439164], [0.37928112421439164], [0.3103594378928041], [0.24136713508932983], [0.2069062919285361], [0.2069062919285361], [0.27589859473201045], [0.37928112421439164], [0.44827342701786593], [0.48273427017865966], [0.551726572982134], [0.551726572982134], [0.551726572982134], [0.551726572982134], [0.5861874161429277], [0.5861874161429277], [0.5861874161429277], [0.48273427017865966], [0.34482028105359785], [0.2069062919285361], [0.06899230280347435], [0.0], [0.03453145964268059], [0.13798460560694867], [0.27589859473201045], [0.37928112421439164], [0.44827342701786593], [0.44827342701786593], [0.4138125838570722], [0.37928112421439164], [0.4138125838570722], [0.48273427017865966], [0.5861874161429277], [0.6206482593037214], [0.6206482593037214], [0.5172657298213402], [0.37928112421439164], [0.3103594378928041]], "eval_masks": [[0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0]], "forwards": [[0.5172657298213402], [0.48273427017865966], [0.48273427017865966], [0.48273427017865966], [0.44827342701786593], [0.37928112421439164], [0.3103594378928041], [0.3103594378928041], [0.3103594378928041], [0.3103594378928041], [0.3103594378928041], [0.3103594378928041], [0.3103594378928041], [0.3103594378928041], [0.3103594378928041], [0.3103594378928041], [0.3103594378928041], [0.4138125838570722], [0.5172657298213402], [0.5861874161429277], [0.5861874161429277], [0.48273427017865966], [0.37928112421439164], [0.27589859473201045], [0.24136713508932983], [0.24136713508932983], [0.3103594378928041], [0.44827342701786593], [0.5172657298213402], [0.5861874161429277], [0.551726572982134], [0.44827342701786593], [0.34482028105359785], [0.27589859473201045], [0.27589859473201045], [0.3103594378928041], [0.37928112421439164], [0.4138125838570722], [0.44827342701786593], [0.44827342701786593], [0.44827342701786593], [0.44827342701786593], [0.44827342701786593], [0.44827342701786593], [0.44827342701786593], [0.44827342701786593], [0.44827342701786593], [0.44827342701786593], [0.44827342701786593], [0.34482028105359785], [0.24136713508932983], [0.10345314596426804], [0.13798460560694867], [0.24136713508932983], [0.44827342701786593], [0.44827342701786593], [0.44827342701786593], [0.44827342701786593], [0.44827342701786593], [0.44827342701786593], [0.44827342701786593], [0.44827342701786593], [0.44827342701786593], [0.44827342701786593], [0.44827342701786593], [0.7241014052679896], [0.655179718946402], [0.5861874161429277], [0.551726572982134], [0.551726572982134], [0.6206482593037214], [0.6206482593037214], [0.5861874161429277], [0.48273427017865966], [0.37928112421439164], [0.34482028105359785], [0.37928112421439164], [0.5172657298213402], [0.655179718946402], [0.7586328649106701], [0.7241014052679896], [0.5861874161429277], [0.44827342701786593], [0.37928112421439164], [0.37928112421439164], [0.44827342701786593], [0.6206482593037214], [0.6206482593037214], [0.6206482593037214], [0.6206482593037214], [0.6206482593037214], [0.6206482593037214], [0.6206482593037214], [0.6206482593037214], [0.6206482593037214], [0.6206482593037214], [0.6206482593037214], [0.7586328649106701], [0.6896405621071957], [0.5861874161429277], [0.5172657298213402], [0.48273427017865966], [0.5172657298213402], [0.5861874161429277], [0.655179718946402], [0.7241014052679896], [0.7241014052679896], [0.655179718946402], [0.5861874161429277], [0.48273427017865966], [0.44827342701786593], [0.5172657298213402], [0.5861874161429277], [0.6896405621071957], [0.7586328649106701], [0.7586328649106701], [0.7586328649106701], [0.7586328649106701], [0.7930937080714638], [0.7930937080714638], [0.7930937080714638], [0.7586328649106701], [0.7241014052679896], [0.7241014052679896], [0.7930937080714638], [0.8965468540357319], [1.0], [1.0], [0.9654685403573193], [0.8965468540357319], [0.8620153943930513], [0.8275545512322576], [0.8620153943930513], [0.8965468540357319], [0.9654685403573193], [0.9654685403573193], [0.9654685403573193], [0.8965468540357319], [0.8965468540357319], [0.8620153943930513], [0.8620153943930513], [0.8620153943930513], [0.8620153943930513], [0.8275545512322576], [0.7930937080714638], [0.7241014052679896], [0.7241014052679896], [0.6896405621071957], [0.6896405621071957], [0.6896405621071957], [0.6896405621071957], [0.655179718946402], [0.6206482593037214], [0.551726572982134], [0.48273427017865966], [0.44827342701786593], [0.44827342701786593], [0.5172657298213402], [0.6206482593037214], [0.7586328649106701], [0.8620153943930513], [0.8275545512322576], [0.6896405621071957], [0.44827342701786593], [0.24136713508932983], [0.10345314596426804], [0.10345314596426804], [0.24136713508932983], [0.44827342701786593], [0.655179718946402], [0.7930937080714638], [0.8275545512322576], [0.7586328649106701], [0.5861874161429277], [0.37928112421439164], [0.2069062919285361], [0.13798460560694867], [0.2069062919285361], [0.37928112421439164], [0.551726572982134], [0.6206482593037214], [0.6206482593037214], [0.44827342701786593], [0.27589859473201045], [0.13798460560694867], [0.10345314596426804], [0.2069062919285361], [0.3103594378928041], [0.4138125838570722], [0.44827342701786593], [0.4138125838570722], [0.34482028105359785], [0.27589859473201045], [0.3103594378928041], [0.34482028105359785], [0.37928112421439164], [0.4138125838570722], [0.37928112421439164], [0.34482028105359785], [0.27589859473201045], [0.24136713508932983], [0.24136713508932983], [0.27589859473201045], [0.34482028105359785], [0.37928112421439164], [0.4138125838570722], [0.34482028105359785], [0.24136713508932983], [0.2069062919285361], [0.24136713508932983], [0.3103594378928041], [0.37928112421439164], [0.48273427017865966], [0.48273427017865966], [0.4138125838570722], [0.37928112421439164], [0.37928112421439164], [0.37928112421439164], [0.37928112421439164], [0.37928112421439164], [0.3103594378928041], [0.24136713508932983], [0.2069062919285361], [0.2069062919285361], [0.27589859473201045], [0.37928112421439164], [0.44827342701786593], [0.48273427017865966], [0.551726572982134], [0.551726572982134], [0.551726572982134], [0.551726572982134], [0.5861874161429277], [0.5861874161429277], [0.5861874161429277], [0.48273427017865966], [0.34482028105359785], [0.2069062919285361], [0.06899230280347435], [0.0], [0.03453145964268059], [0.13798460560694867], [0.27589859473201045], [0.37928112421439164], [0.44827342701786593], [0.44827342701786593], [0.4138125838570722], [0.37928112421439164], [0.4138125838570722], [0.48273427017865966], [0.5861874161429277], [0.6206482593037214], [0.6206482593037214], [0.5172657298213402], [0.37928112421439164], [0.3103594378928041]], "deltas": [[1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [2.0], [3.0], [4.0], [5.0], [6.0], [7.0], [8.0], [9.0], [10.0], [11.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [2.0], [3.0], [4.0], [5.0], [6.0], [7.0], [8.0], [9.0], [10.0], [11.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [2.0], [3.0], [4.0], [5.0], [6.0], [7.0], [8.0], [9.0], [10.0], [11.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [2.0], [3.0], [4.0], [5.0], [6.0], [7.0], [8.0], [9.0], [10.0], [11.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0]]}} -{"label": 0, "forward": {"values": [[0.9747870234919541], [0.8991653041906893], [0.8403407624128733], [0.8319421736511488], [0.8319421736511488], [0.8319421736511488], [0.8319421736511488], [0.8403407624128733], [0.8571379399363221], [0.882350916444368], [0.8907495052060924], [0.8655537389209189], [0.806729197143103], [0.7394888563806902], [0.6806643146028741], [0.6554685483177006], [0.6554685483177006], [0.6806643146028741], [0.7310902676189657], [0.7815162206350572], [0.8235263746665519], [0.8235263746665519], [0.7815162206350572], [0.7142930900955168], [0.6638671370794251], [0.6386541605713794], [0.6722657258411496], [0.7310902676189657], [0.7731176318733328], [0.7647018328887358], [0.7226916788572413], [0.6638671370794251], [0.6218397728250581], [0.6218397728250581], [0.6470527493331039], [0.6974787023491954], [0.7563032441270114], [0.8235263746665519], [0.8655537389209189], [0.8739523276826435], [0.8319421736511488], [0.7479046553652869], [0.6554685483177006], [0.5966440065398848], [0.5882282075552878], [0.6218397728250581], [0.6638671370794251], [0.6890801135874709], [0.6890801135874709], [0.6890801135874709], [0.6890801135874709], [0.6890801135874709], [0.6638671370794251], [0.6134411840633337], [0.5546166422855175], [0.5126064882540229], [0.49579210050770156], [0.5126064882540229], [0.5294036657774718], [0.5378194647620687], [0.546218053523793], [0.5630324412701144], [0.5966440065398848], [0.6554685483177006], [0.7058772911109199], [0.7310902676189657], [0.7142930900955168], [0.6722657258411496], [0.6134411840633337], [0.5714310300318389], [0.5630324412701144], [0.6050425953016092], [0.6974787023491954], [0.7899148093967817], [0.8319421736511488], [0.7647018328887358], [0.5546166422855175], [0.2857069099044833], [0.050408742793219205], [0.0], [0.16805782634885122], [0.48739351174597706], [0.8235263746665519], [1.0], [0.9916014112382755], [0.8235263746665519], [0.6134411840633337], [0.45378194647620684], [0.37814301695206953], [0.3697444281903451], [0.4033559934601153], [0.4621805352379313], [0.5378194647620687], [0.6134411840633337], [0.6470527493331039], [0.6134411840633337], [0.546218053523793], [0.48739351174597706], [0.47057912399965585], [0.5126064882540229], [0.5630324412701144], [0.5798296187935634], [0.5294036657774718], [0.45378194647620684], [0.41175458222183975], [0.4201703812064366], [0.45378194647620684], [0.48739351174597706], [0.48739351174597706], [0.48739351174597706], [0.5042078994922985], [0.5546166422855175], [0.6050425953016092], [0.6218397728250581], [0.5882282075552878], [0.5378194647620687], [0.49579210050770156], [0.49579210050770156], [0.5126064882540229], [0.5294036657774718], [0.5042078994922985], [0.45378194647620684], [0.4201703812064366], [0.4285689699681611], [0.45378194647620684], [0.48739351174597706], [0.48739351174597706], [0.47057912399965585], [0.4369675587298855], [0.4033559934601153], [0.37814301695206953], [0.35293004044402376], [0.3445314516822993], [0.3697444281903451], [0.4369675587298855], [0.5210050770157474], [0.5966440065398848], [0.6134411840633337], [0.5882282075552878], [0.5294036657774718], [0.47057912399965585], [0.4453833577144824], [0.4285689699681611], [0.41175458222183975], [0.3865588159366664], [0.3865588159366664], [0.41175458222183975], [0.45378194647620684], [0.5042078994922985], [0.5378194647620687], [0.546218053523793], [0.5378194647620687], [0.5294036657774718], [0.5294036657774718], [0.5378194647620687], [0.5546166422855175], [0.5630324412701144], [0.5630324412701144], [0.5546166422855175], [0.5210050770157474], [0.4621805352379313], [0.37814301695206953], [0.31931847517425355], [0.3025212976508046], [0.36134583942862064], [0.47057912399965585], [0.5882282075552878], [0.6638671370794251], [0.6722657258411496], [0.6050425953016092], [0.5126064882540229], [0.4201703812064366], [0.3697444281903451], [0.37814301695206953], [0.4369675587298855], [0.5126064882540229], [0.5630324412701144], [0.5882282075552878], [0.5882282075552878], [0.5798296187935634], [0.5798296187935634], [0.5882282075552878], [0.5966440065398848], [0.5882282075552878], [0.5714310300318389], [0.5714310300318389], [0.5798296187935634], [0.5966440065398848], [0.6134411840633337], [0.6050425953016092], [0.5882282075552878], [0.5630324412701144], [0.546218053523793], [0.5294036657774718], [0.5126064882540229], [0.5042078994922985], [0.5294036657774718], [0.5882282075552878], [0.6638671370794251], [0.7226916788572413], [0.7310902676189657], [0.6722657258411496], [0.5882282075552878], [0.546218053523793], [0.5714310300318389], [0.6470527493331039], [0.7226916788572413], [0.7479046553652869], [0.6974787023491954], [0.6050425953016092], [0.546218053523793], [0.5378194647620687], [0.5714310300318389], [0.6050425953016092], [0.6218397728250581], [0.6134411840633337], [0.6134411840633337], [0.630255571809655], [0.6470527493331039], [0.6554685483177006], [0.630255571809655], [0.5798296187935634], [0.5210050770157474], [0.48739351174597706], [0.49579210050770156], [0.5546166422855175], [0.630255571809655], [0.6890801135874709], [0.6974787023491954], [0.6386541605713794], [0.5630324412701144], [0.5042078994922985], [0.5042078994922985], [0.546218053523793], [0.5966440065398848], [0.6134411840633337], [0.5882282075552878], [0.5294036657774718], [0.4789949229842526], [0.4621805352379313], [0.4621805352379313], [0.4789949229842526], [0.4789949229842526], [0.48739351174597706], [0.49579210050770156], [0.5126064882540229], [0.49579210050770156], [0.4369675587298855], [0.36134583942862064], [0.3025212976508046], [0.31091988641252905], [0.39495740469839086], [0.5126064882540229], [0.5966440065398848], [0.6134411840633337], [0.5378194647620687]], "masks": [[1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1]], "evals": [[0.9747870234919541], [0.8991653041906893], [0.8403407624128733], [0.8319421736511488], [0.8319421736511488], [0.8319421736511488], [0.8319421736511488], [0.8403407624128733], [0.8571379399363221], [0.882350916444368], [0.8907495052060924], [0.8655537389209189], [0.806729197143103], [0.7394888563806902], [0.6806643146028741], [0.6554685483177006], [0.6554685483177006], [0.6806643146028741], [0.7310902676189657], [0.7815162206350572], [0.8235263746665519], [0.8235263746665519], [0.7815162206350572], [0.7142930900955168], [0.6638671370794251], [0.6386541605713794], [0.6722657258411496], [0.7310902676189657], [0.7731176318733328], [0.7647018328887358], [0.7226916788572413], [0.6638671370794251], [0.6218397728250581], [0.6218397728250581], [0.6470527493331039], [0.6974787023491954], [0.7563032441270114], [0.8235263746665519], [0.8655537389209189], [0.8739523276826435], [0.8319421736511488], [0.7479046553652869], [0.6554685483177006], [0.5966440065398848], [0.5882282075552878], [0.6218397728250581], [0.6638671370794251], [0.6890801135874709], [0.6890801135874709], [0.6890801135874709], [0.6890801135874709], [0.6890801135874709], [0.6638671370794251], [0.6134411840633337], [0.5546166422855175], [0.5126064882540229], [0.49579210050770156], [0.5126064882540229], [0.5294036657774718], [0.5378194647620687], [0.546218053523793], [0.5630324412701144], [0.5966440065398848], [0.6554685483177006], [0.7058772911109199], [0.7310902676189657], [0.7142930900955168], [0.6722657258411496], [0.6134411840633337], [0.5714310300318389], [0.5630324412701144], [0.6050425953016092], [0.6974787023491954], [0.7899148093967817], [0.8319421736511488], [0.7647018328887358], [0.5546166422855175], [0.2857069099044833], [0.050408742793219205], [0.0], [0.16805782634885122], [0.48739351174597706], [0.8235263746665519], [1.0], [0.9916014112382755], [0.8235263746665519], [0.6134411840633337], [0.45378194647620684], [0.37814301695206953], [0.3697444281903451], [0.4033559934601153], [0.4621805352379313], [0.5378194647620687], [0.6134411840633337], [0.6470527493331039], [0.6134411840633337], [0.546218053523793], [0.48739351174597706], [0.47057912399965585], [0.5126064882540229], [0.5630324412701144], [0.5798296187935634], [0.5294036657774718], [0.45378194647620684], [0.41175458222183975], [0.4201703812064366], [0.45378194647620684], [0.48739351174597706], [0.48739351174597706], [0.48739351174597706], [0.5042078994922985], [0.5546166422855175], [0.6050425953016092], [0.6218397728250581], [0.5882282075552878], [0.5378194647620687], [0.49579210050770156], [0.49579210050770156], [0.5126064882540229], [0.5294036657774718], [0.5042078994922985], [0.45378194647620684], [0.4201703812064366], [0.4285689699681611], [0.45378194647620684], [0.48739351174597706], [0.48739351174597706], [0.47057912399965585], [0.4369675587298855], [0.4033559934601153], [0.37814301695206953], [0.35293004044402376], [0.3445314516822993], [0.3697444281903451], [0.4369675587298855], [0.5210050770157474], [0.5966440065398848], [0.6134411840633337], [0.5882282075552878], [0.5294036657774718], [0.47057912399965585], [0.4453833577144824], [0.4285689699681611], [0.41175458222183975], [0.3865588159366664], [0.3865588159366664], [0.41175458222183975], [0.45378194647620684], [0.5042078994922985], [0.5378194647620687], [0.546218053523793], [0.5378194647620687], [0.5294036657774718], [0.5294036657774718], [0.5378194647620687], [0.5546166422855175], [0.5630324412701144], [0.5630324412701144], [0.5546166422855175], [0.5210050770157474], [0.4621805352379313], [0.37814301695206953], [0.31931847517425355], [0.3025212976508046], [0.36134583942862064], [0.47057912399965585], [0.5882282075552878], [0.6638671370794251], [0.6722657258411496], [0.6050425953016092], [0.5126064882540229], [0.4201703812064366], [0.3697444281903451], [0.37814301695206953], [0.4369675587298855], [0.5126064882540229], [0.5630324412701144], [0.5882282075552878], [0.5882282075552878], [0.5798296187935634], [0.5798296187935634], [0.5882282075552878], [0.5966440065398848], [0.5882282075552878], [0.5714310300318389], [0.5714310300318389], [0.5798296187935634], [0.5966440065398848], [0.6134411840633337], [0.6050425953016092], [0.5882282075552878], [0.5630324412701144], [0.546218053523793], [0.5294036657774718], [0.5126064882540229], [0.5042078994922985], [0.5294036657774718], [0.5882282075552878], [0.6638671370794251], [0.7226916788572413], [0.7310902676189657], [0.6722657258411496], [0.5882282075552878], [0.546218053523793], [0.5714310300318389], [0.6470527493331039], [0.7226916788572413], [0.7479046553652869], [0.6974787023491954], [0.6050425953016092], [0.546218053523793], [0.5378194647620687], [0.5714310300318389], [0.6050425953016092], [0.6218397728250581], [0.6134411840633337], [0.6134411840633337], [0.630255571809655], [0.6470527493331039], [0.6554685483177006], [0.630255571809655], [0.5798296187935634], [0.5210050770157474], [0.48739351174597706], [0.49579210050770156], [0.5546166422855175], [0.630255571809655], [0.6890801135874709], [0.6974787023491954], [0.6386541605713794], [0.5630324412701144], [0.5042078994922985], [0.5042078994922985], [0.546218053523793], [0.5966440065398848], [0.6134411840633337], [0.5882282075552878], [0.5294036657774718], [0.4789949229842526], [0.4621805352379313], [0.4621805352379313], [0.4789949229842526], [0.4789949229842526], [0.48739351174597706], [0.49579210050770156], [0.5126064882540229], [0.49579210050770156], [0.4369675587298855], [0.36134583942862064], [0.3025212976508046], [0.31091988641252905], [0.39495740469839086], [0.5126064882540229], [0.5966440065398848], [0.6134411840633337], [0.5378194647620687]], "eval_masks": [[0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0]], "forwards": [[0.9747870234919541], [0.8991653041906893], [0.8403407624128733], [0.8319421736511488], [0.8319421736511488], [0.8319421736511488], [0.8319421736511488], [0.8403407624128733], [0.8571379399363221], [0.882350916444368], [0.8907495052060924], [0.8655537389209189], [0.806729197143103], [0.7394888563806902], [0.6806643146028741], [0.6554685483177006], [0.6554685483177006], [0.6806643146028741], [0.7310902676189657], [0.7815162206350572], [0.8235263746665519], [0.8235263746665519], [0.7815162206350572], [0.7142930900955168], [0.6638671370794251], [0.6386541605713794], [0.6722657258411496], [0.7310902676189657], [0.7731176318733328], [0.7647018328887358], [0.7226916788572413], [0.6638671370794251], [0.6218397728250581], [0.6218397728250581], [0.6470527493331039], [0.6974787023491954], [0.7563032441270114], [0.8235263746665519], [0.8655537389209189], [0.8739523276826435], [0.8319421736511488], [0.7479046553652869], [0.6554685483177006], [0.5966440065398848], [0.5882282075552878], [0.6218397728250581], [0.6638671370794251], [0.6890801135874709], [0.6890801135874709], [0.6890801135874709], [0.6890801135874709], [0.6890801135874709], [0.6638671370794251], [0.6134411840633337], [0.5546166422855175], [0.5126064882540229], [0.49579210050770156], [0.5126064882540229], [0.5294036657774718], [0.5378194647620687], [0.546218053523793], [0.5630324412701144], [0.5966440065398848], [0.6554685483177006], [0.7058772911109199], [0.7310902676189657], [0.7142930900955168], [0.6722657258411496], [0.6134411840633337], [0.5714310300318389], [0.5630324412701144], [0.6050425953016092], [0.6974787023491954], [0.7899148093967817], [0.8319421736511488], [0.7647018328887358], [0.5546166422855175], [0.2857069099044833], [0.050408742793219205], [0.0], [0.16805782634885122], [0.48739351174597706], [0.8235263746665519], [1.0], [0.9916014112382755], [0.8235263746665519], [0.6134411840633337], [0.45378194647620684], [0.37814301695206953], [0.3697444281903451], [0.4033559934601153], [0.4621805352379313], [0.5378194647620687], [0.6134411840633337], [0.6470527493331039], [0.6134411840633337], [0.546218053523793], [0.48739351174597706], [0.47057912399965585], [0.5126064882540229], [0.5630324412701144], [0.5798296187935634], [0.5294036657774718], [0.45378194647620684], [0.41175458222183975], [0.4201703812064366], [0.45378194647620684], [0.48739351174597706], [0.48739351174597706], [0.48739351174597706], [0.5042078994922985], [0.5546166422855175], [0.6050425953016092], [0.6218397728250581], [0.5882282075552878], [0.5378194647620687], [0.49579210050770156], [0.49579210050770156], [0.5126064882540229], [0.5294036657774718], [0.5042078994922985], [0.45378194647620684], [0.4201703812064366], [0.4285689699681611], [0.45378194647620684], [0.48739351174597706], [0.48739351174597706], [0.47057912399965585], [0.4369675587298855], [0.4033559934601153], [0.37814301695206953], [0.35293004044402376], [0.3445314516822993], [0.3697444281903451], [0.4369675587298855], [0.5210050770157474], [0.5966440065398848], [0.6134411840633337], [0.5882282075552878], [0.5294036657774718], [0.47057912399965585], [0.4453833577144824], [0.4285689699681611], [0.41175458222183975], [0.3865588159366664], [0.3865588159366664], [0.41175458222183975], [0.45378194647620684], [0.5042078994922985], [0.5378194647620687], [0.546218053523793], [0.5378194647620687], [0.5294036657774718], [0.5294036657774718], [0.5378194647620687], [0.5546166422855175], [0.5630324412701144], [0.5630324412701144], [0.5546166422855175], [0.5210050770157474], [0.4621805352379313], [0.37814301695206953], [0.31931847517425355], [0.3025212976508046], [0.36134583942862064], [0.47057912399965585], [0.5882282075552878], [0.6638671370794251], [0.6722657258411496], [0.6050425953016092], [0.5126064882540229], [0.4201703812064366], [0.3697444281903451], [0.37814301695206953], [0.4369675587298855], [0.5126064882540229], [0.5630324412701144], [0.5882282075552878], [0.5882282075552878], [0.5798296187935634], [0.5798296187935634], [0.5882282075552878], [0.5966440065398848], [0.5882282075552878], [0.5714310300318389], [0.5714310300318389], [0.5798296187935634], [0.5966440065398848], [0.6134411840633337], [0.6050425953016092], [0.5882282075552878], [0.5630324412701144], [0.546218053523793], [0.5294036657774718], [0.5126064882540229], [0.5042078994922985], [0.5294036657774718], [0.5882282075552878], [0.6638671370794251], [0.7226916788572413], [0.7310902676189657], [0.6722657258411496], [0.5882282075552878], [0.546218053523793], [0.5714310300318389], [0.6470527493331039], [0.7226916788572413], [0.7479046553652869], [0.6974787023491954], [0.6050425953016092], [0.546218053523793], [0.5378194647620687], [0.5714310300318389], [0.6050425953016092], [0.6218397728250581], [0.6134411840633337], [0.6134411840633337], [0.630255571809655], [0.6470527493331039], [0.6554685483177006], [0.630255571809655], [0.5798296187935634], [0.5210050770157474], [0.48739351174597706], [0.49579210050770156], [0.5546166422855175], [0.630255571809655], [0.6890801135874709], [0.6974787023491954], [0.6386541605713794], [0.5630324412701144], [0.5042078994922985], [0.5042078994922985], [0.546218053523793], [0.5966440065398848], [0.6134411840633337], [0.5882282075552878], [0.5294036657774718], [0.4789949229842526], [0.4621805352379313], [0.4621805352379313], [0.4789949229842526], [0.4789949229842526], [0.48739351174597706], [0.49579210050770156], [0.5126064882540229], [0.49579210050770156], [0.4369675587298855], [0.36134583942862064], [0.3025212976508046], [0.31091988641252905], [0.39495740469839086], [0.5126064882540229], [0.5966440065398848], [0.6134411840633337], [0.5378194647620687]], "deltas": [[1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0]]}, "backward": {"values": [[0.5378194647620687], [0.6134411840633337], [0.5966440065398848], [0.5126064882540229], [0.39495740469839086], [0.31091988641252905], [0.3025212976508046], [0.36134583942862064], [0.4369675587298855], [0.49579210050770156], [0.5126064882540229], [0.49579210050770156], [0.48739351174597706], [0.4789949229842526], [0.4789949229842526], [0.4621805352379313], [0.4621805352379313], [0.4789949229842526], [0.5294036657774718], [0.5882282075552878], [0.6134411840633337], [0.5966440065398848], [0.546218053523793], [0.5042078994922985], [0.5042078994922985], [0.5630324412701144], [0.6386541605713794], [0.6974787023491954], [0.6890801135874709], [0.630255571809655], [0.5546166422855175], [0.49579210050770156], [0.48739351174597706], [0.5210050770157474], [0.5798296187935634], [0.630255571809655], [0.6554685483177006], [0.6470527493331039], [0.630255571809655], [0.6134411840633337], [0.6134411840633337], [0.6218397728250581], [0.6050425953016092], [0.5714310300318389], [0.5378194647620687], [0.546218053523793], [0.6050425953016092], [0.6974787023491954], [0.7479046553652869], [0.7226916788572413], [0.6470527493331039], [0.5714310300318389], [0.546218053523793], [0.5882282075552878], [0.6722657258411496], [0.7310902676189657], [0.7226916788572413], [0.6638671370794251], [0.5882282075552878], [0.5294036657774718], [0.5042078994922985], [0.5126064882540229], [0.5294036657774718], [0.546218053523793], [0.5630324412701144], [0.5882282075552878], [0.6050425953016092], [0.6134411840633337], [0.5966440065398848], [0.5798296187935634], [0.5714310300318389], [0.5714310300318389], [0.5882282075552878], [0.5966440065398848], [0.5882282075552878], [0.5798296187935634], [0.5798296187935634], [0.5882282075552878], [0.5882282075552878], [0.5630324412701144], [0.5126064882540229], [0.4369675587298855], [0.37814301695206953], [0.3697444281903451], [0.4201703812064366], [0.5126064882540229], [0.6050425953016092], [0.6722657258411496], [0.6638671370794251], [0.5882282075552878], [0.47057912399965585], [0.36134583942862064], [0.3025212976508046], [0.31931847517425355], [0.37814301695206953], [0.4621805352379313], [0.5210050770157474], [0.5546166422855175], [0.5630324412701144], [0.5630324412701144], [0.5546166422855175], [0.5378194647620687], [0.5294036657774718], [0.5294036657774718], [0.5378194647620687], [0.546218053523793], [0.5378194647620687], [0.5042078994922985], [0.45378194647620684], [0.41175458222183975], [0.3865588159366664], [0.3865588159366664], [0.41175458222183975], [0.4285689699681611], [0.4453833577144824], [0.47057912399965585], [0.5294036657774718], [0.5882282075552878], [0.6134411840633337], [0.5966440065398848], [0.5210050770157474], [0.4369675587298855], [0.3697444281903451], [0.3445314516822993], [0.35293004044402376], [0.37814301695206953], [0.4033559934601153], [0.4369675587298855], [0.47057912399965585], [0.48739351174597706], [0.48739351174597706], [0.45378194647620684], [0.4285689699681611], [0.4201703812064366], [0.45378194647620684], [0.5042078994922985], [0.5294036657774718], [0.5126064882540229], [0.49579210050770156], [0.49579210050770156], [0.5378194647620687], [0.5882282075552878], [0.6218397728250581], [0.6050425953016092], [0.5546166422855175], [0.5042078994922985], [0.48739351174597706], [0.48739351174597706], [0.48739351174597706], [0.45378194647620684], [0.4201703812064366], [0.41175458222183975], [0.45378194647620684], [0.5294036657774718], [0.5798296187935634], [0.5630324412701144], [0.5126064882540229], [0.47057912399965585], [0.48739351174597706], [0.546218053523793], [0.6134411840633337], [0.6470527493331039], [0.6134411840633337], [0.5378194647620687], [0.4621805352379313], [0.4033559934601153], [0.3697444281903451], [0.37814301695206953], [0.45378194647620684], [0.6134411840633337], [0.8235263746665519], [0.9916014112382755], [1.0], [0.8235263746665519], [0.48739351174597706], [0.16805782634885122], [0.0], [0.050408742793219205], [0.2857069099044833], [0.5546166422855175], [0.7647018328887358], [0.8319421736511488], [0.7899148093967817], [0.6974787023491954], [0.6050425953016092], [0.5630324412701144], [0.5714310300318389], [0.6134411840633337], [0.6722657258411496], [0.7142930900955168], [0.7310902676189657], [0.7058772911109199], [0.6554685483177006], [0.5966440065398848], [0.5630324412701144], [0.546218053523793], [0.5378194647620687], [0.5294036657774718], [0.5126064882540229], [0.49579210050770156], [0.5126064882540229], [0.5546166422855175], [0.6134411840633337], [0.6638671370794251], [0.6890801135874709], [0.6890801135874709], [0.6890801135874709], [0.6890801135874709], [0.6890801135874709], [0.6638671370794251], [0.6218397728250581], [0.5882282075552878], [0.5966440065398848], [0.6554685483177006], [0.7479046553652869], [0.8319421736511488], [0.8739523276826435], [0.8655537389209189], [0.8235263746665519], [0.7563032441270114], [0.6974787023491954], [0.6470527493331039], [0.6218397728250581], [0.6218397728250581], [0.6638671370794251], [0.7226916788572413], [0.7647018328887358], [0.7731176318733328], [0.7310902676189657], [0.6722657258411496], [0.6386541605713794], [0.6638671370794251], [0.7142930900955168], [0.7815162206350572], [0.8235263746665519], [0.8235263746665519], [0.7815162206350572], [0.7310902676189657], [0.6806643146028741], [0.6554685483177006], [0.6554685483177006], [0.6806643146028741], [0.7394888563806902], [0.806729197143103], [0.8655537389209189], [0.8907495052060924], [0.882350916444368], [0.8571379399363221], [0.8403407624128733], [0.8319421736511488], [0.8319421736511488], [0.8319421736511488], [0.8319421736511488], [0.8403407624128733], [0.8991653041906893], [0.9747870234919541]], "masks": [[1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1]], "evals": [[0.5378194647620687], [0.6134411840633337], [0.5966440065398848], [0.5126064882540229], [0.39495740469839086], [0.31091988641252905], [0.3025212976508046], [0.36134583942862064], [0.4369675587298855], [0.49579210050770156], [0.5126064882540229], [0.49579210050770156], [0.48739351174597706], [0.4789949229842526], [0.4789949229842526], [0.4621805352379313], [0.4621805352379313], [0.4789949229842526], [0.5294036657774718], [0.5882282075552878], [0.6134411840633337], [0.5966440065398848], [0.546218053523793], [0.5042078994922985], [0.5042078994922985], [0.5630324412701144], [0.6386541605713794], [0.6974787023491954], [0.6890801135874709], [0.630255571809655], [0.5546166422855175], [0.49579210050770156], [0.48739351174597706], [0.5210050770157474], [0.5798296187935634], [0.630255571809655], [0.6554685483177006], [0.6470527493331039], [0.630255571809655], [0.6134411840633337], [0.6134411840633337], [0.6218397728250581], [0.6050425953016092], [0.5714310300318389], [0.5378194647620687], [0.546218053523793], [0.6050425953016092], [0.6974787023491954], [0.7479046553652869], [0.7226916788572413], [0.6470527493331039], [0.5714310300318389], [0.546218053523793], [0.5882282075552878], [0.6722657258411496], [0.7310902676189657], [0.7226916788572413], [0.6638671370794251], [0.5882282075552878], [0.5294036657774718], [0.5042078994922985], [0.5126064882540229], [0.5294036657774718], [0.546218053523793], [0.5630324412701144], [0.5882282075552878], [0.6050425953016092], [0.6134411840633337], [0.5966440065398848], [0.5798296187935634], [0.5714310300318389], [0.5714310300318389], [0.5882282075552878], [0.5966440065398848], [0.5882282075552878], [0.5798296187935634], [0.5798296187935634], [0.5882282075552878], [0.5882282075552878], [0.5630324412701144], [0.5126064882540229], [0.4369675587298855], [0.37814301695206953], [0.3697444281903451], [0.4201703812064366], [0.5126064882540229], [0.6050425953016092], [0.6722657258411496], [0.6638671370794251], [0.5882282075552878], [0.47057912399965585], [0.36134583942862064], [0.3025212976508046], [0.31931847517425355], [0.37814301695206953], [0.4621805352379313], [0.5210050770157474], [0.5546166422855175], [0.5630324412701144], [0.5630324412701144], [0.5546166422855175], [0.5378194647620687], [0.5294036657774718], [0.5294036657774718], [0.5378194647620687], [0.546218053523793], [0.5378194647620687], [0.5042078994922985], [0.45378194647620684], [0.41175458222183975], [0.3865588159366664], [0.3865588159366664], [0.41175458222183975], [0.4285689699681611], [0.4453833577144824], [0.47057912399965585], [0.5294036657774718], [0.5882282075552878], [0.6134411840633337], [0.5966440065398848], [0.5210050770157474], [0.4369675587298855], [0.3697444281903451], [0.3445314516822993], [0.35293004044402376], [0.37814301695206953], [0.4033559934601153], [0.4369675587298855], [0.47057912399965585], [0.48739351174597706], [0.48739351174597706], [0.45378194647620684], [0.4285689699681611], [0.4201703812064366], [0.45378194647620684], [0.5042078994922985], [0.5294036657774718], [0.5126064882540229], [0.49579210050770156], [0.49579210050770156], [0.5378194647620687], [0.5882282075552878], [0.6218397728250581], [0.6050425953016092], [0.5546166422855175], [0.5042078994922985], [0.48739351174597706], [0.48739351174597706], [0.48739351174597706], [0.45378194647620684], [0.4201703812064366], [0.41175458222183975], [0.45378194647620684], [0.5294036657774718], [0.5798296187935634], [0.5630324412701144], [0.5126064882540229], [0.47057912399965585], [0.48739351174597706], [0.546218053523793], [0.6134411840633337], [0.6470527493331039], [0.6134411840633337], [0.5378194647620687], [0.4621805352379313], [0.4033559934601153], [0.3697444281903451], [0.37814301695206953], [0.45378194647620684], [0.6134411840633337], [0.8235263746665519], [0.9916014112382755], [1.0], [0.8235263746665519], [0.48739351174597706], [0.16805782634885122], [0.0], [0.050408742793219205], [0.2857069099044833], [0.5546166422855175], [0.7647018328887358], [0.8319421736511488], [0.7899148093967817], [0.6974787023491954], [0.6050425953016092], [0.5630324412701144], [0.5714310300318389], [0.6134411840633337], [0.6722657258411496], [0.7142930900955168], [0.7310902676189657], [0.7058772911109199], [0.6554685483177006], [0.5966440065398848], [0.5630324412701144], [0.546218053523793], [0.5378194647620687], [0.5294036657774718], [0.5126064882540229], [0.49579210050770156], [0.5126064882540229], [0.5546166422855175], [0.6134411840633337], [0.6638671370794251], [0.6890801135874709], [0.6890801135874709], [0.6890801135874709], [0.6890801135874709], [0.6890801135874709], [0.6638671370794251], [0.6218397728250581], [0.5882282075552878], [0.5966440065398848], [0.6554685483177006], [0.7479046553652869], [0.8319421736511488], [0.8739523276826435], [0.8655537389209189], [0.8235263746665519], [0.7563032441270114], [0.6974787023491954], [0.6470527493331039], [0.6218397728250581], [0.6218397728250581], [0.6638671370794251], [0.7226916788572413], [0.7647018328887358], [0.7731176318733328], [0.7310902676189657], [0.6722657258411496], [0.6386541605713794], [0.6638671370794251], [0.7142930900955168], [0.7815162206350572], [0.8235263746665519], [0.8235263746665519], [0.7815162206350572], [0.7310902676189657], [0.6806643146028741], [0.6554685483177006], [0.6554685483177006], [0.6806643146028741], [0.7394888563806902], [0.806729197143103], [0.8655537389209189], [0.8907495052060924], [0.882350916444368], [0.8571379399363221], [0.8403407624128733], [0.8319421736511488], [0.8319421736511488], [0.8319421736511488], [0.8319421736511488], [0.8403407624128733], [0.8991653041906893], [0.9747870234919541]], "eval_masks": [[0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0]], "forwards": [[0.5378194647620687], [0.6134411840633337], [0.5966440065398848], [0.5126064882540229], [0.39495740469839086], [0.31091988641252905], [0.3025212976508046], [0.36134583942862064], [0.4369675587298855], [0.49579210050770156], [0.5126064882540229], [0.49579210050770156], [0.48739351174597706], [0.4789949229842526], [0.4789949229842526], [0.4621805352379313], [0.4621805352379313], [0.4789949229842526], [0.5294036657774718], [0.5882282075552878], [0.6134411840633337], [0.5966440065398848], [0.546218053523793], [0.5042078994922985], [0.5042078994922985], [0.5630324412701144], [0.6386541605713794], [0.6974787023491954], [0.6890801135874709], [0.630255571809655], [0.5546166422855175], [0.49579210050770156], [0.48739351174597706], [0.5210050770157474], [0.5798296187935634], [0.630255571809655], [0.6554685483177006], [0.6470527493331039], [0.630255571809655], [0.6134411840633337], [0.6134411840633337], [0.6218397728250581], [0.6050425953016092], [0.5714310300318389], [0.5378194647620687], [0.546218053523793], [0.6050425953016092], [0.6974787023491954], [0.7479046553652869], [0.7226916788572413], [0.6470527493331039], [0.5714310300318389], [0.546218053523793], [0.5882282075552878], [0.6722657258411496], [0.7310902676189657], [0.7226916788572413], [0.6638671370794251], [0.5882282075552878], [0.5294036657774718], [0.5042078994922985], [0.5126064882540229], [0.5294036657774718], [0.546218053523793], [0.5630324412701144], [0.5882282075552878], [0.6050425953016092], [0.6134411840633337], [0.5966440065398848], [0.5798296187935634], [0.5714310300318389], [0.5714310300318389], [0.5882282075552878], [0.5966440065398848], [0.5882282075552878], [0.5798296187935634], [0.5798296187935634], [0.5882282075552878], [0.5882282075552878], [0.5630324412701144], [0.5126064882540229], [0.4369675587298855], [0.37814301695206953], [0.3697444281903451], [0.4201703812064366], [0.5126064882540229], [0.6050425953016092], [0.6722657258411496], [0.6638671370794251], [0.5882282075552878], [0.47057912399965585], [0.36134583942862064], [0.3025212976508046], [0.31931847517425355], [0.37814301695206953], [0.4621805352379313], [0.5210050770157474], [0.5546166422855175], [0.5630324412701144], [0.5630324412701144], [0.5546166422855175], [0.5378194647620687], [0.5294036657774718], [0.5294036657774718], [0.5378194647620687], [0.546218053523793], [0.5378194647620687], [0.5042078994922985], [0.45378194647620684], [0.41175458222183975], [0.3865588159366664], [0.3865588159366664], [0.41175458222183975], [0.4285689699681611], [0.4453833577144824], [0.47057912399965585], [0.5294036657774718], [0.5882282075552878], [0.6134411840633337], [0.5966440065398848], [0.5210050770157474], [0.4369675587298855], [0.3697444281903451], [0.3445314516822993], [0.35293004044402376], [0.37814301695206953], [0.4033559934601153], [0.4369675587298855], [0.47057912399965585], [0.48739351174597706], [0.48739351174597706], [0.45378194647620684], [0.4285689699681611], [0.4201703812064366], [0.45378194647620684], [0.5042078994922985], [0.5294036657774718], [0.5126064882540229], [0.49579210050770156], [0.49579210050770156], [0.5378194647620687], [0.5882282075552878], [0.6218397728250581], [0.6050425953016092], [0.5546166422855175], [0.5042078994922985], [0.48739351174597706], [0.48739351174597706], [0.48739351174597706], [0.45378194647620684], [0.4201703812064366], [0.41175458222183975], [0.45378194647620684], [0.5294036657774718], [0.5798296187935634], [0.5630324412701144], [0.5126064882540229], [0.47057912399965585], [0.48739351174597706], [0.546218053523793], [0.6134411840633337], [0.6470527493331039], [0.6134411840633337], [0.5378194647620687], [0.4621805352379313], [0.4033559934601153], [0.3697444281903451], [0.37814301695206953], [0.45378194647620684], [0.6134411840633337], [0.8235263746665519], [0.9916014112382755], [1.0], [0.8235263746665519], [0.48739351174597706], [0.16805782634885122], [0.0], [0.050408742793219205], [0.2857069099044833], [0.5546166422855175], [0.7647018328887358], [0.8319421736511488], [0.7899148093967817], [0.6974787023491954], [0.6050425953016092], [0.5630324412701144], [0.5714310300318389], [0.6134411840633337], [0.6722657258411496], [0.7142930900955168], [0.7310902676189657], [0.7058772911109199], [0.6554685483177006], [0.5966440065398848], [0.5630324412701144], [0.546218053523793], [0.5378194647620687], [0.5294036657774718], [0.5126064882540229], [0.49579210050770156], [0.5126064882540229], [0.5546166422855175], [0.6134411840633337], [0.6638671370794251], [0.6890801135874709], [0.6890801135874709], [0.6890801135874709], [0.6890801135874709], [0.6890801135874709], [0.6638671370794251], [0.6218397728250581], [0.5882282075552878], [0.5966440065398848], [0.6554685483177006], [0.7479046553652869], [0.8319421736511488], [0.8739523276826435], [0.8655537389209189], [0.8235263746665519], [0.7563032441270114], [0.6974787023491954], [0.6470527493331039], [0.6218397728250581], [0.6218397728250581], [0.6638671370794251], [0.7226916788572413], [0.7647018328887358], [0.7731176318733328], [0.7310902676189657], [0.6722657258411496], [0.6386541605713794], [0.6638671370794251], [0.7142930900955168], [0.7815162206350572], [0.8235263746665519], [0.8235263746665519], [0.7815162206350572], [0.7310902676189657], [0.6806643146028741], [0.6554685483177006], [0.6554685483177006], [0.6806643146028741], [0.7394888563806902], [0.806729197143103], [0.8655537389209189], [0.8907495052060924], [0.882350916444368], [0.8571379399363221], [0.8403407624128733], [0.8319421736511488], [0.8319421736511488], [0.8319421736511488], [0.8319421736511488], [0.8403407624128733], [0.8991653041906893], [0.9747870234919541]], "deltas": [[1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0]]}} -{"label": 0, "forward": {"values": [[0.9828983528505661], [0.9059847012900628], [0.854697264086541], [0.8375956169371072], [0.8290535454847799], [0.8290535454847799], [0.8375956169371072], [0.854697264086541], [0.8717989112359746], [0.8974251255929563], [0.8888830541406292], [0.8632393355388681], [0.8034098268830191], [0.7435803182271701], [0.6923103852684276], [0.6581245952143394], [0.6581245952143394], [0.6837508095713211], [0.7264961753225158], [0.7863256839783648], [0.8290535454847799], [0.8375956169371072], [0.794867755430692], [0.7179365996254091], [0.6581245952143394], [0.6410229480649057], [0.6837508095713211], [0.7521398939242766], [0.7863256839783648], [0.7692240368289309], [0.7093945281730819], [0.6581245952143394], [0.623921300915472], [0.6324808766125786], [0.6666666666666666], [0.7179365996254091], [0.7692240368289309], [0.8205114740324528], [0.8632393355388681], [0.8717989112359746], [0.8290535454847799], [0.7521398939242766], [0.6666666666666666], [0.6068371580108177], [0.5982950865584904], [0.6153792294631448], [0.6666666666666666], [0.6923103852684276], [0.7008524567207548], [0.7008524567207548], [0.7008524567207548], [0.6923103852684276], [0.6666666666666666], [0.6153792294631448], [0.5640917922596229], [0.5213639307532076], [0.5042622836037739], [0.5128218593008805], [0.5299060022055349], [0.5470076493549685], [0.5470076493549685], [0.5726513679567296], [0.5982950865584904], [0.6581245952143394], [0.7008524567207548], [0.7350382467748429], [0.7264961753225158], [0.6837508095713211], [0.6153792294631448], [0.5726513679567296], [0.5640917922596229], [0.6153792294631448], [0.7093945281730819], [0.8034098268830191], [0.8375956169371072], [0.7521398939242766], [0.5470076493549685], [0.2820458961298115], [0.05128743720352184], [0.0], [0.1623868788181134], [0.4786360692467923], [0.8119694025801256], [1.0], [1.0], [0.8375956169371072], [0.6153792294631448], [0.4529923506450314], [0.36751912338742143], [0.35897705193509427], [0.41024698489383676], [0.4786360692467923], [0.5470076493549685], [0.6153792294631448], [0.6410229480649057], [0.6153792294631448], [0.5470076493549685], [0.4957202121514467], [0.4871781406991195], [0.5213639307532076], [0.5640917922596229], [0.5811934394090567], [0.5299060022055349], [0.46153442209735857], [0.4188065605909433], [0.4188065605909433], [0.4529923506450314], [0.4871781406991195], [0.4957202121514467], [0.4957202121514467], [0.5128218593008805], [0.5555497208072958], [0.6068371580108177], [0.6153792294631448], [0.5982950865584904], [0.5470076493549685], [0.5042622836037739], [0.4957202121514467], [0.5128218593008805], [0.5213639307532076], [0.5042622836037739], [0.47007649354968584], [0.4444327749479248], [0.4444327749479248], [0.4529923506450314], [0.47007649354968584], [0.47007649354968584], [0.46153442209735857], [0.4444327749479248], [0.4188065605909433], [0.38462077053685517], [0.3504174762379877], [0.34187540478566053], [0.35897705193509427], [0.4273486320432705], [0.5213639307532076], [0.5982950865584904], [0.623921300915472], [0.5982950865584904], [0.5384655779026414], [0.4786360692467923], [0.43589070349559766], [0.4188065605909433], [0.41024698489383676], [0.3931628419891824], [0.3931628419891824], [0.41024698489383676], [0.4529923506450314], [0.4957202121514467], [0.5384655779026414], [0.5470076493549685], [0.5470076493549685], [0.5384655779026414], [0.5299060022055349], [0.5299060022055349], [0.5470076493549685], [0.5640917922596229], [0.5811934394090567], [0.5811934394090567], [0.5299060022055349], [0.4529923506450314], [0.36751912338742143], [0.31623168618389963], [0.32479126188100615], [0.38462077053685517], [0.4786360692467923], [0.5811934394090567], [0.6495650195172329], [0.6666666666666666], [0.623921300915472], [0.5299060022055349], [0.4444327749479248], [0.37606119483974865], [0.35897705193509427], [0.4188065605909433], [0.5042622836037739], [0.5811934394090567], [0.6153792294631448], [0.6068371580108177], [0.5811934394090567], [0.5640917922596229], [0.5811934394090567], [0.5897355108613839], [0.5982950865584904], [0.5897355108613839], [0.5726513679567296], [0.5726513679567296], [0.5811934394090567], [0.5982950865584904], [0.6068371580108177], [0.5982950865584904], [0.5811934394090567], [0.5555497208072958], [0.5299060022055349], [0.5128218593008805], [0.5042622836037739], [0.5299060022055349], [0.5897355108613839], [0.6666666666666666], [0.7264961753225158], [0.7264961753225158], [0.6752087381189938], [0.5982950865584904], [0.5555497208072958], [0.5811934394090567], [0.6495650195172329], [0.7264961753225158], [0.7435803182271701], [0.7008524567207548], [0.6153792294631448], [0.5555497208072958], [0.5384655779026414], [0.5640917922596229], [0.5982950865584904], [0.6153792294631448], [0.623921300915472], [0.6324808766125786], [0.6410229480649057], [0.6666666666666666], [0.6581245952143394], [0.623921300915472], [0.5726513679567296], [0.5213639307532076], [0.4957202121514467], [0.5042622836037739], [0.5640917922596229], [0.623921300915472], [0.6837508095713211], [0.6923103852684276], [0.6495650195172329], [0.5726513679567296], [0.5128218593008805], [0.5042622836037739], [0.5470076493549685], [0.5982950865584904], [0.623921300915472], [0.5982950865584904], [0.5384655779026414], [0.4786360692467923], [0.4529923506450314], [0.4529923506450314], [0.47007649354968584], [0.4871781406991195], [0.4871781406991195], [0.5042622836037739], [0.5128218593008805], [0.4957202121514467], [0.43589070349559766], [0.36751912338742143], [0.3076896147315724], [0.3076896147315724], [0.3931628419891824], [0.5128218593008805], [0.6068371580108177], [0.623921300915472], [0.5470076493549685]], "masks": [[1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1]], "evals": [[0.9828983528505661], [0.9059847012900628], [0.854697264086541], [0.8375956169371072], [0.8290535454847799], [0.8290535454847799], [0.8375956169371072], [0.854697264086541], [0.8717989112359746], [0.8974251255929563], [0.8888830541406292], [0.8632393355388681], [0.8034098268830191], [0.7435803182271701], [0.6923103852684276], [0.6581245952143394], [0.6581245952143394], [0.6837508095713211], [0.7264961753225158], [0.7863256839783648], [0.8290535454847799], [0.8375956169371072], [0.794867755430692], [0.7179365996254091], [0.6581245952143394], [0.6410229480649057], [0.6837508095713211], [0.7521398939242766], [0.7863256839783648], [0.7692240368289309], [0.7093945281730819], [0.6581245952143394], [0.623921300915472], [0.6324808766125786], [0.6666666666666666], [0.7179365996254091], [0.7692240368289309], [0.8205114740324528], [0.8632393355388681], [0.8717989112359746], [0.8290535454847799], [0.7521398939242766], [0.6666666666666666], [0.6068371580108177], [0.5982950865584904], [0.6153792294631448], [0.6666666666666666], [0.6923103852684276], [0.7008524567207548], [0.7008524567207548], [0.7008524567207548], [0.6923103852684276], [0.6666666666666666], [0.6153792294631448], [0.5640917922596229], [0.5213639307532076], [0.5042622836037739], [0.5128218593008805], [0.5299060022055349], [0.5470076493549685], [0.5470076493549685], [0.5726513679567296], [0.5982950865584904], [0.6581245952143394], [0.7008524567207548], [0.7350382467748429], [0.7264961753225158], [0.6837508095713211], [0.6153792294631448], [0.5726513679567296], [0.5640917922596229], [0.6153792294631448], [0.7093945281730819], [0.8034098268830191], [0.8375956169371072], [0.7521398939242766], [0.5470076493549685], [0.2820458961298115], [0.05128743720352184], [0.0], [0.1623868788181134], [0.4786360692467923], [0.8119694025801256], [1.0], [1.0], [0.8375956169371072], [0.6153792294631448], [0.4529923506450314], [0.36751912338742143], [0.35897705193509427], [0.41024698489383676], [0.4786360692467923], [0.5470076493549685], [0.6153792294631448], [0.6410229480649057], [0.6153792294631448], [0.5470076493549685], [0.4957202121514467], [0.4871781406991195], [0.5213639307532076], [0.5640917922596229], [0.5811934394090567], [0.5299060022055349], [0.46153442209735857], [0.4188065605909433], [0.4188065605909433], [0.4529923506450314], [0.4871781406991195], [0.4957202121514467], [0.4957202121514467], [0.5128218593008805], [0.5555497208072958], [0.6068371580108177], [0.6153792294631448], [0.5982950865584904], [0.5470076493549685], [0.5042622836037739], [0.4957202121514467], [0.5128218593008805], [0.5213639307532076], [0.5042622836037739], [0.47007649354968584], [0.4444327749479248], [0.4444327749479248], [0.4529923506450314], [0.47007649354968584], [0.47007649354968584], [0.46153442209735857], [0.4444327749479248], [0.4188065605909433], [0.38462077053685517], [0.3504174762379877], [0.34187540478566053], [0.35897705193509427], [0.4273486320432705], [0.5213639307532076], [0.5982950865584904], [0.623921300915472], [0.5982950865584904], [0.5384655779026414], [0.4786360692467923], [0.43589070349559766], [0.4188065605909433], [0.41024698489383676], [0.3931628419891824], [0.3931628419891824], [0.41024698489383676], [0.4529923506450314], [0.4957202121514467], [0.5384655779026414], [0.5470076493549685], [0.5470076493549685], [0.5384655779026414], [0.5299060022055349], [0.5299060022055349], [0.5470076493549685], [0.5640917922596229], [0.5811934394090567], [0.5811934394090567], [0.5299060022055349], [0.4529923506450314], [0.36751912338742143], [0.31623168618389963], [0.32479126188100615], [0.38462077053685517], [0.4786360692467923], [0.5811934394090567], [0.6495650195172329], [0.6666666666666666], [0.623921300915472], [0.5299060022055349], [0.4444327749479248], [0.37606119483974865], [0.35897705193509427], [0.4188065605909433], [0.5042622836037739], [0.5811934394090567], [0.6153792294631448], [0.6068371580108177], [0.5811934394090567], [0.5640917922596229], [0.5811934394090567], [0.5897355108613839], [0.5982950865584904], [0.5897355108613839], [0.5726513679567296], [0.5726513679567296], [0.5811934394090567], [0.5982950865584904], [0.6068371580108177], [0.5982950865584904], [0.5811934394090567], [0.5555497208072958], [0.5299060022055349], [0.5128218593008805], [0.5042622836037739], [0.5299060022055349], [0.5897355108613839], [0.6666666666666666], [0.7264961753225158], [0.7264961753225158], [0.6752087381189938], [0.5982950865584904], [0.5555497208072958], [0.5811934394090567], [0.6495650195172329], [0.7264961753225158], [0.7435803182271701], [0.7008524567207548], [0.6153792294631448], [0.5555497208072958], [0.5384655779026414], [0.5640917922596229], [0.5982950865584904], [0.6153792294631448], [0.623921300915472], [0.6324808766125786], [0.6410229480649057], [0.6666666666666666], [0.6581245952143394], [0.623921300915472], [0.5726513679567296], [0.5213639307532076], [0.4957202121514467], [0.5042622836037739], [0.5640917922596229], [0.623921300915472], [0.6837508095713211], [0.6923103852684276], [0.6495650195172329], [0.5726513679567296], [0.5128218593008805], [0.5042622836037739], [0.5470076493549685], [0.5982950865584904], [0.623921300915472], [0.5982950865584904], [0.5384655779026414], [0.4786360692467923], [0.4529923506450314], [0.4529923506450314], [0.47007649354968584], [0.4871781406991195], [0.4871781406991195], [0.5042622836037739], [0.5128218593008805], [0.4957202121514467], [0.43589070349559766], [0.36751912338742143], [0.3076896147315724], [0.3076896147315724], [0.3931628419891824], [0.5128218593008805], [0.6068371580108177], [0.623921300915472], [0.5470076493549685]], "eval_masks": [[0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0]], "forwards": [[0.9828983528505661], [0.9059847012900628], [0.854697264086541], [0.8375956169371072], [0.8290535454847799], [0.8290535454847799], [0.8375956169371072], [0.854697264086541], [0.8717989112359746], [0.8974251255929563], [0.8888830541406292], [0.8632393355388681], [0.8034098268830191], [0.7435803182271701], [0.6923103852684276], [0.6581245952143394], [0.6581245952143394], [0.6837508095713211], [0.7264961753225158], [0.7863256839783648], [0.8290535454847799], [0.8375956169371072], [0.794867755430692], [0.7179365996254091], [0.6581245952143394], [0.6410229480649057], [0.6837508095713211], [0.7521398939242766], [0.7863256839783648], [0.7692240368289309], [0.7093945281730819], [0.6581245952143394], [0.623921300915472], [0.6324808766125786], [0.6666666666666666], [0.7179365996254091], [0.7692240368289309], [0.8205114740324528], [0.8632393355388681], [0.8717989112359746], [0.8290535454847799], [0.7521398939242766], [0.6666666666666666], [0.6068371580108177], [0.5982950865584904], [0.6153792294631448], [0.6666666666666666], [0.6923103852684276], [0.7008524567207548], [0.7008524567207548], [0.7008524567207548], [0.6923103852684276], [0.6666666666666666], [0.6153792294631448], [0.5640917922596229], [0.5213639307532076], [0.5042622836037739], [0.5128218593008805], [0.5299060022055349], [0.5470076493549685], [0.5470076493549685], [0.5726513679567296], [0.5982950865584904], [0.6581245952143394], [0.7008524567207548], [0.7350382467748429], [0.7264961753225158], [0.6837508095713211], [0.6153792294631448], [0.5726513679567296], [0.5640917922596229], [0.6153792294631448], [0.7093945281730819], [0.8034098268830191], [0.8375956169371072], [0.7521398939242766], [0.5470076493549685], [0.2820458961298115], [0.05128743720352184], [0.0], [0.1623868788181134], [0.4786360692467923], [0.8119694025801256], [1.0], [1.0], [0.8375956169371072], [0.6153792294631448], [0.4529923506450314], [0.36751912338742143], [0.35897705193509427], [0.41024698489383676], [0.4786360692467923], [0.5470076493549685], [0.6153792294631448], [0.6410229480649057], [0.6153792294631448], [0.5470076493549685], [0.4957202121514467], [0.4871781406991195], [0.5213639307532076], [0.5640917922596229], [0.5811934394090567], [0.5299060022055349], [0.46153442209735857], [0.4188065605909433], [0.4188065605909433], [0.4529923506450314], [0.4871781406991195], [0.4957202121514467], [0.4957202121514467], [0.5128218593008805], [0.5555497208072958], [0.6068371580108177], [0.6153792294631448], [0.5982950865584904], [0.5470076493549685], [0.5042622836037739], [0.4957202121514467], [0.5128218593008805], [0.5213639307532076], [0.5042622836037739], [0.47007649354968584], [0.4444327749479248], [0.4444327749479248], [0.4529923506450314], [0.47007649354968584], [0.47007649354968584], [0.46153442209735857], [0.4444327749479248], [0.4188065605909433], [0.38462077053685517], [0.3504174762379877], [0.34187540478566053], [0.35897705193509427], [0.4273486320432705], [0.5213639307532076], [0.5982950865584904], [0.623921300915472], [0.5982950865584904], [0.5384655779026414], [0.4786360692467923], [0.43589070349559766], [0.4188065605909433], [0.41024698489383676], [0.3931628419891824], [0.3931628419891824], [0.41024698489383676], [0.4529923506450314], [0.4957202121514467], [0.5384655779026414], [0.5470076493549685], [0.5470076493549685], [0.5384655779026414], [0.5299060022055349], [0.5299060022055349], [0.5470076493549685], [0.5640917922596229], [0.5811934394090567], [0.5811934394090567], [0.5299060022055349], [0.4529923506450314], [0.36751912338742143], [0.31623168618389963], [0.32479126188100615], [0.38462077053685517], [0.4786360692467923], [0.5811934394090567], [0.6495650195172329], [0.6666666666666666], [0.623921300915472], [0.5299060022055349], [0.4444327749479248], [0.37606119483974865], [0.35897705193509427], [0.4188065605909433], [0.5042622836037739], [0.5811934394090567], [0.6153792294631448], [0.6068371580108177], [0.5811934394090567], [0.5640917922596229], [0.5811934394090567], [0.5897355108613839], [0.5982950865584904], [0.5897355108613839], [0.5726513679567296], [0.5726513679567296], [0.5811934394090567], [0.5982950865584904], [0.6068371580108177], [0.5982950865584904], [0.5811934394090567], [0.5555497208072958], [0.5299060022055349], [0.5128218593008805], [0.5042622836037739], [0.5299060022055349], [0.5897355108613839], [0.6666666666666666], [0.7264961753225158], [0.7264961753225158], [0.6752087381189938], [0.5982950865584904], [0.5555497208072958], [0.5811934394090567], [0.6495650195172329], [0.7264961753225158], [0.7435803182271701], [0.7008524567207548], [0.6153792294631448], [0.5555497208072958], [0.5384655779026414], [0.5640917922596229], [0.5982950865584904], [0.6153792294631448], [0.623921300915472], [0.6324808766125786], [0.6410229480649057], [0.6666666666666666], [0.6581245952143394], [0.623921300915472], [0.5726513679567296], [0.5213639307532076], [0.4957202121514467], [0.5042622836037739], [0.5640917922596229], [0.623921300915472], [0.6837508095713211], [0.6923103852684276], [0.6495650195172329], [0.5726513679567296], [0.5128218593008805], [0.5042622836037739], [0.5470076493549685], [0.5982950865584904], [0.623921300915472], [0.5982950865584904], [0.5384655779026414], [0.4786360692467923], [0.4529923506450314], [0.4529923506450314], [0.47007649354968584], [0.4871781406991195], [0.4871781406991195], [0.5042622836037739], [0.5128218593008805], [0.4957202121514467], [0.43589070349559766], [0.36751912338742143], [0.3076896147315724], [0.3076896147315724], [0.3931628419891824], [0.5128218593008805], [0.6068371580108177], [0.623921300915472], [0.5470076493549685]], "deltas": [[1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0]]}, "backward": {"values": [[0.5470076493549685], [0.623921300915472], [0.6068371580108177], [0.5128218593008805], [0.3931628419891824], [0.3076896147315724], [0.3076896147315724], [0.36751912338742143], [0.43589070349559766], [0.4957202121514467], [0.5128218593008805], [0.5042622836037739], [0.4871781406991195], [0.4871781406991195], [0.47007649354968584], [0.4529923506450314], [0.4529923506450314], [0.4786360692467923], [0.5384655779026414], [0.5982950865584904], [0.623921300915472], [0.5982950865584904], [0.5470076493549685], [0.5042622836037739], [0.5128218593008805], [0.5726513679567296], [0.6495650195172329], [0.6923103852684276], [0.6837508095713211], [0.623921300915472], [0.5640917922596229], [0.5042622836037739], [0.4957202121514467], [0.5213639307532076], [0.5726513679567296], [0.623921300915472], [0.6581245952143394], [0.6666666666666666], [0.6410229480649057], [0.6324808766125786], [0.623921300915472], [0.6153792294631448], [0.5982950865584904], [0.5640917922596229], [0.5384655779026414], [0.5555497208072958], [0.6153792294631448], [0.7008524567207548], [0.7435803182271701], [0.7264961753225158], [0.6495650195172329], [0.5811934394090567], [0.5555497208072958], [0.5982950865584904], [0.6752087381189938], [0.7264961753225158], [0.7264961753225158], [0.6666666666666666], [0.5897355108613839], [0.5299060022055349], [0.5042622836037739], [0.5128218593008805], [0.5299060022055349], [0.5555497208072958], [0.5811934394090567], [0.5982950865584904], [0.6068371580108177], [0.5982950865584904], [0.5811934394090567], [0.5726513679567296], [0.5726513679567296], [0.5897355108613839], [0.5982950865584904], [0.5897355108613839], [0.5811934394090567], [0.5640917922596229], [0.5811934394090567], [0.6068371580108177], [0.6153792294631448], [0.5811934394090567], [0.5042622836037739], [0.4188065605909433], [0.35897705193509427], [0.37606119483974865], [0.4444327749479248], [0.5299060022055349], [0.623921300915472], [0.6666666666666666], [0.6495650195172329], [0.5811934394090567], [0.4786360692467923], [0.38462077053685517], [0.32479126188100615], [0.31623168618389963], [0.36751912338742143], [0.4529923506450314], [0.5299060022055349], [0.5811934394090567], [0.5811934394090567], [0.5640917922596229], [0.5470076493549685], [0.5299060022055349], [0.5299060022055349], [0.5384655779026414], [0.5470076493549685], [0.5470076493549685], [0.5384655779026414], [0.4957202121514467], [0.4529923506450314], [0.41024698489383676], [0.3931628419891824], [0.3931628419891824], [0.41024698489383676], [0.4188065605909433], [0.43589070349559766], [0.4786360692467923], [0.5384655779026414], [0.5982950865584904], [0.623921300915472], [0.5982950865584904], [0.5213639307532076], [0.4273486320432705], [0.35897705193509427], [0.34187540478566053], [0.3504174762379877], [0.38462077053685517], [0.4188065605909433], [0.4444327749479248], [0.46153442209735857], [0.47007649354968584], [0.47007649354968584], [0.4529923506450314], [0.4444327749479248], [0.4444327749479248], [0.47007649354968584], [0.5042622836037739], [0.5213639307532076], [0.5128218593008805], [0.4957202121514467], [0.5042622836037739], [0.5470076493549685], [0.5982950865584904], [0.6153792294631448], [0.6068371580108177], [0.5555497208072958], [0.5128218593008805], [0.4957202121514467], [0.4957202121514467], [0.4871781406991195], [0.4529923506450314], [0.4188065605909433], [0.4188065605909433], [0.46153442209735857], [0.5299060022055349], [0.5811934394090567], [0.5640917922596229], [0.5213639307532076], [0.4871781406991195], [0.4957202121514467], [0.5470076493549685], [0.6153792294631448], [0.6410229480649057], [0.6153792294631448], [0.5470076493549685], [0.4786360692467923], [0.41024698489383676], [0.35897705193509427], [0.36751912338742143], [0.4529923506450314], [0.6153792294631448], [0.8375956169371072], [1.0], [1.0], [0.8119694025801256], [0.4786360692467923], [0.1623868788181134], [0.0], [0.05128743720352184], [0.2820458961298115], [0.5470076493549685], [0.7521398939242766], [0.8375956169371072], [0.8034098268830191], [0.7093945281730819], [0.6153792294631448], [0.5640917922596229], [0.5726513679567296], [0.6153792294631448], [0.6837508095713211], [0.7264961753225158], [0.7350382467748429], [0.7008524567207548], [0.6581245952143394], [0.5982950865584904], [0.5726513679567296], [0.5470076493549685], [0.5470076493549685], [0.5299060022055349], [0.5128218593008805], [0.5042622836037739], [0.5213639307532076], [0.5640917922596229], [0.6153792294631448], [0.6666666666666666], [0.6923103852684276], [0.7008524567207548], [0.7008524567207548], [0.7008524567207548], [0.6923103852684276], [0.6666666666666666], [0.6153792294631448], [0.5982950865584904], [0.6068371580108177], [0.6666666666666666], [0.7521398939242766], [0.8290535454847799], [0.8717989112359746], [0.8632393355388681], [0.8205114740324528], [0.7692240368289309], [0.7179365996254091], [0.6666666666666666], [0.6324808766125786], [0.623921300915472], [0.6581245952143394], [0.7093945281730819], [0.7692240368289309], [0.7863256839783648], [0.7521398939242766], [0.6837508095713211], [0.6410229480649057], [0.6581245952143394], [0.7179365996254091], [0.794867755430692], [0.8375956169371072], [0.8290535454847799], [0.7863256839783648], [0.7264961753225158], [0.6837508095713211], [0.6581245952143394], [0.6581245952143394], [0.6923103852684276], [0.7435803182271701], [0.8034098268830191], [0.8632393355388681], [0.8888830541406292], [0.8974251255929563], [0.8717989112359746], [0.854697264086541], [0.8375956169371072], [0.8290535454847799], [0.8290535454847799], [0.8375956169371072], [0.854697264086541], [0.9059847012900628], [0.9828983528505661]], "masks": [[1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1]], "evals": [[0.5470076493549685], [0.623921300915472], [0.6068371580108177], [0.5128218593008805], [0.3931628419891824], [0.3076896147315724], [0.3076896147315724], [0.36751912338742143], [0.43589070349559766], [0.4957202121514467], [0.5128218593008805], [0.5042622836037739], [0.4871781406991195], [0.4871781406991195], [0.47007649354968584], [0.4529923506450314], [0.4529923506450314], [0.4786360692467923], [0.5384655779026414], [0.5982950865584904], [0.623921300915472], [0.5982950865584904], [0.5470076493549685], [0.5042622836037739], [0.5128218593008805], [0.5726513679567296], [0.6495650195172329], [0.6923103852684276], [0.6837508095713211], [0.623921300915472], [0.5640917922596229], [0.5042622836037739], [0.4957202121514467], [0.5213639307532076], [0.5726513679567296], [0.623921300915472], [0.6581245952143394], [0.6666666666666666], [0.6410229480649057], [0.6324808766125786], [0.623921300915472], [0.6153792294631448], [0.5982950865584904], [0.5640917922596229], [0.5384655779026414], [0.5555497208072958], [0.6153792294631448], [0.7008524567207548], [0.7435803182271701], [0.7264961753225158], [0.6495650195172329], [0.5811934394090567], [0.5555497208072958], [0.5982950865584904], [0.6752087381189938], [0.7264961753225158], [0.7264961753225158], [0.6666666666666666], [0.5897355108613839], [0.5299060022055349], [0.5042622836037739], [0.5128218593008805], [0.5299060022055349], [0.5555497208072958], [0.5811934394090567], [0.5982950865584904], [0.6068371580108177], [0.5982950865584904], [0.5811934394090567], [0.5726513679567296], [0.5726513679567296], [0.5897355108613839], [0.5982950865584904], [0.5897355108613839], [0.5811934394090567], [0.5640917922596229], [0.5811934394090567], [0.6068371580108177], [0.6153792294631448], [0.5811934394090567], [0.5042622836037739], [0.4188065605909433], [0.35897705193509427], [0.37606119483974865], [0.4444327749479248], [0.5299060022055349], [0.623921300915472], [0.6666666666666666], [0.6495650195172329], [0.5811934394090567], [0.4786360692467923], [0.38462077053685517], [0.32479126188100615], [0.31623168618389963], [0.36751912338742143], [0.4529923506450314], [0.5299060022055349], [0.5811934394090567], [0.5811934394090567], [0.5640917922596229], [0.5470076493549685], [0.5299060022055349], [0.5299060022055349], [0.5384655779026414], [0.5470076493549685], [0.5470076493549685], [0.5384655779026414], [0.4957202121514467], [0.4529923506450314], [0.41024698489383676], [0.3931628419891824], [0.3931628419891824], [0.41024698489383676], [0.4188065605909433], [0.43589070349559766], [0.4786360692467923], [0.5384655779026414], [0.5982950865584904], [0.623921300915472], [0.5982950865584904], [0.5213639307532076], [0.4273486320432705], [0.35897705193509427], [0.34187540478566053], [0.3504174762379877], [0.38462077053685517], [0.4188065605909433], [0.4444327749479248], [0.46153442209735857], [0.47007649354968584], [0.47007649354968584], [0.4529923506450314], [0.4444327749479248], [0.4444327749479248], [0.47007649354968584], [0.5042622836037739], [0.5213639307532076], [0.5128218593008805], [0.4957202121514467], [0.5042622836037739], [0.5470076493549685], [0.5982950865584904], [0.6153792294631448], [0.6068371580108177], [0.5555497208072958], [0.5128218593008805], [0.4957202121514467], [0.4957202121514467], [0.4871781406991195], [0.4529923506450314], [0.4188065605909433], [0.4188065605909433], [0.46153442209735857], [0.5299060022055349], [0.5811934394090567], [0.5640917922596229], [0.5213639307532076], [0.4871781406991195], [0.4957202121514467], [0.5470076493549685], [0.6153792294631448], [0.6410229480649057], [0.6153792294631448], [0.5470076493549685], [0.4786360692467923], [0.41024698489383676], [0.35897705193509427], [0.36751912338742143], [0.4529923506450314], [0.6153792294631448], [0.8375956169371072], [1.0], [1.0], [0.8119694025801256], [0.4786360692467923], [0.1623868788181134], [0.0], [0.05128743720352184], [0.2820458961298115], [0.5470076493549685], [0.7521398939242766], [0.8375956169371072], [0.8034098268830191], [0.7093945281730819], [0.6153792294631448], [0.5640917922596229], [0.5726513679567296], [0.6153792294631448], [0.6837508095713211], [0.7264961753225158], [0.7350382467748429], [0.7008524567207548], [0.6581245952143394], [0.5982950865584904], [0.5726513679567296], [0.5470076493549685], [0.5470076493549685], [0.5299060022055349], [0.5128218593008805], [0.5042622836037739], [0.5213639307532076], [0.5640917922596229], [0.6153792294631448], [0.6666666666666666], [0.6923103852684276], [0.7008524567207548], [0.7008524567207548], [0.7008524567207548], [0.6923103852684276], [0.6666666666666666], [0.6153792294631448], [0.5982950865584904], [0.6068371580108177], [0.6666666666666666], [0.7521398939242766], [0.8290535454847799], [0.8717989112359746], [0.8632393355388681], [0.8205114740324528], [0.7692240368289309], [0.7179365996254091], [0.6666666666666666], [0.6324808766125786], [0.623921300915472], [0.6581245952143394], [0.7093945281730819], [0.7692240368289309], [0.7863256839783648], [0.7521398939242766], [0.6837508095713211], [0.6410229480649057], [0.6581245952143394], [0.7179365996254091], [0.794867755430692], [0.8375956169371072], [0.8290535454847799], [0.7863256839783648], [0.7264961753225158], [0.6837508095713211], [0.6581245952143394], [0.6581245952143394], [0.6923103852684276], [0.7435803182271701], [0.8034098268830191], [0.8632393355388681], [0.8888830541406292], [0.8974251255929563], [0.8717989112359746], [0.854697264086541], [0.8375956169371072], [0.8290535454847799], [0.8290535454847799], [0.8375956169371072], [0.854697264086541], [0.9059847012900628], [0.9828983528505661]], "eval_masks": [[0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0]], "forwards": [[0.5470076493549685], [0.623921300915472], [0.6068371580108177], [0.5128218593008805], [0.3931628419891824], [0.3076896147315724], [0.3076896147315724], [0.36751912338742143], [0.43589070349559766], [0.4957202121514467], [0.5128218593008805], [0.5042622836037739], [0.4871781406991195], [0.4871781406991195], [0.47007649354968584], [0.4529923506450314], [0.4529923506450314], [0.4786360692467923], [0.5384655779026414], [0.5982950865584904], [0.623921300915472], [0.5982950865584904], [0.5470076493549685], [0.5042622836037739], [0.5128218593008805], [0.5726513679567296], [0.6495650195172329], [0.6923103852684276], [0.6837508095713211], [0.623921300915472], [0.5640917922596229], [0.5042622836037739], [0.4957202121514467], [0.5213639307532076], [0.5726513679567296], [0.623921300915472], [0.6581245952143394], [0.6666666666666666], [0.6410229480649057], [0.6324808766125786], [0.623921300915472], [0.6153792294631448], [0.5982950865584904], [0.5640917922596229], [0.5384655779026414], [0.5555497208072958], [0.6153792294631448], [0.7008524567207548], [0.7435803182271701], [0.7264961753225158], [0.6495650195172329], [0.5811934394090567], [0.5555497208072958], [0.5982950865584904], [0.6752087381189938], [0.7264961753225158], [0.7264961753225158], [0.6666666666666666], [0.5897355108613839], [0.5299060022055349], [0.5042622836037739], [0.5128218593008805], [0.5299060022055349], [0.5555497208072958], [0.5811934394090567], [0.5982950865584904], [0.6068371580108177], [0.5982950865584904], [0.5811934394090567], [0.5726513679567296], [0.5726513679567296], [0.5897355108613839], [0.5982950865584904], [0.5897355108613839], [0.5811934394090567], [0.5640917922596229], [0.5811934394090567], [0.6068371580108177], [0.6153792294631448], [0.5811934394090567], [0.5042622836037739], [0.4188065605909433], [0.35897705193509427], [0.37606119483974865], [0.4444327749479248], [0.5299060022055349], [0.623921300915472], [0.6666666666666666], [0.6495650195172329], [0.5811934394090567], [0.4786360692467923], [0.38462077053685517], [0.32479126188100615], [0.31623168618389963], [0.36751912338742143], [0.4529923506450314], [0.5299060022055349], [0.5811934394090567], [0.5811934394090567], [0.5640917922596229], [0.5470076493549685], [0.5299060022055349], [0.5299060022055349], [0.5384655779026414], [0.5470076493549685], [0.5470076493549685], [0.5384655779026414], [0.4957202121514467], [0.4529923506450314], [0.41024698489383676], [0.3931628419891824], [0.3931628419891824], [0.41024698489383676], [0.4188065605909433], [0.43589070349559766], [0.4786360692467923], [0.5384655779026414], [0.5982950865584904], [0.623921300915472], [0.5982950865584904], [0.5213639307532076], [0.4273486320432705], [0.35897705193509427], [0.34187540478566053], [0.3504174762379877], [0.38462077053685517], [0.4188065605909433], [0.4444327749479248], [0.46153442209735857], [0.47007649354968584], [0.47007649354968584], [0.4529923506450314], [0.4444327749479248], [0.4444327749479248], [0.47007649354968584], [0.5042622836037739], [0.5213639307532076], [0.5128218593008805], [0.4957202121514467], [0.5042622836037739], [0.5470076493549685], [0.5982950865584904], [0.6153792294631448], [0.6068371580108177], [0.5555497208072958], [0.5128218593008805], [0.4957202121514467], [0.4957202121514467], [0.4871781406991195], [0.4529923506450314], [0.4188065605909433], [0.4188065605909433], [0.46153442209735857], [0.5299060022055349], [0.5811934394090567], [0.5640917922596229], [0.5213639307532076], [0.4871781406991195], [0.4957202121514467], [0.5470076493549685], [0.6153792294631448], [0.6410229480649057], [0.6153792294631448], [0.5470076493549685], [0.4786360692467923], [0.41024698489383676], [0.35897705193509427], [0.36751912338742143], [0.4529923506450314], [0.6153792294631448], [0.8375956169371072], [1.0], [1.0], [0.8119694025801256], [0.4786360692467923], [0.1623868788181134], [0.0], [0.05128743720352184], [0.2820458961298115], [0.5470076493549685], [0.7521398939242766], [0.8375956169371072], [0.8034098268830191], [0.7093945281730819], [0.6153792294631448], [0.5640917922596229], [0.5726513679567296], [0.6153792294631448], [0.6837508095713211], [0.7264961753225158], [0.7350382467748429], [0.7008524567207548], [0.6581245952143394], [0.5982950865584904], [0.5726513679567296], [0.5470076493549685], [0.5470076493549685], [0.5299060022055349], [0.5128218593008805], [0.5042622836037739], [0.5213639307532076], [0.5640917922596229], [0.6153792294631448], [0.6666666666666666], [0.6923103852684276], [0.7008524567207548], [0.7008524567207548], [0.7008524567207548], [0.6923103852684276], [0.6666666666666666], [0.6153792294631448], [0.5982950865584904], [0.6068371580108177], [0.6666666666666666], [0.7521398939242766], [0.8290535454847799], [0.8717989112359746], [0.8632393355388681], [0.8205114740324528], [0.7692240368289309], [0.7179365996254091], [0.6666666666666666], [0.6324808766125786], [0.623921300915472], [0.6581245952143394], [0.7093945281730819], [0.7692240368289309], [0.7863256839783648], [0.7521398939242766], [0.6837508095713211], [0.6410229480649057], [0.6581245952143394], [0.7179365996254091], [0.794867755430692], [0.8375956169371072], [0.8290535454847799], [0.7863256839783648], [0.7264961753225158], [0.6837508095713211], [0.6581245952143394], [0.6581245952143394], [0.6923103852684276], [0.7435803182271701], [0.8034098268830191], [0.8632393355388681], [0.8888830541406292], [0.8974251255929563], [0.8717989112359746], [0.854697264086541], [0.8375956169371072], [0.8290535454847799], [0.8290535454847799], [0.8375956169371072], [0.854697264086541], [0.9059847012900628], [0.9828983528505661]], "deltas": [[1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0]]}} diff --git a/tests/report.log b/tests/report.log index 42684143..e69de29b 100644 --- a/tests/report.log +++ b/tests/report.log @@ -1,1655 +0,0 @@ -2025-02-28 12:19:58,624 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-02-28 12:19:58,643 - cmdstanpy - INFO - Chain [1] start processing -2025-02-28 12:19:58,677 - cmdstanpy - INFO - Chain [1] done processing -2025-02-28 12:19:58,727 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-02-28 12:19:58,743 - cmdstanpy - INFO - Chain [1] start processing -2025-02-28 12:19:58,775 - cmdstanpy - INFO - Chain [1] done processing -2025-02-28 12:19:58,819 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-02-28 12:19:58,836 - cmdstanpy - INFO - Chain [1] start processing -2025-02-28 12:19:58,886 - cmdstanpy - INFO - Chain [1] done processing -2025-02-28 12:19:58,931 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-02-28 12:19:58,946 - cmdstanpy - INFO - Chain [1] start processing -2025-02-28 12:19:59,009 - cmdstanpy - INFO - Chain [1] done processing -2025-02-28 12:19:59,057 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-02-28 12:19:59,071 - cmdstanpy - INFO - Chain [1] start processing -2025-02-28 12:19:59,140 - cmdstanpy - INFO - Chain [1] done processing -2025-02-28 12:19:59,189 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-02-28 12:19:59,206 - cmdstanpy - INFO - Chain [1] start processing -2025-02-28 12:19:59,258 - cmdstanpy - INFO - Chain [1] done processing -2025-02-28 12:19:59,303 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-02-28 12:19:59,319 - cmdstanpy - INFO - Chain [1] start processing -2025-02-28 12:19:59,362 - cmdstanpy - INFO - Chain [1] done processing -2025-02-28 12:19:59,409 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-02-28 12:19:59,428 - cmdstanpy - INFO - Chain [1] start processing -2025-02-28 12:19:59,477 - cmdstanpy - INFO - Chain [1] done processing -2025-02-28 12:19:59,522 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-02-28 12:19:59,537 - cmdstanpy - INFO - Chain [1] start processing -2025-02-28 12:19:59,567 - cmdstanpy - INFO - Chain [1] done processing -2025-02-28 12:19:59,614 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-02-28 12:19:59,629 - cmdstanpy - INFO - Chain [1] start processing -2025-02-28 12:19:59,657 - cmdstanpy - INFO - Chain [1] done processing -2025-02-28 12:19:59,708 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-02-28 12:19:59,729 - cmdstanpy - INFO - Chain [1] start processing -2025-02-28 12:19:59,755 - cmdstanpy - INFO - Chain [1] done processing -2025-02-28 12:19:59,812 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-02-28 12:19:59,832 - cmdstanpy - INFO - Chain [1] start processing -2025-02-28 12:19:59,855 - cmdstanpy - INFO - Chain [1] done processing -2025-02-28 12:19:59,909 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-02-28 12:19:59,928 - cmdstanpy - INFO - Chain [1] start processing -2025-02-28 12:19:59,955 - cmdstanpy - INFO - Chain [1] done processing -2025-02-28 12:20:00,012 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-02-28 12:20:00,032 - cmdstanpy - INFO - Chain [1] start processing -2025-02-28 12:20:00,087 - cmdstanpy - INFO - Chain [1] done processing -2025-02-28 12:20:00,140 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-02-28 12:20:00,159 - cmdstanpy - INFO - Chain [1] start processing -2025-02-28 12:20:00,202 - cmdstanpy - INFO - Chain [1] done processing -2025-02-28 12:20:00,257 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-02-28 12:20:00,272 - cmdstanpy - INFO - Chain [1] start processing -2025-02-28 12:20:00,318 - cmdstanpy - INFO - Chain [1] done processing -2025-02-28 12:20:00,377 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-02-28 12:20:00,396 - cmdstanpy - INFO - Chain [1] start processing -2025-02-28 12:20:00,427 - cmdstanpy - INFO - Chain [1] done processing -2025-02-28 12:20:00,484 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-02-28 12:20:00,501 - cmdstanpy - INFO - Chain [1] start processing -2025-02-28 12:20:00,530 - cmdstanpy - INFO - Chain [1] done processing -2025-02-28 12:20:00,586 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-02-28 12:20:00,603 - cmdstanpy - INFO - Chain [1] start processing -2025-02-28 12:20:00,661 - cmdstanpy - INFO - Chain [1] done processing -2025-02-28 12:20:00,717 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-02-28 12:20:00,736 - cmdstanpy - INFO - Chain [1] start processing -2025-02-28 12:20:00,781 - cmdstanpy - INFO - Chain [1] done processing -2025-02-28 12:20:00,838 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-02-28 12:20:00,859 - cmdstanpy - INFO - Chain [1] start processing -2025-02-28 12:20:00,903 - cmdstanpy - INFO - Chain [1] done processing -2025-02-28 12:20:00,957 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-02-28 12:20:00,977 - cmdstanpy - INFO - Chain [1] start processing -2025-02-28 12:20:01,021 - cmdstanpy - INFO - Chain [1] done processing -2025-02-28 12:20:01,080 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-02-28 12:20:01,099 - cmdstanpy - INFO - Chain [1] start processing -2025-02-28 12:20:01,145 - cmdstanpy - INFO - Chain [1] done processing -2025-02-28 12:20:01,201 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-02-28 12:20:01,220 - cmdstanpy - INFO - Chain [1] start processing -2025-02-28 12:20:01,245 - cmdstanpy - INFO - Chain [1] done processing -2025-02-28 12:20:01,306 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-02-28 12:20:01,324 - cmdstanpy - INFO - Chain [1] start processing -2025-02-28 12:20:01,411 - cmdstanpy - INFO - Chain [1] done processing -2025-02-28 12:20:01,464 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-02-28 12:20:01,482 - cmdstanpy - INFO - Chain [1] start processing -2025-02-28 12:20:01,525 - cmdstanpy - INFO - Chain [1] done processing -2025-02-28 12:20:01,581 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-02-28 12:20:01,597 - cmdstanpy - INFO - Chain [1] start processing -2025-02-28 12:20:01,642 - cmdstanpy - INFO - Chain [1] done processing -2025-02-28 12:20:01,701 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-02-28 12:20:01,721 - cmdstanpy - INFO - Chain [1] start processing -2025-02-28 12:20:01,786 - cmdstanpy - INFO - Chain [1] done processing -2025-02-28 12:20:01,844 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-02-28 12:20:01,865 - cmdstanpy - INFO - Chain [1] start processing -2025-02-28 12:20:01,956 - cmdstanpy - INFO - Chain [1] done processing -2025-02-28 12:20:02,015 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-02-28 12:20:02,033 - cmdstanpy - INFO - Chain [1] start processing -2025-02-28 12:20:02,072 - cmdstanpy - INFO - Chain [1] done processing -2025-02-28 12:20:02,126 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-02-28 12:20:02,144 - cmdstanpy - INFO - Chain [1] start processing -2025-02-28 12:20:02,247 - cmdstanpy - INFO - Chain [1] done processing -2025-02-28 12:20:02,303 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-02-28 12:20:02,322 - cmdstanpy - INFO - Chain [1] start processing -2025-02-28 12:20:02,402 - cmdstanpy - INFO - Chain [1] done processing -2025-02-28 12:20:02,454 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-02-28 12:20:02,470 - cmdstanpy - INFO - Chain [1] start processing -2025-02-28 12:20:02,544 - cmdstanpy - INFO - Chain [1] done processing -2025-02-28 12:20:02,595 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-02-28 12:20:02,617 - cmdstanpy - INFO - Chain [1] start processing -2025-02-28 12:20:02,701 - cmdstanpy - INFO - Chain [1] done processing -2025-02-28 12:20:02,761 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-02-28 12:20:02,778 - cmdstanpy - INFO - Chain [1] start processing -2025-02-28 12:20:02,816 - cmdstanpy - INFO - Chain [1] done processing -2025-02-28 12:20:02,870 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-02-28 12:20:02,888 - cmdstanpy - INFO - Chain [1] start processing -2025-02-28 12:20:02,954 - cmdstanpy - INFO - Chain [1] done processing -2025-02-28 12:20:03,008 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-02-28 12:20:03,027 - cmdstanpy - INFO - Chain [1] start processing -2025-02-28 12:20:03,111 - cmdstanpy - INFO - Chain [1] done processing -2025-02-28 12:20:03,166 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-02-28 12:20:03,184 - cmdstanpy - INFO - Chain [1] start processing -2025-02-28 12:20:03,311 - cmdstanpy - INFO - Chain [1] done processing -2025-02-28 12:20:03,369 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-02-28 12:20:03,385 - cmdstanpy - INFO - Chain [1] start processing -2025-02-28 12:20:03,411 - cmdstanpy - INFO - Chain [1] done processing -2025-02-28 12:20:03,460 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-02-28 12:20:03,476 - cmdstanpy - INFO - Chain [1] start processing -2025-02-28 12:20:03,537 - cmdstanpy - INFO - Chain [1] done processing -2025-02-28 12:20:03,602 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-02-28 12:20:03,624 - cmdstanpy - INFO - Chain [1] start processing -2025-02-28 12:20:03,668 - cmdstanpy - INFO - Chain [1] done processing -2025-02-28 12:20:03,723 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-02-28 12:20:03,744 - cmdstanpy - INFO - Chain [1] start processing -2025-02-28 12:20:03,771 - cmdstanpy - INFO - Chain [1] done processing -2025-02-28 12:20:03,823 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-02-28 12:20:03,841 - cmdstanpy - INFO - Chain [1] start processing -2025-02-28 12:20:03,883 - cmdstanpy - INFO - Chain [1] done processing -2025-02-28 12:20:03,937 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-02-28 12:20:03,956 - cmdstanpy - INFO - Chain [1] start processing -2025-02-28 12:20:03,998 - cmdstanpy - INFO - Chain [1] done processing -2025-02-28 12:20:04,052 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-02-28 12:20:04,073 - cmdstanpy - INFO - Chain [1] start processing -2025-02-28 12:20:04,104 - cmdstanpy - INFO - Chain [1] done processing -2025-02-28 12:20:04,160 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-02-28 12:20:04,179 - cmdstanpy - INFO - Chain [1] start processing -2025-02-28 12:20:04,230 - cmdstanpy - INFO - Chain [1] done processing -2025-02-28 12:20:04,287 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-02-28 12:20:04,304 - cmdstanpy - INFO - Chain [1] start processing -2025-02-28 12:20:04,366 - cmdstanpy - INFO - Chain [1] done processing -2025-02-28 12:20:04,421 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-02-28 12:20:04,440 - cmdstanpy - INFO - Chain [1] start processing -2025-02-28 12:20:04,503 - cmdstanpy - INFO - Chain [1] done processing -2025-02-28 12:20:04,554 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-02-28 12:20:04,570 - cmdstanpy - INFO - Chain [1] start processing -2025-02-28 12:20:04,636 - cmdstanpy - INFO - Chain [1] done processing -2025-02-28 12:20:04,696 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-02-28 12:20:04,715 - cmdstanpy - INFO - Chain [1] start processing -2025-02-28 12:20:04,812 - cmdstanpy - INFO - Chain [1] done processing -2025-02-28 12:20:04,866 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-02-28 12:20:04,884 - cmdstanpy - INFO - Chain [1] start processing -2025-02-28 12:20:04,922 - cmdstanpy - INFO - Chain [1] done processing -2025-02-28 12:20:04,980 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-02-28 12:20:05,000 - cmdstanpy - INFO - Chain [1] start processing -2025-02-28 12:20:05,041 - cmdstanpy - INFO - Chain [1] done processing -2025-02-28 12:20:05,099 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-02-28 12:20:05,115 - cmdstanpy - INFO - Chain [1] start processing -2025-02-28 12:20:05,169 - cmdstanpy - INFO - Chain [1] done processing -2025-02-28 12:20:05,215 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-02-28 12:20:05,232 - cmdstanpy - INFO - Chain [1] start processing -2025-02-28 12:20:05,302 - cmdstanpy - INFO - Chain [1] done processing -2025-02-28 12:20:05,353 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-02-28 12:20:05,370 - cmdstanpy - INFO - Chain [1] start processing -2025-02-28 12:20:05,438 - cmdstanpy - INFO - Chain [1] done processing -2025-02-28 12:20:05,487 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-02-28 12:20:05,506 - cmdstanpy - INFO - Chain [1] start processing -2025-02-28 12:20:05,568 - cmdstanpy - INFO - Chain [1] done processing -2025-02-28 12:20:05,626 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-02-28 12:20:05,645 - cmdstanpy - INFO - Chain [1] start processing -2025-02-28 12:20:05,695 - cmdstanpy - INFO - Chain [1] done processing -2025-02-28 12:20:05,749 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-02-28 12:20:05,769 - cmdstanpy - INFO - Chain [1] start processing -2025-02-28 12:20:05,832 - cmdstanpy - INFO - Chain [1] done processing -2025-02-28 12:20:06,494 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-02-28 12:20:06,511 - cmdstanpy - INFO - Chain [1] start processing -2025-02-28 12:20:06,545 - cmdstanpy - INFO - Chain [1] done processing -2025-02-28 12:20:06,602 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-02-28 12:20:06,621 - cmdstanpy - INFO - Chain [1] start processing -2025-02-28 12:20:06,651 - cmdstanpy - INFO - Chain [1] done processing -2025-02-28 12:20:06,710 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-02-28 12:20:06,729 - cmdstanpy - INFO - Chain [1] start processing -2025-02-28 12:20:06,756 - cmdstanpy - INFO - Chain [1] done processing -2025-02-28 12:20:06,811 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-02-28 12:20:06,830 - cmdstanpy - INFO - Chain [1] start processing -2025-02-28 12:20:06,853 - cmdstanpy - INFO - Chain [1] done processing -2025-02-28 12:20:06,910 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-02-28 12:20:06,930 - cmdstanpy - INFO - Chain [1] start processing -2025-02-28 12:20:06,959 - cmdstanpy - INFO - Chain [1] done processing -2025-02-28 12:20:07,018 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-02-28 12:20:07,038 - cmdstanpy - INFO - Chain [1] start processing -2025-02-28 12:20:07,065 - cmdstanpy - INFO - Chain [1] done processing -2025-02-28 12:20:07,118 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-02-28 12:20:07,138 - cmdstanpy - INFO - Chain [1] start processing -2025-02-28 12:20:07,185 - cmdstanpy - INFO - Chain [1] done processing -2025-02-28 12:20:07,246 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-02-28 12:20:07,267 - cmdstanpy - INFO - Chain [1] start processing -2025-02-28 12:20:07,316 - cmdstanpy - INFO - Chain [1] done processing -2025-02-28 12:20:07,378 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-02-28 12:20:07,397 - cmdstanpy - INFO - Chain [1] start processing -2025-02-28 12:20:07,427 - cmdstanpy - INFO - Chain [1] done processing -2025-02-28 12:20:07,482 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-02-28 12:20:07,505 - cmdstanpy - INFO - Chain [1] start processing -2025-02-28 12:20:07,542 - cmdstanpy - INFO - Chain [1] done processing -2025-02-28 12:20:07,602 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-02-28 12:20:07,624 - cmdstanpy - INFO - Chain [1] start processing -2025-02-28 12:20:07,682 - cmdstanpy - INFO - Chain [1] done processing -2025-02-28 12:20:07,737 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-02-28 12:20:07,758 - cmdstanpy - INFO - Chain [1] start processing -2025-02-28 12:20:07,780 - cmdstanpy - INFO - Chain [1] done processing -2025-02-28 12:20:07,838 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-02-28 12:20:07,858 - cmdstanpy - INFO - Chain [1] start processing -2025-02-28 12:20:07,908 - cmdstanpy - INFO - Chain [1] done processing -2025-02-28 12:20:07,962 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-02-28 12:20:07,981 - cmdstanpy - INFO - Chain [1] start processing -2025-02-28 12:20:08,024 - cmdstanpy - INFO - Chain [1] done processing -2025-02-28 12:20:08,082 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-02-28 12:20:08,098 - cmdstanpy - INFO - Chain [1] start processing -2025-02-28 12:20:08,144 - cmdstanpy - INFO - Chain [1] done processing -2025-02-28 12:20:08,199 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-02-28 12:20:08,219 - cmdstanpy - INFO - Chain [1] start processing -2025-02-28 12:20:08,244 - cmdstanpy - INFO - Chain [1] done processing -2025-02-28 12:20:08,300 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-02-28 12:20:08,316 - cmdstanpy - INFO - Chain [1] start processing -2025-02-28 12:20:08,401 - cmdstanpy - INFO - Chain [1] done processing -2025-02-28 12:20:08,458 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-02-28 12:20:08,475 - cmdstanpy - INFO - Chain [1] start processing -2025-02-28 12:20:08,509 - cmdstanpy - INFO - Chain [1] done processing -2025-02-28 12:20:08,570 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-02-28 12:20:08,591 - cmdstanpy - INFO - Chain [1] start processing -2025-02-28 12:20:08,657 - cmdstanpy - INFO - Chain [1] done processing -2025-02-28 12:20:08,705 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-02-28 12:20:08,721 - cmdstanpy - INFO - Chain [1] start processing -2025-02-28 12:20:08,776 - cmdstanpy - INFO - Chain [1] done processing -2025-02-28 12:20:08,822 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-02-28 12:20:08,838 - cmdstanpy - INFO - Chain [1] start processing -2025-02-28 12:20:08,914 - cmdstanpy - INFO - Chain [1] done processing -2025-02-28 12:20:08,968 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-02-28 12:20:08,986 - cmdstanpy - INFO - Chain [1] start processing -2025-02-28 12:20:09,023 - cmdstanpy - INFO - Chain [1] done processing -2025-02-28 12:20:09,079 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-02-28 12:20:09,097 - cmdstanpy - INFO - Chain [1] start processing -2025-02-28 12:20:09,140 - cmdstanpy - INFO - Chain [1] done processing -2025-02-28 12:20:09,200 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-02-28 12:20:09,222 - cmdstanpy - INFO - Chain [1] start processing -2025-02-28 12:20:09,295 - cmdstanpy - INFO - Chain [1] done processing -2025-02-28 12:20:09,356 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-02-28 12:20:09,375 - cmdstanpy - INFO - Chain [1] start processing -2025-02-28 12:20:09,432 - cmdstanpy - INFO - Chain [1] done processing -2025-02-28 12:20:09,487 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-02-28 12:20:09,508 - cmdstanpy - INFO - Chain [1] start processing -2025-02-28 12:20:09,595 - cmdstanpy - INFO - Chain [1] done processing -2025-02-28 12:20:09,651 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-02-28 12:20:09,669 - cmdstanpy - INFO - Chain [1] start processing -2025-02-28 12:20:09,709 - cmdstanpy - INFO - Chain [1] done processing -2025-02-28 12:20:09,766 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-02-28 12:20:09,784 - cmdstanpy - INFO - Chain [1] start processing -2025-02-28 12:20:09,854 - cmdstanpy - INFO - Chain [1] done processing -2025-02-28 12:20:09,910 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-02-28 12:20:09,929 - cmdstanpy - INFO - Chain [1] start processing -2025-02-28 12:20:10,017 - cmdstanpy - INFO - Chain [1] done processing -2025-02-28 12:20:10,077 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-02-28 12:20:10,093 - cmdstanpy - INFO - Chain [1] start processing -2025-02-28 12:20:10,223 - cmdstanpy - INFO - Chain [1] done processing -2025-02-28 12:20:10,280 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-02-28 12:20:10,299 - cmdstanpy - INFO - Chain [1] start processing -2025-02-28 12:20:10,332 - cmdstanpy - INFO - Chain [1] done processing -2025-02-28 12:20:10,390 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-02-28 12:20:10,408 - cmdstanpy - INFO - Chain [1] start processing -2025-02-28 12:20:10,464 - cmdstanpy - INFO - Chain [1] done processing -2025-02-28 12:20:10,523 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-02-28 12:20:10,541 - cmdstanpy - INFO - Chain [1] start processing -2025-02-28 12:20:10,586 - cmdstanpy - INFO - Chain [1] done processing -2025-02-28 12:20:10,644 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-02-28 12:20:10,665 - cmdstanpy - INFO - Chain [1] start processing -2025-02-28 12:20:10,692 - cmdstanpy - INFO - Chain [1] done processing -2025-02-28 12:20:10,748 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-02-28 12:20:10,769 - cmdstanpy - INFO - Chain [1] start processing -2025-02-28 12:20:10,809 - cmdstanpy - INFO - Chain [1] done processing -2025-02-28 12:20:10,867 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-02-28 12:20:10,886 - cmdstanpy - INFO - Chain [1] start processing -2025-02-28 12:20:10,936 - cmdstanpy - INFO - Chain [1] done processing -2025-02-28 12:20:10,994 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-02-28 12:20:11,015 - cmdstanpy - INFO - Chain [1] start processing -2025-02-28 12:20:11,050 - cmdstanpy - INFO - Chain [1] done processing -2025-02-28 12:20:11,112 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-02-28 12:20:11,133 - cmdstanpy - INFO - Chain [1] start processing -2025-02-28 12:20:11,280 - cmdstanpy - INFO - Chain [1] done processing -2025-02-28 12:20:11,340 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-02-28 12:20:11,357 - cmdstanpy - INFO - Chain [1] start processing -2025-02-28 12:20:11,422 - cmdstanpy - INFO - Chain [1] done processing -2025-02-28 12:20:11,477 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-02-28 12:20:11,496 - cmdstanpy - INFO - Chain [1] start processing -2025-02-28 12:20:11,561 - cmdstanpy - INFO - Chain [1] done processing -2025-02-28 12:20:11,617 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-02-28 12:20:11,636 - cmdstanpy - INFO - Chain [1] start processing -2025-02-28 12:20:11,712 - cmdstanpy - INFO - Chain [1] done processing -2025-02-28 12:20:11,766 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-02-28 12:20:11,782 - cmdstanpy - INFO - Chain [1] start processing -2025-02-28 12:20:11,871 - cmdstanpy - INFO - Chain [1] done processing -2025-02-28 12:20:11,919 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-02-28 12:20:11,935 - cmdstanpy - INFO - Chain [1] start processing -2025-02-28 12:20:11,967 - cmdstanpy - INFO - Chain [1] done processing -2025-02-28 12:20:12,026 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-02-28 12:20:12,044 - cmdstanpy - INFO - Chain [1] start processing -2025-02-28 12:20:12,083 - cmdstanpy - INFO - Chain [1] done processing -2025-02-28 12:20:12,143 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-02-28 12:20:12,163 - cmdstanpy - INFO - Chain [1] start processing -2025-02-28 12:20:12,230 - cmdstanpy - INFO - Chain [1] done processing -2025-02-28 12:20:12,287 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-02-28 12:20:12,305 - cmdstanpy - INFO - Chain [1] start processing -2025-02-28 12:20:12,384 - cmdstanpy - INFO - Chain [1] done processing -2025-02-28 12:20:12,437 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-02-28 12:20:12,456 - cmdstanpy - INFO - Chain [1] start processing -2025-02-28 12:20:12,535 - cmdstanpy - INFO - Chain [1] done processing -2025-02-28 12:20:12,588 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-02-28 12:20:12,607 - cmdstanpy - INFO - Chain [1] start processing -2025-02-28 12:20:12,673 - cmdstanpy - INFO - Chain [1] done processing -2025-02-28 12:20:12,726 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-02-28 12:20:12,743 - cmdstanpy - INFO - Chain [1] start processing -2025-02-28 12:20:12,795 - cmdstanpy - INFO - Chain [1] done processing -2025-02-28 12:20:12,850 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-02-28 12:20:12,868 - cmdstanpy - INFO - Chain [1] start processing -2025-02-28 12:20:12,925 - cmdstanpy - INFO - Chain [1] done processing -2025-02-28 12:20:12,975 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-02-28 12:20:12,990 - cmdstanpy - INFO - Chain [1] start processing -2025-02-28 12:20:13,019 - cmdstanpy - INFO - Chain [1] done processing -2025-02-28 12:20:13,083 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-02-28 12:20:13,099 - cmdstanpy - INFO - Chain [1] start processing -2025-02-28 12:20:13,128 - cmdstanpy - INFO - Chain [1] done processing -2025-02-28 12:20:13,185 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-02-28 12:20:13,206 - cmdstanpy - INFO - Chain [1] start processing -2025-02-28 12:20:13,235 - cmdstanpy - INFO - Chain [1] done processing -2025-02-28 12:20:13,288 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-02-28 12:20:13,308 - cmdstanpy - INFO - Chain [1] start processing -2025-02-28 12:20:13,328 - cmdstanpy - INFO - Chain [1] done processing -2025-02-28 12:20:13,383 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-02-28 12:20:13,403 - cmdstanpy - INFO - Chain [1] start processing -2025-02-28 12:20:13,432 - cmdstanpy - INFO - Chain [1] done processing -2025-02-28 12:20:13,486 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-02-28 12:20:13,505 - cmdstanpy - INFO - Chain [1] start processing -2025-02-28 12:20:13,530 - cmdstanpy - INFO - Chain [1] done processing -2025-02-28 12:20:13,586 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-02-28 12:20:13,603 - cmdstanpy - INFO - Chain [1] start processing -2025-02-28 12:20:13,646 - cmdstanpy - INFO - Chain [1] done processing -2025-02-28 12:20:13,701 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-02-28 12:20:13,719 - cmdstanpy - INFO - Chain [1] start processing -2025-02-28 12:20:13,765 - cmdstanpy - INFO - Chain [1] done processing -2025-02-28 12:20:13,823 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-02-28 12:20:13,840 - cmdstanpy - INFO - Chain [1] start processing -2025-02-28 12:20:13,870 - cmdstanpy - INFO - Chain [1] done processing -2025-02-28 12:20:13,929 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-02-28 12:20:13,950 - cmdstanpy - INFO - Chain [1] start processing -2025-02-28 12:20:13,978 - cmdstanpy - INFO - Chain [1] done processing -2025-02-28 12:20:14,033 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-02-28 12:20:14,055 - cmdstanpy - INFO - Chain [1] start processing -2025-02-28 12:20:14,121 - cmdstanpy - INFO - Chain [1] done processing -2025-02-28 12:20:14,214 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-02-28 12:20:14,249 - cmdstanpy - INFO - Chain [1] start processing -2025-02-28 12:20:14,284 - cmdstanpy - INFO - Chain [1] done processing -2025-02-28 12:20:14,386 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-02-28 12:20:14,429 - cmdstanpy - INFO - Chain [1] start processing -2025-02-28 12:20:14,513 - cmdstanpy - INFO - Chain [1] done processing -2025-02-28 12:20:14,611 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-02-28 12:20:14,646 - cmdstanpy - INFO - Chain [1] start processing -2025-02-28 12:20:14,729 - cmdstanpy - INFO - Chain [1] done processing -2025-02-28 12:20:14,834 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-02-28 12:20:14,875 - cmdstanpy - INFO - Chain [1] start processing -2025-02-28 12:20:14,956 - cmdstanpy - INFO - Chain [1] done processing -2025-02-28 12:20:15,053 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-02-28 12:20:15,091 - cmdstanpy - INFO - Chain [1] start processing -2025-02-28 12:20:15,129 - cmdstanpy - INFO - Chain [1] done processing -2025-02-28 12:20:15,238 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-02-28 12:20:15,275 - cmdstanpy - INFO - Chain [1] start processing -2025-02-28 12:20:15,419 - cmdstanpy - INFO - Chain [1] done processing -2025-02-28 12:20:15,506 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-02-28 12:20:15,539 - cmdstanpy - INFO - Chain [1] start processing -2025-02-28 12:20:15,600 - cmdstanpy - INFO - Chain [1] done processing -2025-02-28 12:20:15,699 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-02-28 12:20:15,735 - cmdstanpy - INFO - Chain [1] start processing -2025-02-28 12:20:15,851 - cmdstanpy - INFO - Chain [1] done processing -2025-02-28 12:20:15,951 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-02-28 12:20:15,987 - cmdstanpy - INFO - Chain [1] start processing -2025-02-28 12:20:16,099 - cmdstanpy - INFO - Chain [1] done processing -2025-02-28 12:20:16,181 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-02-28 12:20:16,203 - cmdstanpy - INFO - Chain [1] start processing -2025-02-28 12:20:16,315 - cmdstanpy - INFO - Chain [1] done processing -2025-02-28 12:20:16,379 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-02-28 12:20:16,398 - cmdstanpy - INFO - Chain [1] start processing -2025-02-28 12:20:16,440 - cmdstanpy - INFO - Chain [1] done processing -2025-02-28 12:20:16,501 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-02-28 12:20:16,520 - cmdstanpy - INFO - Chain [1] start processing -2025-02-28 12:20:16,565 - cmdstanpy - INFO - Chain [1] done processing -2025-02-28 12:20:16,632 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-02-28 12:20:16,652 - cmdstanpy - INFO - Chain [1] start processing -2025-02-28 12:20:16,727 - cmdstanpy - INFO - Chain [1] done processing -2025-02-28 12:20:16,791 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-02-28 12:20:16,811 - cmdstanpy - INFO - Chain [1] start processing -2025-02-28 12:20:16,833 - cmdstanpy - INFO - Chain [1] done processing -2025-02-28 12:20:16,898 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-02-28 12:20:16,919 - cmdstanpy - INFO - Chain [1] start processing -2025-02-28 12:20:17,008 - cmdstanpy - INFO - Chain [1] done processing -2025-02-28 12:20:17,068 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-02-28 12:20:17,089 - cmdstanpy - INFO - Chain [1] start processing -2025-02-28 12:20:17,133 - cmdstanpy - INFO - Chain [1] done processing -2025-02-28 12:20:17,194 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-02-28 12:20:17,215 - cmdstanpy - INFO - Chain [1] start processing -2025-02-28 12:20:17,287 - cmdstanpy - INFO - Chain [1] done processing -2025-02-28 12:20:17,347 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-02-28 12:20:17,367 - cmdstanpy - INFO - Chain [1] start processing -2025-02-28 12:20:17,465 - cmdstanpy - INFO - Chain [1] done processing -2025-02-28 12:20:17,523 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-02-28 12:20:17,542 - cmdstanpy - INFO - Chain [1] start processing -2025-02-28 12:20:17,665 - cmdstanpy - INFO - Chain [1] done processing -2025-02-28 12:20:17,725 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-02-28 12:20:17,747 - cmdstanpy - INFO - Chain [1] start processing -2025-02-28 12:20:17,778 - cmdstanpy - INFO - Chain [1] done processing -2025-02-28 12:20:17,833 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-02-28 12:20:17,851 - cmdstanpy - INFO - Chain [1] start processing -2025-02-28 12:20:17,880 - cmdstanpy - INFO - Chain [1] done processing -2025-02-28 12:20:17,944 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-02-28 12:20:17,965 - cmdstanpy - INFO - Chain [1] start processing -2025-02-28 12:20:18,007 - cmdstanpy - INFO - Chain [1] done processing -2025-02-28 12:20:18,064 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-02-28 12:20:18,083 - cmdstanpy - INFO - Chain [1] start processing -2025-02-28 12:20:18,110 - cmdstanpy - INFO - Chain [1] done processing -2025-02-28 12:20:18,172 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-02-28 12:20:18,193 - cmdstanpy - INFO - Chain [1] start processing -2025-02-28 12:20:18,236 - cmdstanpy - INFO - Chain [1] done processing -2025-02-28 12:20:18,295 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-02-28 12:20:18,315 - cmdstanpy - INFO - Chain [1] start processing -2025-02-28 12:20:18,364 - cmdstanpy - INFO - Chain [1] done processing -2025-02-28 12:20:18,412 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-02-28 12:20:18,431 - cmdstanpy - INFO - Chain [1] start processing -2025-02-28 12:20:18,460 - cmdstanpy - INFO - Chain [1] done processing -2025-02-28 12:20:18,513 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-02-28 12:20:18,528 - cmdstanpy - INFO - Chain [1] start processing -2025-02-28 12:20:18,548 - cmdstanpy - INFO - Chain [1] done processing -2025-02-28 12:20:18,599 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-02-28 12:20:18,616 - cmdstanpy - INFO - Chain [1] start processing -2025-02-28 12:20:18,670 - cmdstanpy - INFO - Chain [1] done processing -2025-02-28 12:20:18,730 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-02-28 12:20:18,750 - cmdstanpy - INFO - Chain [1] start processing -2025-02-28 12:20:18,816 - cmdstanpy - INFO - Chain [1] done processing -2025-02-28 12:20:18,876 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-02-28 12:20:18,895 - cmdstanpy - INFO - Chain [1] start processing -2025-02-28 12:20:18,913 - cmdstanpy - INFO - Chain [1] done processing -2025-02-28 12:20:18,970 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-02-28 12:20:18,992 - cmdstanpy - INFO - Chain [1] start processing -2025-02-28 12:20:19,099 - cmdstanpy - INFO - Chain [1] done processing -2025-02-28 12:20:55,917 - shap - INFO - num_full_subsets = 2 -2025-02-28 12:20:55,920 - shap - INFO - remaining_weight_vector = array([0.22727203, 0.18465852, 0.16115653, 0.14772682, 0.14069221, - 0.13849389]) -2025-02-28 12:20:55,922 - shap - INFO - num_paired_subset_sizes = 7 -2025-02-28 12:20:55,935 - shap - INFO - weight_left = 0.5063344810024111 -2025-02-28 12:20:55,958 - shap - INFO - np.sum(w_aug) = 15.999999999999998 -2025-02-28 12:20:55,958 - shap - INFO - np.sum(self.kernelWeights) = 1.0000000000000004 -2025-02-28 12:20:56,016 - shap - INFO - phi = array([ 0.00000000e+00, -8.88019875e-03, 0.00000000e+00, 0.00000000e+00, - 0.00000000e+00, -6.86607862e-05, 6.25857095e-05, 0.00000000e+00, - 0.00000000e+00, 1.45046191e-04, 0.00000000e+00, 0.00000000e+00, - 0.00000000e+00, 0.00000000e+00, -2.11160641e-04, 0.00000000e+00]) -2025-02-28 12:20:56,044 - shap - INFO - num_full_subsets = 2 -2025-02-28 12:20:56,051 - shap - INFO - remaining_weight_vector = array([0.22727203, 0.18465852, 0.16115653, 0.14772682, 0.14069221, - 0.13849389]) -2025-02-28 12:20:56,052 - shap - INFO - num_paired_subset_sizes = 7 -2025-02-28 12:20:56,091 - shap - INFO - weight_left = 0.5063344810024111 -2025-02-28 12:20:56,119 - shap - INFO - np.sum(w_aug) = 16.0 -2025-02-28 12:20:56,121 - shap - INFO - np.sum(self.kernelWeights) = 1.0000000000000002 -2025-02-28 12:20:56,164 - shap - INFO - phi = array([ 0.00000000e+00, 3.55240624e-03, 0.00000000e+00, 0.00000000e+00, - 0.00000000e+00, -6.86607862e-05, 6.25857095e-05, 0.00000000e+00, - 0.00000000e+00, 1.45046191e-04, 0.00000000e+00, 0.00000000e+00, - 0.00000000e+00, 0.00000000e+00, 1.05580321e-04, 0.00000000e+00]) -2025-02-28 12:20:56,207 - shap - INFO - num_full_subsets = 2 -2025-02-28 12:20:56,208 - shap - INFO - remaining_weight_vector = array([0.22727203, 0.18465852, 0.16115653, 0.14772682, 0.14069221, - 0.13849389]) -2025-02-28 12:20:56,208 - shap - INFO - num_paired_subset_sizes = 7 -2025-02-28 12:20:56,237 - shap - INFO - weight_left = 0.5063344810024111 -2025-02-28 12:20:56,265 - shap - INFO - np.sum(w_aug) = 15.999999999999998 -2025-02-28 12:20:56,266 - shap - INFO - np.sum(self.kernelWeights) = 1.0 -2025-02-28 12:20:56,372 - shap - INFO - phi = array([ 0.00000000e+00, 4.73599708e-03, 0.00000000e+00, 0.00000000e+00, - 0.00000000e+00, -6.86607862e-05, 6.25857095e-05, 0.00000000e+00, - 0.00000000e+00, 1.45046191e-04, 0.00000000e+00, 0.00000000e+00, - 0.00000000e+00, 0.00000000e+00, 1.05580321e-04, 0.00000000e+00]) -2025-02-28 12:20:56,386 - shap - INFO - num_full_subsets = 2 -2025-02-28 12:20:56,388 - shap - INFO - remaining_weight_vector = array([0.22727203, 0.18465852, 0.16115653, 0.14772682, 0.14069221, - 0.13849389]) -2025-02-28 12:20:56,392 - shap - INFO - num_paired_subset_sizes = 7 -2025-02-28 12:20:56,424 - shap - INFO - weight_left = 0.5063344810024111 -2025-02-28 12:20:56,463 - shap - INFO - np.sum(w_aug) = 16.0 -2025-02-28 12:20:56,464 - shap - INFO - np.sum(self.kernelWeights) = 1.0000000000000002 -2025-02-28 12:20:56,501 - shap - INFO - phi = array([0.00000000e+00, 4.73599708e-03, 0.00000000e+00, 0.00000000e+00, - 0.00000000e+00, 1.37321572e-04, 6.25857095e-05, 0.00000000e+00, - 0.00000000e+00, 1.45046191e-04, 0.00000000e+00, 0.00000000e+00, - 0.00000000e+00, 0.00000000e+00, 1.05580321e-04, 0.00000000e+00]) -2025-02-28 12:20:56,512 - shap - INFO - num_full_subsets = 2 -2025-02-28 12:20:56,513 - shap - INFO - remaining_weight_vector = array([0.22727203, 0.18465852, 0.16115653, 0.14772682, 0.14069221, - 0.13849389]) -2025-02-28 12:20:56,516 - shap - INFO - num_paired_subset_sizes = 7 -2025-02-28 12:20:56,545 - shap - INFO - weight_left = 0.5063344810024111 -2025-02-28 12:20:56,584 - shap - INFO - np.sum(w_aug) = 15.999999999999996 -2025-02-28 12:20:56,585 - shap - INFO - np.sum(self.kernelWeights) = 1.0000000000000004 -2025-02-28 12:20:56,682 - shap - INFO - phi = array([ 0. , 0.004736 , 0. , 0. , 0. , - 0.00013732, -0.00031293, 0. , 0. , 0.00014505, - 0. , 0. , 0. , 0. , 0.00010558, - 0. ]) -2025-02-28 12:20:56,717 - shap - INFO - num_full_subsets = 2 -2025-02-28 12:20:56,719 - shap - INFO - remaining_weight_vector = array([0.22727203, 0.18465852, 0.16115653, 0.14772682, 0.14069221, - 0.13849389]) -2025-02-28 12:20:56,720 - shap - INFO - num_paired_subset_sizes = 7 -2025-02-28 12:20:56,772 - shap - INFO - weight_left = 0.5063344810024111 -2025-02-28 12:20:56,797 - shap - INFO - np.sum(w_aug) = 15.999999999999996 -2025-02-28 12:20:56,797 - shap - INFO - np.sum(self.kernelWeights) = 1.0000000000000002 -2025-02-28 12:20:56,833 - shap - INFO - phi = array([ 0.00000000e+00, -8.88019875e-03, 0.00000000e+00, 0.00000000e+00, - 0.00000000e+00, -6.86607862e-05, 6.25857095e-05, 0.00000000e+00, - 0.00000000e+00, -7.25230953e-04, 0.00000000e+00, 0.00000000e+00, - 0.00000000e+00, 0.00000000e+00, -2.11160641e-04, 0.00000000e+00]) -2025-02-28 12:20:56,847 - shap - INFO - num_full_subsets = 2 -2025-02-28 12:20:56,854 - shap - INFO - remaining_weight_vector = array([0.23108621, 0.18664656, 0.16176035, 0.14705486, 0.13865173, - 0.13480029]) -2025-02-28 12:20:56,856 - shap - INFO - num_paired_subset_sizes = 8 -2025-02-28 12:20:56,895 - shap - INFO - weight_left = 0.5181019626448611 -2025-02-28 12:20:56,921 - shap - INFO - np.sum(w_aug) = 17.000000000000007 -2025-02-28 12:20:56,922 - shap - INFO - np.sum(self.kernelWeights) = 1.0000000000000002 -2025-02-28 12:20:57,024 - shap - INFO - phi = array([ 0.00000000e+00, 4.78175895e-03, 0.00000000e+00, -8.23870107e-04, - 3.52707678e-04, 5.84070762e-02, -6.58176070e-05, 4.16744541e-02, - 1.63386594e-02, 1.27366766e-05, -5.19480170e-04, 2.77921160e-03, - -2.78906921e-03, 2.18486196e-04, 4.19067576e-05, -1.61020629e-04, - -2.80003094e-04]) -2025-02-28 12:20:57,063 - shap - INFO - num_full_subsets = 2 -2025-02-28 12:20:57,072 - shap - INFO - remaining_weight_vector = array([0.20732477, 0.16660026, 0.14353254, 0.12957798, 0.12116383, - 0.11662019, 0.11518043]) -2025-02-28 12:20:57,073 - shap - INFO - num_paired_subset_sizes = 8 -2025-02-28 12:20:57,114 - shap - INFO - weight_left = 0.528623703595323 -2025-02-28 12:20:57,141 - shap - INFO - np.sum(w_aug) = 17.999999999999996 -2025-02-28 12:20:57,142 - shap - INFO - np.sum(self.kernelWeights) = 0.9999999999999998 -2025-02-28 12:20:57,251 - shap - INFO - phi = array([-4.23740400e-03, 4.86594850e-03, 2.03953900e-04, -8.84065259e-04, - 1.38516632e-03, 7.92636066e-04, 1.59348446e-03, -3.82106791e-04, - 4.19611966e-04, 1.24311529e-04, 3.39022229e-03, 2.30180720e-04, - 2.53010519e-03, -4.21856301e-03, -2.20044941e-04, 9.26701278e-04, - 7.40477018e-04, 4.16044238e-05]) -2025-02-28 12:20:57,278 - shap - INFO - num_full_subsets = 2 -2025-02-28 12:20:57,282 - shap - INFO - remaining_weight_vector = array([0.23108621, 0.18664656, 0.16176035, 0.14705486, 0.13865173, - 0.13480029]) -2025-02-28 12:20:57,283 - shap - INFO - num_paired_subset_sizes = 8 -2025-02-28 12:20:57,312 - shap - INFO - weight_left = 0.5181019626448611 -2025-02-28 12:20:57,352 - shap - INFO - np.sum(w_aug) = 17.000000000000004 -2025-02-28 12:20:57,353 - shap - INFO - np.sum(self.kernelWeights) = 1.0000000000000002 -2025-02-28 12:20:57,382 - shap - INFO - phi = array([-1.46251498e-02, -9.09576982e-03, 4.25612431e-04, -1.11308778e-03, - 7.60190988e-04, 3.16631560e-04, 7.77586437e-04, 0.00000000e+00, - 1.41757456e-04, -4.68811641e-04, 3.00263634e-03, -4.64003818e-03, - 5.11925711e-04, -4.53961415e-03, -2.28118751e-04, 7.57353258e-04, - 2.57639654e-05]) -2025-02-28 12:20:57,404 - shap - INFO - num_full_subsets = 2 -2025-02-28 12:20:57,405 - shap - INFO - remaining_weight_vector = array([0.23108621, 0.18664656, 0.16176035, 0.14705486, 0.13865173, - 0.13480029]) -2025-02-28 12:20:57,406 - shap - INFO - num_paired_subset_sizes = 8 -2025-02-28 12:20:57,460 - shap - INFO - weight_left = 0.5181019626448611 -2025-02-28 12:20:57,488 - shap - INFO - np.sum(w_aug) = 17.000000000000007 -2025-02-28 12:20:57,489 - shap - INFO - np.sum(self.kernelWeights) = 1.0 -2025-02-28 12:20:57,592 - shap - INFO - phi = array([-1.48965200e-02, -1.01127722e-02, 2.03585575e-04, -1.17224161e-03, - 7.81832942e-04, 2.82597834e-04, 8.71948585e-04, 0.00000000e+00, - 5.77036931e-05, -4.76796221e-04, -2.33829883e-04, -4.76516715e-03, - 4.76501332e-04, -4.53316051e-03, -2.38378566e-04, 7.49106138e-04, - -6.34185477e-05]) -2025-02-28 12:20:57,604 - shap - INFO - num_full_subsets = 2 -2025-02-28 12:20:57,605 - shap - INFO - remaining_weight_vector = array([0.23108621, 0.18664656, 0.16176035, 0.14705486, 0.13865173, - 0.13480029]) -2025-02-28 12:20:57,608 - shap - INFO - num_paired_subset_sizes = 8 -2025-02-28 12:20:57,638 - shap - INFO - weight_left = 0.5181019626448611 -2025-02-28 12:20:57,685 - shap - INFO - np.sum(w_aug) = 17.000000000000004 -2025-02-28 12:20:57,687 - shap - INFO - np.sum(self.kernelWeights) = 1.0000000000000002 -2025-02-28 12:20:57,731 - shap - INFO - phi = array([-1.74825582e-02, -1.27453727e-02, 2.71099426e-04, -5.03192628e-04, - 6.14453598e-04, -7.77677359e-05, 2.21968340e-05, -8.10889482e-04, - -7.61363376e-04, -3.65571534e-04, -2.36984952e-03, -8.16528928e-03, - 2.76638520e-04, -4.66492905e-03, -3.06599353e-04, 8.52268525e-04, - -3.45073031e-04]) -2025-02-28 12:20:57,747 - shap - INFO - num_full_subsets = 2 -2025-02-28 12:20:57,761 - shap - INFO - remaining_weight_vector = array([0.22727203, 0.18465852, 0.16115653, 0.14772682, 0.14069221, - 0.13849389]) -2025-02-28 12:20:57,762 - shap - INFO - num_paired_subset_sizes = 7 -2025-02-28 12:20:57,796 - shap - INFO - weight_left = 0.5063344810024111 -2025-02-28 12:20:57,829 - shap - INFO - np.sum(w_aug) = 15.999999999999996 -2025-02-28 12:20:57,830 - shap - INFO - np.sum(self.kernelWeights) = 1.0000000000000002 -2025-02-28 12:20:57,930 - shap - INFO - phi = array([-0.01821529, -0.0130146 , 0.00022738, -0.00050559, 0.00051753, - -0.00023178, -0.00010514, -0.00100915, -0.00078202, -0.00044573, - -0.00278685, -0.00925884, 0.00015105, -0.00466223, -0.0002263 , - -0.00069266]) -2025-02-28 12:20:57,953 - shap - INFO - num_full_subsets = 2 -2025-02-28 12:20:57,958 - shap - INFO - remaining_weight_vector = array([0.22727203, 0.18465852, 0.16115653, 0.14772682, 0.14069221, - 0.13849389]) -2025-02-28 12:20:57,959 - shap - INFO - num_paired_subset_sizes = 7 -2025-02-28 12:20:58,011 - shap - INFO - weight_left = 0.5063344810024111 -2025-02-28 12:20:58,040 - shap - INFO - np.sum(w_aug) = 15.999999999999996 -2025-02-28 12:20:58,041 - shap - INFO - np.sum(self.kernelWeights) = 1.0000000000000002 -2025-02-28 12:20:58,076 - shap - INFO - phi = array([-1.96253651e-02, -1.39657904e-02, -6.51680781e-05, -4.80932783e-04, - 0.00000000e+00, -2.83003112e-04, -3.39480117e-04, -1.20421516e-03, - -9.47237644e-04, -4.21915560e-04, -3.20497836e-03, -9.94263712e-03, - -1.98131879e-05, -4.71469473e-03, -2.74155541e-04, -8.29883198e-04]) -2025-02-28 12:20:58,095 - shap - INFO - num_full_subsets = 2 -2025-02-28 12:20:58,100 - shap - INFO - remaining_weight_vector = array([0.22727203, 0.18465852, 0.16115653, 0.14772682, 0.14069221, - 0.13849389]) -2025-02-28 12:20:58,102 - shap - INFO - num_paired_subset_sizes = 7 -2025-02-28 12:20:58,133 - shap - INFO - weight_left = 0.5063344810024111 -2025-02-28 12:20:58,170 - shap - INFO - np.sum(w_aug) = 15.999999999999996 -2025-02-28 12:20:58,171 - shap - INFO - np.sum(self.kernelWeights) = 1.0000000000000002 -2025-02-28 12:20:58,213 - shap - INFO - phi = array([-1.80974611e-02, -1.33876191e-02, 0.00000000e+00, 0.00000000e+00, - -1.78947332e-04, -2.79410456e-04, -1.55006965e-04, 1.68559334e-02, - -8.76923381e-04, -5.56393706e-04, -3.14028031e-03, -9.47646213e-03, - 0.00000000e+00, 3.57457310e-05, -2.60980264e-04, -5.54136155e-04]) -2025-02-28 12:20:58,232 - shap - INFO - num_full_subsets = 2 -2025-02-28 12:20:58,232 - shap - INFO - remaining_weight_vector = array([0.22727203, 0.18465852, 0.16115653, 0.14772682, 0.14069221, - 0.13849389]) -2025-02-28 12:20:58,233 - shap - INFO - num_paired_subset_sizes = 7 -2025-02-28 12:20:58,277 - shap - INFO - weight_left = 0.5063344810024111 -2025-02-28 12:20:58,306 - shap - INFO - np.sum(w_aug) = 15.999999999999996 -2025-02-28 12:20:58,308 - shap - INFO - np.sum(self.kernelWeights) = 1.0000000000000002 -2025-02-28 12:20:58,341 - shap - INFO - phi = array([ 0.00000000e+00, -8.88018310e-03, 0.00000000e+00, 0.00000000e+00, - 0.00000000e+00, -7.40321285e-05, 6.26351585e-05, -6.26276553e-04, - 0.00000000e+00, -7.41192462e-04, 0.00000000e+00, 0.00000000e+00, - 0.00000000e+00, 0.00000000e+00, 1.05602980e-04, 0.00000000e+00]) -2025-02-28 12:21:05,876 - tsfresh.feature_extraction.settings - WARNING - Dependency not available for matrix_profile, this feature will be disabled! -2025-02-28 12:32:51,033 - lightning_fabric.utilities.seed - INFO - Seed set to 42 -2025-02-28 12:32:51,200 - lightning.pytorch.utilities.rank_zero - INFO - GPU available: True (cuda), used: True -2025-02-28 12:32:51,202 - lightning.pytorch.utilities.rank_zero - INFO - TPU available: False, using: 0 TPU cores -2025-02-28 12:32:51,202 - lightning.pytorch.utilities.rank_zero - INFO - HPU available: False, using: 0 HPUs -2025-02-28 12:32:51,219 - lightning.pytorch.utilities.rank_zero - INFO - You are using a CUDA device ('NVIDIA GeForce RTX 4070 Laptop GPU') that has Tensor Cores. To properly utilize them, you should set `torch.set_float32_matmul_precision('medium' | 'high')` which will trade-off precision for performance. For more details, read https://pytorch.org/docs/stable/generated/torch.set_float32_matmul_precision.html#torch.set_float32_matmul_precision -2025-02-28 12:32:51,327 - pytorch_lightning.accelerators.cuda - INFO - LOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [0] -2025-02-28 12:32:51,354 - pytorch_lightning.callbacks.model_summary - INFO - - | Name | Type | Params | Mode ------------------------------------------------------------ -0 | loss_fn | MaskedMetric | 0 | train -1 | train_metrics | MetricCollection | 0 | train -2 | val_metrics | MetricCollection | 0 | train -3 | test_metrics | MetricCollection | 0 | train -4 | model | GRINet | 62.1 K | train ------------------------------------------------------------ -62.1 K Trainable params -0 Non-trainable params -62.1 K Total params -0.248 Total estimated model params size (MB) -63 Modules in train mode -0 Modules in eval mode -2025-02-28 12:33:04,170 - lightning.pytorch.utilities.rank_zero - INFO - `Trainer.fit` stopped: `max_epochs=20` reached. -2025-02-28 12:33:04,344 - lightning.pytorch.utilities.rank_zero - INFO - Restoring states from the checkpoint path at /mnt/c/Users/nquen/switchdrive/MST_MasterThesis/imputegap/imputegap/wrapper/AlgoPython/GRIN/logs/grin/2025-02-28_12-32-51_42/epoch=19-step=20.ckpt -2025-02-28 12:33:04,405 - pytorch_lightning.accelerators.cuda - INFO - LOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [0] -2025-02-28 12:33:04,441 - lightning.pytorch.utilities.rank_zero - INFO - Loaded model weights from the checkpoint at /mnt/c/Users/nquen/switchdrive/MST_MasterThesis/imputegap/imputegap/wrapper/AlgoPython/GRIN/logs/grin/2025-02-28_12-32-51_42/epoch=19-step=20.ckpt -2025-02-28 12:33:05,004 - lightning_fabric.utilities.seed - INFO - Seed set to 42 -2025-02-28 12:33:05,063 - lightning.pytorch.utilities.rank_zero - INFO - GPU available: True (cuda), used: True -2025-02-28 12:33:05,064 - lightning.pytorch.utilities.rank_zero - INFO - TPU available: False, using: 0 TPU cores -2025-02-28 12:33:05,064 - lightning.pytorch.utilities.rank_zero - INFO - HPU available: False, using: 0 HPUs -2025-02-28 12:33:05,153 - pytorch_lightning.accelerators.cuda - INFO - LOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [0] -2025-02-28 12:33:05,182 - pytorch_lightning.callbacks.model_summary - INFO - - | Name | Type | Params | Mode ------------------------------------------------------------ -0 | loss_fn | MaskedMetric | 0 | train -1 | train_metrics | MetricCollection | 0 | train -2 | val_metrics | MetricCollection | 0 | train -3 | test_metrics | MetricCollection | 0 | train -4 | model | GRINet | 62.1 K | train ------------------------------------------------------------ -62.1 K Trainable params -0 Non-trainable params -62.1 K Total params -0.248 Total estimated model params size (MB) -63 Modules in train mode -0 Modules in eval mode -2025-02-28 12:33:16,309 - lightning.pytorch.utilities.rank_zero - INFO - `Trainer.fit` stopped: `max_epochs=20` reached. -2025-02-28 12:33:16,404 - lightning.pytorch.utilities.rank_zero - INFO - Restoring states from the checkpoint path at /mnt/c/Users/nquen/switchdrive/MST_MasterThesis/imputegap/imputegap/wrapper/AlgoPython/GRIN/logs/grin/2025-02-28_12-33-05_42/epoch=19-step=20.ckpt -2025-02-28 12:33:16,428 - pytorch_lightning.accelerators.cuda - INFO - LOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [0] -2025-02-28 12:33:16,447 - lightning.pytorch.utilities.rank_zero - INFO - Loaded model weights from the checkpoint at /mnt/c/Users/nquen/switchdrive/MST_MasterThesis/imputegap/imputegap/wrapper/AlgoPython/GRIN/logs/grin/2025-02-28_12-33-05_42/epoch=19-step=20.ckpt -2025-03-13 19:53:52,910 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-03-13 19:53:52,929 - cmdstanpy - INFO - Chain [1] start processing -2025-03-13 19:53:52,961 - cmdstanpy - INFO - Chain [1] done processing -2025-03-13 19:53:53,008 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-03-13 19:53:53,023 - cmdstanpy - INFO - Chain [1] start processing -2025-03-13 19:53:53,055 - cmdstanpy - INFO - Chain [1] done processing -2025-03-13 19:53:53,096 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-03-13 19:53:53,111 - cmdstanpy - INFO - Chain [1] start processing -2025-03-13 19:53:53,167 - cmdstanpy - INFO - Chain [1] done processing -2025-03-13 19:53:53,212 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-03-13 19:53:53,230 - cmdstanpy - INFO - Chain [1] start processing -2025-03-13 19:53:53,294 - cmdstanpy - INFO - Chain [1] done processing -2025-03-13 19:53:53,338 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-03-13 19:53:53,353 - cmdstanpy - INFO - Chain [1] start processing -2025-03-13 19:53:53,418 - cmdstanpy - INFO - Chain [1] done processing -2025-03-13 19:53:53,459 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-03-13 19:53:53,478 - cmdstanpy - INFO - Chain [1] start processing -2025-03-13 19:53:53,531 - cmdstanpy - INFO - Chain [1] done processing -2025-03-13 19:53:53,573 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-03-13 19:53:53,588 - cmdstanpy - INFO - Chain [1] start processing -2025-03-13 19:53:53,629 - cmdstanpy - INFO - Chain [1] done processing -2025-03-13 19:53:53,674 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-03-13 19:53:53,688 - cmdstanpy - INFO - Chain [1] start processing -2025-03-13 19:53:53,739 - cmdstanpy - INFO - Chain [1] done processing -2025-03-13 19:53:53,785 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-03-13 19:53:53,803 - cmdstanpy - INFO - Chain [1] start processing -2025-03-13 19:53:53,837 - cmdstanpy - INFO - Chain [1] done processing -2025-03-13 19:53:53,889 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-03-13 19:53:53,908 - cmdstanpy - INFO - Chain [1] start processing -2025-03-13 19:53:53,933 - cmdstanpy - INFO - Chain [1] done processing -2025-03-13 19:53:53,977 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-03-13 19:53:53,993 - cmdstanpy - INFO - Chain [1] start processing -2025-03-13 19:53:54,016 - cmdstanpy - INFO - Chain [1] done processing -2025-03-13 19:53:54,061 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-03-13 19:53:54,077 - cmdstanpy - INFO - Chain [1] start processing -2025-03-13 19:53:54,099 - cmdstanpy - INFO - Chain [1] done processing -2025-03-13 19:53:54,150 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-03-13 19:53:54,172 - cmdstanpy - INFO - Chain [1] start processing -2025-03-13 19:53:54,211 - cmdstanpy - INFO - Chain [1] done processing -2025-03-13 19:53:54,283 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-03-13 19:53:54,304 - cmdstanpy - INFO - Chain [1] start processing -2025-03-13 19:53:54,368 - cmdstanpy - INFO - Chain [1] done processing -2025-03-13 19:53:54,433 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-03-13 19:53:54,453 - cmdstanpy - INFO - Chain [1] start processing -2025-03-13 19:53:54,503 - cmdstanpy - INFO - Chain [1] done processing -2025-03-13 19:53:54,570 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-03-13 19:53:54,595 - cmdstanpy - INFO - Chain [1] start processing -2025-03-13 19:53:54,647 - cmdstanpy - INFO - Chain [1] done processing -2025-03-13 19:53:54,702 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-03-13 19:53:54,719 - cmdstanpy - INFO - Chain [1] start processing -2025-03-13 19:53:54,754 - cmdstanpy - INFO - Chain [1] done processing -2025-03-13 19:53:54,814 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-03-13 19:53:54,834 - cmdstanpy - INFO - Chain [1] start processing -2025-03-13 19:53:54,863 - cmdstanpy - INFO - Chain [1] done processing -2025-03-13 19:53:54,910 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-03-13 19:53:54,926 - cmdstanpy - INFO - Chain [1] start processing -2025-03-13 19:53:54,975 - cmdstanpy - INFO - Chain [1] done processing -2025-03-13 19:53:55,026 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-03-13 19:53:55,044 - cmdstanpy - INFO - Chain [1] start processing -2025-03-13 19:53:55,084 - cmdstanpy - INFO - Chain [1] done processing -2025-03-13 19:53:55,148 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-03-13 19:53:55,170 - cmdstanpy - INFO - Chain [1] start processing -2025-03-13 19:53:55,229 - cmdstanpy - INFO - Chain [1] done processing -2025-03-13 19:53:55,305 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-03-13 19:53:55,330 - cmdstanpy - INFO - Chain [1] start processing -2025-03-13 19:53:55,386 - cmdstanpy - INFO - Chain [1] done processing -2025-03-13 19:53:55,453 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-03-13 19:53:55,478 - cmdstanpy - INFO - Chain [1] start processing -2025-03-13 19:53:55,537 - cmdstanpy - INFO - Chain [1] done processing -2025-03-13 19:53:55,604 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-03-13 19:53:55,626 - cmdstanpy - INFO - Chain [1] start processing -2025-03-13 19:53:55,659 - cmdstanpy - INFO - Chain [1] done processing -2025-03-13 19:53:55,729 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-03-13 19:53:55,757 - cmdstanpy - INFO - Chain [1] start processing -2025-03-13 19:53:55,854 - cmdstanpy - INFO - Chain [1] done processing -2025-03-13 19:53:55,922 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-03-13 19:53:55,944 - cmdstanpy - INFO - Chain [1] start processing -2025-03-13 19:53:55,996 - cmdstanpy - INFO - Chain [1] done processing -2025-03-13 19:53:56,058 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-03-13 19:53:56,076 - cmdstanpy - INFO - Chain [1] start processing -2025-03-13 19:53:56,117 - cmdstanpy - INFO - Chain [1] done processing -2025-03-13 19:53:56,169 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-03-13 19:53:56,187 - cmdstanpy - INFO - Chain [1] start processing -2025-03-13 19:53:56,239 - cmdstanpy - INFO - Chain [1] done processing -2025-03-13 19:53:56,291 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-03-13 19:53:56,307 - cmdstanpy - INFO - Chain [1] start processing -2025-03-13 19:53:56,387 - cmdstanpy - INFO - Chain [1] done processing -2025-03-13 19:53:56,440 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-03-13 19:53:56,462 - cmdstanpy - INFO - Chain [1] start processing -2025-03-13 19:53:56,504 - cmdstanpy - INFO - Chain [1] done processing -2025-03-13 19:53:56,564 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-03-13 19:53:56,582 - cmdstanpy - INFO - Chain [1] start processing -2025-03-13 19:53:56,680 - cmdstanpy - INFO - Chain [1] done processing -2025-03-13 19:53:56,737 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-03-13 19:53:56,756 - cmdstanpy - INFO - Chain [1] start processing -2025-03-13 19:53:56,826 - cmdstanpy - INFO - Chain [1] done processing -2025-03-13 19:53:56,883 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-03-13 19:53:56,908 - cmdstanpy - INFO - Chain [1] start processing -2025-03-13 19:53:56,999 - cmdstanpy - INFO - Chain [1] done processing -2025-03-13 19:53:57,052 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-03-13 19:53:57,071 - cmdstanpy - INFO - Chain [1] start processing -2025-03-13 19:53:57,140 - cmdstanpy - INFO - Chain [1] done processing -2025-03-13 19:53:57,185 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-03-13 19:53:57,202 - cmdstanpy - INFO - Chain [1] start processing -2025-03-13 19:53:57,234 - cmdstanpy - INFO - Chain [1] done processing -2025-03-13 19:53:57,283 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-03-13 19:53:57,299 - cmdstanpy - INFO - Chain [1] start processing -2025-03-13 19:53:57,355 - cmdstanpy - INFO - Chain [1] done processing -2025-03-13 19:53:57,401 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-03-13 19:53:57,416 - cmdstanpy - INFO - Chain [1] start processing -2025-03-13 19:53:57,492 - cmdstanpy - INFO - Chain [1] done processing -2025-03-13 19:53:57,540 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-03-13 19:53:57,556 - cmdstanpy - INFO - Chain [1] start processing -2025-03-13 19:53:57,659 - cmdstanpy - INFO - Chain [1] done processing -2025-03-13 19:53:57,707 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-03-13 19:53:57,727 - cmdstanpy - INFO - Chain [1] start processing -2025-03-13 19:53:57,755 - cmdstanpy - INFO - Chain [1] done processing -2025-03-13 19:53:57,807 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-03-13 19:53:57,823 - cmdstanpy - INFO - Chain [1] start processing -2025-03-13 19:53:57,868 - cmdstanpy - INFO - Chain [1] done processing -2025-03-13 19:53:57,917 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-03-13 19:53:57,936 - cmdstanpy - INFO - Chain [1] start processing -2025-03-13 19:53:57,974 - cmdstanpy - INFO - Chain [1] done processing -2025-03-13 19:53:58,027 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-03-13 19:53:58,044 - cmdstanpy - INFO - Chain [1] start processing -2025-03-13 19:53:58,067 - cmdstanpy - INFO - Chain [1] done processing -2025-03-13 19:53:58,118 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-03-13 19:53:58,136 - cmdstanpy - INFO - Chain [1] start processing -2025-03-13 19:53:58,176 - cmdstanpy - INFO - Chain [1] done processing -2025-03-13 19:53:58,229 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-03-13 19:53:58,246 - cmdstanpy - INFO - Chain [1] start processing -2025-03-13 19:53:58,295 - cmdstanpy - INFO - Chain [1] done processing -2025-03-13 19:53:58,346 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-03-13 19:53:58,362 - cmdstanpy - INFO - Chain [1] start processing -2025-03-13 19:53:58,390 - cmdstanpy - INFO - Chain [1] done processing -2025-03-13 19:53:58,438 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-03-13 19:53:58,454 - cmdstanpy - INFO - Chain [1] start processing -2025-03-13 19:53:58,500 - cmdstanpy - INFO - Chain [1] done processing -2025-03-13 19:53:58,547 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-03-13 19:53:58,563 - cmdstanpy - INFO - Chain [1] start processing -2025-03-13 19:53:58,619 - cmdstanpy - INFO - Chain [1] done processing -2025-03-13 19:53:58,667 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-03-13 19:53:58,684 - cmdstanpy - INFO - Chain [1] start processing -2025-03-13 19:53:58,746 - cmdstanpy - INFO - Chain [1] done processing -2025-03-13 19:53:58,801 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-03-13 19:53:58,819 - cmdstanpy - INFO - Chain [1] start processing -2025-03-13 19:53:58,874 - cmdstanpy - INFO - Chain [1] done processing -2025-03-13 19:53:58,921 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-03-13 19:53:58,938 - cmdstanpy - INFO - Chain [1] start processing -2025-03-13 19:53:59,019 - cmdstanpy - INFO - Chain [1] done processing -2025-03-13 19:53:59,067 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-03-13 19:53:59,083 - cmdstanpy - INFO - Chain [1] start processing -2025-03-13 19:53:59,114 - cmdstanpy - INFO - Chain [1] done processing -2025-03-13 19:53:59,160 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-03-13 19:53:59,177 - cmdstanpy - INFO - Chain [1] start processing -2025-03-13 19:53:59,211 - cmdstanpy - INFO - Chain [1] done processing -2025-03-13 19:53:59,261 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-03-13 19:53:59,277 - cmdstanpy - INFO - Chain [1] start processing -2025-03-13 19:53:59,334 - cmdstanpy - INFO - Chain [1] done processing -2025-03-13 19:53:59,381 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-03-13 19:53:59,398 - cmdstanpy - INFO - Chain [1] start processing -2025-03-13 19:53:59,471 - cmdstanpy - INFO - Chain [1] done processing -2025-03-13 19:53:59,518 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-03-13 19:53:59,538 - cmdstanpy - INFO - Chain [1] start processing -2025-03-13 19:53:59,610 - cmdstanpy - INFO - Chain [1] done processing -2025-03-13 19:53:59,656 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-03-13 19:53:59,672 - cmdstanpy - INFO - Chain [1] start processing -2025-03-13 19:53:59,727 - cmdstanpy - INFO - Chain [1] done processing -2025-03-13 19:53:59,772 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-03-13 19:53:59,788 - cmdstanpy - INFO - Chain [1] start processing -2025-03-13 19:53:59,836 - cmdstanpy - INFO - Chain [1] done processing -2025-03-13 19:53:59,890 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-03-13 19:53:59,906 - cmdstanpy - INFO - Chain [1] start processing -2025-03-13 19:53:59,960 - cmdstanpy - INFO - Chain [1] done processing -2025-03-13 19:54:00,008 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-03-13 19:54:00,025 - cmdstanpy - INFO - Chain [1] start processing -2025-03-13 19:54:00,056 - cmdstanpy - INFO - Chain [1] done processing -2025-03-13 19:54:00,105 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-03-13 19:54:00,125 - cmdstanpy - INFO - Chain [1] start processing -2025-03-13 19:54:00,150 - cmdstanpy - INFO - Chain [1] done processing -2025-03-13 19:54:00,201 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-03-13 19:54:00,217 - cmdstanpy - INFO - Chain [1] start processing -2025-03-13 19:54:00,241 - cmdstanpy - INFO - Chain [1] done processing -2025-03-13 19:54:00,292 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-03-13 19:54:00,313 - cmdstanpy - INFO - Chain [1] start processing -2025-03-13 19:54:00,334 - cmdstanpy - INFO - Chain [1] done processing -2025-03-13 19:54:00,380 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-03-13 19:54:00,396 - cmdstanpy - INFO - Chain [1] start processing -2025-03-13 19:54:00,420 - cmdstanpy - INFO - Chain [1] done processing -2025-03-13 19:54:00,470 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-03-13 19:54:00,486 - cmdstanpy - INFO - Chain [1] start processing -2025-03-13 19:54:00,509 - cmdstanpy - INFO - Chain [1] done processing -2025-03-13 19:54:00,555 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-03-13 19:54:00,572 - cmdstanpy - INFO - Chain [1] start processing -2025-03-13 19:54:00,607 - cmdstanpy - INFO - Chain [1] done processing -2025-03-13 19:54:00,649 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-03-13 19:54:00,666 - cmdstanpy - INFO - Chain [1] start processing -2025-03-13 19:54:00,704 - cmdstanpy - INFO - Chain [1] done processing -2025-03-13 19:54:00,750 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-03-13 19:54:00,765 - cmdstanpy - INFO - Chain [1] start processing -2025-03-13 19:54:00,789 - cmdstanpy - INFO - Chain [1] done processing -2025-03-13 19:54:00,830 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-03-13 19:54:00,845 - cmdstanpy - INFO - Chain [1] start processing -2025-03-13 19:54:00,874 - cmdstanpy - INFO - Chain [1] done processing -2025-03-13 19:54:00,923 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-03-13 19:54:00,939 - cmdstanpy - INFO - Chain [1] start processing -2025-03-13 19:54:00,982 - cmdstanpy - INFO - Chain [1] done processing -2025-03-13 19:54:01,026 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-03-13 19:54:01,042 - cmdstanpy - INFO - Chain [1] start processing -2025-03-13 19:54:01,059 - cmdstanpy - INFO - Chain [1] done processing -2025-03-13 19:54:01,105 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-03-13 19:54:01,124 - cmdstanpy - INFO - Chain [1] start processing -2025-03-13 19:54:01,162 - cmdstanpy - INFO - Chain [1] done processing -2025-03-13 19:54:01,207 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-03-13 19:54:01,223 - cmdstanpy - INFO - Chain [1] start processing -2025-03-13 19:54:01,259 - cmdstanpy - INFO - Chain [1] done processing -2025-03-13 19:54:01,305 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-03-13 19:54:01,324 - cmdstanpy - INFO - Chain [1] start processing -2025-03-13 19:54:01,358 - cmdstanpy - INFO - Chain [1] done processing -2025-03-13 19:54:01,401 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-03-13 19:54:01,422 - cmdstanpy - INFO - Chain [1] start processing -2025-03-13 19:54:01,440 - cmdstanpy - INFO - Chain [1] done processing -2025-03-13 19:54:01,484 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-03-13 19:54:01,501 - cmdstanpy - INFO - Chain [1] start processing -2025-03-13 19:54:01,572 - cmdstanpy - INFO - Chain [1] done processing -2025-03-13 19:54:01,620 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-03-13 19:54:01,637 - cmdstanpy - INFO - Chain [1] start processing -2025-03-13 19:54:01,670 - cmdstanpy - INFO - Chain [1] done processing -2025-03-13 19:54:01,719 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-03-13 19:54:01,736 - cmdstanpy - INFO - Chain [1] start processing -2025-03-13 19:54:01,802 - cmdstanpy - INFO - Chain [1] done processing -2025-03-13 19:54:01,853 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-03-13 19:54:01,873 - cmdstanpy - INFO - Chain [1] start processing -2025-03-13 19:54:01,928 - cmdstanpy - INFO - Chain [1] done processing -2025-03-13 19:54:01,977 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-03-13 19:54:01,990 - cmdstanpy - INFO - Chain [1] start processing -2025-03-13 19:54:02,062 - cmdstanpy - INFO - Chain [1] done processing -2025-03-13 19:54:02,106 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-03-13 19:54:02,122 - cmdstanpy - INFO - Chain [1] start processing -2025-03-13 19:54:02,151 - cmdstanpy - INFO - Chain [1] done processing -2025-03-13 19:54:02,196 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-03-13 19:54:02,213 - cmdstanpy - INFO - Chain [1] start processing -2025-03-13 19:54:02,247 - cmdstanpy - INFO - Chain [1] done processing -2025-03-13 19:54:02,292 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-03-13 19:54:02,308 - cmdstanpy - INFO - Chain [1] start processing -2025-03-13 19:54:02,361 - cmdstanpy - INFO - Chain [1] done processing -2025-03-13 19:54:02,409 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-03-13 19:54:02,426 - cmdstanpy - INFO - Chain [1] start processing -2025-03-13 19:54:02,471 - cmdstanpy - INFO - Chain [1] done processing -2025-03-13 19:54:02,516 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-03-13 19:54:02,533 - cmdstanpy - INFO - Chain [1] start processing -2025-03-13 19:54:02,602 - cmdstanpy - INFO - Chain [1] done processing -2025-03-13 19:54:02,649 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-03-13 19:54:02,669 - cmdstanpy - INFO - Chain [1] start processing -2025-03-13 19:54:02,699 - cmdstanpy - INFO - Chain [1] done processing -2025-03-13 19:54:02,743 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-03-13 19:54:02,757 - cmdstanpy - INFO - Chain [1] start processing -2025-03-13 19:54:02,813 - cmdstanpy - INFO - Chain [1] done processing -2025-03-13 19:54:02,856 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-03-13 19:54:02,872 - cmdstanpy - INFO - Chain [1] start processing -2025-03-13 19:54:02,945 - cmdstanpy - INFO - Chain [1] done processing -2025-03-13 19:54:02,989 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-03-13 19:54:03,007 - cmdstanpy - INFO - Chain [1] start processing -2025-03-13 19:54:03,139 - cmdstanpy - INFO - Chain [1] done processing -2025-03-13 19:54:03,189 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-03-13 19:54:03,204 - cmdstanpy - INFO - Chain [1] start processing -2025-03-13 19:54:03,227 - cmdstanpy - INFO - Chain [1] done processing -2025-03-13 19:54:03,272 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-03-13 19:54:03,289 - cmdstanpy - INFO - Chain [1] start processing -2025-03-13 19:54:03,333 - cmdstanpy - INFO - Chain [1] done processing -2025-03-13 19:54:03,376 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-03-13 19:54:03,396 - cmdstanpy - INFO - Chain [1] start processing -2025-03-13 19:54:03,431 - cmdstanpy - INFO - Chain [1] done processing -2025-03-13 19:54:03,475 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-03-13 19:54:03,491 - cmdstanpy - INFO - Chain [1] start processing -2025-03-13 19:54:03,513 - cmdstanpy - INFO - Chain [1] done processing -2025-03-13 19:54:03,557 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-03-13 19:54:03,574 - cmdstanpy - INFO - Chain [1] start processing -2025-03-13 19:54:03,613 - cmdstanpy - INFO - Chain [1] done processing -2025-03-13 19:54:03,664 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-03-13 19:54:03,684 - cmdstanpy - INFO - Chain [1] start processing -2025-03-13 19:54:03,732 - cmdstanpy - INFO - Chain [1] done processing -2025-03-13 19:54:03,782 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-03-13 19:54:03,797 - cmdstanpy - INFO - Chain [1] start processing -2025-03-13 19:54:03,832 - cmdstanpy - INFO - Chain [1] done processing -2025-03-13 19:54:03,885 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-03-13 19:54:03,902 - cmdstanpy - INFO - Chain [1] start processing -2025-03-13 19:54:04,025 - cmdstanpy - INFO - Chain [1] done processing -2025-03-13 19:54:04,076 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-03-13 19:54:04,094 - cmdstanpy - INFO - Chain [1] start processing -2025-03-13 19:54:04,148 - cmdstanpy - INFO - Chain [1] done processing -2025-03-13 19:54:04,199 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-03-13 19:54:04,215 - cmdstanpy - INFO - Chain [1] start processing -2025-03-13 19:54:04,271 - cmdstanpy - INFO - Chain [1] done processing -2025-03-13 19:54:04,322 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-03-13 19:54:04,339 - cmdstanpy - INFO - Chain [1] start processing -2025-03-13 19:54:04,406 - cmdstanpy - INFO - Chain [1] done processing -2025-03-13 19:54:04,456 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-03-13 19:54:04,473 - cmdstanpy - INFO - Chain [1] start processing -2025-03-13 19:54:04,567 - cmdstanpy - INFO - Chain [1] done processing -2025-03-13 19:54:04,619 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-03-13 19:54:04,636 - cmdstanpy - INFO - Chain [1] start processing -2025-03-13 19:54:04,667 - cmdstanpy - INFO - Chain [1] done processing -2025-03-13 19:54:04,712 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-03-13 19:54:04,728 - cmdstanpy - INFO - Chain [1] start processing -2025-03-13 19:54:04,763 - cmdstanpy - INFO - Chain [1] done processing -2025-03-13 19:54:04,811 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-03-13 19:54:04,829 - cmdstanpy - INFO - Chain [1] start processing -2025-03-13 19:54:04,880 - cmdstanpy - INFO - Chain [1] done processing -2025-03-13 19:54:04,923 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-03-13 19:54:04,942 - cmdstanpy - INFO - Chain [1] start processing -2025-03-13 19:54:05,004 - cmdstanpy - INFO - Chain [1] done processing -2025-03-13 19:54:05,048 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-03-13 19:54:05,063 - cmdstanpy - INFO - Chain [1] start processing -2025-03-13 19:54:05,130 - cmdstanpy - INFO - Chain [1] done processing -2025-03-13 19:54:05,176 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-03-13 19:54:05,191 - cmdstanpy - INFO - Chain [1] start processing -2025-03-13 19:54:05,242 - cmdstanpy - INFO - Chain [1] done processing -2025-03-13 19:54:05,287 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-03-13 19:54:05,304 - cmdstanpy - INFO - Chain [1] start processing -2025-03-13 19:54:05,343 - cmdstanpy - INFO - Chain [1] done processing -2025-03-13 19:54:05,389 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-03-13 19:54:05,407 - cmdstanpy - INFO - Chain [1] start processing -2025-03-13 19:54:05,454 - cmdstanpy - INFO - Chain [1] done processing -2025-03-13 19:54:05,499 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-03-13 19:54:05,514 - cmdstanpy - INFO - Chain [1] start processing -2025-03-13 19:54:05,543 - cmdstanpy - INFO - Chain [1] done processing -2025-03-13 19:54:05,590 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-03-13 19:54:05,608 - cmdstanpy - INFO - Chain [1] start processing -2025-03-13 19:54:05,629 - cmdstanpy - INFO - Chain [1] done processing -2025-03-13 19:54:05,680 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-03-13 19:54:05,696 - cmdstanpy - INFO - Chain [1] start processing -2025-03-13 19:54:05,721 - cmdstanpy - INFO - Chain [1] done processing -2025-03-13 19:54:05,772 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-03-13 19:54:05,789 - cmdstanpy - INFO - Chain [1] start processing -2025-03-13 19:54:05,810 - cmdstanpy - INFO - Chain [1] done processing -2025-03-13 19:54:05,857 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-03-13 19:54:05,873 - cmdstanpy - INFO - Chain [1] start processing -2025-03-13 19:54:05,895 - cmdstanpy - INFO - Chain [1] done processing -2025-03-13 19:54:05,941 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-03-13 19:54:05,956 - cmdstanpy - INFO - Chain [1] start processing -2025-03-13 19:54:05,979 - cmdstanpy - INFO - Chain [1] done processing -2025-03-13 19:54:06,025 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-03-13 19:54:06,040 - cmdstanpy - INFO - Chain [1] start processing -2025-03-13 19:54:06,074 - cmdstanpy - INFO - Chain [1] done processing -2025-03-13 19:54:06,117 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-03-13 19:54:06,132 - cmdstanpy - INFO - Chain [1] start processing -2025-03-13 19:54:06,171 - cmdstanpy - INFO - Chain [1] done processing -2025-03-13 19:54:06,217 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-03-13 19:54:06,235 - cmdstanpy - INFO - Chain [1] start processing -2025-03-13 19:54:06,259 - cmdstanpy - INFO - Chain [1] done processing -2025-03-13 19:54:06,301 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-03-13 19:54:06,316 - cmdstanpy - INFO - Chain [1] start processing -2025-03-13 19:54:06,342 - cmdstanpy - INFO - Chain [1] done processing -2025-03-13 19:54:06,384 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-03-13 19:54:06,402 - cmdstanpy - INFO - Chain [1] start processing -2025-03-13 19:54:06,447 - cmdstanpy - INFO - Chain [1] done processing -2025-03-13 19:54:06,490 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-03-13 19:54:06,505 - cmdstanpy - INFO - Chain [1] start processing -2025-03-13 19:54:06,522 - cmdstanpy - INFO - Chain [1] done processing -2025-03-13 19:54:06,564 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-03-13 19:54:06,581 - cmdstanpy - INFO - Chain [1] start processing -2025-03-13 19:54:06,620 - cmdstanpy - INFO - Chain [1] done processing -2025-03-13 19:54:06,665 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-03-13 19:54:06,683 - cmdstanpy - INFO - Chain [1] start processing -2025-03-13 19:54:06,718 - cmdstanpy - INFO - Chain [1] done processing -2025-03-13 19:54:06,766 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-03-13 19:54:06,781 - cmdstanpy - INFO - Chain [1] start processing -2025-03-13 19:54:06,827 - cmdstanpy - INFO - Chain [1] done processing -2025-03-13 19:54:06,876 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-03-13 19:54:06,892 - cmdstanpy - INFO - Chain [1] start processing -2025-03-13 19:54:06,912 - cmdstanpy - INFO - Chain [1] done processing -2025-03-13 19:54:06,961 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-03-13 19:54:06,977 - cmdstanpy - INFO - Chain [1] start processing -2025-03-13 19:54:07,050 - cmdstanpy - INFO - Chain [1] done processing -2025-03-13 19:54:07,115 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-03-13 19:54:07,130 - cmdstanpy - INFO - Chain [1] start processing -2025-03-13 19:54:07,162 - cmdstanpy - INFO - Chain [1] done processing -2025-03-13 19:54:07,219 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-03-13 19:54:07,236 - cmdstanpy - INFO - Chain [1] start processing -2025-03-13 19:54:07,295 - cmdstanpy - INFO - Chain [1] done processing -2025-03-13 19:54:07,349 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-03-13 19:54:07,365 - cmdstanpy - INFO - Chain [1] start processing -2025-03-13 19:54:07,428 - cmdstanpy - INFO - Chain [1] done processing -2025-03-13 19:54:07,482 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-03-13 19:54:07,498 - cmdstanpy - INFO - Chain [1] start processing -2025-03-13 19:54:07,583 - cmdstanpy - INFO - Chain [1] done processing -2025-03-13 19:54:07,636 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-03-13 19:54:07,656 - cmdstanpy - INFO - Chain [1] start processing -2025-03-13 19:54:07,692 - cmdstanpy - INFO - Chain [1] done processing -2025-03-13 19:54:07,748 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-03-13 19:54:07,766 - cmdstanpy - INFO - Chain [1] start processing -2025-03-13 19:54:07,808 - cmdstanpy - INFO - Chain [1] done processing -2025-03-13 19:54:07,864 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-03-13 19:54:07,882 - cmdstanpy - INFO - Chain [1] start processing -2025-03-13 19:54:07,954 - cmdstanpy - INFO - Chain [1] done processing -2025-03-13 19:54:08,008 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-03-13 19:54:08,026 - cmdstanpy - INFO - Chain [1] start processing -2025-03-13 19:54:08,044 - cmdstanpy - INFO - Chain [1] done processing -2025-03-13 19:54:08,096 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-03-13 19:54:08,116 - cmdstanpy - INFO - Chain [1] start processing -2025-03-13 19:54:08,198 - cmdstanpy - INFO - Chain [1] done processing -2025-03-13 19:54:08,254 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-03-13 19:54:08,274 - cmdstanpy - INFO - Chain [1] start processing -2025-03-13 19:54:08,312 - cmdstanpy - INFO - Chain [1] done processing -2025-03-13 19:54:08,365 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-03-13 19:54:08,386 - cmdstanpy - INFO - Chain [1] start processing -2025-03-13 19:54:08,450 - cmdstanpy - INFO - Chain [1] done processing -2025-03-13 19:54:08,506 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-03-13 19:54:08,527 - cmdstanpy - INFO - Chain [1] start processing -2025-03-13 19:54:08,624 - cmdstanpy - INFO - Chain [1] done processing -2025-03-13 19:54:08,679 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-03-13 19:54:08,699 - cmdstanpy - INFO - Chain [1] start processing -2025-03-13 19:54:08,833 - cmdstanpy - INFO - Chain [1] done processing -2025-03-13 19:54:08,888 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-03-13 19:54:08,908 - cmdstanpy - INFO - Chain [1] start processing -2025-03-13 19:54:08,935 - cmdstanpy - INFO - Chain [1] done processing -2025-03-13 19:54:08,988 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-03-13 19:54:09,008 - cmdstanpy - INFO - Chain [1] start processing -2025-03-13 19:54:09,038 - cmdstanpy - INFO - Chain [1] done processing -2025-03-13 19:54:09,095 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-03-13 19:54:09,112 - cmdstanpy - INFO - Chain [1] start processing -2025-03-13 19:54:09,153 - cmdstanpy - INFO - Chain [1] done processing -2025-03-13 19:54:09,207 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-03-13 19:54:09,226 - cmdstanpy - INFO - Chain [1] start processing -2025-03-13 19:54:09,252 - cmdstanpy - INFO - Chain [1] done processing -2025-03-13 19:54:09,306 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-03-13 19:54:09,327 - cmdstanpy - INFO - Chain [1] start processing -2025-03-13 19:54:09,372 - cmdstanpy - INFO - Chain [1] done processing -2025-03-13 19:54:09,432 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-03-13 19:54:09,454 - cmdstanpy - INFO - Chain [1] start processing -2025-03-13 19:54:09,505 - cmdstanpy - INFO - Chain [1] done processing -2025-03-13 19:54:09,560 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-03-13 19:54:09,580 - cmdstanpy - INFO - Chain [1] start processing -2025-03-13 19:54:09,611 - cmdstanpy - INFO - Chain [1] done processing -2025-03-13 19:54:09,664 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-03-13 19:54:09,684 - cmdstanpy - INFO - Chain [1] start processing -2025-03-13 19:54:09,704 - cmdstanpy - INFO - Chain [1] done processing -2025-03-13 19:54:09,763 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-03-13 19:54:09,783 - cmdstanpy - INFO - Chain [1] start processing -2025-03-13 19:54:09,843 - cmdstanpy - INFO - Chain [1] done processing -2025-03-13 19:54:09,893 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-03-13 19:54:09,911 - cmdstanpy - INFO - Chain [1] start processing -2025-03-13 19:54:09,962 - cmdstanpy - INFO - Chain [1] done processing -2025-03-13 19:54:10,007 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-03-13 19:54:10,026 - cmdstanpy - INFO - Chain [1] start processing -2025-03-13 19:54:10,047 - cmdstanpy - INFO - Chain [1] done processing -2025-03-13 19:54:10,101 - prophet - INFO - Disabling daily seasonality. Run prophet with daily_seasonality=True to override this. -2025-03-13 19:54:10,118 - cmdstanpy - INFO - Chain [1] start processing -2025-03-13 19:54:10,217 - cmdstanpy - INFO - Chain [1] done processing -2025-03-13 19:54:46,528 - shap - INFO - num_full_subsets = 2 -2025-03-13 19:54:46,530 - shap - INFO - remaining_weight_vector = array([0.22727203, 0.18465852, 0.16115653, 0.14772682, 0.14069221, - 0.13849389]) -2025-03-13 19:54:46,532 - shap - INFO - num_paired_subset_sizes = 7 -2025-03-13 19:54:46,549 - shap - INFO - weight_left = 0.5063344810024111 -2025-03-13 19:54:46,577 - shap - INFO - np.sum(w_aug) = 15.999999999999998 -2025-03-13 19:54:46,580 - shap - INFO - np.sum(self.kernelWeights) = 1.0000000000000004 -2025-03-13 19:54:46,643 - shap - INFO - phi = array([ 0.00000000e+00, -8.88019875e-03, 0.00000000e+00, 0.00000000e+00, - 0.00000000e+00, -6.86607862e-05, 6.25857095e-05, 0.00000000e+00, - 0.00000000e+00, 1.45046191e-04, 0.00000000e+00, 0.00000000e+00, - 0.00000000e+00, 0.00000000e+00, -2.11160641e-04, 0.00000000e+00]) -2025-03-13 19:54:46,653 - shap - INFO - num_full_subsets = 2 -2025-03-13 19:54:46,672 - shap - INFO - remaining_weight_vector = array([0.22727203, 0.18465852, 0.16115653, 0.14772682, 0.14069221, - 0.13849389]) -2025-03-13 19:54:46,673 - shap - INFO - num_paired_subset_sizes = 7 -2025-03-13 19:54:46,697 - shap - INFO - weight_left = 0.5063344810024111 -2025-03-13 19:54:46,729 - shap - INFO - np.sum(w_aug) = 16.0 -2025-03-13 19:54:46,731 - shap - INFO - np.sum(self.kernelWeights) = 1.0000000000000002 -2025-03-13 19:54:46,792 - shap - INFO - phi = array([ 0.00000000e+00, 3.55240624e-03, 0.00000000e+00, 0.00000000e+00, - 0.00000000e+00, -6.86607862e-05, 6.25857095e-05, 0.00000000e+00, - 0.00000000e+00, 1.45046191e-04, 0.00000000e+00, 0.00000000e+00, - 0.00000000e+00, 0.00000000e+00, 1.05580321e-04, 0.00000000e+00]) -2025-03-13 19:54:46,826 - shap - INFO - num_full_subsets = 2 -2025-03-13 19:54:46,828 - shap - INFO - remaining_weight_vector = array([0.22727203, 0.18465852, 0.16115653, 0.14772682, 0.14069221, - 0.13849389]) -2025-03-13 19:54:46,828 - shap - INFO - num_paired_subset_sizes = 7 -2025-03-13 19:54:46,871 - shap - INFO - weight_left = 0.5063344810024111 -2025-03-13 19:54:46,905 - shap - INFO - np.sum(w_aug) = 15.999999999999998 -2025-03-13 19:54:46,906 - shap - INFO - np.sum(self.kernelWeights) = 1.0 -2025-03-13 19:54:47,010 - shap - INFO - phi = array([ 0.00000000e+00, 4.73599708e-03, 0.00000000e+00, 0.00000000e+00, - 0.00000000e+00, -6.86607862e-05, 6.25857095e-05, 0.00000000e+00, - 0.00000000e+00, 1.45046191e-04, 0.00000000e+00, 0.00000000e+00, - 0.00000000e+00, 0.00000000e+00, 1.05580321e-04, 0.00000000e+00]) -2025-03-13 19:54:47,023 - shap - INFO - num_full_subsets = 2 -2025-03-13 19:54:47,026 - shap - INFO - remaining_weight_vector = array([0.22727203, 0.18465852, 0.16115653, 0.14772682, 0.14069221, - 0.13849389]) -2025-03-13 19:54:47,030 - shap - INFO - num_paired_subset_sizes = 7 -2025-03-13 19:54:47,056 - shap - INFO - weight_left = 0.5063344810024111 -2025-03-13 19:54:47,102 - shap - INFO - np.sum(w_aug) = 16.0 -2025-03-13 19:54:47,103 - shap - INFO - np.sum(self.kernelWeights) = 1.0000000000000002 -2025-03-13 19:54:47,135 - shap - INFO - phi = array([0.00000000e+00, 4.73599708e-03, 0.00000000e+00, 0.00000000e+00, - 0.00000000e+00, 1.37321572e-04, 6.25857095e-05, 0.00000000e+00, - 0.00000000e+00, 1.45046191e-04, 0.00000000e+00, 0.00000000e+00, - 0.00000000e+00, 0.00000000e+00, 1.05580321e-04, 0.00000000e+00]) -2025-03-13 19:54:47,153 - shap - INFO - num_full_subsets = 2 -2025-03-13 19:54:47,155 - shap - INFO - remaining_weight_vector = array([0.22727203, 0.18465852, 0.16115653, 0.14772682, 0.14069221, - 0.13849389]) -2025-03-13 19:54:47,163 - shap - INFO - num_paired_subset_sizes = 7 -2025-03-13 19:54:47,208 - shap - INFO - weight_left = 0.5063344810024111 -2025-03-13 19:54:47,234 - shap - INFO - np.sum(w_aug) = 15.999999999999996 -2025-03-13 19:54:47,235 - shap - INFO - np.sum(self.kernelWeights) = 1.0000000000000004 -2025-03-13 19:54:47,297 - shap - INFO - phi = array([ 0. , 0.004736 , 0. , 0. , 0. , - 0.00013732, -0.00031293, 0. , 0. , 0.00014505, - 0. , 0. , 0. , 0. , 0.00010558, - 0. ]) -2025-03-13 19:54:47,315 - shap - INFO - num_full_subsets = 2 -2025-03-13 19:54:47,316 - shap - INFO - remaining_weight_vector = array([0.22727203, 0.18465852, 0.16115653, 0.14772682, 0.14069221, - 0.13849389]) -2025-03-13 19:54:47,317 - shap - INFO - num_paired_subset_sizes = 7 -2025-03-13 19:54:47,352 - shap - INFO - weight_left = 0.5063344810024111 -2025-03-13 19:54:47,382 - shap - INFO - np.sum(w_aug) = 15.999999999999996 -2025-03-13 19:54:47,383 - shap - INFO - np.sum(self.kernelWeights) = 1.0000000000000002 -2025-03-13 19:54:47,427 - shap - INFO - phi = array([ 0.00000000e+00, -8.88019875e-03, 0.00000000e+00, 0.00000000e+00, - 0.00000000e+00, -6.86607862e-05, 6.25857095e-05, 0.00000000e+00, - 0.00000000e+00, -7.25230953e-04, 0.00000000e+00, 0.00000000e+00, - 0.00000000e+00, 0.00000000e+00, -2.11160641e-04, 0.00000000e+00]) -2025-03-13 19:54:47,448 - shap - INFO - num_full_subsets = 2 -2025-03-13 19:54:47,464 - shap - INFO - remaining_weight_vector = array([0.23108621, 0.18664656, 0.16176035, 0.14705486, 0.13865173, - 0.13480029]) -2025-03-13 19:54:47,465 - shap - INFO - num_paired_subset_sizes = 8 -2025-03-13 19:54:47,491 - shap - INFO - weight_left = 0.5181019626448611 -2025-03-13 19:54:47,527 - shap - INFO - np.sum(w_aug) = 17.000000000000007 -2025-03-13 19:54:47,528 - shap - INFO - np.sum(self.kernelWeights) = 1.0000000000000002 -2025-03-13 19:54:47,646 - shap - INFO - phi = array([ 0.00000000e+00, 4.78175895e-03, 0.00000000e+00, -8.23870107e-04, - 3.52707678e-04, 5.84070762e-02, -6.58176070e-05, 4.16744541e-02, - 1.63386594e-02, 1.27366766e-05, -5.19480170e-04, 2.77921160e-03, - -2.78906921e-03, 2.18486196e-04, 4.19067576e-05, -1.61020629e-04, - -2.80003094e-04]) -2025-03-13 19:54:47,659 - shap - INFO - num_full_subsets = 2 -2025-03-13 19:54:47,679 - shap - INFO - remaining_weight_vector = array([0.20732477, 0.16660026, 0.14353254, 0.12957798, 0.12116383, - 0.11662019, 0.11518043]) -2025-03-13 19:54:47,682 - shap - INFO - num_paired_subset_sizes = 8 -2025-03-13 19:54:47,714 - shap - INFO - weight_left = 0.528623703595323 -2025-03-13 19:54:47,748 - shap - INFO - np.sum(w_aug) = 17.999999999999996 -2025-03-13 19:54:47,749 - shap - INFO - np.sum(self.kernelWeights) = 0.9999999999999998 -2025-03-13 19:54:47,834 - shap - INFO - phi = array([-4.23740400e-03, 4.86594850e-03, 2.03953900e-04, -8.84065259e-04, - 1.38516632e-03, 7.92636066e-04, 1.59348446e-03, -3.82106791e-04, - 4.19611966e-04, 1.24311529e-04, 3.39022229e-03, 2.30180720e-04, - 2.53010519e-03, -4.21856301e-03, -2.20044941e-04, 9.26701278e-04, - 7.40477018e-04, 4.16044238e-05]) -2025-03-13 19:54:47,850 - shap - INFO - num_full_subsets = 2 -2025-03-13 19:54:47,863 - shap - INFO - remaining_weight_vector = array([0.23108621, 0.18664656, 0.16176035, 0.14705486, 0.13865173, - 0.13480029]) -2025-03-13 19:54:47,864 - shap - INFO - num_paired_subset_sizes = 8 -2025-03-13 19:54:47,893 - shap - INFO - weight_left = 0.5181019626448611 -2025-03-13 19:54:47,926 - shap - INFO - np.sum(w_aug) = 17.000000000000004 -2025-03-13 19:54:47,928 - shap - INFO - np.sum(self.kernelWeights) = 1.0000000000000002 -2025-03-13 19:54:47,964 - shap - INFO - phi = array([-1.46251498e-02, -9.09576982e-03, 4.25612431e-04, -1.11308778e-03, - 7.60190988e-04, 3.16631560e-04, 7.77586437e-04, 0.00000000e+00, - 1.41757456e-04, -4.68811641e-04, 3.00263634e-03, -4.64003818e-03, - 5.11925711e-04, -4.53961415e-03, -2.28118751e-04, 7.57353258e-04, - 2.57639654e-05]) -2025-03-13 19:54:47,980 - shap - INFO - num_full_subsets = 2 -2025-03-13 19:54:48,003 - shap - INFO - remaining_weight_vector = array([0.23108621, 0.18664656, 0.16176035, 0.14705486, 0.13865173, - 0.13480029]) -2025-03-13 19:54:48,005 - shap - INFO - num_paired_subset_sizes = 8 -2025-03-13 19:54:48,037 - shap - INFO - weight_left = 0.5181019626448611 -2025-03-13 19:54:48,071 - shap - INFO - np.sum(w_aug) = 17.000000000000007 -2025-03-13 19:54:48,072 - shap - INFO - np.sum(self.kernelWeights) = 1.0 -2025-03-13 19:54:48,186 - shap - INFO - phi = array([-1.48965200e-02, -1.01127722e-02, 2.03585575e-04, -1.17224161e-03, - 7.81832942e-04, 2.82597834e-04, 8.71948585e-04, 0.00000000e+00, - 5.77036931e-05, -4.76796221e-04, -2.33829883e-04, -4.76516715e-03, - 4.76501332e-04, -4.53316051e-03, -2.38378566e-04, 7.49106138e-04, - -6.34185477e-05]) -2025-03-13 19:54:48,203 - shap - INFO - num_full_subsets = 2 -2025-03-13 19:54:48,205 - shap - INFO - remaining_weight_vector = array([0.23108621, 0.18664656, 0.16176035, 0.14705486, 0.13865173, - 0.13480029]) -2025-03-13 19:54:48,206 - shap - INFO - num_paired_subset_sizes = 8 -2025-03-13 19:54:48,258 - shap - INFO - weight_left = 0.5181019626448611 -2025-03-13 19:54:48,291 - shap - INFO - np.sum(w_aug) = 17.000000000000004 -2025-03-13 19:54:48,293 - shap - INFO - np.sum(self.kernelWeights) = 1.0000000000000002 -2025-03-13 19:54:48,397 - shap - INFO - phi = array([-1.74825582e-02, -1.27453727e-02, 2.71099426e-04, -5.03192628e-04, - 6.14453598e-04, -7.77677359e-05, 2.21968340e-05, -8.10889482e-04, - -7.61363376e-04, -3.65571534e-04, -2.36984952e-03, -8.16528928e-03, - 2.76638520e-04, -4.66492905e-03, -3.06599353e-04, 8.52268525e-04, - -3.45073031e-04]) -2025-03-13 19:54:48,416 - shap - INFO - num_full_subsets = 2 -2025-03-13 19:54:48,426 - shap - INFO - remaining_weight_vector = array([0.22727203, 0.18465852, 0.16115653, 0.14772682, 0.14069221, - 0.13849389]) -2025-03-13 19:54:48,426 - shap - INFO - num_paired_subset_sizes = 7 -2025-03-13 19:54:48,465 - shap - INFO - weight_left = 0.5063344810024111 -2025-03-13 19:54:48,511 - shap - INFO - np.sum(w_aug) = 15.999999999999996 -2025-03-13 19:54:48,512 - shap - INFO - np.sum(self.kernelWeights) = 1.0000000000000002 -2025-03-13 19:54:48,563 - shap - INFO - phi = array([-0.01821529, -0.0130146 , 0.00022738, -0.00050559, 0.00051753, - -0.00023178, -0.00010514, -0.00100915, -0.00078202, -0.00044573, - -0.00278685, -0.00925884, 0.00015105, -0.00466223, -0.0002263 , - -0.00069266]) -2025-03-13 19:54:48,595 - shap - INFO - num_full_subsets = 2 -2025-03-13 19:54:48,596 - shap - INFO - remaining_weight_vector = array([0.22727203, 0.18465852, 0.16115653, 0.14772682, 0.14069221, - 0.13849389]) -2025-03-13 19:54:48,596 - shap - INFO - num_paired_subset_sizes = 7 -2025-03-13 19:54:48,639 - shap - INFO - weight_left = 0.5063344810024111 -2025-03-13 19:54:48,671 - shap - INFO - np.sum(w_aug) = 15.999999999999996 -2025-03-13 19:54:48,672 - shap - INFO - np.sum(self.kernelWeights) = 1.0000000000000002 -2025-03-13 19:54:48,766 - shap - INFO - phi = array([-1.96253651e-02, -1.39657904e-02, -6.51680781e-05, -4.80932783e-04, - 0.00000000e+00, -2.83003112e-04, -3.39480117e-04, -1.20421516e-03, - -9.47237644e-04, -4.21915560e-04, -3.20497836e-03, -9.94263712e-03, - -1.98131879e-05, -4.71469473e-03, -2.74155541e-04, -8.29883198e-04]) -2025-03-13 19:54:48,784 - shap - INFO - num_full_subsets = 2 -2025-03-13 19:54:48,810 - shap - INFO - remaining_weight_vector = array([0.22727203, 0.18465852, 0.16115653, 0.14772682, 0.14069221, - 0.13849389]) -2025-03-13 19:54:48,814 - shap - INFO - num_paired_subset_sizes = 7 -2025-03-13 19:54:48,841 - shap - INFO - weight_left = 0.5063344810024111 -2025-03-13 19:54:48,876 - shap - INFO - np.sum(w_aug) = 15.999999999999996 -2025-03-13 19:54:48,877 - shap - INFO - np.sum(self.kernelWeights) = 1.0000000000000002 -2025-03-13 19:54:48,993 - shap - INFO - phi = array([-1.80974611e-02, -1.33876191e-02, 0.00000000e+00, 0.00000000e+00, - -1.78947332e-04, -2.79410456e-04, -1.55006965e-04, 1.68559334e-02, - -8.76923381e-04, -5.56393706e-04, -3.14028031e-03, -9.47646213e-03, - 0.00000000e+00, 3.57457310e-05, -2.60980264e-04, -5.54136155e-04]) -2025-03-13 19:54:49,011 - shap - INFO - num_full_subsets = 2 -2025-03-13 19:54:49,015 - shap - INFO - remaining_weight_vector = array([0.22727203, 0.18465852, 0.16115653, 0.14772682, 0.14069221, - 0.13849389]) -2025-03-13 19:54:49,016 - shap - INFO - num_paired_subset_sizes = 7 -2025-03-13 19:54:49,053 - shap - INFO - weight_left = 0.5063344810024111 -2025-03-13 19:54:49,085 - shap - INFO - np.sum(w_aug) = 15.999999999999996 -2025-03-13 19:54:49,086 - shap - INFO - np.sum(self.kernelWeights) = 1.0000000000000002 -2025-03-13 19:54:49,128 - shap - INFO - phi = array([ 0.00000000e+00, -8.88018310e-03, 0.00000000e+00, 0.00000000e+00, - 0.00000000e+00, -7.40321285e-05, 6.26351585e-05, -6.26276553e-04, - 0.00000000e+00, -7.41192462e-04, 0.00000000e+00, 0.00000000e+00, - 0.00000000e+00, 0.00000000e+00, 1.05602980e-04, 0.00000000e+00]) -2025-03-13 19:54:57,638 - tsfresh.feature_extraction.settings - WARNING - Dependency not available for matrix_profile, this feature will be disabled! -2025-03-13 20:07:51,647 - lightning_fabric.utilities.seed - INFO - Seed set to 42 -2025-03-13 20:07:51,822 - lightning.pytorch.utilities.rank_zero - INFO - GPU available: True (cuda), used: True -2025-03-13 20:07:51,825 - lightning.pytorch.utilities.rank_zero - INFO - TPU available: False, using: 0 TPU cores -2025-03-13 20:07:51,826 - lightning.pytorch.utilities.rank_zero - INFO - HPU available: False, using: 0 HPUs -2025-03-13 20:07:51,844 - lightning.pytorch.utilities.rank_zero - INFO - You are using a CUDA device ('NVIDIA GeForce RTX 4070 Laptop GPU') that has Tensor Cores. To properly utilize them, you should set `torch.set_float32_matmul_precision('medium' | 'high')` which will trade-off precision for performance. For more details, read https://pytorch.org/docs/stable/generated/torch.set_float32_matmul_precision.html#torch.set_float32_matmul_precision -2025-03-13 20:07:51,938 - pytorch_lightning.accelerators.cuda - INFO - LOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [0] -2025-03-13 20:07:51,964 - pytorch_lightning.callbacks.model_summary - INFO - - | Name | Type | Params | Mode ------------------------------------------------------------ -0 | loss_fn | MaskedMetric | 0 | train -1 | train_metrics | MetricCollection | 0 | train -2 | val_metrics | MetricCollection | 0 | train -3 | test_metrics | MetricCollection | 0 | train -4 | model | GRINet | 62.1 K | train ------------------------------------------------------------ -62.1 K Trainable params -0 Non-trainable params -62.1 K Total params -0.248 Total estimated model params size (MB) -63 Modules in train mode -0 Modules in eval mode -2025-03-13 20:08:00,765 - lightning.pytorch.utilities.rank_zero - INFO - `Trainer.fit` stopped: `max_epochs=20` reached. -2025-03-13 20:08:00,900 - lightning.pytorch.utilities.rank_zero - INFO - Restoring states from the checkpoint path at /mnt/c/Users/nquen/switchdrive/MST_MasterThesis/imputegap/imputegap/wrapper/AlgoPython/GRIN/logs/grin/2025-03-13_20-07-51_42/epoch=19-step=20.ckpt -2025-03-13 20:08:00,933 - pytorch_lightning.accelerators.cuda - INFO - LOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [0] -2025-03-13 20:08:01,091 - lightning.pytorch.utilities.rank_zero - INFO - Loaded model weights from the checkpoint at /mnt/c/Users/nquen/switchdrive/MST_MasterThesis/imputegap/imputegap/wrapper/AlgoPython/GRIN/logs/grin/2025-03-13_20-07-51_42/epoch=19-step=20.ckpt -2025-03-13 20:08:01,581 - lightning_fabric.utilities.seed - INFO - Seed set to 42 -2025-03-13 20:08:01,666 - lightning.pytorch.utilities.rank_zero - INFO - GPU available: True (cuda), used: True -2025-03-13 20:08:01,667 - lightning.pytorch.utilities.rank_zero - INFO - TPU available: False, using: 0 TPU cores -2025-03-13 20:08:01,668 - lightning.pytorch.utilities.rank_zero - INFO - HPU available: False, using: 0 HPUs -2025-03-13 20:08:01,714 - pytorch_lightning.accelerators.cuda - INFO - LOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [0] -2025-03-13 20:08:01,728 - pytorch_lightning.callbacks.model_summary - INFO - - | Name | Type | Params | Mode ------------------------------------------------------------ -0 | loss_fn | MaskedMetric | 0 | train -1 | train_metrics | MetricCollection | 0 | train -2 | val_metrics | MetricCollection | 0 | train -3 | test_metrics | MetricCollection | 0 | train -4 | model | GRINet | 62.1 K | train ------------------------------------------------------------ -62.1 K Trainable params -0 Non-trainable params -62.1 K Total params -0.248 Total estimated model params size (MB) -63 Modules in train mode -0 Modules in eval mode -2025-03-13 20:08:10,772 - lightning.pytorch.utilities.rank_zero - INFO - `Trainer.fit` stopped: `max_epochs=20` reached. -2025-03-13 20:08:10,910 - lightning.pytorch.utilities.rank_zero - INFO - Restoring states from the checkpoint path at /mnt/c/Users/nquen/switchdrive/MST_MasterThesis/imputegap/imputegap/wrapper/AlgoPython/GRIN/logs/grin/2025-03-13_20-08-01_42/epoch=19-step=20.ckpt -2025-03-13 20:08:10,947 - pytorch_lightning.accelerators.cuda - INFO - LOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [0] -2025-03-13 20:08:11,112 - lightning.pytorch.utilities.rank_zero - INFO - Loaded model weights from the checkpoint at /mnt/c/Users/nquen/switchdrive/MST_MasterThesis/imputegap/imputegap/wrapper/AlgoPython/GRIN/logs/grin/2025-03-13_20-08-01_42/epoch=19-step=20.ckpt -2025-03-13 20:08:36,533 - root - INFO - epoch 1: 0.03266041607969961 -2025-03-13 20:08:58,859 - root - INFO - epoch 2: 0.02425540741909426 -2025-03-13 20:08:58,862 - root - INFO - Early stop in EpochConvergeCallback.on_epoch(). -2025-03-13 20:09:20,039 - root - INFO - epoch 1: 0.03349533186827601 -2025-03-13 20:09:44,943 - root - INFO - epoch 2: 0.02404131812087564 -2025-03-13 20:09:44,947 - root - INFO - Early stop in EpochConvergeCallback.on_epoch(). -2025-03-14 00:05:46,041 - root - INFO - avg_epoch_loss:0.0, epoch:0 -2025-03-14 00:05:47,241 - root - INFO - avg_epoch_loss:0.0, epoch:1 -2025-03-14 00:05:48,476 - root - INFO - avg_epoch_loss:1.331366777420044, epoch:2 -2025-03-14 00:05:49,595 - root - INFO - avg_epoch_loss:0.0, epoch:3 -2025-03-14 00:05:50,769 - root - INFO - avg_epoch_loss:0.0, epoch:4 -2025-03-14 00:05:52,136 - root - INFO - avg_epoch_loss:1.3258730173110962, epoch:5 -2025-03-14 00:05:53,303 - root - INFO - avg_epoch_loss:0.0, epoch:6 -2025-03-14 00:05:54,495 - root - INFO - avg_epoch_loss:0.0, epoch:7 -2025-03-14 00:05:55,737 - root - INFO - avg_epoch_loss:0.0, epoch:8 -2025-03-14 00:05:56,948 - root - INFO - avg_epoch_loss:1.2452423572540283, epoch:9 -2025-03-14 00:05:58,132 - root - INFO - avg_epoch_loss:0.0, epoch:10 -2025-03-14 00:05:59,330 - root - INFO - avg_epoch_loss:0.0, epoch:11 -2025-03-14 00:06:00,486 - root - INFO - avg_epoch_loss:1.0952250957489014, epoch:12 -2025-03-14 00:06:01,858 - root - INFO - avg_epoch_loss:1.1661832332611084, epoch:13 -2025-03-14 00:06:03,019 - root - INFO - avg_epoch_loss:0.0, epoch:14 -2025-03-14 00:06:16,549 - root - INFO - valid_avg_epoch_loss0.0, epoch:14 -2025-03-14 00:06:16,551 - root - INFO - best loss is updated to 0.0 at 14 -2025-03-14 00:06:17,793 - root - INFO - avg_epoch_loss:0.0, epoch:15 -2025-03-14 00:06:18,983 - root - INFO - avg_epoch_loss:0.0, epoch:16 -2025-03-14 00:06:20,220 - root - INFO - avg_epoch_loss:0.0, epoch:17 -2025-03-14 00:06:21,542 - root - INFO - avg_epoch_loss:1.0875152349472046, epoch:18 -2025-03-14 00:06:22,709 - root - INFO - avg_epoch_loss:0.0, epoch:19 -2025-03-14 00:06:35,344 - root - INFO - valid_avg_epoch_loss1.0857791900634766, epoch:19 -2025-03-14 00:06:50,874 - root - INFO - avg_epoch_loss:0.0, epoch:0 -2025-03-14 00:06:52,021 - root - INFO - avg_epoch_loss:0.0, epoch:1 -2025-03-14 00:06:53,303 - root - INFO - avg_epoch_loss:1.331366777420044, epoch:2 -2025-03-14 00:06:54,443 - root - INFO - avg_epoch_loss:0.0, epoch:3 -2025-03-14 00:06:55,659 - root - INFO - avg_epoch_loss:0.0, epoch:4 -2025-03-14 00:06:57,206 - root - INFO - avg_epoch_loss:1.3258730173110962, epoch:5 -2025-03-14 00:06:58,433 - root - INFO - avg_epoch_loss:0.0, epoch:6 -2025-03-14 00:06:59,554 - root - INFO - avg_epoch_loss:0.0, epoch:7 -2025-03-14 00:07:00,775 - root - INFO - avg_epoch_loss:0.0, epoch:8 -2025-03-14 00:07:01,966 - root - INFO - avg_epoch_loss:1.2452423572540283, epoch:9 -2025-03-14 00:07:03,183 - root - INFO - avg_epoch_loss:0.0, epoch:10 -2025-03-14 00:07:04,354 - root - INFO - avg_epoch_loss:0.0, epoch:11 -2025-03-14 00:07:05,650 - root - INFO - avg_epoch_loss:1.0952249765396118, epoch:12 -2025-03-14 00:07:07,094 - root - INFO - avg_epoch_loss:1.166185975074768, epoch:13 -2025-03-14 00:07:08,336 - root - INFO - avg_epoch_loss:0.0, epoch:14 -2025-03-14 00:07:23,005 - root - INFO - valid_avg_epoch_loss0.0, epoch:14 -2025-03-14 00:07:23,006 - root - INFO - best loss is updated to 0.0 at 14 -2025-03-14 00:07:24,205 - root - INFO - avg_epoch_loss:0.0, epoch:15 -2025-03-14 00:07:25,422 - root - INFO - avg_epoch_loss:0.0, epoch:16 -2025-03-14 00:07:26,682 - root - INFO - avg_epoch_loss:0.0, epoch:17 -2025-03-14 00:07:28,126 - root - INFO - avg_epoch_loss:1.0875149965286255, epoch:18 -2025-03-14 00:07:29,360 - root - INFO - avg_epoch_loss:0.0, epoch:19 -2025-03-14 00:07:42,542 - root - INFO - valid_avg_epoch_loss1.0857793092727661, epoch:19 -2025-03-14 00:18:40,003 - pyswarms.single.global_best - INFO - Optimize for 10 iters with {'c1': 0.5, 'c2': 0.3, 'w': 0.9} -2025-03-14 00:18:40,276 - pyswarms.single.global_best - INFO - Optimization finished | best cost: 2.919337618172575, best pos: [3.00104154e+00 2.62311705e-01 5.20573580e+02] -2025-03-14 03:13:55,589 - root - INFO - avg_epoch_loss:0.0, epoch:0 -2025-03-14 03:13:55,847 - root - INFO - avg_epoch_loss:0.0, epoch:1 -2025-03-14 03:13:56,140 - root - INFO - avg_epoch_loss:1.4083999395370483, epoch:2 -2025-03-14 03:13:56,417 - root - INFO - avg_epoch_loss:0.0, epoch:3 -2025-03-14 03:13:56,646 - root - INFO - avg_epoch_loss:0.0, epoch:4 -2025-03-14 03:13:57,231 - root - INFO - avg_epoch_loss:1.3338640928268433, epoch:5 -2025-03-14 03:13:57,513 - root - INFO - avg_epoch_loss:0.0, epoch:6 -2025-03-14 03:13:57,787 - root - INFO - avg_epoch_loss:0.0, epoch:7 -2025-03-14 03:13:58,054 - root - INFO - avg_epoch_loss:0.0, epoch:8 -2025-03-14 03:13:58,396 - root - INFO - avg_epoch_loss:1.2289820909500122, epoch:9 -2025-03-14 03:13:58,652 - root - INFO - avg_epoch_loss:0.0, epoch:10 -2025-03-14 03:13:58,910 - root - INFO - avg_epoch_loss:0.0, epoch:11 -2025-03-14 03:13:59,222 - root - INFO - avg_epoch_loss:1.0910987854003906, epoch:12 -2025-03-14 03:13:59,735 - root - INFO - avg_epoch_loss:1.164913535118103, epoch:13 -2025-03-14 03:13:59,999 - root - INFO - avg_epoch_loss:0.0, epoch:14 -2025-03-14 03:14:03,411 - root - INFO - valid_avg_epoch_loss0.0, epoch:14 -2025-03-14 03:14:03,413 - root - INFO - best loss is updated to 0.0 at 14 -2025-03-14 03:14:03,713 - root - INFO - avg_epoch_loss:0.0, epoch:15 -2025-03-14 03:14:03,944 - root - INFO - avg_epoch_loss:0.0, epoch:16 -2025-03-14 03:14:04,179 - root - INFO - avg_epoch_loss:0.0, epoch:17 -2025-03-14 03:14:04,548 - root - INFO - avg_epoch_loss:1.0830341577529907, epoch:18 -2025-03-14 03:14:04,827 - root - INFO - avg_epoch_loss:0.0, epoch:19 -2025-03-14 03:14:08,407 - root - INFO - valid_avg_epoch_loss1.0864672660827637, epoch:19 -2025-03-14 03:14:16,122 - root - INFO - avg_epoch_loss:0.0, epoch:0 -2025-03-14 03:14:17,319 - root - INFO - avg_epoch_loss:0.0, epoch:1 -2025-03-14 03:14:18,532 - root - INFO - avg_epoch_loss:1.4083999395370483, epoch:2 -2025-03-14 03:14:19,700 - root - INFO - avg_epoch_loss:0.0, epoch:3 -2025-03-14 03:14:20,927 - root - INFO - avg_epoch_loss:0.0, epoch:4 -2025-03-14 03:14:22,473 - root - INFO - avg_epoch_loss:1.3338640928268433, epoch:5 -2025-03-14 03:14:23,627 - root - INFO - avg_epoch_loss:0.0, epoch:6 -2025-03-14 03:14:24,833 - root - INFO - avg_epoch_loss:0.0, epoch:7 -2025-03-14 03:14:25,896 - root - INFO - avg_epoch_loss:0.0, epoch:8 -2025-03-14 03:14:27,076 - root - INFO - avg_epoch_loss:1.2289817333221436, epoch:9 -2025-03-14 03:14:28,270 - root - INFO - avg_epoch_loss:0.0, epoch:10 -2025-03-14 03:14:29,418 - root - INFO - avg_epoch_loss:0.0, epoch:11 -2025-03-14 03:14:30,604 - root - INFO - avg_epoch_loss:1.0911017656326294, epoch:12 -2025-03-14 03:14:31,982 - root - INFO - avg_epoch_loss:1.1649134159088135, epoch:13 -2025-03-14 03:14:33,117 - root - INFO - avg_epoch_loss:0.0, epoch:14 -2025-03-14 03:14:46,271 - root - INFO - valid_avg_epoch_loss0.0, epoch:14 -2025-03-14 03:14:46,273 - root - INFO - best loss is updated to 0.0 at 14 -2025-03-14 03:14:47,462 - root - INFO - avg_epoch_loss:0.0, epoch:15 -2025-03-14 03:14:50,234 - root - INFO - avg_epoch_loss:0.0, epoch:16 -2025-03-14 03:14:51,396 - root - INFO - avg_epoch_loss:0.0, epoch:17 -2025-03-14 03:14:52,720 - root - INFO - avg_epoch_loss:1.0830390453338623, epoch:18 -2025-03-14 03:14:53,833 - root - INFO - avg_epoch_loss:0.0, epoch:19 -2025-03-14 03:15:06,402 - root - INFO - valid_avg_epoch_loss1.0864744186401367, epoch:19 -2025-03-14 03:15:31,160 - pyswarms.single.global_best - INFO - Optimize for 10 iters with {'c1': 0.5, 'c2': 0.3, 'w': 0.9} -2025-03-14 03:15:33,187 - pyswarms.single.global_best - INFO - Optimization finished | best cost: 0.08817197043863872, best pos: [5.07813132e+00 5.72547880e-01 9.89081876e+02] -2025-03-14 03:15:54,085 - shap - INFO - num_full_subsets = 2 -2025-03-14 03:15:54,087 - shap - INFO - remaining_weight_vector = array([0.25989514, 0.21264148, 0.1871245 , 0.17326343, 0.16707545]) -2025-03-14 03:15:54,089 - shap - INFO - num_paired_subset_sizes = 7 -2025-03-14 03:15:54,102 - shap - INFO - weight_left = 0.4930585722173909 -2025-03-14 03:15:54,134 - shap - INFO - np.sum(w_aug) = 14.999999999999996 -2025-03-14 03:15:54,136 - shap - INFO - np.sum(self.kernelWeights) = 1.0000000000000004 -2025-03-14 03:15:54,255 - shap - INFO - phi = array([-1.77279742e-04, 3.12102296e-03, 7.52091639e-05, 4.65556716e-04, - -2.61863150e-04, -5.28207776e-05, -1.15176580e-05, -2.66818839e-05, - -8.78281949e-05, 2.23159426e-04, -2.77053757e-04, -1.26703208e-04, - -8.29004594e-05, -2.40644051e-04, -1.04998145e-04]) -2025-03-14 03:15:54,277 - shap - INFO - num_full_subsets = 2 -2025-03-14 03:15:54,278 - shap - INFO - remaining_weight_vector = array([0.25989514, 0.21264148, 0.1871245 , 0.17326343, 0.16707545]) -2025-03-14 03:15:54,278 - shap - INFO - num_paired_subset_sizes = 7 -2025-03-14 03:15:54,329 - shap - INFO - weight_left = 0.4930585722173909 -2025-03-14 03:15:54,367 - shap - INFO - np.sum(w_aug) = 14.999999999999995 -2025-03-14 03:15:54,369 - shap - INFO - np.sum(self.kernelWeights) = 1.0000000000000002 -2025-03-14 03:15:54,403 - shap - INFO - phi = array([-1.77434914e-04, 3.12148102e-03, -3.66718471e-05, 4.65663991e-04, - -2.61952212e-04, 1.18926004e-04, -1.14940296e-05, -2.74295429e-05, - -8.76147475e-05, 2.23241951e-04, -2.76977149e-04, -1.26778136e-04, - -8.52848169e-05, -2.48309840e-04, -1.05107925e-04]) -2025-03-14 03:15:54,449 - shap - INFO - num_full_subsets = 2 -2025-03-14 03:15:54,450 - shap - INFO - remaining_weight_vector = array([0.25989514, 0.21264148, 0.1871245 , 0.17326343, 0.16707545]) -2025-03-14 03:15:54,451 - shap - INFO - num_paired_subset_sizes = 7 -2025-03-14 03:15:54,486 - shap - INFO - weight_left = 0.4930585722173909 -2025-03-14 03:15:54,520 - shap - INFO - np.sum(w_aug) = 14.999999999999996 -2025-03-14 03:15:54,522 - shap - INFO - np.sum(self.kernelWeights) = 1.0000000000000004 -2025-03-14 03:15:54,562 - shap - INFO - phi = array([ 3.19535484e-04, -1.57631468e-03, 4.42741600e-05, -1.36420641e-03, - 4.70214520e-04, -1.79937917e-04, 3.98858153e-05, 1.51215727e-05, - 3.12005109e-04, 2.91012310e-04, 6.80023964e-04, 7.83868310e-05, - 4.30106808e-04, 1.90892158e-04, 5.14749072e-04]) -2025-03-14 03:15:54,591 - shap - INFO - num_full_subsets = 2 -2025-03-14 03:15:54,592 - shap - INFO - remaining_weight_vector = array([0.25989514, 0.21264148, 0.1871245 , 0.17326343, 0.16707545]) -2025-03-14 03:15:54,593 - shap - INFO - num_paired_subset_sizes = 7 -2025-03-14 03:15:54,632 - shap - INFO - weight_left = 0.4930585722173909 -2025-03-14 03:15:54,673 - shap - INFO - np.sum(w_aug) = 15.0 -2025-03-14 03:15:54,675 - shap - INFO - np.sum(self.kernelWeights) = 1.0000000000000002 -2025-03-14 03:15:54,725 - shap - INFO - phi = array([ 3.19411228e-04, -1.38891540e-03, -3.15875780e-05, -1.39710457e-03, - 4.72743682e-04, 0.00000000e+00, 3.00483087e-05, 9.60751770e-06, - 2.16230371e-04, 2.91523045e-04, 1.83628223e-04, 8.60858562e-05, - 2.04423965e-04, 4.26558700e-04, 3.04113382e-04]) -2025-03-14 03:15:54,768 - shap - INFO - num_full_subsets = 2 -2025-03-14 03:15:54,769 - shap - INFO - remaining_weight_vector = array([0.25989514, 0.21264148, 0.1871245 , 0.17326343, 0.16707545]) -2025-03-14 03:15:54,770 - shap - INFO - num_paired_subset_sizes = 7 -2025-03-14 03:15:54,793 - shap - INFO - weight_left = 0.4930585722173909 -2025-03-14 03:15:54,833 - shap - INFO - np.sum(w_aug) = 14.999999999999996 -2025-03-14 03:15:54,836 - shap - INFO - np.sum(self.kernelWeights) = 1.0000000000000004 -2025-03-14 03:15:54,922 - shap - INFO - phi = array([ 1.53119254e-04, -1.37966837e-03, 5.93613180e-05, 4.60252880e-04, - 2.51417870e-04, -7.00328318e-05, 2.96510264e-05, 0.00000000e+00, - -9.01419673e-05, 2.67833998e-04, -1.51995959e-04, 8.04815598e-05, - -1.52212359e-04, 1.91831644e-04, -1.45777831e-04]) -2025-03-14 03:15:54,932 - shap - INFO - num_full_subsets = 2 -2025-03-14 03:15:54,933 - shap - INFO - remaining_weight_vector = array([0.25989514, 0.21264148, 0.1871245 , 0.17326343, 0.16707545]) -2025-03-14 03:15:54,934 - shap - INFO - num_paired_subset_sizes = 7 -2025-03-14 03:15:54,978 - shap - INFO - weight_left = 0.4930585722173909 -2025-03-14 03:15:55,024 - shap - INFO - np.sum(w_aug) = 14.999999999999996 -2025-03-14 03:15:55,026 - shap - INFO - np.sum(self.kernelWeights) = 1.0000000000000004 -2025-03-14 03:15:55,125 - shap - INFO - phi = array([ 3.43708246e-05, -1.25049057e-03, -3.68917632e-05, 4.60743853e-04, - -1.15160374e-04, -5.77661943e-05, 3.03086720e-05, -1.67970043e-05, - -8.44574447e-05, 2.52645039e-04, -2.61001552e-04, 8.68600531e-05, - -1.46155097e-04, -6.89299529e-05, -2.72482196e-04]) -2025-03-14 03:15:55,147 - shap - INFO - num_full_subsets = 2 -2025-03-14 03:15:55,148 - shap - INFO - remaining_weight_vector = array([0.25989514, 0.21264148, 0.1871245 , 0.17326343, 0.16707545]) -2025-03-14 03:15:55,148 - shap - INFO - num_paired_subset_sizes = 7 -2025-03-14 03:15:55,204 - shap - INFO - weight_left = 0.4930585722173909 -2025-03-14 03:15:55,243 - shap - INFO - np.sum(w_aug) = 14.999999999999998 -2025-03-14 03:15:55,244 - shap - INFO - np.sum(self.kernelWeights) = 1.0000000000000004 -2025-03-14 03:15:55,277 - shap - INFO - phi = array([-2.12173903e-04, -1.32121533e-03, -3.69126161e-05, 4.56524285e-04, - -2.69638596e-04, 1.20716390e-04, -4.79971927e-05, 3.38160646e-05, - -8.41976709e-05, -7.65667133e-04, -2.10514410e-04, 8.17323070e-05, - -6.97974402e-05, -8.00358062e-05, -9.26165400e-05]) -2025-03-14 03:15:55,301 - shap - INFO - num_full_subsets = 2 -2025-03-14 03:15:55,306 - shap - INFO - remaining_weight_vector = array([0.25989514, 0.21264148, 0.1871245 , 0.17326343, 0.16707545]) -2025-03-14 03:15:55,308 - shap - INFO - num_paired_subset_sizes = 7 -2025-03-14 03:15:55,351 - shap - INFO - weight_left = 0.4930585722173909 -2025-03-14 03:15:55,391 - shap - INFO - np.sum(w_aug) = 14.999999999999996 -2025-03-14 03:15:55,394 - shap - INFO - np.sum(self.kernelWeights) = 1.0000000000000004 -2025-03-14 03:15:55,433 - shap - INFO - phi = array([-2.60242209e-04, 6.73466443e-04, -3.69713775e-05, 4.51709947e-04, - -2.86406999e-04, 1.19293009e-04, -5.91088157e-05, 1.84558825e-05, - -9.46333098e-05, -7.83216325e-04, 3.13835323e-04, -1.60852907e-04, - -9.82480689e-05, -1.71722972e-04, -9.77271274e-05]) -2025-03-14 03:15:55,475 - shap - INFO - num_full_subsets = 2 -2025-03-14 03:15:55,477 - shap - INFO - remaining_weight_vector = array([0.20732477, 0.16660026, 0.14353254, 0.12957798, 0.12116383, - 0.11662019, 0.11518043]) -2025-03-14 03:15:55,477 - shap - INFO - num_paired_subset_sizes = 8 -2025-03-14 03:15:55,519 - shap - INFO - weight_left = 0.528623703595323 -2025-03-14 03:15:57,301 - shap - INFO - np.sum(w_aug) = 17.999999999999996 -2025-03-14 03:15:57,303 - shap - INFO - np.sum(self.kernelWeights) = 0.9999999999999999 -2025-03-14 03:15:57,408 - shap - INFO - phi = array([ 1.31176750e-04, 3.02401050e-03, 2.63198414e-04, 4.61650168e-04, - 4.49270317e-04, 8.56341634e-02, 2.44202924e-04, 2.78534479e-02, - -1.52608683e-05, -1.28370005e-04, 8.53351298e-03, -7.59589587e-04, - 4.52443265e-03, 6.55310415e-05, 1.83363655e-03, 2.46509145e-04, - 9.28437474e-05, 2.15939519e-04]) -2025-03-14 03:15:57,438 - shap - INFO - num_full_subsets = 2 -2025-03-14 03:15:57,439 - shap - INFO - remaining_weight_vector = array([0.20732477, 0.16660026, 0.14353254, 0.12957798, 0.12116383, - 0.11662019, 0.11518043]) -2025-03-14 03:15:57,440 - shap - INFO - num_paired_subset_sizes = 8 -2025-03-14 03:15:57,483 - shap - INFO - weight_left = 0.528623703595323 -2025-03-14 03:15:57,521 - shap - INFO - np.sum(w_aug) = 17.999999999999996 -2025-03-14 03:15:57,522 - shap - INFO - np.sum(self.kernelWeights) = 0.9999999999999998 -2025-03-14 03:15:57,624 - shap - INFO - phi = array([ 2.60191813e-04, 3.52178867e-03, 6.67041558e-04, -1.29808808e-03, - 1.38997634e-03, 1.59067115e-04, 6.05080436e-04, 1.00581661e-04, - 5.02090345e-05, 9.58829158e-03, -9.78547784e-04, 5.02930062e-03, - -1.88548905e-03, 2.92792312e-03, 4.19345857e-04, 8.38696676e-05, - 2.85158923e-04, 6.44906051e-04]) -2025-03-14 03:15:57,650 - shap - INFO - num_full_subsets = 2 -2025-03-14 03:15:57,651 - shap - INFO - remaining_weight_vector = array([0.20732477, 0.16660026, 0.14353254, 0.12957798, 0.12116383, - 0.11662019, 0.11518043]) -2025-03-14 03:15:57,652 - shap - INFO - num_paired_subset_sizes = 8 -2025-03-14 03:15:57,701 - shap - INFO - weight_left = 0.528623703595323 -2025-03-14 03:15:57,738 - shap - INFO - np.sum(w_aug) = 17.999999999999996 -2025-03-14 03:15:57,739 - shap - INFO - np.sum(self.kernelWeights) = 0.9999999999999998 -2025-03-14 03:15:57,779 - shap - INFO - phi = array([-5.53616914e-03, -1.72892268e-03, 8.14175972e-04, 4.69056671e-04, - 9.24074106e-04, -1.20060899e-03, 2.61272608e-05, 1.84695145e-05, - -2.69199987e-04, 2.29397622e-03, -3.17760485e-03, 4.51315642e-03, - -3.75445816e-03, 1.76229845e-03, 2.38779520e-04, 3.05587313e-05, - 4.60214847e-06, 2.73111639e-04]) -2025-03-14 03:15:57,838 - shap - INFO - num_full_subsets = 2 -2025-03-14 03:15:57,839 - shap - INFO - remaining_weight_vector = array([0.20732477, 0.16660026, 0.14353254, 0.12957798, 0.12116383, - 0.11662019, 0.11518043]) -2025-03-14 03:15:57,841 - shap - INFO - num_paired_subset_sizes = 8 -2025-03-14 03:15:57,857 - shap - INFO - weight_left = 0.528623703595323 -2025-03-14 03:15:57,892 - shap - INFO - np.sum(w_aug) = 17.999999999999996 -2025-03-14 03:15:57,895 - shap - INFO - np.sum(self.kernelWeights) = 0.9999999999999998 -2025-03-14 03:15:57,940 - shap - INFO - phi = array([-5.72905946e-03, -2.35452302e-03, 5.06416850e-04, -1.39955022e-03, - 5.85286308e-04, -3.10397204e-03, -2.56083815e-05, -2.33464915e-04, - -2.19061273e-04, 1.74244225e-04, -3.24205577e-03, 1.69560466e-05, - -3.85174339e-03, -3.64419930e-04, 9.46185490e-05, 5.43795689e-07, - 1.55842346e-04, 2.06832365e-04]) -2025-03-14 03:15:57,967 - shap - INFO - num_full_subsets = 2 -2025-03-14 03:15:57,968 - shap - INFO - remaining_weight_vector = array([0.23108621, 0.18664656, 0.16176035, 0.14705486, 0.13865173, - 0.13480029]) -2025-03-14 03:15:57,968 - shap - INFO - num_paired_subset_sizes = 8 -2025-03-14 03:15:58,006 - shap - INFO - weight_left = 0.5181019626448611 -2025-03-14 03:15:58,046 - shap - INFO - np.sum(w_aug) = 17.000000000000007 -2025-03-14 03:15:58,048 - shap - INFO - np.sum(self.kernelWeights) = 1.0000000000000004 -2025-03-14 03:15:58,149 - shap - INFO - phi = array([-1.00921625e-02, -1.05908490e-02, 4.00118671e-04, 4.97959792e-04, - 5.94218360e-04, -2.75155124e-03, 2.50324081e-04, -1.45635248e-05, - 8.06945283e-05, -2.71814799e-03, -7.19796782e-03, -2.79371604e-03, - -1.89105403e-05, 2.45756049e-04, 2.65884734e-05, 5.39583185e-04, - 2.11705020e-04]) -2025-03-14 03:15:58,190 - shap - INFO - num_full_subsets = 2 -2025-03-14 03:15:58,191 - shap - INFO - remaining_weight_vector = array([0.22727203, 0.18465852, 0.16115653, 0.14772682, 0.14069221, - 0.13849389]) -2025-03-14 03:15:58,192 - shap - INFO - num_paired_subset_sizes = 7 -2025-03-14 03:15:58,229 - shap - INFO - weight_left = 0.5063344810024111 -2025-03-14 03:15:58,266 - shap - INFO - np.sum(w_aug) = 15.999999999999998 -2025-03-14 03:15:58,268 - shap - INFO - np.sum(self.kernelWeights) = 1.0000000000000002 -2025-03-14 03:15:58,370 - shap - INFO - phi = array([-1.10590110e-02, -1.10525358e-02, 2.38023547e-04, -1.52327916e-03, - 4.56545659e-04, -3.25511077e-03, -1.23889189e-04, 4.22636591e-05, - 1.73787932e-04, -2.83807610e-03, -7.77755940e-03, -3.06934845e-03, - -9.14990866e-05, 1.56199973e-04, 4.42089905e-05, 4.49342065e-05]) -2025-03-14 03:15:58,385 - shap - INFO - num_full_subsets = 2 -2025-03-14 03:15:58,387 - shap - INFO - remaining_weight_vector = array([0.22727203, 0.18465852, 0.16115653, 0.14772682, 0.14069221, - 0.13849389]) -2025-03-14 03:15:58,393 - shap - INFO - num_paired_subset_sizes = 7 -2025-03-14 03:15:58,452 - shap - INFO - weight_left = 0.5063344810024111 -2025-03-14 03:15:58,489 - shap - INFO - np.sum(w_aug) = 15.999999999999996 -2025-03-14 03:15:58,490 - shap - INFO - np.sum(self.kernelWeights) = 1.0000000000000002 -2025-03-14 03:15:58,528 - shap - INFO - phi = array([-1.21396233e-02, -1.24316313e-02, 1.60153732e-04, 5.17321975e-04, - 2.69343256e-04, -3.26566588e-03, -2.09891347e-04, -5.66610254e-05, - -3.94879121e-05, -3.11298097e-03, -9.30768895e-03, -2.14630586e-03, - 1.79251005e-04, 1.71877236e-04, 5.62768919e-05, -1.68346442e-04]) -2025-03-14 03:15:58,551 - shap - INFO - num_full_subsets = 2 -2025-03-14 03:15:58,557 - shap - INFO - remaining_weight_vector = array([0.22727203, 0.18465852, 0.16115653, 0.14772682, 0.14069221, - 0.13849389]) -2025-03-14 03:15:58,560 - shap - INFO - num_paired_subset_sizes = 7 -2025-03-14 03:15:58,607 - shap - INFO - weight_left = 0.5063344810024111 -2025-03-14 03:15:58,646 - shap - INFO - np.sum(w_aug) = 15.999999999999996 -2025-03-14 03:15:58,649 - shap - INFO - np.sum(self.kernelWeights) = 1.0000000000000004 -2025-03-14 03:15:58,688 - shap - INFO - phi = array([-1.10418948e-02, -1.12854877e-02, 8.01052660e-05, -1.56957848e-03, - 6.47607841e-05, -3.14173468e-04, -2.21064311e-04, -8.40092860e-05, - 4.17579715e-05, -2.99651036e-03, -8.74012174e-03, -2.07426776e-03, - 2.32825759e-04, 1.25948182e-04, 3.84384884e-05, -1.40148712e-04]) -2025-03-14 03:15:58,712 - shap - INFO - num_full_subsets = 2 -2025-03-14 03:15:58,715 - shap - INFO - remaining_weight_vector = array([0.25989514, 0.21264148, 0.1871245 , 0.17326343, 0.16707545]) -2025-03-14 03:15:58,719 - shap - INFO - num_paired_subset_sizes = 7 -2025-03-14 03:15:58,760 - shap - INFO - weight_left = 0.4930585722173909 -2025-03-14 03:15:58,802 - shap - INFO - np.sum(w_aug) = 14.999999999999996 -2025-03-14 03:15:58,804 - shap - INFO - np.sum(self.kernelWeights) = 1.0000000000000004 -2025-03-14 03:15:58,838 - shap - INFO - phi = array([ 3.00932794e-04, -1.41618149e-03, 1.92562321e-04, -1.38164057e-03, - 4.18912079e-04, -9.05397295e-04, -6.44387102e-05, 1.53900635e-05, - 3.74262728e-04, 8.38883005e-04, 7.05331946e-04, 7.82227662e-05, - 4.09925869e-04, 4.31468967e-04, 5.20597314e-04]) -2025-03-14 03:15:58,864 - shap - INFO - num_full_subsets = 2 -2025-03-14 03:15:58,869 - shap - INFO - remaining_weight_vector = array([0.25989514, 0.21264148, 0.1871245 , 0.17326343, 0.16707545]) -2025-03-14 03:15:58,874 - shap - INFO - num_paired_subset_sizes = 7 -2025-03-14 03:15:58,920 - shap - INFO - weight_left = 0.4930585722173909 -2025-03-14 03:15:58,956 - shap - INFO - np.sum(w_aug) = 14.999999999999996 -2025-03-14 03:15:58,957 - shap - INFO - np.sum(self.kernelWeights) = 1.0000000000000004 -2025-03-14 03:15:59,001 - shap - INFO - phi = array([ 1.75009660e-04, -1.16203544e-03, 5.86787231e-05, -1.39591883e-03, - 2.70277565e-04, -1.27245812e-04, 2.90846859e-05, -1.18361180e-05, - 3.43111710e-04, 8.44121511e-04, 1.82890545e-04, 9.20340660e-05, - 1.92582385e-04, -6.61140803e-05, 3.01660394e-04]) -2025-03-14 03:15:59,022 - shap - INFO - num_full_subsets = 2 -2025-03-14 03:15:59,026 - shap - INFO - remaining_weight_vector = array([0.25989514, 0.21264148, 0.1871245 , 0.17326343, 0.16707545]) -2025-03-14 03:15:59,034 - shap - INFO - num_paired_subset_sizes = 7 -2025-03-14 03:15:59,084 - shap - INFO - weight_left = 0.4930585722173909 -2025-03-14 03:15:59,121 - shap - INFO - np.sum(w_aug) = 14.999999999999998 -2025-03-14 03:15:59,122 - shap - INFO - np.sum(self.kernelWeights) = 1.0000000000000004 -2025-03-14 03:15:59,160 - shap - INFO - phi = array([-1.43531431e-04, -1.33772072e-03, -3.65557253e-05, -1.38348687e-03, - -1.32808140e-04, -6.48305635e-05, -1.21716249e-04, 0.00000000e+00, - -1.17345948e-04, -7.74327503e-04, -1.52775261e-04, -1.60602704e-04, - -1.46009927e-04, -1.68654118e-04, -2.62943869e-04]) -2025-03-14 03:15:59,203 - shap - INFO - num_full_subsets = 2 -2025-03-14 03:15:59,205 - shap - INFO - remaining_weight_vector = array([0.25989514, 0.21264148, 0.1871245 , 0.17326343, 0.16707545]) -2025-03-14 03:15:59,208 - shap - INFO - num_paired_subset_sizes = 7 -2025-03-14 03:15:59,248 - shap - INFO - weight_left = 0.4930585722173909 -2025-03-14 03:15:59,283 - shap - INFO - np.sum(w_aug) = 14.999999999999998 -2025-03-14 03:15:59,285 - shap - INFO - np.sum(self.kernelWeights) = 1.0000000000000004 -2025-03-14 03:15:59,319 - shap - INFO - phi = array([-1.65582004e-04, 2.97169024e-03, 7.50082413e-05, 4.65659052e-04, - -2.56436885e-04, -6.29711925e-05, -2.68315367e-05, 4.90845060e-05, - -8.76947195e-05, 2.23158556e-04, -2.64207990e-04, -1.11078044e-04, - -8.27635906e-05, -2.40413492e-04, -8.49945429e-05]) diff --git a/tests/test_imputation_knn.py b/tests/test_imputation_knn.py index d0e13d36..a4aee2b7 100644 --- a/tests/test_imputation_knn.py +++ b/tests/test_imputation_knn.py @@ -25,7 +25,7 @@ def test_imputation_knn(self): miss_ts = ts_0.Contamination.aligned(input_data=ts_0.data, rate_series=0.18, offset=0.1) - imputer = Imputation.Statistics.KNN(miss_ts) + imputer = Imputation.Statistics.KNNImpute(miss_ts) imputer.impute(user_def=True, params={"k":k, "weights":weight}) imputer.score(ts_0.data, imputer.recov_data) @@ -36,7 +36,7 @@ def test_imputation_knn(self): knn = KNNImputer(n_neighbors=k, weights=weight) recov = knn.fit_transform(miss_ts) - imputer2 = Imputation.Statistics.KNN(miss_ts) + imputer2 = Imputation.Statistics.KNNImpute(miss_ts) imputer2.recov_data = None imputer2.metrics = None diff --git a/tests/test_opti_ray_whole.py b/tests/test_opti_ray_whole.py index 8d517a93..d6135b4b 100644 --- a/tests/test_opti_ray_whole.py +++ b/tests/test_opti_ray_whole.py @@ -26,8 +26,7 @@ def test_optimization_ray(self): # 4. imputation of the contaminated data # imputation with AutoML which will discover the optimal hyperparameters for your dataset and your algorithm - algorithms_all = ["cdrec", "stmvl", "iim", "mrnn", "iter_svd", "grouse", "dynammo", "rosl", "soft_imp", - "spirit", "svt", "tkcm", "brits", "deep_mvi", "mpin", "pristi"] + algorithms_all = ["cdrec", "stmvl", "xgboost", "deep_mvi", "knn"] for alg in algorithms_all: imputer = utils.config_impute_algorithm(incomp_data=ts_mask, algorithm=alg)