31
31
# ' x_source = "TGS00010",
32
32
# ' year = 2020,
33
33
# ' level = "2",
34
- # ' x_filters = list(isced11 = "TOTAL", unit = "PC", age = "Y_GE15", freq = "A ")
34
+ # ' x_filters = list(isced11 = "TOTAL", sex = "F ")
35
35
# ' )
36
36
# '
37
37
# ' # Bivariate example
40
40
# ' y_source = "DEMO_R_MLIFEXP",
41
41
# ' year = 2020,
42
42
# ' level = "2",
43
- # ' x_filters = list(isced11 = "TOTAL", unit = "PC", age = "Y_GE15", freq = "A "),
44
- # ' y_filters = list(unit = "YR", age = "Y_LT1 ", freq = "A ")
43
+ # ' x_filters = list(isced11 = "TOTAL", sex = "F "),
44
+ # ' y_filters = list(age = "Y2 ", sex = "F ")
45
45
# ' )
46
46
# ' }
47
47
mi_data <- function (
@@ -133,11 +133,11 @@ mi_data <- function(
133
133
tibble :: as_tibble()
134
134
135
135
# Check for duplicate values within each geo for x and (if applicable) y.
136
- duplicate_issues <- response_data % > %
137
- dplyr :: group_by(geo ) % > %
136
+ duplicate_issues <- response_data | >
137
+ dplyr :: group_by(.data $ geo ) | >
138
138
dplyr :: summarise(
139
- distinct_x = dplyr :: n_distinct(x ),
140
- distinct_y = if (" y" %in% names(response_data )) dplyr :: n_distinct(y ) else NA_integer_ ,
139
+ distinct_x = dplyr :: n_distinct(.data $ x ),
140
+ distinct_y = if (" y" %in% names(response_data )) dplyr :: n_distinct(.data $ y ) else NA_integer_ ,
141
141
.groups = " drop"
142
142
)
143
143
@@ -151,11 +151,11 @@ mi_data <- function(
151
151
if (x_issue ) {
152
152
available_filters <- mi_source_filters(source_name = x_source , year = year , level = level )
153
153
# Determine which filter fields have more than one option
154
- multi_option_fields <- available_filters % > %
155
- dplyr :: group_by(field ) % > %
156
- dplyr :: summarise(n_options = dplyr :: n_distinct(value ), .groups = " drop" ) % > %
157
- dplyr :: filter(n_options > 1 ) % > %
158
- dplyr :: pull(field )
154
+ multi_option_fields <- available_filters | >
155
+ dplyr :: group_by(.data $ field ) | >
156
+ dplyr :: summarise(n_options = dplyr :: n_distinct(.data $ value ), .groups = " drop" ) | >
157
+ dplyr :: filter(.data $ n_options > 1 ) | >
158
+ dplyr :: pull(.data $ field )
159
159
# Only require filters for those fields with multiple options.
160
160
missing_x_filters <- setdiff(multi_option_fields , names(x_filters ))
161
161
}
@@ -164,11 +164,11 @@ mi_data <- function(
164
164
missing_y_filters <- character (0 )
165
165
if (y_issue ) {
166
166
available_y_filters <- mi_source_filters(source_name = y_source , year = year , level = level )
167
- multi_option_y_fields <- available_y_filters % > %
168
- dplyr :: group_by(field ) % > %
169
- dplyr :: summarise(n_options = dplyr :: n_distinct(value ), .groups = " drop" ) % > %
170
- dplyr :: filter(n_options > 1 ) % > %
171
- dplyr :: pull(field )
167
+ multi_option_y_fields <- available_y_filters | >
168
+ dplyr :: group_by(.data $ field ) | >
169
+ dplyr :: summarise(n_options = dplyr :: n_distinct(.data $ value ), .groups = " drop" ) | >
170
+ dplyr :: filter(.data $ n_options > 1 ) | >
171
+ dplyr :: pull(.data $ field )
172
172
missing_y_filters <- setdiff(multi_option_y_fields , names(y_filters ))
173
173
}
174
174
0 commit comments