-
Notifications
You must be signed in to change notification settings - Fork 48
Open
Description
Hi recently I faced a problem when I used this package as its Traceback is following:
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
<ipython-input-43-c3b5d8180301> in <module>()
----> 1 model.fit(X, y, epochs=50, batch_size=16, callbacks=[replay])
2 frames
/usr/local/lib/python3.7/dist-packages/keras/utils/traceback_utils.py in error_handler(*args, **kwargs)
65 except Exception as e: # pylint: disable=broad-except
66 filtered_tb = _process_traceback_frames(e.__traceback__)
---> 67 raise e.with_traceback(filtered_tb) from None
68 finally:
69 del filtered_tb
/usr/local/lib/python3.7/dist-packages/deepreplay/callbacks.py in on_train_begin(self, logs)
83 self.n_epochs = self.params['epochs']
84
---> 85 self.group = self.handler.create_group(self.group_name)
86 self.group.attrs['samples'] = self.params['samples']
87 self.group.attrs['batch_size'] = self.params['batch_size']
/usr/local/lib/python3.7/dist-packages/h5py/_hl/group.py in create_group(self, name, track_order)
63 name, lcpl = self._e(name, lcpl=True)
64 gcpl = Group._gcpl_crt_order if track_order else None
---> 65 gid = h5g.create(self.id, name, lcpl=lcpl, gcpl=gcpl)
66 return Group(gid)
67
h5py/_objects.pyx in h5py._objects.with_phil.wrapper()
h5py/_objects.pyx in h5py._objects.with_phil.wrapper()
h5py/h5g.pyx in h5py.h5g.create()
ValueError: Unable to create group (name already exists)I shared the google colab notebook which I could run on Aug 2, 2019, but now it threw out this KeyError: 'samples' in 2021. Please check the notebook and feel free to run it for quick debugging.
Following is the configuration and package versions in google colab:
matplotlib==3.2.2
matplotlib-inline==0.1.3
matplotlib-venn==0.11.6
numpy==1.19.5
pandas==1.1.5
pandas-datareader==0.9.0
pandas-gbq==0.13.3
pandas-profiling==1.4.1
scikit-learn==1.0.1
scipy==1.4.1
seaborn==0.11.2
sklearn-pandas==1.8.0
3.7.12
Python 3.7.12
This is the full code:
from keras.models import Sequential
from keras.layers import Dense
#from keras.optimizers import SGD
from tensorflow.keras.optimizers import SGD
from keras.initializers import glorot_normal, normal
model = Sequential()
model.add(Dense(input_dim=2,
units=2,
activation='sigmoid',
kernel_initializer=glorot_normal(seed=42),
name='hidden'))
model.add(Dense(units=1,
activation='sigmoid',
kernel_initializer=normal(seed=42),
name='output'))
model.compile(loss='binary_crossentropy', optimizer=SGD(learning_rate=0.05), metrics=['acc'])
from deepreplay.callbacks import ReplayData
from deepreplay.datasets.parabola import load_data
from deepreplay.replay import Replay
X, y = load_data()
replay = ReplayData(X, y, filename='hyperparms_in_action.h5', group_name='part1')
model.fit(X, y, epochs=50, batch_size=16, callbacks=[replay])I found the similar open issues here & here related to saving model via hdf5 file. I tried based on some suggestions 12195# and here to save the model with tf instead of h5 in replay_filename which was unsuccessful. There is lots of post in this regard in SoF
Any helps will be highly appreciated.
Metadata
Metadata
Assignees
Labels
No labels