Skip to content

Commit d4144ca

Browse files
committed
[libclc][NFC] Clang-format two files
Pre-commit changes to avoid noise in an upcoming PR.
1 parent df22bbe commit d4144ca

File tree

2 files changed

+280
-282
lines changed

2 files changed

+280
-282
lines changed

libclc/generic/lib/math/clc_fmod.cl

Lines changed: 125 additions & 127 deletions
Original file line numberDiff line numberDiff line change
@@ -30,158 +30,156 @@
3030
#include <clc/shared/clc_max.h>
3131
#include <math/clc_remainder.h>
3232

33-
_CLC_DEF _CLC_OVERLOAD float __clc_fmod(float x, float y)
34-
{
35-
int ux = as_int(x);
36-
int ax = ux & EXSIGNBIT_SP32;
37-
float xa = as_float(ax);
38-
int sx = ux ^ ax;
39-
int ex = ax >> EXPSHIFTBITS_SP32;
40-
41-
int uy = as_int(y);
42-
int ay = uy & EXSIGNBIT_SP32;
43-
float ya = as_float(ay);
44-
int ey = ay >> EXPSHIFTBITS_SP32;
45-
46-
float xr = as_float(0x3f800000 | (ax & 0x007fffff));
47-
float yr = as_float(0x3f800000 | (ay & 0x007fffff));
48-
int c;
49-
int k = ex - ey;
50-
51-
while (k > 0) {
52-
c = xr >= yr;
53-
xr -= c ? yr : 0.0f;
54-
xr += xr;
55-
--k;
56-
}
57-
33+
_CLC_DEF _CLC_OVERLOAD float __clc_fmod(float x, float y) {
34+
int ux = as_int(x);
35+
int ax = ux & EXSIGNBIT_SP32;
36+
float xa = as_float(ax);
37+
int sx = ux ^ ax;
38+
int ex = ax >> EXPSHIFTBITS_SP32;
39+
40+
int uy = as_int(y);
41+
int ay = uy & EXSIGNBIT_SP32;
42+
float ya = as_float(ay);
43+
int ey = ay >> EXPSHIFTBITS_SP32;
44+
45+
float xr = as_float(0x3f800000 | (ax & 0x007fffff));
46+
float yr = as_float(0x3f800000 | (ay & 0x007fffff));
47+
int c;
48+
int k = ex - ey;
49+
50+
while (k > 0) {
5851
c = xr >= yr;
5952
xr -= c ? yr : 0.0f;
53+
xr += xr;
54+
--k;
55+
}
6056

61-
int lt = ex < ey;
62-
63-
xr = lt ? xa : xr;
64-
yr = lt ? ya : yr;
57+
c = xr >= yr;
58+
xr -= c ? yr : 0.0f;
6559

60+
int lt = ex < ey;
6661

67-
float s = as_float(ey << EXPSHIFTBITS_SP32);
68-
xr *= lt ? 1.0f : s;
62+
xr = lt ? xa : xr;
63+
yr = lt ? ya : yr;
6964

70-
c = ax == ay;
71-
xr = c ? 0.0f : xr;
65+
float s = as_float(ey << EXPSHIFTBITS_SP32);
66+
xr *= lt ? 1.0f : s;
7267

73-
xr = as_float(sx ^ as_int(xr));
68+
c = ax == ay;
69+
xr = c ? 0.0f : xr;
7470

75-
c = ax > PINFBITPATT_SP32 | ay > PINFBITPATT_SP32 | ax == PINFBITPATT_SP32 | ay == 0;
76-
xr = c ? as_float(QNANBITPATT_SP32) : xr;
71+
xr = as_float(sx ^ as_int(xr));
7772

78-
return xr;
73+
c = ax > PINFBITPATT_SP32 | ay > PINFBITPATT_SP32 | ax == PINFBITPATT_SP32 |
74+
ay == 0;
75+
xr = c ? as_float(QNANBITPATT_SP32) : xr;
7976

77+
return xr;
8078
}
8179
_CLC_BINARY_VECTORIZE(_CLC_DEF _CLC_OVERLOAD, float, __clc_fmod, float, float);
8280

8381
#ifdef cl_khr_fp64
84-
_CLC_DEF _CLC_OVERLOAD double __clc_fmod(double x, double y)
85-
{
86-
ulong ux = as_ulong(x);
87-
ulong ax = ux & ~SIGNBIT_DP64;
88-
ulong xsgn = ux ^ ax;
89-
double dx = as_double(ax);
90-
int xexp = convert_int(ax >> EXPSHIFTBITS_DP64);
91-
int xexp1 = 11 - (int) __clc_clz(ax & MANTBITS_DP64);
92-
xexp1 = xexp < 1 ? xexp1 : xexp;
93-
94-
ulong uy = as_ulong(y);
95-
ulong ay = uy & ~SIGNBIT_DP64;
96-
double dy = as_double(ay);
97-
int yexp = convert_int(ay >> EXPSHIFTBITS_DP64);
98-
int yexp1 = 11 - (int) __clc_clz(ay & MANTBITS_DP64);
99-
yexp1 = yexp < 1 ? yexp1 : yexp;
100-
101-
// First assume |x| > |y|
102-
103-
// Set ntimes to the number of times we need to do a
104-
// partial remainder. If the exponent of x is an exact multiple
105-
// of 53 larger than the exponent of y, and the mantissa of x is
106-
// less than the mantissa of y, ntimes will be one too large
107-
// but it doesn't matter - it just means that we'll go round
108-
// the loop below one extra time.
109-
int ntimes = __clc_max(0, (xexp1 - yexp1) / 53);
110-
double w = ldexp(dy, ntimes * 53);
111-
w = ntimes == 0 ? dy : w;
112-
double scale = ntimes == 0 ? 1.0 : 0x1.0p-53;
113-
114-
// Each time round the loop we compute a partial remainder.
115-
// This is done by subtracting a large multiple of w
116-
// from x each time, where w is a scaled up version of y.
117-
// The subtraction must be performed exactly in quad
118-
// precision, though the result at each stage can
119-
// fit exactly in a double precision number.
120-
int i;
121-
double t, v, p, pp;
122-
123-
for (i = 0; i < ntimes; i++) {
124-
// Compute integral multiplier
125-
t = __clc_trunc(dx / w);
126-
127-
// Compute w * t in quad precision
128-
p = w * t;
129-
pp = fma(w, t, -p);
130-
131-
// Subtract w * t from dx
132-
v = dx - p;
133-
dx = v + (((dx - v) - p) - pp);
134-
135-
// If t was one too large, dx will be negative. Add back one w.
136-
dx += dx < 0.0 ? w : 0.0;
137-
138-
// Scale w down by 2^(-53) for the next iteration
139-
w *= scale;
140-
}
141-
142-
// One more time
143-
// Variable todd says whether the integer t is odd or not
144-
t = __clc_floor(dx / w);
145-
long lt = (long)t;
146-
int todd = lt & 1;
147-
82+
_CLC_DEF _CLC_OVERLOAD double __clc_fmod(double x, double y) {
83+
ulong ux = as_ulong(x);
84+
ulong ax = ux & ~SIGNBIT_DP64;
85+
ulong xsgn = ux ^ ax;
86+
double dx = as_double(ax);
87+
int xexp = convert_int(ax >> EXPSHIFTBITS_DP64);
88+
int xexp1 = 11 - (int)__clc_clz(ax & MANTBITS_DP64);
89+
xexp1 = xexp < 1 ? xexp1 : xexp;
90+
91+
ulong uy = as_ulong(y);
92+
ulong ay = uy & ~SIGNBIT_DP64;
93+
double dy = as_double(ay);
94+
int yexp = convert_int(ay >> EXPSHIFTBITS_DP64);
95+
int yexp1 = 11 - (int)__clc_clz(ay & MANTBITS_DP64);
96+
yexp1 = yexp < 1 ? yexp1 : yexp;
97+
98+
// First assume |x| > |y|
99+
100+
// Set ntimes to the number of times we need to do a
101+
// partial remainder. If the exponent of x is an exact multiple
102+
// of 53 larger than the exponent of y, and the mantissa of x is
103+
// less than the mantissa of y, ntimes will be one too large
104+
// but it doesn't matter - it just means that we'll go round
105+
// the loop below one extra time.
106+
int ntimes = __clc_max(0, (xexp1 - yexp1) / 53);
107+
double w = ldexp(dy, ntimes * 53);
108+
w = ntimes == 0 ? dy : w;
109+
double scale = ntimes == 0 ? 1.0 : 0x1.0p-53;
110+
111+
// Each time round the loop we compute a partial remainder.
112+
// This is done by subtracting a large multiple of w
113+
// from x each time, where w is a scaled up version of y.
114+
// The subtraction must be performed exactly in quad
115+
// precision, though the result at each stage can
116+
// fit exactly in a double precision number.
117+
int i;
118+
double t, v, p, pp;
119+
120+
for (i = 0; i < ntimes; i++) {
121+
// Compute integral multiplier
122+
t = __clc_trunc(dx / w);
123+
124+
// Compute w * t in quad precision
148125
p = w * t;
149126
pp = fma(w, t, -p);
127+
128+
// Subtract w * t from dx
150129
v = dx - p;
151130
dx = v + (((dx - v) - p) - pp);
152-
i = dx < 0.0;
153-
todd ^= i;
154-
dx += i ? w : 0.0;
155131

156-
// At this point, dx lies in the range [0,dy)
157-
double ret = as_double(xsgn ^ as_ulong(dx));
158-
dx = as_double(ax);
132+
// If t was one too large, dx will be negative. Add back one w.
133+
dx += dx < 0.0 ? w : 0.0;
134+
135+
// Scale w down by 2^(-53) for the next iteration
136+
w *= scale;
137+
}
138+
139+
// One more time
140+
// Variable todd says whether the integer t is odd or not
141+
t = __clc_floor(dx / w);
142+
long lt = (long)t;
143+
int todd = lt & 1;
144+
145+
p = w * t;
146+
pp = fma(w, t, -p);
147+
v = dx - p;
148+
dx = v + (((dx - v) - p) - pp);
149+
i = dx < 0.0;
150+
todd ^= i;
151+
dx += i ? w : 0.0;
152+
153+
// At this point, dx lies in the range [0,dy)
154+
double ret = as_double(xsgn ^ as_ulong(dx));
155+
dx = as_double(ax);
159156

160-
// Now handle |x| == |y|
161-
int c = dx == dy;
162-
t = as_double(xsgn);
163-
ret = c ? t : ret;
157+
// Now handle |x| == |y|
158+
int c = dx == dy;
159+
t = as_double(xsgn);
160+
ret = c ? t : ret;
164161

165-
// Next, handle |x| < |y|
166-
c = dx < dy;
167-
ret = c ? x : ret;
162+
// Next, handle |x| < |y|
163+
c = dx < dy;
164+
ret = c ? x : ret;
168165

169-
// We don't need anything special for |x| == 0
166+
// We don't need anything special for |x| == 0
170167

171-
// |y| is 0
172-
c = dy == 0.0;
173-
ret = c ? as_double(QNANBITPATT_DP64) : ret;
168+
// |y| is 0
169+
c = dy == 0.0;
170+
ret = c ? as_double(QNANBITPATT_DP64) : ret;
174171

175-
// y is +-Inf, NaN
176-
c = yexp > BIASEDEMAX_DP64;
177-
t = y == y ? x : y;
178-
ret = c ? t : ret;
172+
// y is +-Inf, NaN
173+
c = yexp > BIASEDEMAX_DP64;
174+
t = y == y ? x : y;
175+
ret = c ? t : ret;
179176

180-
// x is +=Inf, NaN
181-
c = xexp > BIASEDEMAX_DP64;
182-
ret = c ? as_double(QNANBITPATT_DP64) : ret;
177+
// x is +=Inf, NaN
178+
c = xexp > BIASEDEMAX_DP64;
179+
ret = c ? as_double(QNANBITPATT_DP64) : ret;
183180

184-
return ret;
181+
return ret;
185182
}
186-
_CLC_BINARY_VECTORIZE(_CLC_DEF _CLC_OVERLOAD, double, __clc_fmod, double, double);
183+
_CLC_BINARY_VECTORIZE(_CLC_DEF _CLC_OVERLOAD, double, __clc_fmod, double,
184+
double);
187185
#endif

0 commit comments

Comments
 (0)