40
40
#ifndef LLVM_CODEGEN_MACHINEPIPELINER_H
41
41
#define LLVM_CODEGEN_MACHINEPIPELINER_H
42
42
43
+ #include " llvm/ADT/STLExtras.h"
43
44
#include " llvm/ADT/SetVector.h"
44
45
#include " llvm/CodeGen/DFAPacketizer.h"
45
46
#include " llvm/CodeGen/MachineDominators.h"
@@ -114,10 +115,123 @@ class MachinePipeliner : public MachineFunctionPass {
114
115
bool useWindowScheduler (bool Changed);
115
116
};
116
117
118
+ // / Represents a dependence between two instruction.
119
+ class SwingSchedulerDDGEdge {
120
+ SUnit *Dst = nullptr ;
121
+ SDep Pred;
122
+ unsigned Distance = 0 ;
123
+
124
+ public:
125
+ // / Creates an edge corresponding to an edge represented by \p PredOrSucc and
126
+ // / \p Dep in the original DAG. This pair has no information about the
127
+ // / direction of the edge, so we need to pass an additional argument \p
128
+ // / IsSucc.
129
+ SwingSchedulerDDGEdge (SUnit *PredOrSucc, const SDep &Dep, bool IsSucc)
130
+ : Dst(PredOrSucc), Pred(Dep), Distance(0u ) {
131
+ SUnit *Src = Dep.getSUnit ();
132
+
133
+ if (IsSucc) {
134
+ std::swap (Src, Dst);
135
+ Pred.setSUnit (Src);
136
+ }
137
+
138
+ // An anti-dependence to PHI means loop-carried dependence.
139
+ if (Pred.getKind () == SDep::Anti && Src->getInstr ()->isPHI ()) {
140
+ Distance = 1 ;
141
+ std::swap (Src, Dst);
142
+ auto Reg = Pred.getReg ();
143
+ Pred = SDep (Src, SDep::Kind::Data, Reg);
144
+ }
145
+ }
146
+
147
+ // / Returns the SUnit from which the edge comes (source node).
148
+ SUnit *getSrc () const { return Pred.getSUnit (); }
149
+
150
+ // / Returns the SUnit to which the edge points (destination node).
151
+ SUnit *getDst () const { return Dst; }
152
+
153
+ // / Returns the latency value for the edge.
154
+ unsigned getLatency () const { return Pred.getLatency (); }
155
+
156
+ // / Sets the latency for the edge.
157
+ void setLatency (unsigned Latency) { Pred.setLatency (Latency); }
158
+
159
+ // / Returns the distance value for the edge.
160
+ unsigned getDistance () const { return Distance; }
161
+
162
+ // / Sets the distance value for the edge.
163
+ void setDistance (unsigned D) { Distance = D; }
164
+
165
+ // / Returns the register associated with the edge.
166
+ Register getReg () const { return Pred.getReg (); }
167
+
168
+ // / Returns true if the edge represents anti dependence.
169
+ bool isAntiDep () const { return Pred.getKind () == SDep::Kind::Anti; }
170
+
171
+ // / Returns true if the edge represents output dependence.
172
+ bool isOutputDep () const { return Pred.getKind () == SDep::Kind::Output; }
173
+
174
+ // / Returns true if the edge represents a dependence that is not data, anti or
175
+ // / output dependence.
176
+ bool isOrderDep () const { return Pred.getKind () == SDep::Kind::Order; }
177
+
178
+ // / Returns true if the edge represents unknown scheduling barrier.
179
+ bool isBarrier () const { return Pred.isBarrier (); }
180
+
181
+ // / Returns true if the edge represents an artificial dependence.
182
+ bool isArtificial () const { return Pred.isArtificial (); }
183
+
184
+ // / Tests if this is a Data dependence that is associated with a register.
185
+ bool isAssignedRegDep () const { return Pred.isAssignedRegDep (); }
186
+
187
+ // / Returns true for DDG nodes that we ignore when computing the cost
188
+ // / functions. We ignore the back-edge recurrence in order to avoid unbounded
189
+ // / recursion in the calculation of the ASAP, ALAP, etc functions.
190
+ bool ignoreDependence (bool IgnoreAnti) const ;
191
+ };
192
+
193
+ // / Represents dependencies between instructions. This class is a wrapper of
194
+ // / `SUnits` and its dependencies to manipulate back-edges in a natural way.
195
+ // / Currently it only supports back-edges via PHI, which are expressed as
196
+ // / anti-dependencies in the original DAG.
197
+ // / FIXME: Support any other loop-carried dependencies
198
+ class SwingSchedulerDDG {
199
+ using EdgesType = SmallVector<SwingSchedulerDDGEdge, 4 >;
200
+
201
+ struct SwingSchedulerDDGEdges {
202
+ EdgesType Preds;
203
+ EdgesType Succs;
204
+ };
205
+
206
+ void initEdges (SUnit *SU);
207
+
208
+ SUnit *EntrySU;
209
+ SUnit *ExitSU;
210
+
211
+ std::vector<SwingSchedulerDDGEdges> EdgesVec;
212
+ SwingSchedulerDDGEdges EntrySUEdges;
213
+ SwingSchedulerDDGEdges ExitSUEdges;
214
+
215
+ void addEdge (const SUnit *SU, const SwingSchedulerDDGEdge &Edge);
216
+
217
+ SwingSchedulerDDGEdges &getEdges (const SUnit *SU);
218
+ const SwingSchedulerDDGEdges &getEdges (const SUnit *SU) const ;
219
+
220
+ public:
221
+ SwingSchedulerDDG (std::vector<SUnit> &SUnits, SUnit *EntrySU, SUnit *ExitSU);
222
+
223
+ const EdgesType &getInEdges (const SUnit *SU) const ;
224
+
225
+ const EdgesType &getOutEdges (const SUnit *SU) const ;
226
+ };
227
+
117
228
// / This class builds the dependence graph for the instructions in a loop,
118
229
// / and attempts to schedule the instructions using the SMS algorithm.
119
230
class SwingSchedulerDAG : public ScheduleDAGInstrs {
120
231
MachinePipeliner &Pass;
232
+
233
+ std::unique_ptr<SwingSchedulerDDG> DDG;
234
+
121
235
// / The minimum initiation interval between iterations for this schedule.
122
236
unsigned MII = 0 ;
123
237
// / The maximum initiation interval between iterations for this schedule.
@@ -130,7 +244,7 @@ class SwingSchedulerDAG : public ScheduleDAGInstrs {
130
244
unsigned II_setByPragma = 0 ;
131
245
TargetInstrInfo::PipelinerLoopInfo *LoopPipelinerInfo = nullptr ;
132
246
133
- // / A toplogical ordering of the SUnits, which is needed for changing
247
+ // / A topological ordering of the SUnits, which is needed for changing
134
248
// / dependences and iterating over the SUnits.
135
249
ScheduleDAGTopologicalSort Topo;
136
250
@@ -252,27 +366,7 @@ class SwingSchedulerDAG : public ScheduleDAGInstrs {
252
366
return ScheduleInfo[Node->NodeNum ].ZeroLatencyHeight ;
253
367
}
254
368
255
- // / Return true if the dependence is a back-edge in the data dependence graph.
256
- // / Since the DAG doesn't contain cycles, we represent a cycle in the graph
257
- // / using an anti dependence from a Phi to an instruction.
258
- bool isBackedge (SUnit *Source, const SDep &Dep) {
259
- if (Dep.getKind () != SDep::Anti)
260
- return false ;
261
- return Source->getInstr ()->isPHI () || Dep.getSUnit ()->getInstr ()->isPHI ();
262
- }
263
-
264
- bool isLoopCarriedDep (SUnit *Source, const SDep &Dep,
265
- bool isSucc = true ) const ;
266
-
267
- // / The distance function, which indicates that operation V of iteration I
268
- // / depends on operations U of iteration I-distance.
269
- unsigned getDistance (SUnit *U, SUnit *V, const SDep &Dep) {
270
- // Instructions that feed a Phi have a distance of 1. Computing larger
271
- // values for arrays requires data dependence information.
272
- if (V->getInstr ()->isPHI () && Dep.getKind () == SDep::Anti)
273
- return 1 ;
274
- return 0 ;
275
- }
369
+ bool isLoopCarriedDep (const SwingSchedulerDDGEdge &Edge) const ;
276
370
277
371
void applyInstrChange (MachineInstr *MI, SMSchedule &Schedule);
278
372
@@ -294,6 +388,8 @@ class SwingSchedulerDAG : public ScheduleDAGInstrs {
294
388
295
389
static bool classof (const ScheduleDAGInstrs *DAG) { return true ; }
296
390
391
+ const SwingSchedulerDDG *getDDG () const { return DDG.get (); }
392
+
297
393
private:
298
394
void addLoopCarriedDependences (AAResults *AA);
299
395
void updatePhiDependences ();
@@ -357,15 +453,16 @@ class NodeSet {
357
453
//
358
454
// Hold a map from each SUnit in the circle to the maximum distance from the
359
455
// source node by only considering the nodes.
456
+ const SwingSchedulerDDG *DDG = DAG->getDDG ();
360
457
DenseMap<SUnit *, unsigned > SUnitToDistance;
361
458
for (auto *Node : Nodes)
362
459
SUnitToDistance[Node] = 0 ;
363
460
364
461
for (unsigned I = 1 , E = Nodes.size (); I <= E; ++I) {
365
462
SUnit *U = Nodes[I - 1 ];
366
463
SUnit *V = Nodes[I % Nodes.size ()];
367
- for (const SDep &Succ : U-> Succs ) {
368
- SUnit *SuccSUnit = Succ.getSUnit ();
464
+ for (const SwingSchedulerDDGEdge &Succ : DDG-> getOutEdges (U) ) {
465
+ SUnit *SuccSUnit = Succ.getDst ();
369
466
if (V != SuccSUnit)
370
467
continue ;
371
468
if (SUnitToDistance[U] + Succ.getLatency () > SUnitToDistance[V]) {
@@ -377,13 +474,13 @@ class NodeSet {
377
474
SUnit *FirstNode = Nodes[0 ];
378
475
SUnit *LastNode = Nodes[Nodes.size () - 1 ];
379
476
380
- for (auto &PI : LastNode-> Preds ) {
477
+ for (auto &PI : DDG-> getInEdges (LastNode) ) {
381
478
// If we have an order dep that is potentially loop carried then a
382
479
// back-edge exists between the last node and the first node that isn't
383
480
// modeled in the DAG. Handle it manually by adding 1 to the distance of
384
481
// the last node.
385
- if (PI.getSUnit () != FirstNode || PI.getKind () != SDep::Order ||
386
- !DAG->isLoopCarriedDep (LastNode, PI, false ))
482
+ if (PI.getSrc () != FirstNode || ! PI.isOrderDep () ||
483
+ !DAG->isLoopCarriedDep (PI ))
387
484
continue ;
388
485
SUnitToDistance[FirstNode] =
389
486
std::max (SUnitToDistance[FirstNode], SUnitToDistance[LastNode] + 1 );
@@ -627,11 +724,13 @@ class SMSchedule {
627
724
628
725
// / Return the cycle of the earliest scheduled instruction in the dependence
629
726
// / chain.
630
- int earliestCycleInChain (const SDep &Dep);
727
+ int earliestCycleInChain (const SwingSchedulerDDGEdge &Dep,
728
+ const SwingSchedulerDDG *DDG);
631
729
632
730
// / Return the cycle of the latest scheduled instruction in the dependence
633
731
// / chain.
634
- int latestCycleInChain (const SDep &Dep);
732
+ int latestCycleInChain (const SwingSchedulerDDGEdge &Dep,
733
+ const SwingSchedulerDDG *DDG);
635
734
636
735
void computeStart (SUnit *SU, int *MaxEarlyStart, int *MinLateStart, int II,
637
736
SwingSchedulerDAG *DAG);
@@ -694,7 +793,7 @@ class SMSchedule {
694
793
MachineOperand &MO) const ;
695
794
696
795
bool onlyHasLoopCarriedOutputOrOrderPreds (SUnit *SU,
697
- SwingSchedulerDAG *DAG ) const ;
796
+ const SwingSchedulerDDG *DDG ) const ;
698
797
void print (raw_ostream &os) const ;
699
798
void dump () const ;
700
799
};
0 commit comments