1
1
Ddoc
2
2
3
- $(SPEC_S Floating Point,
3
+ $(SPEC_S Floating- Point,
4
4
5
5
$(HEADERNAV_TOC)
6
6
7
- $(H2 $(LNAME2 fp_intermediate_values, Floating Point Intermediate Values))
7
+ $(H2 $(LNAME2 fp_intermediate_values, Floating- Point Intermediate Values))
8
8
9
9
$(P On many computers, greater
10
10
precision operations do not take any longer than lesser
@@ -15,7 +15,7 @@ $(H2 $(LNAME2 fp_intermediate_values, Floating Point Intermediate Values))
15
15
of the best capabilities of target hardware.
16
16
)
17
17
18
- $(P For floating point operations and expression intermediate values,
18
+ $(P For floating- point operations and expression intermediate values,
19
19
a greater precision can be used than the type of the
20
20
expression.
21
21
Only the minimum precision is set by the types of the
@@ -43,14 +43,14 @@ $(H2 $(LNAME2 fp_intermediate_values, Floating Point Intermediate Values))
43
43
$(LI data and function argument compatibility with C)
44
44
)
45
45
46
- $(H2 $(LNAME2 fp_const_folding, Floating Point Constant Folding))
46
+ $(H2 $(LNAME2 fp_const_folding, Floating- Point Constant Folding))
47
47
48
- $(P Regardless of the type of the operands, floating point
48
+ $(P Regardless of the type of the operands, floating- point
49
49
constant folding is done in $(D real) or greater precision.
50
50
It is always done following IEEE 754 rules and round-to-nearest
51
51
is used.)
52
52
53
- $(P Floating point constants are internally represented in
53
+ $(P Floating- point constants are internally represented in
54
54
the implementation in at least $(D real) precision, regardless
55
55
of the constant's type. The extra precision is available for
56
56
constant folding. Committing to the precision of the result is
@@ -67,8 +67,8 @@ writeln(f - 0.2);
67
67
static float f = 0.2f;
68
68
writeln(f - 0.2);
69
69
---
70
- $(P will print 2.98023e-09. Hex floating point constants can also
71
- be used when specific floating point bit patterns are needed that
70
+ $(P will print 2.98023e-09. Hex floating- point constants can also
71
+ be used when specific floating- point bit patterns are needed that
72
72
are unaffected by rounding. To find the hex value of 0.2f:)
73
73
74
74
---
@@ -90,12 +90,12 @@ writeln(f - 0.2);
90
90
91
91
$(P Different compiler settings, optimization settings,
92
92
and inlining settings can affect opportunities for constant
93
- folding, therefore the results of floating point calculations may differ
93
+ folding, therefore the results of floating- point calculations may differ
94
94
depending on those settings.)
95
95
96
96
$(H2 $(LNAME2 rounding_control, Rounding Control))
97
97
98
- $(P IEEE 754 floating point arithmetic includes the ability to set 4
98
+ $(P IEEE 754 floating- point arithmetic includes the ability to set 4
99
99
different rounding modes.
100
100
These are accessible via the functions in $(D core.stdc.fenv).
101
101
)
@@ -109,7 +109,7 @@ $(H2 $(LNAME2 rounding_control, Rounding Control))
109
109
110
110
$(H2 $(LNAME2 esception_flags, Exception Flags))
111
111
112
- $(P IEEE 754 floating point arithmetic can set several flags based on what
112
+ $(P IEEE 754 floating- point arithmetic can set several flags based on what
113
113
happened with a
114
114
computation:)
115
115
@@ -124,22 +124,22 @@ $(H2 $(LNAME2 esception_flags, Exception Flags))
124
124
125
125
$(P These flags can be set/reset via the functions in $(D core.stdc.fenv).)
126
126
127
- $(H2 $(LNAME2 floating-point-transformations, Floating Point Transformations))
127
+ $(H2 $(LNAME2 floating-point-transformations, Floating- Point Transformations))
128
128
129
129
$(P An implementation may perform transformations on
130
- floating point computations in order to reduce their strength,
130
+ floating- point computations in order to reduce their strength,
131
131
i.e. their runtime computation time.
132
- Because floating point math does not precisely follow mathematical
132
+ Because floating- point math does not precisely follow mathematical
133
133
rules, some transformations are not valid, even though some
134
134
other programming languages still allow them.
135
135
)
136
136
137
- $(P The following transformations of floating point expressions
137
+ $(P The following transformations of floating- point expressions
138
138
are not allowed because under IEEE rules they could produce
139
139
different results.
140
140
)
141
141
142
- $(TABLE2 Disallowed Floating Point Transformations,
142
+ $(TABLE2 Disallowed Floating- Point Transformations,
143
143
$(THEAD transformation, comments)
144
144
$(TROW
145
145
$(ARGS $(I x) + 0 $(RARR) $(I x)) , $(ARGS not valid if $(I x) is -0)
@@ -186,4 +186,4 @@ $(SPEC_SUBNAV_PREV_NEXT garbage, Garbage Collection, iasm, D x86 Inline Assemble
186
186
187
187
Macros:
188
188
CHAPTER=29
189
- TITLE=Floating Point
189
+ TITLE=Floating- Point
0 commit comments