@@ -18,7 +18,7 @@ Implememnation of various Deep Image Segmentation models in keras.
18
18
* Keras 2.0
19
19
* opencv for python
20
20
21
- ```
21
+ ``` shell
22
22
sudo apt-get install python-opencv
23
23
sudo pip install --upgrade tensorflow-gpu
24
24
sudo pip install --upgrade keras
@@ -55,9 +55,9 @@ Only use bmp or png format for the annotation images.
55
55
56
56
## Visualizing the prepared data
57
57
58
- You can also visulize your prepared annotations for verification of the prepared data.
58
+ You can also visualize your prepared annotations for verification of the prepared data.
59
59
60
- ```
60
+ ``` shell
61
61
python visualizeDataset.py \
62
62
--images=" data/dataset1/images_prepped_train/" \
63
63
--annotations=" data/dataset1/annotations_prepped_train/" \
@@ -70,7 +70,7 @@ python visualizeDataset.py \
70
70
71
71
You need to download the pretrained VGG-16 weights trained on imagenet if you want to use VGG based models
72
72
73
- ```
73
+ ``` shell
74
74
mkdir data
75
75
cd data
76
76
wget " https://github.com/fchollet/deep-learning-models/releases/download/v0.1/vgg16_weights_th_dim_ordering_th_kernels.h5"
@@ -82,7 +82,7 @@ wget "https://github.com/fchollet/deep-learning-models/releases/download/v0.1/vg
82
82
83
83
To train the model run the following command:
84
84
85
- ```
85
+ ``` shell
86
86
python train.py \
87
87
--save_weights_path=weights/ex1 \
88
88
--train_images=" data/dataset1/images_prepped_train/" \
@@ -92,8 +92,10 @@ python train.py \
92
92
--n_classes=10 \
93
93
--input_height=800 \
94
94
--input_width=550 \
95
- --model_name="vgg_segnet"
95
+ --model_name=" vgg_segnet"
96
96
```
97
97
98
+ Choose model_name from vgg_segnet vgg_unet, vgg_unet2, fcn8, fcn32
99
+
98
100
99
101
0 commit comments