|
| 1 | + |
| 2 | + |
| 3 | + |
| 4 | + |
| 5 | +from keras.models import Sequential |
| 6 | +from keras.layers import Reshape |
| 7 | +from keras.models import Model |
| 8 | +from keras.layers.core import Layer, Dense, Dropout, Activation, Flatten, Reshape, Merge, Permute |
| 9 | +from keras.layers import Input, merge, Convolution2D, MaxPooling2D, UpSampling2D, Reshape, core, Dropout |
| 10 | +from keras.layers.normalization import BatchNormalization |
| 11 | +from keras.layers.convolutional import Convolution3D, MaxPooling3D, ZeroPadding3D , ZeroPadding3D , UpSampling3D |
| 12 | +from keras.layers.convolutional import Convolution2D, MaxPooling2D, UpSampling2D, ZeroPadding2D |
| 13 | +from keras.layers.convolutional import Convolution1D, MaxPooling1D |
| 14 | +from keras.layers.recurrent import LSTM |
| 15 | +from keras.layers.advanced_activations import LeakyReLU |
| 16 | +from keras.optimizers import Adam , SGD |
| 17 | +from keras.layers.embeddings import Embedding |
| 18 | +from keras.utils import np_utils |
| 19 | +from keras.regularizers import ActivityRegularizer |
| 20 | +from keras import backend as K |
| 21 | + |
| 22 | + |
| 23 | + |
| 24 | + |
| 25 | + |
| 26 | +def unet_2d (nClasses , optimizer=None , input_width=360 , input_height=480 , nChannels=1 ): |
| 27 | + |
| 28 | + inputs = Input((nChannels, input_height, input_width)) |
| 29 | + conv1 = Convolution2D(32, 3, 3, activation='relu', border_mode='same')(inputs) |
| 30 | + conv1 = Dropout(0.2)(conv1) |
| 31 | + conv1 = Convolution2D(32, 3, 3, activation='relu', border_mode='same')(conv1) |
| 32 | + pool1 = MaxPooling2D(pool_size=(2, 2))(conv1) |
| 33 | + |
| 34 | + conv2 = Convolution2D(64, 3, 3, activation='relu', border_mode='same')(pool1) |
| 35 | + conv2 = Dropout(0.2)(conv2) |
| 36 | + conv2 = Convolution2D(64, 3, 3, activation='relu', border_mode='same')(conv2) |
| 37 | + pool2 = MaxPooling2D(pool_size=(2, 2))(conv2) |
| 38 | + |
| 39 | + conv3 = Convolution2D(128, 3, 3, activation='relu', border_mode='same')(pool2) |
| 40 | + conv3 = Dropout(0.2)(conv3) |
| 41 | + conv3 = Convolution2D(128, 3, 3, activation='relu', border_mode='same')(conv3) |
| 42 | + |
| 43 | + up1 = merge([UpSampling2D(size=(2, 2))(conv3), conv2], mode='concat', concat_axis=1) |
| 44 | + conv4 = Convolution2D(64, 3, 3, activation='relu', border_mode='same')(up1) |
| 45 | + conv4 = Dropout(0.2)(conv4) |
| 46 | + conv4 = Convolution2D(64, 3, 3, activation='relu', border_mode='same')(conv4) |
| 47 | + |
| 48 | + up2 = merge([UpSampling2D(size=(2, 2))(conv4), conv1], mode='concat', concat_axis=1) |
| 49 | + conv5 = Convolution2D(32, 3, 3, activation='relu', border_mode='same')(up2) |
| 50 | + conv5 = Dropout(0.2)(conv5) |
| 51 | + conv5 = Convolution2D(32, 3, 3, activation='relu', border_mode='same')(conv5) |
| 52 | + |
| 53 | + conv6 = Convolution2D(nClasses, 1, 1, activation='relu',border_mode='same')(conv5) |
| 54 | + conv6 = core.Reshape((nClasses,input_height*input_width))(conv6) |
| 55 | + conv6 = core.Permute((2,1))(conv6) |
| 56 | + |
| 57 | + |
| 58 | + conv7 = core.Activation('softmax')(conv6) |
| 59 | + |
| 60 | + model = Model(input=inputs, output=conv7) |
| 61 | + |
| 62 | + if not optimizer is None: |
| 63 | + model.compile(loss="categorical_crossentropy", optimizer= optimizer , metrics=['accuracy'] ) |
| 64 | + |
| 65 | + return model |
| 66 | + |
| 67 | + |
| 68 | + |
| 69 | + |
0 commit comments