Skip to content

load mpc model error  #37

@l2009312042

Description

@l2009312042

i follow the step with asr/aishell run.sh modify as hkust ,the finetune stage when load pretrain model mpc,it report the following error , the tensorflow verison is 2.3.1 cuda 10.1 cudnn7 ,is somebody met this kind of case, how to solve it ?thanks
[1]<stderr>:INFO:absl:trying to restore from : examples/asr/aishell/ckpts/mpc [0]<stderr>:INFO:absl:trying to restore from : examples/asr/aishell/ckpts/mpc [0]<stderr>:INFO:absl:Loading data from examples/asr/aishell/data/dev.csv [1]<stderr>:INFO:absl:Loading data from examples/asr/aishell/data/dev.csv [0]<stderr>:WARNING:tensorflow:Unresolved object in checkpoint: (root).optimizer.iter [0]<stderr>:WARNING:tensorflow:Unresolved object in checkpoint: (root).optimizer.iter [0]<stderr>:WARNING:tensorflow:Unresolved object in checkpoint: (root).optimizer.beta_1 [0]<stderr>:WARNING:tensorflow:Unresolved object in checkpoint: (root).optimizer.beta_1 [0]<stderr>:WARNING:tensorflow:Unresolved object in checkpoint: (root).optimizer.beta_2 [0]<stderr>:WARNING:tensorflow:Unresolved object in checkpoint: (root).optimizer.beta_2 [0]<stderr>:WARNING:tensorflow:Unresolved object in checkpoint: (root).optimizer.decay [0]<stderr>:WARNING:tensorflow:Unresolved object in checkpoint: (root).optimizer.decay [0]<stderr>:WARNING:tensorflow:A checkpoint was restored (e.g. tf.train.Checkpoint.restore or tf.keras.Model.load_weights) but not all checkpointed values were used. See above for specific issues. Use expect_partial() on the load status object, e.g. tf.train.Checkpoint.restore(...).expect_partial(), to silence these warnings, or use assert_consumed() to make the check explicit. See https://www.tensorflow.org/guide/checkpoint#loading_mechanics for details. [0]<stderr>:WARNING:tensorflow:A checkpoint was restored (e.g. tf.train.Checkpoint.restore or tf.keras.Model.load_weights) but not all checkpointed values were used. See above for specific issues. Use expect_partial() on the load status object, e.g. tf.train.Checkpoint.restore(...).expect_partial(), to silence these warnings, or use assert_consumed() to make the check explicit. See https://www.tensorflow.org/guide/checkpoint#loading_mechanics for details. [0]<stderr>:INFO:absl:loading from pretrained mpc model [0]<stderr>:INFO:absl:Loading data from examples/asr/aishell/data/train.csv [1]<stderr>:WARNING:tensorflow:Unresolved object in checkpoint: (root).optimizer.iter [1]<stderr>:WARNING:tensorflow:Unresolved object in checkpoint: (root).optimizer.iter [1]<stderr>:WARNING:tensorflow:Unresolved object in checkpoint: (root).optimizer.beta_1 [1]<stderr>:WARNING:tensorflow:Unresolved object in checkpoint: (root).optimizer.beta_1 [1]<stderr>:WARNING:tensorflow:Unresolved object in checkpoint: (root).optimizer.beta_2 [1]<stderr>:WARNING:tensorflow:Unresolved object in checkpoint: (root).optimizer.beta_2 [1]<stderr>:WARNING:tensorflow:Unresolved object in checkpoint: (root).optimizer.decay [1]<stderr>:WARNING:tensorflow:Unresolved object in checkpoint: (root).optimizer.decay [1]<stderr>:WARNING:tensorflow:A checkpoint was restored (e.g. tf.train.Checkpoint.restore or tf.keras.Model.load_weights) but not all checkpointed values were used. See above for specific issues. Use expect_partial() on the load status object, e.g. tf.train.Checkpoint.restore(...).expect_partial(), to silence these warnings, or use assert_consumed() to make the check explicit. See https://www.tensorflow.org/guide/checkpoint#loading_mechanics for details. [1]<stderr>:WARNING:tensorflow:A checkpoint was restored (e.g. tf.train.Checkpoint.restore or tf.keras.Model.load_weights) but not all checkpointed values were used. See above for specific issues. Use expect_partial() on the load status object, e.g. tf.train.Checkpoint.restore(...).expect_partial(), to silence these warnings, or use assert_consumed() to make the check explicit. See https://www.tensorflow.org/guide/checkpoint#loading_mechanics for details. [1]<stderr>:INFO:absl:loading from pretrained mpc model [1]<stderr>:INFO:absl:Loading data from examples/asr/aishell/data/train.csv

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions