Skip to content

WeSearch_LexicalFiltering

JonathonRead edited this page Jan 14, 2011 · 27 revisions

Background

Working with a lattice of lexical hypotheses and an (über)tagger, we seek to develop a filtering function that discards unlikely hypotheses. The formalisation of the lexical filtering process may be found [http://dl.dropbox.com/u/680530/WeSearch/Lexical%20Filtering/formalisation.pdf here].

TNT output for filtering of LE types

One such filter function maps PTB tags output from the TNT tagger onto LE Types. Mappings may be derived intuitively from inspection of a [http://dl.dropbox.com/u/680530/WeSearch/Lexical%20Filtering/tnt.le.confusion.pdf confusion matrix] detailing the choices of TNT with respect to LE types.

An alternative approach is to programmatically find mappings based on the preferred outcomes of lexical filtering, (i.e. gains in parser efficiency versus losses in parser accuracy and coverage). These outcomes may be approximated by examining the relations between TNT precision, TNT recall and the lexical ambiguity of LE types.

Frequency of LE types in JH0 parse forest:

type frequency
n 1,134,661
p 498,443
v 454,513
d 335,667
aj 332,243
c 182,759
av 145,290
cm 33,618
pp 34,496
pt 3,864

ROC plots of the TNT performance on the most frequent LE types

[http://dl.dropbox.com/u/680530/WeSearch/Lexical%20Filtering/roc.png]

A plot of the precision vs. lexical items filtered for each handled LE type:

[http://dl.dropbox.com/u/680530/WeSearch/Lexical%20Filtering/filtering.png]

Effective threshold ranges for LE Types:

type min min-precision min-filtering max max-precision max-filtering
n 0.36 0.93737 0.36853 1.00 0.97246 0.29400
v 0.15 0.96925 0.09541 1.00 0.98677 0.06477
p 0.36 0.92586 0.25249 1.00 0.96771 0.18468
d 0.38 0.95638 0.50612 1.00 0.96796 0.46700
aj 0.18 0.74427 0.51437 1.00 0.85327 0.40463
av 0.28 0.83146 0.37179 1.00 0.91001 0.23647

Related Work

Clone this wiki locally