|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "markdown", |
| 5 | + "metadata": {}, |
| 6 | + "source": [ |
| 7 | + "# 🛠️🦙 Build with Llama Stack and Haystack Agent\n", |
| 8 | + "\n", |
| 9 | + "\n", |
| 10 | + "This notebook demonstrates how to use the `LlamaStackChatGenerator` component with Haystack `Agent` to enable function calling capabilities. We'll create a simple weather tool that the `Agent` can call to provide dynamic, up-to-date information.\n", |
| 11 | + "\n", |
| 12 | + "We start with installing integration package." |
| 13 | + ] |
| 14 | + }, |
| 15 | + { |
| 16 | + "cell_type": "code", |
| 17 | + "execution_count": null, |
| 18 | + "metadata": {}, |
| 19 | + "outputs": [], |
| 20 | + "source": [ |
| 21 | + "%%bash\n", |
| 22 | + "\n", |
| 23 | + "pip install llama-stack-haystack" |
| 24 | + ] |
| 25 | + }, |
| 26 | + { |
| 27 | + "cell_type": "markdown", |
| 28 | + "metadata": {}, |
| 29 | + "source": [ |
| 30 | + "## Setup\n", |
| 31 | + "\n", |
| 32 | + "Before running this example, you need to:\n", |
| 33 | + "\n", |
| 34 | + "1. Set up Llama Stack Server through an inference provider\n", |
| 35 | + "2. Have a model available (e.g., `llama3.2:3b`)\n", |
| 36 | + "\n", |
| 37 | + "For a quick start on how to setup server with Ollama, see the [Llama Stack documentation](https://llama-stack.readthedocs.io/en/latest/getting_started/index.html).\n", |
| 38 | + "\n", |
| 39 | + "Once you have the server running, it will typically be available at `http://localhost:8321/v1/openai/v1`.\n" |
| 40 | + ] |
| 41 | + }, |
| 42 | + { |
| 43 | + "cell_type": "markdown", |
| 44 | + "metadata": {}, |
| 45 | + "source": [ |
| 46 | + "## Defining a Tool\n", |
| 47 | + "\n", |
| 48 | + "Tools in Haystack allow models to call functions to get real-time information or perform actions. Let's create a simple weather tool that the model can use to provide weather information.\n" |
| 49 | + ] |
| 50 | + }, |
| 51 | + { |
| 52 | + "cell_type": "code", |
| 53 | + "execution_count": 1, |
| 54 | + "metadata": {}, |
| 55 | + "outputs": [], |
| 56 | + "source": [ |
| 57 | + "from haystack.dataclasses import ChatMessage\n", |
| 58 | + "from haystack.tools import Tool\n", |
| 59 | + "\n", |
| 60 | + "# Define a tool that models can call\n", |
| 61 | + "def weather(city: str):\n", |
| 62 | + " \"\"\"Return mock weather info for the given city.\"\"\"\n", |
| 63 | + " return f\"The weather in {city} is sunny and 32°C\"\n", |
| 64 | + "\n", |
| 65 | + "# Define the tool parameters schema\n", |
| 66 | + "tool_parameters = {\n", |
| 67 | + " \"type\": \"object\", \n", |
| 68 | + " \"properties\": {\n", |
| 69 | + " \"city\": {\"type\": \"string\"}\n", |
| 70 | + " }, \n", |
| 71 | + " \"required\": [\"city\"]\n", |
| 72 | + "}\n", |
| 73 | + "\n", |
| 74 | + "# Create the weather tool\n", |
| 75 | + "weather_tool = Tool(\n", |
| 76 | + " name=\"weather\",\n", |
| 77 | + " description=\"Useful for getting the weather in a specific city\",\n", |
| 78 | + " parameters=tool_parameters,\n", |
| 79 | + " function=weather,\n", |
| 80 | + ")\n" |
| 81 | + ] |
| 82 | + }, |
| 83 | + { |
| 84 | + "cell_type": "markdown", |
| 85 | + "metadata": {}, |
| 86 | + "source": [ |
| 87 | + "## Setting Up Agent\n", |
| 88 | + "\n", |
| 89 | + "Now let's create a `LlamaStackChatGenerator` and pass it to the `Agent`.\n" |
| 90 | + ] |
| 91 | + }, |
| 92 | + { |
| 93 | + "cell_type": "code", |
| 94 | + "execution_count": 4, |
| 95 | + "metadata": {}, |
| 96 | + "outputs": [], |
| 97 | + "source": [ |
| 98 | + "from haystack.components.agents import Agent\n", |
| 99 | + "from haystack_integrations.components.generators.llama_stack import LlamaStackChatGenerator\n", |
| 100 | + "from haystack.components.generators.utils import print_streaming_chunk\n", |
| 101 | + "\n", |
| 102 | + "# Create the LlamaStackChatGenerator\n", |
| 103 | + "chat_generator = LlamaStackChatGenerator(\n", |
| 104 | + " model=\"ollama/llama3.2:3b\", # model name varies depending on the inference provider used for the Llama Stack Server\n", |
| 105 | + " api_base_url=\"http://localhost:8321/v1/openai/v1\",\n", |
| 106 | + ")\n", |
| 107 | + "# Agent Setup\n", |
| 108 | + "agent = Agent(\n", |
| 109 | + " chat_generator=chat_generator,\n", |
| 110 | + " tools=[weather_tool],\n", |
| 111 | + ")\n", |
| 112 | + "\n", |
| 113 | + "# Run the Agent\n", |
| 114 | + "agent.warm_up()\n" |
| 115 | + ] |
| 116 | + }, |
| 117 | + { |
| 118 | + "cell_type": "markdown", |
| 119 | + "metadata": {}, |
| 120 | + "source": [ |
| 121 | + "## Using Tools with the Agent\n", |
| 122 | + "\n", |
| 123 | + "Now, when we ask questions, the `Agent` will utilize both the provided `tool` and the `LlamaStackChatGenerator` to generate answers. We enable the streaming in Agent, so that you can observe the tool calls and the tool results in real time.\n" |
| 124 | + ] |
| 125 | + }, |
| 126 | + { |
| 127 | + "cell_type": "code", |
| 128 | + "execution_count": 7, |
| 129 | + "metadata": {}, |
| 130 | + "outputs": [ |
| 131 | + { |
| 132 | + "name": "stdout", |
| 133 | + "output_type": "stream", |
| 134 | + "text": [ |
| 135 | + "[TOOL CALL]\n", |
| 136 | + "Tool: weather \n", |
| 137 | + "Arguments: {\"city\":\"Tokyo\"}\n", |
| 138 | + "\n", |
| 139 | + "[TOOL RESULT]\n", |
| 140 | + "The weather in Tokyo is sunny and 32°C\n", |
| 141 | + "\n", |
| 142 | + "In[ASSISTANT]\n", |
| 143 | + " Tokyo, the current weather conditions are mostly sunny with a temperature of 32°C. Would you like to know more about Tokyo's climate or weather forecast for a specific date?\n", |
| 144 | + "\n" |
| 145 | + ] |
| 146 | + } |
| 147 | + ], |
| 148 | + "source": [ |
| 149 | + "# Create a message asking about the weather\n", |
| 150 | + "messages = [ChatMessage.from_user(\"What's the weather in Tokyo?\")]\n", |
| 151 | + "\n", |
| 152 | + "# Generate a response from the model with access to tools\n", |
| 153 | + "response = agent.run(messages=messages, tools=[weather_tool], streaming_callback=print_streaming_chunk,\n", |
| 154 | + ")\n", |
| 155 | + "\n" |
| 156 | + ] |
| 157 | + }, |
| 158 | + { |
| 159 | + "cell_type": "markdown", |
| 160 | + "metadata": {}, |
| 161 | + "source": [ |
| 162 | + "## Simple Chat with ChatGenerator\n", |
| 163 | + "For a simpler use case, you can also create a lightweight mechanism to chat directly with `LlamaStackChatGenerator`." |
| 164 | + ] |
| 165 | + }, |
| 166 | + { |
| 167 | + "cell_type": "code", |
| 168 | + "execution_count": 15, |
| 169 | + "metadata": {}, |
| 170 | + "outputs": [ |
| 171 | + { |
| 172 | + "name": "stdout", |
| 173 | + "output_type": "stream", |
| 174 | + "text": [ |
| 175 | + "🤖 The main character in The Witcher series, also known as the eponymous figure, is Geralt of Rivia, a monster hunter with supernatural abilities and mutations that allow him to control the elements. He was created by Polish author_and_polish_video_game_development_company_(CD Projekt).\n", |
| 176 | + "🤖 One of the most fascinating aspects of dolphin behavior is their ability to produce complex, context-dependent vocalizations that are unique to each individual, similar to human language. They also exhibit advanced social behaviors, such as cooperation, empathy, and self-awareness.\n" |
| 177 | + ] |
| 178 | + } |
| 179 | + ], |
| 180 | + "source": [ |
| 181 | + "messages = []\n", |
| 182 | + "\n", |
| 183 | + "while True:\n", |
| 184 | + " msg = input(\"Enter your message or Q to exit\\n🧑 \")\n", |
| 185 | + " if msg==\"Q\":\n", |
| 186 | + " break\n", |
| 187 | + " messages.append(ChatMessage.from_user(msg))\n", |
| 188 | + " response = chat_generator.run(messages=messages)\n", |
| 189 | + " assistant_resp = response['replies'][0]\n", |
| 190 | + " print(\"🤖 \"+assistant_resp.text)\n", |
| 191 | + " messages.append(assistant_resp)" |
| 192 | + ] |
| 193 | + }, |
| 194 | + { |
| 195 | + "cell_type": "markdown", |
| 196 | + "metadata": {}, |
| 197 | + "source": [ |
| 198 | + "If you want to switch your model provider, you can reuse the same `LlamaStackChatGenerator` code with different providers. Simply run the desired inference provider on the Llama Stack Server and update the model name during the initialization of `LlamaStackChatGenerator`.\n", |
| 199 | + "\n", |
| 200 | + "For more details on available inference providers, see (Llama Stack docs)[https://llama-stack.readthedocs.io/en/latest/providers/inference/index.html]." |
| 201 | + ] |
| 202 | + } |
| 203 | + ], |
| 204 | + "metadata": { |
| 205 | + "kernelspec": { |
| 206 | + "display_name": ".venv", |
| 207 | + "language": "python", |
| 208 | + "name": "python3" |
| 209 | + }, |
| 210 | + "language_info": { |
| 211 | + "codemirror_mode": { |
| 212 | + "name": "ipython", |
| 213 | + "version": 3 |
| 214 | + }, |
| 215 | + "file_extension": ".py", |
| 216 | + "mimetype": "text/x-python", |
| 217 | + "name": "python", |
| 218 | + "nbconvert_exporter": "python", |
| 219 | + "pygments_lexer": "ipython3", |
| 220 | + "version": "3.13.5" |
| 221 | + } |
| 222 | + }, |
| 223 | + "nbformat": 4, |
| 224 | + "nbformat_minor": 2 |
| 225 | +} |
0 commit comments