You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Refactor: Migrate ML KEDF Descriptor Calculation & Output to module_io (#6287)
* Refactor: Move the code about calculation and output of ML KEDF descriptors to module_io
* Refactor: Remove ml_data.h, ml_data.cpp, and ml_data_descriptor.cpp
* Doc: Update the doc of of_ml_gene_data.
Copy file name to clipboardExpand all lines: docs/advanced/input_files/input-main.md
+23-2Lines changed: 23 additions & 2 deletions
Original file line number
Diff line number
Diff line change
@@ -2378,8 +2378,29 @@ Warning: this function is not robust enough for the current version. Please try
2378
2378
### of_ml_gene_data
2379
2379
2380
2380
-**Type**: Boolean
2381
-
-**Availability**: OFDFT
2382
-
-**Description**: Generate training data or not.
2381
+
-**Availability**: Used only for KSDFT with plane wave basis
2382
+
-**Description**: Controls the generation of machine learning training data. When enabled, training data in `.npy` format will be saved in the directory `OUT.${suffix}/MLKEDF_Descriptors/`. The generated descriptors are categorized as follows:
2383
+
- Local/Semilocal Descriptors. Files are named as `{var}.npy`, where `{var}` corresponds to the descriptor type:
2384
+
-`gamma`: Enabled by [of_ml_gamma](#of_ml_gamma)
2385
+
-`p`: Enabled by [of_ml_p](#of_ml_p)
2386
+
-`q`: Enabled by [of_ml_q](#of_ml_q)
2387
+
-`tanhp`: Enabled by [of_ml_tanhp](#of_ml_tanhp)
2388
+
-`tanhq`: Enabled by [of_ml_tanhq](#of_ml_tanhq)
2389
+
- Nonlocal Descriptors generated using kernels configured via [of_ml_nkernel](#of_ml_nkernel), [of_ml_kernel](#of_ml_kernel), and [of_ml_kernel_scaling](#of_ml_kernel_scaling). Files follow the naming convention `{var}_{kernel_type}_{kernel_scaling}.npy`, where `{kernel_type}` and `{kernel_scaling}` are specified by [of_ml_kernel](#of_ml_kernel), and [of_ml_kernel_scaling](#of_ml_kernel_scaling), respectively, and `{val}` denotes the kind of the descriptor, including
2390
+
-`gammanl`: Enabled by [of_ml_gammanl](#of_ml_gammanl)
2391
+
-`pnl`: Enabled by [of_ml_pnl](#of_ml_pnl)
2392
+
-`qnl`: Enabled by [of_ml_qnl](#of_ml_qnl)
2393
+
-`xi`: Enabled by [of_ml_xi](#of_ml_xi)
2394
+
-`tanhxi`: Enabled by [of_ml_tanhxi](#of_ml_tanhxi)
2395
+
-`tanhxi_nl`: Enabled by [of_ml_tanhxi_nl](#of_ml_tanhxi_nl)
2396
+
-`tanh_pnl`: Enabled by [of_ml_tanh_pnl](#of_ml_tanh_pnl)
2397
+
-`tanh_qnl`: Enabled by [of_ml_tanh_qnl](#of_ml_tanh_qnl)
2398
+
-`tanhp_nl`: Enabled by [of_ml_tanhp_nl](#of_ml_tanhp_nl)
2399
+
-`tanhq_nl`: Enabled by [of_ml_tanhq_nl](#of_ml_tanhq_nl)
2400
+
- Training Targets, including key quantum mechanical quantities:
2401
+
-`enhancement.npy`: Pauli energy enhancement factor $T_\theta/T_{\rm{TF}}$, where $T_{\rm{TF}}$ is the Thomas-Fermi functional
0 commit comments