@@ -186,44 +186,22 @@ def from_config(cls, config):
186
186
class TokenizerLayer (tf .keras .layers .Layer ):
187
187
188
188
def __init__ (self , max_seq_length , ** kwargs ):
189
- #
190
- super (GPT2Layer , self ).__init__ (** kwargs )
191
- #
192
- # Load the GPT2 tokenizer, preprocessor and model
193
- self .tokenizer = GPT2Tokenizer .from_preset ("gpt2_extra_large_en" ) # "gpt2_base_en"
194
- self .preprocessor = GPT2Preprocessor (self .tokenizer ,
195
- sequence_length = max_seq_length )
196
- # self.encoder = GPT2Backbone.from_preset("gpt2_base_en")
197
- #
198
- # Set whether the GPT2 model's layers are trainable
199
- # self.encoder.trainable = False
200
- # for layer in self.encoder.layers:
201
- # layer.trainable = False
202
- #
203
- # self.encoder.layers[-2].trainable = True
204
- #
205
- # Set the maximum sequence length for tokenization
189
+ super (TokenizerLayer , self ).__init__ (** kwargs ) # Update this line
190
+ self .tokenizer = GPT2Tokenizer .from_preset ("gpt2_extra_large_en" )
191
+ self .preprocessor = GPT2Preprocessor (self .tokenizer , sequence_length = max_seq_length )
206
192
self .max_seq_length = max_seq_length
207
193
208
194
def call (self , inputs ):
209
- #
210
- # Output the GPT2 embedding
211
195
prep = self .preprocessor ([inputs ])
212
- # embedding = self.encoder(prep)
213
- # avg_pool = tf.reduce_mean(embedding, axis=1)
214
- #
215
196
return prep ['token_ids' ]
216
197
217
198
def get_config (self ):
218
- #
219
- config = super (GPT2Layer , self ).get_config ()
199
+ config = super (TokenizerLayer , self ).get_config ()
220
200
config .update ({'max_seq_length' : self .max_seq_length })
221
- #
222
201
return config
223
202
224
203
@classmethod
225
204
def from_config (cls , config ):
226
- #
227
205
return cls (max_seq_length = config ['max_seq_length' ])
228
206
229
207
# GPT2 configurables
0 commit comments