-
Notifications
You must be signed in to change notification settings - Fork 6
Open
Description
We should not expect the classifier to return at least several proba. The error is:
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
<ipython-input-30-2b90468e1fd1> in <module>
4 n_init_points,
5 base_model,
----> 6 semi_model)
<ipython-input-25-008649b258dd> in run_experiment(X_train, X_test, y_train, y_test, batch_size, n_iter, n_init_points, base_model, semi_model)
118 sampler.fit(X_train[selected], y_train[selected])
119
--> 120 new_selected = sampler.select_samples(X_train[~selected])
121 new_selected = new_selected.astype(int)
122 selected[index[~selected][new_selected]] = True
~/dss/code-envs/python/alssl/lib/python3.6/site-packages/cardinAL/base.py in select_samples(self, X, strategy)
29
30 def select_samples(self, X, strategy='top'):
---> 31 sample_scores = self.score_samples(X)
32 self.sample_scores_ = sample_scores
33 if strategy == 'top':
~/dss/code-envs/python/alssl/lib/python3.6/site-packages/cardinAL/uncertainty.py in score_samples(self, X)
175 predictions (np.array): Returns an array where selected samples are classified as 1.
176 """
--> 177 return margin_score(self.classifier_, X)
178
179
~/dss/code-envs/python/alssl/lib/python3.6/site-packages/cardinAL/uncertainty.py in margin_score(classifier, X)
45 """
46 classwise_uncertainty = _get_probability_classes(classifier, X)
---> 47 part = np.partition(classwise_uncertainty, -2, axis=1)
48 margin = 1 - (part[:, -1] - part[:, -2])
49 return margin
<__array_function__ internals> in partition(*args, **kwargs)
~/dss/code-envs/python/alssl/lib/python3.6/site-packages/numpy/core/fromnumeric.py in partition(a, kth, axis, kind, order)
744 else:
745 a = asanyarray(a).copy(order="K")
--> 746 a.partition(kth, axis=axis, kind=kind, order=order)
747 return a
748
ValueError: kth(=-1) out of bounds (1)
Metadata
Metadata
Assignees
Labels
No labels