Skip to content

Commit 5100a34

Browse files
committed
improve update when selecting new company or fiscal year
1 parent 5f9df01 commit 5100a34

File tree

1 file changed

+66
-70
lines changed

1 file changed

+66
-70
lines changed

app/pages/company/company.py

Lines changed: 66 additions & 70 deletions
Original file line numberDiff line numberDiff line change
@@ -1,3 +1,4 @@
1+
from mimetypes import init
12

23
import numpy as np
34
import pandas as pd
@@ -30,61 +31,59 @@
3031
company_upe_code = df_selected_company['upe_code'].unique()[0]
3132
number_of_tracked_reports_company = algo.number_of_tracked_reports_company(df_selected_company)
3233

33-
def download_viz1(state): download_el(state,viz1)
34-
def update_viz1(state):
35-
state.viz1['data'] = state.company_sector
3634

35+
36+
def download_viz_1(state): download_el(state,viz1)
37+
def update_viz_1(state):
38+
state.viz1['data'] = state.company_sector
3739
viz1 = {
3840
'data': company_sector,
3941
'title': "Sector",
4042
'sub_title': "",
41-
'on_action': download_viz1
43+
'on_action': download_viz_1
4244
}
4345

4446

45-
def download_viz2(state): download_el(state,viz2)
47+
def download_viz_2(state): download_el(state,viz2)
4648
viz2 = {
4749
'data': company_upe_code,
4850
'title': "Headquarter",
4951
'sub_title': "",
50-
'on_action': download_viz2
52+
'on_action': download_viz_2
5153
}
52-
def update_viz2(state):
54+
def update_viz_2(state):
5355
state.viz2['data'] = state.company_upe_code
5456

55-
def download_viz3(state): download_el(state,viz3)
57+
def download_viz_3(state): download_el(state,viz3)
5658
viz3 = {
5759
'data': number_of_tracked_reports_company,
5860
'title': "Reports",
5961
'sub_title': "CbC reports tracked",
60-
'on_action': download_viz3
62+
'on_action': download_viz_3
6163
}
62-
def update_viz3(state):
64+
def update_viz_3(state):
6365
state.viz3['data'] = state.number_of_tracked_reports_company
6466

65-
def download_viz4(state): download_el(state,viz4)
67+
def download_viz_4(state): download_el(state,viz4)
6668
viz4 = {
6769
'data': number_of_tracked_reports_company,
6870
'title': "CbC Transparency Grade",
6971
'sub_title': "average over all reports",
70-
'on_action': download_viz4
72+
'on_action': download_viz_4
7173
}
72-
def update_viz4(state):
74+
def update_viz_4(state):
7375
state.viz4['data'] = state.number_of_tracked_reports_company
7476

75-
76-
def download_viz5(state): download_el(state,viz5)
77+
def download_viz_5(state): download_el(state,viz5)
7778
viz5 = {
7879
'data': number_of_tracked_reports_company,
7980
'title': "CbC Transparency Grade",
8081
'sub_title': "selected fiscal year",
81-
'on_action': download_viz5
82+
'on_action': download_viz_5
8283
}
83-
def update_viz5(state):
84+
def update_viz_5(state):
8485
state.viz5['data'] = state.number_of_tracked_reports_company
8586

86-
87-
8887
# Viz 26
8988
data_viz_26 = algo.compute_transparency_score(data, selected_company)
9089
def download_viz_26(state): download_el(state,viz_26)
@@ -94,11 +93,10 @@ def download_viz_26(state): download_el(state,viz_26)
9493
'sub_title': "",
9594
'on_action': download_viz_26
9695
}
97-
def update_viz26(state):
96+
def update_viz_26(state):
9897
data_viz_26 = algo.compute_transparency_score(state.data, state.selected_company)
9998
state.viz_26['data'] = data_viz_26
10099

101-
102100
# Viz 13
103101
data_key_metric = algo.compute_company_key_financials_kpis(
104102
data, selected_company,int(selected_year))
@@ -124,7 +122,6 @@ def update_viz_13(state):
124122
fig_viz_14 = algo.display_jurisdictions_top_revenue(
125123
data, selected_company, int(selected_year)
126124
)
127-
128125
def download_viz_14(state): download_el(state,viz_14)
129126
viz_14 = {
130127
'fig': fig_viz_14,
@@ -143,6 +140,7 @@ def update_viz_14(state):
143140
state.viz_14['data'] = data_viz_14
144141
state.viz_14['sub_title'] = f"Selected fiscal year {selected_year}"
145142

143+
146144
data_viz_15 = algo.compute_pretax_profit_and_employees_rank(
147145
data, selected_company, int(selected_year))
148146
fig_viz_15 = algo.display_pretax_profit_and_employees_rank(
@@ -204,14 +202,26 @@ def download_viz_15(state): download_el(state,viz_15)
204202
'sub_title': "CbC reports tracked",
205203
'on_action': download_viz_15
206204
}
205+
def update_viz_15(state):
206+
data_viz_15 = algo.compute_pretax_profit_and_employees_rank(
207+
state.data, state.selected_company, int(state.selected_year))
208+
fig_viz_15 = algo.display_pretax_profit_and_employees_rank(
209+
state.data, state.selected_company, int(state.selected_year))
210+
state.viz_15['fig'] = fig_viz_15
211+
state.viz_15['data'] = data_viz_15
212+
213+
214+
215+
207216
def download_viz_16(state): download_el(state,viz_16)
208217
viz_16 = {
209218
'data': None,
210219
'title': "% profit and profit / employee by partner jurisdiction",
211220
'sub_title': "CbC reports tracked",
212221
'on_action': download_viz_16
213222
}
214-
223+
def update_viz_16(state):
224+
print('TODO')
215225

216226
def download_viz_17(state): download_el(state,viz_17)
217227
viz_17 = {
@@ -230,7 +240,6 @@ def download_viz_17(state): download_el(state,viz_17)
230240
)
231241

232242
layout={ "barmode": "stack" }
233-
234243
# algo.display_related_and_unrelated_revenues_breakdown(data, selected_company, selected_year)
235244
def download_viz_18(state): download_el(state,viz_18)
236245
viz_18 = {
@@ -239,8 +248,17 @@ def download_viz_18(state): download_el(state,viz_18)
239248
'title': "Breakdown of revenue between unrelated and related revenue",
240249
'sub_title': "domestic vs. havens vs. non havens, selected fiscal year",
241250
'on_action': download_viz_18,
242-
243251
}
252+
def update_viz_18(state):
253+
data_viz_18_dict = algo.compute_related_and_unrelated_revenues_breakdown(
254+
state.data, state.selected_company, int(state.selected_year))
255+
data_viz_18 = pd.DataFrame.from_dict(data_viz_18_dict, orient='index').reset_index()
256+
fig_viz_18 = algo.display_related_and_unrelated_revenues_breakdown(
257+
state.data, state.selected_company, int(state.selected_year)
258+
)
259+
state.viz_18['fig'] = fig_viz_18
260+
state.viz_18['data'] = data_viz_18
261+
244262

245263
# what are the tax havens being used by the company
246264
df_selected_company, df_selected_company_th_agg = (
@@ -252,8 +270,12 @@ def download_viz_19(state): download_el(state,viz_19)
252270
'title': "Profits, employees and revenue breakdown by tax haven",
253271
'sub_title': "selected fiscal year",
254272
'on_action': download_viz_19,
255-
256273
}
274+
def update_viz_19(state):
275+
df_selected_company, df_selected_company_th_agg = (
276+
algo.tax_haven_used_by_company(state.df_selected_company))
277+
data_viz_19 = df_selected_company_th_agg
278+
state.viz_19['data'] = data_viz_19
257279

258280
# Compute data
259281
data_viz_21_dict = algo.compute_tax_havens_use_evolution(
@@ -267,6 +289,11 @@ def download_viz_21(state): download_el(state,viz_21)
267289
'sub_title': "domestic vs. havens vs. non havens, selected fiscal year",
268290
'on_action': download_viz_21,
269291
}
292+
def update_viz_21(state):
293+
data_viz_21_dict = algo.compute_tax_havens_use_evolution(
294+
df=state.data, company=state.selected_company)
295+
data_viz_21 = pd.DataFrame.from_dict(data_viz_21_dict)
296+
state.viz_21['data'] = data_viz_21
270297

271298

272299

@@ -282,65 +309,34 @@ def on_change_company(state):
282309
state.number_of_tracked_reports_company = (
283310
algo.number_of_tracked_reports_company(state.df_selected_company))
284311

312+
update_viz_1(state)
313+
update_viz_2(state)
314+
update_viz_3(state)
285315
update_viz_13(state)
286316
update_viz_14(state)
317+
update_viz_15(state)
287318

288-
data_viz_15 = algo.compute_pretax_profit_and_employees_rank(
289-
state.data, state.selected_company, int(state.selected_year))
290-
fig_viz_15 = algo.display_pretax_profit_and_employees_rank(
291-
state.data, state.selected_company, int(state.selected_year))
319+
update_viz_18(state)
320+
update_viz_19(state)
292321

293-
data_viz_18_dict = algo.compute_related_and_unrelated_revenues_breakdown(
294-
state.data, state.selected_company, int(state.selected_year))
295-
data_viz_18 = pd.DataFrame.from_dict(data_viz_18_dict, orient='index').reset_index()
296-
fig_viz_18 = algo.display_related_and_unrelated_revenues_breakdown(
297-
state.data, state.selected_company, int(state.selected_year)
298-
)
322+
update_viz_21(state)
299323

300-
df_selected_company, df_selected_company_th_agg = (
301-
algo.tax_haven_used_by_company(state.df_selected_company))
302-
data_viz_19 = df_selected_company_th_agg
324+
update_viz_26(state)
303325

304-
data_viz_21_dict = algo.compute_tax_havens_use_evolution(
305-
df=state.data, company=state.selected_company)
306-
data_viz_21 = pd.DataFrame.from_dict(data_viz_21_dict)
307-
308-
data_viz_26 = algo.compute_transparency_score(state.data, state.selected_company)
309-
state.viz_26['data'] = data_viz_26
310-
311-
update_viz1(state)
312-
# state.viz1['data'] = state.company_sector
313-
state.viz2['data'] = state.company_upe_code
314-
state.viz3['data'] = state.number_of_tracked_reports_company
315326
state.viz4['data'] = state.number_of_tracked_reports_company
316327
state.viz5['data'] = state.number_of_tracked_reports_company
317328

318-
state.viz_15['fig'] = fig_viz_15
319-
state.viz_15['data'] = data_viz_15
320-
state.viz_18['fig'] = fig_viz_18
321-
state.viz_18['data'] = data_viz_18
322-
state.viz_19['data'] = data_viz_19
323-
state.viz_21['data'] = data_viz_21
329+
330+
331+
324332

325333
def on_change_year(state):
326334
print("Chosen year: ", state.selected_year)
327335
update_viz_13(state)
328336
update_viz_14(state)
329-
data_viz_15 = algo.compute_pretax_profit_and_employees_rank(
330-
state.data, state.selected_company, int(state.selected_year))
331-
fig_viz_15 = algo.display_pretax_profit_and_employees_rank(
332-
state.data, state.selected_company, int(state.selected_year))
333-
state.viz_15['fig'] = fig_viz_15
334-
state.viz_15['data'] = data_viz_15
337+
update_viz_15(state)
338+
update_viz_18(state)
335339

336-
data_viz_18_dict = algo.compute_related_and_unrelated_revenues_breakdown(
337-
state.data, state.selected_company, int(state.selected_year))
338-
data_viz_18 = pd.DataFrame.from_dict(data_viz_18_dict, orient='index').reset_index()
339-
fig_viz_18 = algo.display_related_and_unrelated_revenues_breakdown(
340-
state.data, state.selected_company, int(state.selected_year)
341-
)
342-
state.viz_18['fig'] = fig_viz_18
343-
state.viz_18['data'] = data_viz_18
344340

345341
def download_el(state, viz):
346342
buffer = io.StringIO()

0 commit comments

Comments
 (0)