1
+ from mimetypes import init
1
2
2
3
import numpy as np
3
4
import pandas as pd
30
31
company_upe_code = df_selected_company ['upe_code' ].unique ()[0 ]
31
32
number_of_tracked_reports_company = algo .number_of_tracked_reports_company (df_selected_company )
32
33
33
- def download_viz1 (state ): download_el (state ,viz1 )
34
- def update_viz1 (state ):
35
- state .viz1 ['data' ] = state .company_sector
36
34
35
+
36
+ def download_viz_1 (state ): download_el (state ,viz1 )
37
+ def update_viz_1 (state ):
38
+ state .viz1 ['data' ] = state .company_sector
37
39
viz1 = {
38
40
'data' : company_sector ,
39
41
'title' : "Sector" ,
40
42
'sub_title' : "" ,
41
- 'on_action' : download_viz1
43
+ 'on_action' : download_viz_1
42
44
}
43
45
44
46
45
- def download_viz2 (state ): download_el (state ,viz2 )
47
+ def download_viz_2 (state ): download_el (state ,viz2 )
46
48
viz2 = {
47
49
'data' : company_upe_code ,
48
50
'title' : "Headquarter" ,
49
51
'sub_title' : "" ,
50
- 'on_action' : download_viz2
52
+ 'on_action' : download_viz_2
51
53
}
52
- def update_viz2 (state ):
54
+ def update_viz_2 (state ):
53
55
state .viz2 ['data' ] = state .company_upe_code
54
56
55
- def download_viz3 (state ): download_el (state ,viz3 )
57
+ def download_viz_3 (state ): download_el (state ,viz3 )
56
58
viz3 = {
57
59
'data' : number_of_tracked_reports_company ,
58
60
'title' : "Reports" ,
59
61
'sub_title' : "CbC reports tracked" ,
60
- 'on_action' : download_viz3
62
+ 'on_action' : download_viz_3
61
63
}
62
- def update_viz3 (state ):
64
+ def update_viz_3 (state ):
63
65
state .viz3 ['data' ] = state .number_of_tracked_reports_company
64
66
65
- def download_viz4 (state ): download_el (state ,viz4 )
67
+ def download_viz_4 (state ): download_el (state ,viz4 )
66
68
viz4 = {
67
69
'data' : number_of_tracked_reports_company ,
68
70
'title' : "CbC Transparency Grade" ,
69
71
'sub_title' : "average over all reports" ,
70
- 'on_action' : download_viz4
72
+ 'on_action' : download_viz_4
71
73
}
72
- def update_viz4 (state ):
74
+ def update_viz_4 (state ):
73
75
state .viz4 ['data' ] = state .number_of_tracked_reports_company
74
76
75
-
76
- def download_viz5 (state ): download_el (state ,viz5 )
77
+ def download_viz_5 (state ): download_el (state ,viz5 )
77
78
viz5 = {
78
79
'data' : number_of_tracked_reports_company ,
79
80
'title' : "CbC Transparency Grade" ,
80
81
'sub_title' : "selected fiscal year" ,
81
- 'on_action' : download_viz5
82
+ 'on_action' : download_viz_5
82
83
}
83
- def update_viz5 (state ):
84
+ def update_viz_5 (state ):
84
85
state .viz5 ['data' ] = state .number_of_tracked_reports_company
85
86
86
-
87
-
88
87
# Viz 26
89
88
data_viz_26 = algo .compute_transparency_score (data , selected_company )
90
89
def download_viz_26 (state ): download_el (state ,viz_26 )
@@ -94,11 +93,10 @@ def download_viz_26(state): download_el(state,viz_26)
94
93
'sub_title' : "" ,
95
94
'on_action' : download_viz_26
96
95
}
97
- def update_viz26 (state ):
96
+ def update_viz_26 (state ):
98
97
data_viz_26 = algo .compute_transparency_score (state .data , state .selected_company )
99
98
state .viz_26 ['data' ] = data_viz_26
100
99
101
-
102
100
# Viz 13
103
101
data_key_metric = algo .compute_company_key_financials_kpis (
104
102
data , selected_company ,int (selected_year ))
@@ -124,7 +122,6 @@ def update_viz_13(state):
124
122
fig_viz_14 = algo .display_jurisdictions_top_revenue (
125
123
data , selected_company , int (selected_year )
126
124
)
127
-
128
125
def download_viz_14 (state ): download_el (state ,viz_14 )
129
126
viz_14 = {
130
127
'fig' : fig_viz_14 ,
@@ -143,6 +140,7 @@ def update_viz_14(state):
143
140
state .viz_14 ['data' ] = data_viz_14
144
141
state .viz_14 ['sub_title' ] = f"Selected fiscal year { selected_year } "
145
142
143
+
146
144
data_viz_15 = algo .compute_pretax_profit_and_employees_rank (
147
145
data , selected_company , int (selected_year ))
148
146
fig_viz_15 = algo .display_pretax_profit_and_employees_rank (
@@ -204,14 +202,26 @@ def download_viz_15(state): download_el(state,viz_15)
204
202
'sub_title' : "CbC reports tracked" ,
205
203
'on_action' : download_viz_15
206
204
}
205
+ def update_viz_15 (state ):
206
+ data_viz_15 = algo .compute_pretax_profit_and_employees_rank (
207
+ state .data , state .selected_company , int (state .selected_year ))
208
+ fig_viz_15 = algo .display_pretax_profit_and_employees_rank (
209
+ state .data , state .selected_company , int (state .selected_year ))
210
+ state .viz_15 ['fig' ] = fig_viz_15
211
+ state .viz_15 ['data' ] = data_viz_15
212
+
213
+
214
+
215
+
207
216
def download_viz_16 (state ): download_el (state ,viz_16 )
208
217
viz_16 = {
209
218
'data' : None ,
210
219
'title' : "% profit and profit / employee by partner jurisdiction" ,
211
220
'sub_title' : "CbC reports tracked" ,
212
221
'on_action' : download_viz_16
213
222
}
214
-
223
+ def update_viz_16 (state ):
224
+ print ('TODO' )
215
225
216
226
def download_viz_17 (state ): download_el (state ,viz_17 )
217
227
viz_17 = {
@@ -230,7 +240,6 @@ def download_viz_17(state): download_el(state,viz_17)
230
240
)
231
241
232
242
layout = { "barmode" : "stack" }
233
-
234
243
# algo.display_related_and_unrelated_revenues_breakdown(data, selected_company, selected_year)
235
244
def download_viz_18 (state ): download_el (state ,viz_18 )
236
245
viz_18 = {
@@ -239,8 +248,17 @@ def download_viz_18(state): download_el(state,viz_18)
239
248
'title' : "Breakdown of revenue between unrelated and related revenue" ,
240
249
'sub_title' : "domestic vs. havens vs. non havens, selected fiscal year" ,
241
250
'on_action' : download_viz_18 ,
242
-
243
251
}
252
+ def update_viz_18 (state ):
253
+ data_viz_18_dict = algo .compute_related_and_unrelated_revenues_breakdown (
254
+ state .data , state .selected_company , int (state .selected_year ))
255
+ data_viz_18 = pd .DataFrame .from_dict (data_viz_18_dict , orient = 'index' ).reset_index ()
256
+ fig_viz_18 = algo .display_related_and_unrelated_revenues_breakdown (
257
+ state .data , state .selected_company , int (state .selected_year )
258
+ )
259
+ state .viz_18 ['fig' ] = fig_viz_18
260
+ state .viz_18 ['data' ] = data_viz_18
261
+
244
262
245
263
# what are the tax havens being used by the company
246
264
df_selected_company , df_selected_company_th_agg = (
@@ -252,8 +270,12 @@ def download_viz_19(state): download_el(state,viz_19)
252
270
'title' : "Profits, employees and revenue breakdown by tax haven" ,
253
271
'sub_title' : "selected fiscal year" ,
254
272
'on_action' : download_viz_19 ,
255
-
256
273
}
274
+ def update_viz_19 (state ):
275
+ df_selected_company , df_selected_company_th_agg = (
276
+ algo .tax_haven_used_by_company (state .df_selected_company ))
277
+ data_viz_19 = df_selected_company_th_agg
278
+ state .viz_19 ['data' ] = data_viz_19
257
279
258
280
# Compute data
259
281
data_viz_21_dict = algo .compute_tax_havens_use_evolution (
@@ -267,6 +289,11 @@ def download_viz_21(state): download_el(state,viz_21)
267
289
'sub_title' : "domestic vs. havens vs. non havens, selected fiscal year" ,
268
290
'on_action' : download_viz_21 ,
269
291
}
292
+ def update_viz_21 (state ):
293
+ data_viz_21_dict = algo .compute_tax_havens_use_evolution (
294
+ df = state .data , company = state .selected_company )
295
+ data_viz_21 = pd .DataFrame .from_dict (data_viz_21_dict )
296
+ state .viz_21 ['data' ] = data_viz_21
270
297
271
298
272
299
@@ -282,65 +309,34 @@ def on_change_company(state):
282
309
state .number_of_tracked_reports_company = (
283
310
algo .number_of_tracked_reports_company (state .df_selected_company ))
284
311
312
+ update_viz_1 (state )
313
+ update_viz_2 (state )
314
+ update_viz_3 (state )
285
315
update_viz_13 (state )
286
316
update_viz_14 (state )
317
+ update_viz_15 (state )
287
318
288
- data_viz_15 = algo .compute_pretax_profit_and_employees_rank (
289
- state .data , state .selected_company , int (state .selected_year ))
290
- fig_viz_15 = algo .display_pretax_profit_and_employees_rank (
291
- state .data , state .selected_company , int (state .selected_year ))
319
+ update_viz_18 (state )
320
+ update_viz_19 (state )
292
321
293
- data_viz_18_dict = algo .compute_related_and_unrelated_revenues_breakdown (
294
- state .data , state .selected_company , int (state .selected_year ))
295
- data_viz_18 = pd .DataFrame .from_dict (data_viz_18_dict , orient = 'index' ).reset_index ()
296
- fig_viz_18 = algo .display_related_and_unrelated_revenues_breakdown (
297
- state .data , state .selected_company , int (state .selected_year )
298
- )
322
+ update_viz_21 (state )
299
323
300
- df_selected_company , df_selected_company_th_agg = (
301
- algo .tax_haven_used_by_company (state .df_selected_company ))
302
- data_viz_19 = df_selected_company_th_agg
324
+ update_viz_26 (state )
303
325
304
- data_viz_21_dict = algo .compute_tax_havens_use_evolution (
305
- df = state .data , company = state .selected_company )
306
- data_viz_21 = pd .DataFrame .from_dict (data_viz_21_dict )
307
-
308
- data_viz_26 = algo .compute_transparency_score (state .data , state .selected_company )
309
- state .viz_26 ['data' ] = data_viz_26
310
-
311
- update_viz1 (state )
312
- # state.viz1['data'] = state.company_sector
313
- state .viz2 ['data' ] = state .company_upe_code
314
- state .viz3 ['data' ] = state .number_of_tracked_reports_company
315
326
state .viz4 ['data' ] = state .number_of_tracked_reports_company
316
327
state .viz5 ['data' ] = state .number_of_tracked_reports_company
317
328
318
- state .viz_15 ['fig' ] = fig_viz_15
319
- state .viz_15 ['data' ] = data_viz_15
320
- state .viz_18 ['fig' ] = fig_viz_18
321
- state .viz_18 ['data' ] = data_viz_18
322
- state .viz_19 ['data' ] = data_viz_19
323
- state .viz_21 ['data' ] = data_viz_21
329
+
330
+
331
+
324
332
325
333
def on_change_year (state ):
326
334
print ("Chosen year: " , state .selected_year )
327
335
update_viz_13 (state )
328
336
update_viz_14 (state )
329
- data_viz_15 = algo .compute_pretax_profit_and_employees_rank (
330
- state .data , state .selected_company , int (state .selected_year ))
331
- fig_viz_15 = algo .display_pretax_profit_and_employees_rank (
332
- state .data , state .selected_company , int (state .selected_year ))
333
- state .viz_15 ['fig' ] = fig_viz_15
334
- state .viz_15 ['data' ] = data_viz_15
337
+ update_viz_15 (state )
338
+ update_viz_18 (state )
335
339
336
- data_viz_18_dict = algo .compute_related_and_unrelated_revenues_breakdown (
337
- state .data , state .selected_company , int (state .selected_year ))
338
- data_viz_18 = pd .DataFrame .from_dict (data_viz_18_dict , orient = 'index' ).reset_index ()
339
- fig_viz_18 = algo .display_related_and_unrelated_revenues_breakdown (
340
- state .data , state .selected_company , int (state .selected_year )
341
- )
342
- state .viz_18 ['fig' ] = fig_viz_18
343
- state .viz_18 ['data' ] = data_viz_18
344
340
345
341
def download_el (state , viz ):
346
342
buffer = io .StringIO ()
0 commit comments