Skip to content

Commit 5897efc

Browse files
committed
differences for PR #328
1 parent 99a5a80 commit 5897efc

File tree

5 files changed

+182
-0
lines changed

5 files changed

+182
-0
lines changed

data/A.tif

1.11 KB
Binary file not shown.

fig/blur-demo.gif

-30.6 MB
Loading
Lines changed: 24 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,24 @@
1+
# Simple blur animation of image
2+
## Installation
3+
Use the provided `env.yml` environment file to install dependencies:
4+
```bash
5+
$ conda env install -f env.yml
6+
```
7+
8+
## Usage
9+
1. Navigate to script directory:
10+
```bash
11+
$ cd ./image-processing/episodes/files/source-code/blur-animation
12+
```
13+
14+
2. Run the script using the installed virtual environment:
15+
```bash
16+
$ conda activate anim-env
17+
$ python create_blur_animation.py
18+
```
19+
20+
3. Follow prompt (choose kernel size) and press Enter.
21+
22+
23+
## Author
24+
@marcodallavecchia
Lines changed: 147 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,147 @@
1+
### METADATA
2+
# author: Marco Dalla Vecchia
3+
# description: Simple blurring animation of simple image
4+
# data-source: A.tif was created using ImageJ (https://imagej.net/ij/)
5+
###
6+
7+
### POTENTIAL IMPROVEMENTS
8+
# - Change colors for rectangular patches in animation
9+
# - Ask for image input instead of hard-coding it
10+
# - Ask for FPS as input
11+
# - Ask for animation format output
12+
13+
14+
# Import packages
15+
# Use associated requirements file to make sure you have all dependencies installed
16+
from matplotlib import pyplot as plt
17+
from matplotlib import patches as p
18+
from matplotlib.animation import FuncAnimation
19+
import numpy as np
20+
from scipy.ndimage import convolve
21+
from tqdm import tqdm
22+
23+
# Fix image path depending from where you run this script -> this should run as is, from the repo structure
24+
img_path = "../../../data/A.tif"
25+
# Change here colors to improve accessibility
26+
kernel_color = "tab:red"
27+
center_color = "tab:olive"
28+
29+
### ANIMATION FUNCTIONS
30+
def init():
31+
"""
32+
Initialization function
33+
- Set image array data
34+
- Autoscale image display
35+
- Set XY coordinates of rectangular patches
36+
"""
37+
im.set_array(img_convolved)
38+
im.autoscale()
39+
k_rect.set_xy((-0.5, -0.5))
40+
c_rect1.set_xy((kernel_size / 2 - 1, kernel_size / 2 - 1))
41+
return [im, k_rect, c_rect1]
42+
43+
def update(frame):
44+
"""
45+
Animation update function. For every frame do the following:
46+
- Update X and Y coordinates of rectangular patch for kernel
47+
- Update X and Y coordinates of rectangular patch for central pixel
48+
- Update blurred image frame
49+
"""
50+
pbar.update(1)
51+
row = (frame % total_frames) // (img_pad.shape[1] - kernel_size + 1)
52+
col = (frame % total_frames) % (img_pad.shape[1] - kernel_size + 1)
53+
54+
k_rect.set_x(col - 0.5)
55+
c_rect1.set_x(col + (kernel_size/2 - 1))
56+
k_rect.set_y(row - 0.5)
57+
c_rect1.set_y(row + (kernel_size/2 - 1))
58+
59+
im.set_array(all_frames[frame])
60+
im.autoscale()
61+
62+
return [im, k_rect, c_rect1]
63+
64+
# MAIN PROGRAM
65+
if __name__ == "__main__":
66+
# simple input to ask for kernel size
67+
print("Please provide kernel size for mean filter blur animation")
68+
kernel_size = int(input("> "))
69+
70+
while kernel_size % 2 == 0:
71+
print("Please use an odd kernel size")
72+
kernel_size = int(input("> "))
73+
74+
print("Creating blurred animation with kernel size:", kernel_size)
75+
76+
# Load image
77+
img = plt.imread(img_path)
78+
79+
### HERE WE USE THE CONVOLVE FUNCTION TO GET THE FINAL BLURRED IMAGE
80+
# I chose a simple mean filter (equal kernel weights)
81+
kernel = np.ones(shape=(kernel_size, kernel_size)) / kernel_size ** 2 # create kernel
82+
# convolve the image i.e. apply mean filter
83+
img_convolved = convolve(img, kernel, mode='constant', cval=0) # pad borders with zero like below for consistency
84+
85+
86+
### HERE WE CONVOLVE MANUALLY STEP-BY-STEP TO CREATE ANIMATION
87+
img_pad = np.pad(img, (int(np.ceil(kernel_size/2) - 1), int(np.ceil(kernel_size/2) - 1))) # Pad image to deal with borders
88+
new_img = np.zeros(img.shape, dtype=np.uint16) # this will be the blurred final image
89+
90+
# add first frame with complete blurred image for print version of GIF
91+
all_frames = [img_convolved]
92+
93+
# precompute animation frames and append to the list
94+
total_frames = (img_pad.shape[0] - kernel_size + 1) * (img_pad.shape[1] - kernel_size + 1) # total frames if by change image is not squared
95+
for frame in range(total_frames):
96+
row = (frame % total_frames) // (img_pad.shape[1] - kernel_size + 1) # row index
97+
col = (frame % total_frames) % (img_pad.shape[1] - kernel_size + 1) # col index
98+
img_chunk = img_pad[row : row + kernel_size, col : col + kernel_size] # get current image chunk inside the kernel
99+
new_img[row, col] = np.mean(img_chunk).astype(np.uint16) # calculate its mean -> mean filter
100+
all_frames.append(new_img.copy()) # append to animation frames list
101+
102+
# We now have an extra frame
103+
total_frames += 1
104+
105+
### FROM HERE WE START CREATING THE ANIMATION
106+
# Initialize canvas
107+
f, (ax1, ax2) = plt.subplots(1,2, figsize=(10,5))
108+
109+
# Display the padded image -> this one won't change during the animation
110+
ax1.imshow(img_pad, cmap='gray')
111+
# Initialize the blurred image -> this is the first frame with already the final result
112+
im = ax2.imshow(img_convolved, animated=True, cmap='gray')
113+
114+
# Define rectangular patches to identify moving kernel
115+
k_rect = p.Rectangle((-0.5,-0.5), kernel_size, kernel_size, linewidth=2, edgecolor=kernel_color, facecolor='none', alpha=0.8) # kernel rectangle
116+
c_rect1 = p.Rectangle(((kernel_size/2 - 1), (kernel_size/2 - 1)), 1, 1, linewidth=2, edgecolor=center_color, facecolor='none') # central pixel rectangle
117+
# Add them to the figure
118+
ax1.add_patch(k_rect)
119+
ax1.add_patch(c_rect1)
120+
121+
# Fix limits to the right image (without padding) is the same size as the left image (with padding)
122+
ax2.set(
123+
ylim=((img_pad.shape[0] - kernel_size / 2), -kernel_size / 2),
124+
xlim=(-kernel_size / 2, (img_pad.shape[0] - kernel_size / 2))
125+
)
126+
127+
# We don't need to see the ticks
128+
ax1.axis("off")
129+
ax2.axis("off")
130+
131+
# Create progress bar to visualize animation progress
132+
pbar = tqdm(total=total_frames)
133+
134+
### HERE WE CREATE THE ANIMATION
135+
# Use FuncAnimation to create the animation
136+
ani = FuncAnimation(
137+
f, update,
138+
frames=range(total_frames),
139+
interval=50, # we could change the animation speed
140+
init_func=init,
141+
blit=True
142+
)
143+
144+
# Export animation
145+
plt.tight_layout()
146+
ani.save('../../../fig/blur-demo.gif')
147+
print("Animation exported")
Lines changed: 11 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,11 @@
1+
name: anim-env
2+
channels:
3+
- defaults
4+
dependencies:
5+
- python=3.11
6+
- pandas
7+
- scikit-image
8+
- seaborn
9+
- pooch
10+
- jupyterlab
11+
- tqdm

0 commit comments

Comments
 (0)