|
| 1 | +import itertools |
| 2 | + |
| 3 | +import numpy as np |
| 4 | + |
| 5 | + |
| 6 | +def test_dtype_identity(): |
| 7 | + """Confirm the intended behavior for ``asarray`` results. |
| 8 | +
|
| 9 | + The result of ``asarray()`` should have the dtype provided through the |
| 10 | + keyword argument, when used. This forces unique array handles to be |
| 11 | + produced for unique np.dtype objects, but (for equivalent dtypes), the |
| 12 | + underlying data (the base object) is shared with the original array object. |
| 13 | +
|
| 14 | + Ref https://github.com/numpy/numpy/issues/1468 |
| 15 | + """ |
| 16 | + int_array = np.array([1, 2, 3], dtype='i') |
| 17 | + assert np.asarray(int_array) is int_array |
| 18 | + |
| 19 | + # The character code resolves to the singleton dtype object provided |
| 20 | + # by the numpy package. |
| 21 | + assert np.asarray(int_array, dtype='i') is int_array |
| 22 | + |
| 23 | + # Derive a dtype from n.dtype('i'), but add a metadata object to force |
| 24 | + # the dtype to be distinct. |
| 25 | + unequal_type = np.dtype('i', metadata={'spam': True}) |
| 26 | + annotated_int_array = np.asarray(int_array, dtype=unequal_type) |
| 27 | + assert annotated_int_array is not int_array |
| 28 | + assert annotated_int_array.base is int_array |
| 29 | + # Create an equivalent descriptor with a new and distinct dtype instance. |
| 30 | + equivalent_requirement = np.dtype('i', metadata={'spam': True}) |
| 31 | + annotated_int_array_alt = np.asarray(annotated_int_array, |
| 32 | + dtype=equivalent_requirement) |
| 33 | + assert unequal_type == equivalent_requirement |
| 34 | + assert unequal_type is not equivalent_requirement |
| 35 | + assert annotated_int_array_alt is not annotated_int_array |
| 36 | + assert annotated_int_array_alt.dtype is equivalent_requirement |
| 37 | + |
| 38 | + # Check the same logic for a pair of C types whose equivalence may vary |
| 39 | + # between computing environments. |
| 40 | + # Find an equivalent pair. |
| 41 | + integer_type_codes = ('i', 'l', 'q') |
| 42 | + integer_dtypes = [np.dtype(code) for code in integer_type_codes] |
| 43 | + typeA = None |
| 44 | + typeB = None |
| 45 | + for typeA, typeB in itertools.permutations(integer_dtypes, r=2): |
| 46 | + if typeA == typeB: |
| 47 | + assert typeA is not typeB |
| 48 | + break |
| 49 | + assert isinstance(typeA, np.dtype) and isinstance(typeB, np.dtype) |
| 50 | + |
| 51 | + # These ``asarray()`` calls may produce a new view or a copy, |
| 52 | + # but never the same object. |
| 53 | + long_int_array = np.asarray(int_array, dtype='l') |
| 54 | + long_long_int_array = np.asarray(int_array, dtype='q') |
| 55 | + assert long_int_array is not int_array |
| 56 | + assert long_long_int_array is not int_array |
| 57 | + assert np.asarray(long_int_array, dtype='q') is not long_int_array |
| 58 | + array_a = np.asarray(int_array, dtype=typeA) |
| 59 | + assert typeA == typeB |
| 60 | + assert typeA is not typeB |
| 61 | + assert array_a.dtype is typeA |
| 62 | + assert array_a is not np.asarray(array_a, dtype=typeB) |
| 63 | + assert np.asarray(array_a, dtype=typeB).dtype is typeB |
| 64 | + assert array_a is np.asarray(array_a, dtype=typeB).base |
0 commit comments