27
27
< p align ="center ">
28
28
< img src ="https://microsoft.github.io/aug-models/embgam_gif.gif " width ="18% ">
29
29
< img align ="center " width =40% src ="https://csinva.io/imodelsX/imodelsx_logo.svg?sanitize=True&kill_cache=1 "> </ img > < img src ="https://microsoft.github.io/aug-models/embgam_gif.gif " width ="18% "> </ p >
30
- < p align ="center "> Library to explain < i > a dataset </ i > in natural language .
30
+ < p align ="center "> Scikit-learn friendly library to interpret, predict, and prompt-engineer text datasets .
31
31
</ p >
32
32
< p align ="center ">
33
33
< a href ="https://github.com/csinva/imodelsX/tree/master/demo_notebooks "> 📖 demo notebooks</ a >
@@ -133,7 +133,7 @@ <h3 id="d3-describedistributionaldifferences">D3 (DescribeDistributionalDifferen
133
133
batch_size=64,
134
134
)
135
135
</ code > </ pre >
136
- < h3 id ="aug-models "> Aug-models </ h3 >
136
+ < h3 id ="aug-imodels "> Aug-imodels </ h3 >
137
137
< p > Use these just a like a scikit-learn model. During training, they fit better features via LLMs, but at test-time they are extremely fast and completely transparent.</ p >
138
138
< pre > < code class ="language-python "> from imodelsx import AugGAMClassifier, AugTreeClassifier, AugGAMRegressor, AugTreeRegressor
139
139
import datasets
@@ -165,10 +165,10 @@ <h3 id="aug-models">Aug-models</h3>
165
165
for k, v in sorted(m.coefs_dict_.items(), key=lambda item: item[1])[:8]:
166
166
print('\t', k, round(v, 2))
167
167
</ code > </ pre >
168
- < h3 id ="linear-finetune " > Linear finetune </ h3 >
169
- < p > An easy -to-fit baseline that follows the same API.</ p >
170
- < pre > < code class ="language-python "> from imodelsx import LinearFinetuneClassifier
171
- # fit a simple one-layer finetune
168
+ < h3 id ="easy-baselines " > Easy baselines </ h3 >
169
+ < p > Easy -to-fit baselines that follows the same API.</ p >
170
+ < pre > < code class ="language-python "> from imodelsx import LinearFinetuneClassifier, LinearNgramClassifier
171
+ # fit a simple one-layer finetune on top of LLM embeddings
172
172
m = LinearFinetuneClassifier(
173
173
checkpoint='distilbert-base-uncased',
174
174
)
@@ -252,6 +252,10 @@ <h2 class="section-title" id="header-submodules">Sub-modules</h2>
252
252
< dd >
253
253
< div class ="desc "> < p > Simple scikit-learn interface for finetuning a single linear layer on top of LLM embeddings.</ p > </ div >
254
254
</ dd >
255
+ < dt > < code class ="name "> < a title ="imodelsx.linear_ngram " href ="linear_ngram.html "> imodelsx.linear_ngram</ a > </ code > </ dt >
256
+ < dd >
257
+ < div class ="desc "> < p > Simple scikit-learn interface for finetuning a single linear layer on top of LLM embeddings.</ p > </ div >
258
+ </ dd >
255
259
< dt > < code class ="name "> < a title ="imodelsx.llm " href ="llm.html "> imodelsx.llm</ a > </ code > </ dt >
256
260
< dd >
257
261
< div class ="desc "> </ div >
@@ -296,8 +300,8 @@ <h1>Index</h1>
296
300
< li > < a href ="#quickstart "> Quickstart</ a > < ul >
297
301
< li > < a href ="#iprompt "> iPrompt</ a > </ li >
298
302
< li > < a href ="#d3-describedistributionaldifferences "> D3 (DescribeDistributionalDifferences)</ a > </ li >
299
- < li > < a href ="#aug-models "> Aug-models </ a > </ li >
300
- < li > < a href ="#linear-finetune " > Linear finetune </ a > </ li >
303
+ < li > < a href ="#aug-imodels "> Aug-imodels </ a > </ li >
304
+ < li > < a href ="#easy-baselines " > Easy baselines </ a > </ li >
301
305
< li > < a href ="#sasc "> SASC</ a > </ li >
302
306
</ ul >
303
307
</ li >
@@ -315,6 +319,7 @@ <h1>Index</h1>
315
319
< li > < code > < a title ="imodelsx.dummy_script " href ="dummy_script.html "> imodelsx.dummy_script</ a > </ code > </ li >
316
320
< li > < code > < a title ="imodelsx.iprompt " href ="iprompt/index.html "> imodelsx.iprompt</ a > </ code > </ li >
317
321
< li > < code > < a title ="imodelsx.linear_finetune " href ="linear_finetune.html "> imodelsx.linear_finetune</ a > </ code > </ li >
322
+ < li > < code > < a title ="imodelsx.linear_ngram " href ="linear_ngram.html "> imodelsx.linear_ngram</ a > </ code > </ li >
318
323
< li > < code > < a title ="imodelsx.llm " href ="llm.html "> imodelsx.llm</ a > </ code > </ li >
319
324
< li > < code > < a title ="imodelsx.metrics " href ="metrics.html "> imodelsx.metrics</ a > </ code > </ li >
320
325
< li > < code > < a title ="imodelsx.process_results " href ="process_results.html "> imodelsx.process_results</ a > </ code > </ li >
0 commit comments