@@ -10233,17 +10233,17 @@
10233
10233
float betaf(float x, float y);
10234
10234
long double betal(long double x, long double y);
10235
10235
10236
- // \ref {sf.cmath.comp_ellint_1 }, ( complete) elliptic integral of the first kind
10236
+ // \ref {sf.cmath.comp_ellint_1 }, complete elliptic integral of the first kind
10237
10237
double comp_ellint_1(double k);
10238
10238
float comp_ellint_1f(float k);
10239
10239
long double comp_ellint_1l(long double k);
10240
10240
10241
- // \ref {sf.cmath.comp_ellint_2 }, ( complete) elliptic integral of the second kind
10241
+ // \ref {sf.cmath.comp_ellint_2 }, complete elliptic integral of the second kind
10242
10242
double comp_ellint_2(double k);
10243
10243
float comp_ellint_2f(float k);
10244
10244
long double comp_ellint_2l(long double k);
10245
10245
10246
- // \ref {sf.cmath.comp_ellint_3 }, ( complete) elliptic integral of the third kind
10246
+ // \ref {sf.cmath.comp_ellint_3 }, complete elliptic integral of the third kind
10247
10247
double comp_ellint_3(double k, double nu);
10248
10248
float comp_ellint_3f(float k, float nu);
10249
10249
long double comp_ellint_3l(long double k, long double nu);
10253
10253
float cyl_bessel_if(float nu, float x);
10254
10254
long double cyl_bessel_il(long double nu, long double x);
10255
10255
10256
- // \ref {sf.cmath.cyl_bessel_j }, cylindrical Bessel functions ( of the first kind)
10256
+ // \ref {sf.cmath.cyl_bessel_j }, cylindrical Bessel functions of the first kind
10257
10257
double cyl_bessel_j(double nu, double x);
10258
10258
float cyl_bessel_jf(float nu, float x);
10259
10259
long double cyl_bessel_jl(long double nu, long double x);
@@ -10264,22 +10264,22 @@
10264
10264
long double cyl_bessel_kl(long double nu, long double x);
10265
10265
10266
10266
// \ref {sf.cmath.cyl_neumann }, cylindrical Neumann functions;
10267
- // cylindrical Bessel functions ( of the second kind):
10267
+ // cylindrical Bessel functions of the second kind
10268
10268
double cyl_neumann(double nu, double x);
10269
10269
float cyl_neumannf(float nu, float x);
10270
10270
long double cyl_neumannl(long double nu, long double x);
10271
10271
10272
- // \ref {sf.cmath.ellint_1 }, ( incomplete) elliptic integral of the first kind
10272
+ // \ref {sf.cmath.ellint_1 }, incomplete elliptic integral of the first kind
10273
10273
double ellint_1(double k, double phi);
10274
10274
float ellint_1f(float k, float phi);
10275
10275
long double ellint_1l(long double k, long double phi);
10276
10276
10277
- // \ref {sf.cmath.ellint_2 }, ( incomplete) elliptic integral of the second kind
10277
+ // \ref {sf.cmath.ellint_2 }, incomplete elliptic integral of the second kind
10278
10278
double ellint_2(double k, double phi);
10279
10279
float ellint_2f(float k, float phi);
10280
10280
long double ellint_2l(long double k, long double phi);
10281
10281
10282
- // \ref {sf.cmath.ellint_3 }, ( incomplete) elliptic integral of the third kind
10282
+ // \ref {sf.cmath.ellint_3 }, incomplete elliptic integral of the third kind
10283
10283
double ellint_3(double k, double nu, double phi);
10284
10284
float ellint_3f(float k, float nu, float phi);
10285
10285
long double ellint_3l(long double k, long double nu, long double phi);
10309
10309
float riemann_zetaf(float x);
10310
10310
long double riemann_zetal(long double x);
10311
10311
10312
- // \ref {sf.cmath.sph_bessel }, spherical Bessel functions ( of the first kind)
10312
+ // \ref {sf.cmath.sph_bessel }, spherical Bessel functions of the first kind
10313
10313
double sph_bessel(unsigned n, double x);
10314
10314
float sph_besself(unsigned n, float x);
10315
10315
long double sph_bessell(unsigned n, long double x);
10320
10320
long double sph_legendrel(unsigned l, unsigned m, long double theta);
10321
10321
10322
10322
// \ref {sf.cmath.sph_neumann }, spherical Neumann functions;
10323
- // spherical Bessel functions ( of the second kind) :
10323
+ // spherical Bessel functions of the second kind:
10324
10324
double sph_neumann(unsigned n, double x);
10325
10325
float sph_neumannf(unsigned n, float x);
10326
10326
long double sph_neumannl(unsigned n, long double x);
10594
10594
$ y$ is \tcode {y}.
10595
10595
\end {itemdescr }
10596
10596
10597
- \rSec 3[sf.cmath.comp_ellint_1]{( Complete) elliptic integral of the first kind}%
10597
+ \rSec 3[sf.cmath.comp_ellint_1]{Complete elliptic integral of the first kind}%
10598
10598
\indexlibrary {\idxcode {comp_ellint_1}}%
10599
10599
\indexlibrary {\idxcode {comp_ellint_1f}}%
10600
10600
\indexlibrary {\idxcode {comp_ellint_1l}}%
10625
10625
\pnum See also \ref {sf.cmath.ellint_1 }.
10626
10626
\end {itemdescr }
10627
10627
10628
- \rSec 3[sf.cmath.comp_ellint_2]{( Complete) elliptic integral of the second kind}%
10628
+ \rSec 3[sf.cmath.comp_ellint_2]{Complete elliptic integral of the second kind}%
10629
10629
\indexlibrary {\idxcode {comp_ellint_2}}%
10630
10630
\indexlibrary {\idxcode {comp_ellint_2f}}%
10631
10631
\indexlibrary {\idxcode {comp_ellint_2l}}%
10657
10657
\pnum See also \ref {sf.cmath.ellint_2 }.
10658
10658
\end {itemdescr }
10659
10659
10660
- \rSec 3[sf.cmath.comp_ellint_3]{( Complete) elliptic integral of the third kind}%
10660
+ \rSec 3[sf.cmath.comp_ellint_3]{Complete elliptic integral of the third kind}%
10661
10661
\indexlibrary {\idxcode {comp_ellint_3}}%
10662
10662
\indexlibrary {\idxcode {comp_ellint_3f}}%
10663
10663
\indexlibrary {\idxcode {comp_ellint_3l}}%
10730
10730
\pnum See also \ref {sf.cmath.cyl_bessel_j }.
10731
10731
\end {itemdescr }
10732
10732
10733
- \rSec 3[sf.cmath.cyl_bessel_j]{Cylindrical Bessel functions ( of the first kind) }%
10733
+ \rSec 3[sf.cmath.cyl_bessel_j]{Cylindrical Bessel functions of the first kind}%
10734
10734
\indexlibrary {\idxcode {cyl_bessel_j}}%
10735
10735
\indexlibrary {\idxcode {cyl_bessel_jf}}%
10736
10736
\indexlibrary {\idxcode {cyl_bessel_jl}}%
10874
10874
\pnum See also \ref {sf.cmath.cyl_bessel_j }.
10875
10875
\end {itemdescr }
10876
10876
10877
- \rSec 3[sf.cmath.ellint_1]{( Incomplete) elliptic integral of the first kind}%
10877
+ \rSec 3[sf.cmath.ellint_1]{Incomplete elliptic integral of the first kind}%
10878
10878
\indexlibrary {\idxcode {ellint_1}}%
10879
10879
\indexlibrary {\idxcode {ellint_1f}}%
10880
10880
\indexlibrary {\idxcode {ellint_1l}}%
10906
10906
$ phi$ is \tcode {phi}.
10907
10907
\end {itemdescr }
10908
10908
10909
- \rSec 3[sf.cmath.ellint_2]{( Incomplete) elliptic integral of the second kind}%
10909
+ \rSec 3[sf.cmath.ellint_2]{Incomplete elliptic integral of the second kind}%
10910
10910
\indexlibrary {\idxcode {ellint_2}}%
10911
10911
\indexlibrary {\idxcode {ellint_2f}}%
10912
10912
\indexlibrary {\idxcode {ellint_2l}}%
10937
10937
$ phi$ is \tcode {phi}.
10938
10938
\end {itemdescr }
10939
10939
10940
- \rSec 3[sf.cmath.ellint_3]{( Incomplete) elliptic integral of the third kind}%
10940
+ \rSec 3[sf.cmath.ellint_3]{Incomplete elliptic integral of the third kind}%
10941
10941
\indexlibrary {\idxcode {ellint_3}}%
10942
10942
\indexlibrary {\idxcode {ellint_3f}}%
10943
10943
\indexlibrary {\idxcode {ellint_3l}}%
11156
11156
$ x$ is \tcode {x}.
11157
11157
\end {itemdescr }
11158
11158
11159
- \rSec 3[sf.cmath.sph_bessel]{Spherical Bessel functions ( of the first kind) }%
11159
+ \rSec 3[sf.cmath.sph_bessel]{Spherical Bessel functions of the first kind}%
11160
11160
\indexlibrary {\idxcode {sph_bessel}}%
11161
11161
\indexlibrary {\idxcode {sph_besself}}%
11162
11162
\indexlibrary {\idxcode {sph_bessell}}%
0 commit comments