Skip to content

Commit f56d349

Browse files
authored
Rename model server config file to nucleus.yaml (#7)
1 parent 9796e89 commit f56d349

File tree

12 files changed

+22
-22
lines changed

12 files changed

+22
-22
lines changed

README.md

Lines changed: 21 additions & 21 deletions
Original file line numberDiff line numberDiff line change
@@ -21,7 +21,7 @@ Some of Nucleus's features include:
2121
* [Install Nucleus](#install-nucleus)
2222
* [Example usage](#example-usage)
2323
* [Configuration](#configuration)
24-
* [Model server configuration schema](#model-server-configuration-schema)
24+
* [Model server configuration schema (nucleus.yaml)](#model-server-configuration-schema)
2525
* [Project files](#project-files)
2626
* [PyPI packages](#pypi-packages)
2727
* [Conda packages](#conda-packages)
@@ -68,7 +68,7 @@ pip install git+https://github.com/cortexlabs/nucleus.git@0.1.0
6868
Generate a model server Dockerfile based on a Nucleus configuration file:
6969

7070
```bash
71-
nucleus generate examples/rest-python-iris-classifier/model-server-config.yaml
71+
nucleus generate examples/rest-python-iris-classifier/nucleus.yaml
7272
```
7373

7474
Build the Docker image:
@@ -91,7 +91,7 @@ curl localhost:8080/ -X POST -H "Content-type: application/json" -d @examples/re
9191

9292
# Configuration
9393

94-
To build a Nucleus model server, you will need a directory which contains your source code as well as a model server configuration file (e.g. `model-server-config.yaml`).
94+
To build a Nucleus model server, you will need a directory which contains your source code as well as a model server configuration file (e.g. `nucleus.yaml`).
9595

9696
## Model server configuration schema
9797

@@ -160,7 +160,7 @@ For example:
160160

161161
```text
162162
./my-classifier/
163-
├── model-server-config.yaml
163+
├── nucleus.yaml
164164
├── handler.py
165165
├── ...
166166
└── requirements.txt
@@ -189,7 +189,7 @@ Nucleus supports installing Conda packages. We recommend only using Conda when y
189189

190190
```text
191191
./my-classifier/
192-
├── model-server-config.yaml
192+
├── nucleus.yaml
193193
├── handler.py
194194
├── ...
195195
└── conda-packages.txt
@@ -228,7 +228,7 @@ Python packages can also be installed by providing a `setup.py` that describes y
228228

229229
```text
230230
./my-classifier/
231-
├── model-server-config.yaml
231+
├── nucleus.yaml
232232
├── handler.py
233233
├── ...
234234
├── mypkg
@@ -251,7 +251,7 @@ Nucleus looks for a file named `dependencies.sh` in the top level project direct
251251

252252
```text
253253
./my-classifier/
254-
├── model-server-config.yaml
254+
├── nucleus.yaml
255255
├── handler.py
256256
├── ...
257257
└── dependencies.sh
@@ -284,7 +284,7 @@ Here is a sample project directory
284284

285285
```text
286286
./my-classifier/
287-
├── nucleus-model-server-config.yaml
287+
├── nucleus.yaml
288288
├── handler.py
289289
├── my-data.json
290290
├── ...
@@ -344,20 +344,20 @@ When deploying a Nucleus model server to a [Cortex cluster](https://github.com/c
344344
When deploying a Nucleus model server with the tensorflow type on a generic Kubernetes pod (not within Cortex), there are some additional things to keep in mind:
345345

346346
* A shared volume (at `/mnt`) must exist between the handler container and the TensorFlow Serving container.
347-
* The host of the TensorFlow Serving container has to be specified in the model server configuration (`model-server-config.yaml`) so that the handler container can connect to it.
347+
* The host of the TensorFlow Serving container has to be specified in the model server configuration (`nucleus.yaml`) so that the handler container can connect to it.
348348

349349
## Multi-model
350350

351351
### Python Handler
352352

353353
#### Specifying models in Nucleus configuration
354354

355-
##### `nucleus-model-server-config.yaml`
355+
##### `nucleus.yaml`
356356

357357
The directory `s3://cortex-examples/sklearn/mpg-estimator/linreg/` contains 4 different versions of the model.
358358

359359
```yaml
360-
# nucleus-model-server-config.yaml
360+
# nucleus.yaml
361361
362362
type: python
363363
path: handler.py
@@ -391,10 +391,10 @@ class Handler:
391391

392392
#### Without specifying models in Nucleus configuration
393393

394-
##### `nucleus-model-server-config.yaml`
394+
##### `nucleus.yaml`
395395

396396
```yaml
397-
# nucleus-model-server-config.yaml
397+
# nucleus.yaml
398398
399399
type: python
400400
path: handler.py
@@ -429,10 +429,10 @@ class Handler:
429429

430430
### TensorFlow Handler
431431

432-
#### `nucleus-model-server-config.yaml`
432+
#### `nucleus.yaml`
433433

434434
```yaml
435-
# nucleus-model-server-config.yaml
435+
# nucleus.yaml
436436
437437
type: tensorflow
438438
path: handler.py
@@ -1180,7 +1180,7 @@ Whenever a model path is specified in an Nucleus configuration file, it should b
11801180
The most common pattern is to serve a single model per Nucleus server. The path to the model is specified in the `path` field in the `multi_model_reloading` configuration. For example:
11811181

11821182
```yaml
1183-
# nucleus-model-server-config.yaml
1183+
# nucleus.yaml
11841184

11851185
type: python
11861186
multi_model_reloading:
@@ -1192,7 +1192,7 @@ multi_model_reloading:
11921192
It is possible to serve multiple models from a single Nucleus server. The paths to the models are specified in the Nucleus configuration, either via the `multi_model_reloading.paths` or `multi_model_reloading.dir` field in the configuration. For example:
11931193

11941194
```yaml
1195-
# nucleus-model-server-config.yaml
1195+
# nucleus.yaml
11961196
11971197
type: python
11981198
multi_model_reloading:
@@ -1205,7 +1205,7 @@ multi_model_reloading:
12051205
or:
12061206

12071207
```yaml
1208-
# nucleus-model-server-config.yaml
1208+
# nucleus.yaml
12091209
12101210
type: python
12111211
multi_model_reloading:
@@ -1346,7 +1346,7 @@ Whenever a model path is specified in a Nucleus configuration file, it should be
13461346
The most common pattern is to serve a single model per Nucleus server. The path to the model is specified in the `path` field in the `models` configuration. For example:
13471347

13481348
```yaml
1349-
# nucleus-model-server-config.yaml
1349+
# nucleus.yaml
13501350
13511351
type: tensorflow
13521352
models:
@@ -1358,7 +1358,7 @@ models:
13581358
It is possible to serve multiple models from a single Nucleus server. The paths to the models are specified in the Nucleus configuration, either via the `models.paths` or `models.dir` field in the Nucleus configuration. For example:
13591359

13601360
```yaml
1361-
# nucleus-model-server-config.yaml
1361+
# nucleus.yaml
13621362
13631363
type: tensorflow
13641364
models:
@@ -1371,7 +1371,7 @@ models:
13711371
or:
13721372

13731373
```yaml
1374-
# nucleus-model-server-config.yaml
1374+
# nucleus.yaml
13751375
13761376
type: tensorflow
13771377
models:

0 commit comments

Comments
 (0)