Skip to content

How to reproduce hybrid model with 94.6% top10 #1

@JasonYCHuang

Description

@JasonYCHuang

Hi @connorcoley

Great work.

I can run prediction with main/output/10rxn_demo1, and would like to reproduce your result as described in the paper: hybrid model with 94.6% top10.
I tried to train the model with the following command line:

$ python ochem_predict_nn/data/generate_candidates_edits_fullgrants.py
$ python ochem_predict_nn/data/preprocess_candidate_edits_compact.py
$ python ochem_predict_nn/main/score_candidates_from_edits_compact.py --hybrid=1 --baseline=1

but get following errors:

Traceback (most recent call last):
File "ochem_predict_nn/main/score_candidates_from_edits_compact.py", line 912, in <module>
train\(model, data\)
File "ochem_predict_nn/main/score_candidates_from_edits_compact.py", line 491, in train
verbose = 1,

ValueError: Error when checking model input: the list of Numpy arrays that you are passing to your model is not the size the model expected. Expected to see 4 arrays but instead got the following list of 1 arrays: [array([[[ 0., 0., 0., ..., 0., 0., 0.],
    \[ 0.,  0.,  0., ...,  0.,  1.,  0.\],

    \[ 0.,  0.,  0., ...,  0.,  0.,  0.\],

    ..., 

    \[ 0.,  0.,  0., ...,  0.,  0.,  0.\],

Could you point out what I am missing?

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions