|
| 1 | +import numpy as np |
| 2 | +import pandas as pd |
| 3 | + |
| 4 | + |
| 5 | +def summarize_source_domain(): |
| 6 | + result_path = "./results/train_domain_postprocessed.csv" |
| 7 | + results = pd.read_csv(result_path) |
| 8 | + |
| 9 | + ribbon_results = { |
| 10 | + "dataset": [], |
| 11 | + "source_model": [], |
| 12 | + "target_model": [], |
| 13 | + } |
| 14 | + ribbon_mean = np.round(results["ribbon"].mean() * 100, 2) |
| 15 | + ribbon_std = np.round(results["ribbon"].std() * 100, 2) |
| 16 | + ribbon_results["dataset"].append("source") |
| 17 | + ribbon_results["source_model"].append(f"{ribbon_mean} +- {ribbon_std}") |
| 18 | + ribbon_results["target_model"].append("") |
| 19 | + ribbon_results = pd.DataFrame(ribbon_results) |
| 20 | + |
| 21 | + PD_results = { |
| 22 | + "dataset": [], |
| 23 | + "source_model": [], |
| 24 | + "target_model": [], |
| 25 | + } |
| 26 | + PD_mean = np.round(results["PD"].mean() * 100, 2) |
| 27 | + PD_std = np.round(results["PD"].std() * 100, 2) |
| 28 | + PD_results["dataset"].append("source") |
| 29 | + PD_results["source_model"].append(f"{PD_mean} +- {PD_std}") |
| 30 | + PD_results["target_model"].append("") |
| 31 | + PD_results = pd.DataFrame(PD_results) |
| 32 | + |
| 33 | + return ribbon_results, PD_results |
| 34 | + |
| 35 | + |
| 36 | +def summarize_rat(): |
| 37 | + ribbon_results = { |
| 38 | + "dataset": [], |
| 39 | + "source_model": [], |
| 40 | + "target_model": [], |
| 41 | + } |
| 42 | + PD_results = { |
| 43 | + "dataset": [], |
| 44 | + "source_model": [], |
| 45 | + "target_model": [], |
| 46 | + } |
| 47 | + |
| 48 | + result_paths = { |
| 49 | + "source_model": "results/rat_Src.csv", |
| 50 | + "target_model": "results/rat_Adapted.csv", |
| 51 | + } |
| 52 | + |
| 53 | + ribbon_results["dataset"].append("source") |
| 54 | + PD_results["dataset"].append("source") |
| 55 | + |
| 56 | + for model, result_path in result_paths.items(): |
| 57 | + results = pd.read_csv(result_path) |
| 58 | + ribbon_mean = np.round(results["ribbon"].mean() * 100, 2) |
| 59 | + ribbon_std = np.round(results["ribbon"].std() * 100, 2) |
| 60 | + ribbon_results[model].append(f"{ribbon_mean} +- {ribbon_std}") |
| 61 | + |
| 62 | + PD_mean = np.round(results["PD"].mean() * 100, 2) |
| 63 | + PD_std = np.round(results["PD"].std() * 100, 2) |
| 64 | + PD_results[model].append(f"{PD_mean} +- {PD_std}") |
| 65 | + |
| 66 | + ribbon_results = pd.DataFrame(ribbon_results) |
| 67 | + PD_results = pd.DataFrame(PD_results) |
| 68 | + return ribbon_results, PD_results |
| 69 | + |
| 70 | + |
| 71 | +def summarize_ves_pool(): |
| 72 | + ribbon_results = { |
| 73 | + "dataset": [], |
| 74 | + "source_model": [], |
| 75 | + "target_model": [], |
| 76 | + } |
| 77 | + PD_results = { |
| 78 | + "dataset": [], |
| 79 | + "source_model": [], |
| 80 | + "target_model": [], |
| 81 | + } |
| 82 | + |
| 83 | + result_paths = { |
| 84 | + "source_model": "results/vesicle_pools_Src.csv", |
| 85 | + "target_model": "results/vesicle_pools_Adapted.csv", |
| 86 | + } |
| 87 | + |
| 88 | + ribbon_results["dataset"].append("source") |
| 89 | + PD_results["dataset"].append("source") |
| 90 | + |
| 91 | + for model, result_path in result_paths.items(): |
| 92 | + results = pd.read_csv(result_path) |
| 93 | + ribbon_mean = np.round(results["ribbon"].mean() * 100, 2) |
| 94 | + ribbon_std = np.round(results["ribbon"].std() * 100, 2) |
| 95 | + ribbon_results[model].append(f"{ribbon_mean} +- {ribbon_std}") |
| 96 | + |
| 97 | + PD_mean = np.round(results["PD"].mean() * 100, 2) |
| 98 | + PD_std = np.round(results["PD"].std() * 100, 2) |
| 99 | + PD_results[model].append(f"{PD_mean} +- {PD_std}") |
| 100 | + |
| 101 | + ribbon_results = pd.DataFrame(ribbon_results) |
| 102 | + PD_results = pd.DataFrame(PD_results) |
| 103 | + return ribbon_results, PD_results |
| 104 | + |
| 105 | + |
| 106 | +def main(): |
| 107 | + ribbon_results, PD_results = summarize_source_domain() |
| 108 | + # ribbon_results, PD_results = summarize_ves_pool() |
| 109 | + print("Ribbon") |
| 110 | + print(ribbon_results) |
| 111 | + print("PD") |
| 112 | + print(PD_results) |
| 113 | + |
| 114 | + |
| 115 | +if __name__ == "__main__": |
| 116 | + main() |
0 commit comments