Skip to content

Commit dc9cc39

Browse files
authored
Merge pull request #40 from coolbluealan/master
Fix typos.
2 parents 29807d5 + fcbdc00 commit dc9cc39

24 files changed

+99
-99
lines changed

README.md

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -37,7 +37,7 @@ Some of the topics covered here are basic arithmetic of complex numbers, complex
3737
Riemann surfaces, limits, derivatives, domain coloring, analytic landscapes and
3838
some applications of conformal mappings.
3939

40-
What distinguishes this online book from other traditional texts in the first instance is the use of interactive applets that allow you to explore properties of complex numbers geometrically and analyze complex functions by using different techniques to visualize them. For the design of applets I used the following open-source softwares: [GeoGebra](https://geogebra.org/), [p5.js](https://p5js.org/), [Cindy.js](https://cindyjs.org/) and [MathCell](http://mathcell.org/).
40+
What distinguishes this online book from other traditional texts in the first instance is the use of interactive applets that allow you to explore properties of complex numbers geometrically and analyze complex functions by using different techniques to visualize them. For the design of applets I used the following open-source software: [GeoGebra](https://geogebra.org/), [p5.js](https://p5js.org/), [Cindy.js](https://cindyjs.org/) and [MathCell](http://mathcell.org/).
4141

4242
Although I advocate for the use of computers as an aid to geometric reasoning,
4343
I highly encourage you to practice your problem solving skills by solving
@@ -48,7 +48,7 @@ Think of the computer as a physicist would his laboratory. It may be used
4848
to check existing ideas about our world, or as a tool to discover new phenomena
4949
which then poses new ideas or challenges for their explanation.
5050
Throughout the sections I have provided detailed instructions (in some cases)
51-
to explore concepts and relationships about complex numbers using specific softwares,
51+
to explore concepts and relationships about complex numbers using specific software,
5252
nevertheless you must still keep in mind that computer hardware and software
5353
are ephemeral things in comparison with mathematical ideas, which are timeless.
5454

content/analytic_landscapes.html

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -368,7 +368,7 @@ <h2>Dynamic exploration</h2>
368368
if(newN!=N,
369369
N = newN;
370370
//The following line is DIRTY, but it makes the application run smooth for high degrees. :-)
371-
//Nethertheless, it might cause render errors for high degree surfaces. In fact, only a subset of the surface is rendered.
371+
//Nevertheless, it might cause render errors for high degree surfaces. In fact, only a subset of the surface is rendered.
372372
//Adapt limit according to hardware.
373373
//values of kind 4*n-1 are good values, as it means to use vectors of length 4*n.
374374
N = min(N,11);
@@ -428,7 +428,7 @@ <h2>Dynamic exploration</h2>
428428
if(!intersect & id>0,
429429
s = gets(id); //s = floor(log_2(id))
430430

431-
//the intervals [a,b] are chossen such that (id in binary notation)
431+
//the intervals [a,b] are chosen such that (id in binary notation)
432432
//id = 1 => [a,b]=[l,u]
433433
//id = 10 => [a,b]=[l,(u+l)/2]
434434
//id = 101 => [a,b]=[l,(u+3*l)/4]
@@ -855,4 +855,4 @@ <h2>Dynamic exploration</h2>
855855
<script async src="js/prism.js"></script>
856856
</body>
857857

858-
</html>
858+
</html>

content/cauchy_goursat_theorem.html

Lines changed: 10 additions & 10 deletions
Original file line numberDiff line numberDiff line change
@@ -194,7 +194,7 @@ <h2>Cauchy's Theorem</h2>
194194
\end{eqnarray*}
195195
</div>
196196
<p>
197-
Both intergrals, on the right side, are zero by the <a href="complex_differentiation.html">Cauchy-Riemann equations</a>. $\hspace{5pt} \blacksquare$
197+
Both integrals, on the right side, are zero by the <a href="complex_differentiation.html">Cauchy-Riemann equations</a>. $\hspace{5pt} \blacksquare$
198198
</p>
199199

200200
<p>Observe that once it has been established that the value
@@ -211,7 +211,7 @@ <h2>Cauchy's Theorem</h2>
211211

212212
<p><strong>Example 1:</strong>
213213
Consider the function $f(z)= \exp\left(z^3\right).$ If $C$ is
214-
any simple closed countour, in either direction, then
214+
any simple closed contour, in either direction, then
215215
\[
216216
\int_C \exp\left(z^3\right)\,dz =0.
217217
\]
@@ -436,7 +436,7 @@ <h2>Simply and multiply connected domains</h2>
436436
<p>
437437
If $f$ is analytic in a multiply connected domain $D$ then we cannot conclude
438438
that $\int_C f(z)\,dz=0$ for every simple closed contour $C$ in $D.$
439-
Suppose that $D$ is muliply connected with two "holes".
439+
Suppose that $D$ is multiply connected with two "holes".
440440
Let $C,$ $C_1$ and $C_2$ be simple
441441
closed contours such that each $C_k$ surrounds only one "hole" in the
442442
domain and are inside $C.$ See Figure 8.
@@ -737,7 +737,7 @@ <h2>Historical notes &amp; Proof</h2>
737737
sides by line segments in the same way as shown in Figure 14
738738
and proceed to the equivalent of (\ref{sumcontours}) and (\ref{triangle01}).
739739
The integral of $f$ along one of these new triangular contous, let's call it
740-
$\Delta_2$ then satisifies
740+
$\Delta_2$ then satisfies
741741
\[
742742
\left|\int_{\Delta_1} f(z)\,dz\right| \leq 4 \left|\int_{\Delta_2} f(z)\,dz\right| .
743743
\]
@@ -806,7 +806,7 @@ <h2>Historical notes &amp; Proof</h2>
806806
respectively. Then, if we keep in mind how the triangle $\Delta_1$ was constructed,
807807
it is a straightforward problem in similar triangles to show that
808808
$L_1$ is related to $L$ by $L_1=\dfrac{1}{2}L.$ Likewise,
809-
if $L_2$ is the legth of $\Delta_2,$ then $L_2=\dfrac{1}{2}L_1 = \dfrac{1}{2^2}L.$
809+
if $L_2$ is the length of $\Delta_2,$ then $L_2=\dfrac{1}{2}L_1 = \dfrac{1}{2^2}L.$
810810
In general we have that if $L_n$ is the length of $\Delta_n,$ then
811811
$L_n= \dfrac{1}{2^n}L.$
812812
</p>
@@ -896,14 +896,14 @@ <h2>Historical notes &amp; Proof</h2>
896896
<figure>
897897
<img src="../images/chp04/cauchy-theorem-final-proof.gif" alt="Approximation by polygonal path" title="Approximation by polygonal path" style="width:550px;">
898898
<figcaption>
899-
The countour $C$ is approximated by a polygonal contour $P.$
899+
The contour $C$ is approximated by a polygonal contour $P.$
900900
</figcaption>
901901
</figure>
902902

903903
<p>
904904
<em>Proof of Cauchy-Goursat Theorem.</em>
905905
Consider a simple closed contour $C$ and $n$ points $z_1, z_2, \ldots, z_n$
906-
on $C$ through wich a polygonal path $P$ has been constructed.
906+
on $C$ through which a polygonal path $P$ has been constructed.
907907
Then it can be shown that the difference
908908
\[
909909
\abs{\int_C f(z)\,dz - \int_P f(z)\,dz}
@@ -981,7 +981,7 @@ <h2>References</h2>
981981
</article>
982982
</main>
983983

984-
<!--GeoGebra embeding-->
984+
<!--GeoGebra embedding-->
985985
<script src="https://www.geogebra.org/apps/deployggb.js"></script>
986986

987987
<script>
@@ -1002,7 +1002,7 @@ <h2>References</h2>
10021002
ggbApplet1.inject('ggb-element-1');
10031003
});
10041004
</script>
1005-
<!--GeoGebra embeding ends-->
1005+
<!--GeoGebra embedding ends-->
10061006

10071007
<a href="cauchy_integral_formula.html" style="text-decoration: none;">
10081008
<p class="nextPage">Cauchy Integral Formula <i class="fa-solid fa-angles-right"></i></p>
@@ -1089,4 +1089,4 @@ <h2>References</h2>
10891089
<script async src="js/prism.js"></script>
10901090
</body>
10911091

1092-
</html>
1092+
</html>

content/cauchy_integral_formula.html

Lines changed: 6 additions & 6 deletions
Original file line numberDiff line numberDiff line change
@@ -184,7 +184,7 @@ <h1>Cauchy Integral Formula</h1>
184184
</div>
185185

186186
<p>
187-
Choose the radius $r$ of the circle $C_r$ smaller thatn the number
187+
Choose the radius $r$ of the circle $C_r$ smaller than the number
188188
$\delta$ in the second of these inequalities. Since
189189
$\abs{z-z_0}=r\lt \delta$ when $z $ is on $C_r,$ it follows that
190190
the first of inequalities in (\ref{formula-03}) holds
@@ -287,7 +287,7 @@ <h2>An extension of the Cauchy Integral Formula</h2>
287287
<div class="practice">
288288
<p>
289289
<strong>Exercise 2:</strong>
290-
Use the formal defition of derivative to verify that
290+
Use the formal definition of derivative to verify that
291291
$f'(z)$ exists and the expression (\ref{integral-derivative})
292292
is in fact valid.
293293
</p>
@@ -443,7 +443,7 @@ <h2>Some consequences of the extension</h2>
443443
<p>
444444
As a consequence, when a function $ f (z) = u(x, y) + iv(x, y)$
445445
is analytic at a point $z = (x, y),$ the differentiability of
446-
$f'$ ensures the continuity od $f'$ there. Then, since
446+
$f'$ ensures the continuity of $f'$ there. Then, since
447447
\[
448448
f'(z) = u_x + iv_x = v_y - i u_y,
449449
\]
@@ -514,7 +514,7 @@ <h2>Some consequences of the extension</h2>
514514
</article>
515515
</main>
516516

517-
<!--GeoGebra embeding-->
517+
<!--GeoGebra embedding-->
518518
<script src="https://www.geogebra.org/apps/deployggb.js"></script>
519519

520520
<script>
@@ -545,7 +545,7 @@ <h2>Some consequences of the extension</h2>
545545
ggbApplet2.inject('ggb-element-2');
546546
});
547547
</script>
548-
<!--GeoGebra embeding ends-->
548+
<!--GeoGebra embedding ends-->
549549

550550
<a href="fundamental_theorem_of_algebra.html" style="text-decoration: none;">
551551
<p class="nextPage">The Fundamental Theorem of Algebra<i class="fa-solid fa-angles-right"></i></p>
@@ -632,4 +632,4 @@ <h2>Some consequences of the extension</h2>
632632
<script async src="js/prism.js"></script>
633633
</body>
634634

635-
</html>
635+
</html>

content/complex_functions.html

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -308,7 +308,7 @@ <h2>Explore the real and imaginary components</h2>
308308
</article>
309309
</main>
310310

311-
<!--GeoGebra embeding-->
311+
<!--GeoGebra embedding-->
312312
<script src="https://www.geogebra.org/apps/deployggb.js"></script>
313313
<script>
314314
let params = {
@@ -326,7 +326,7 @@ <h2>Explore the real and imaginary components</h2>
326326
ggbApplet.inject('ggb-element');
327327
});
328328
</script>
329-
<!--GeoGebra embeding ends-->
329+
<!--GeoGebra embedding ends-->
330330

331331
<a href="limits.html" style="text-decoration: none;">
332332
<p class="nextPage">Limits <i class="fa-solid fa-angles-right"></i></p>
@@ -413,4 +413,4 @@ <h2>Explore the real and imaginary components</h2>
413413
<script async src="js/prism.js"></script>
414414
</body>
415415

416-
</html>
416+
</html>

content/complex_integration.html

Lines changed: 11 additions & 11 deletions
Original file line numberDiff line numberDiff line change
@@ -375,7 +375,7 @@ <h2>Properties</h2>
375375
</p>
376376
<div class="scroll-wrapper">
377377
\begin{eqnarray}
378-
\int_a^b k \, w(t)\, dt &amp;=&amp; k \int_a^b w(t)\,dt, \quad k\text{ is a complex contant,}\\
378+
\int_a^b k \, w(t)\, dt &amp;=&amp; k \int_a^b w(t)\,dt, \quad k\text{ is a complex constant,}\\
379379
\int_a^b \big[ w(t) + s(t)\big] \,dt &amp;=&amp; \int_a^b w(t)\,dt + \int_a^b s(t) \,dt,\\
380380
\int_a^b w(t) \,dt &amp;=&amp; \int_a^c w(t)\,dt + \int_c^b w(t) \,dt \quad c\in[a,b], \\
381381
\int_a^b w(t) \,dt &amp;=&amp; -\int_b^a w(t)\,dt.
@@ -384,11 +384,11 @@ <h2>Properties</h2>
384384

385385
<p>
386386
From definition (\ref{contour-integral}), and the properties just mentioned above,
387-
it also follows immediatly that
387+
it also follows immediately that
388388
</p>
389389
<div class="scroll-wrapper">
390390
\begin{eqnarray}
391-
\int_{C} z_0 \, f(z) \, dz &amp;=&amp; z_0 \int_{C} f(z) \, dz, \quad z_0 \text{ is a complex contant,}\\
391+
\int_{C} z_0 \, f(z) \, dz &amp;=&amp; z_0 \int_{C} f(z) \, dz, \quad z_0 \text{ is a complex constant,}\\
392392
\int_{C} \big[ f(z) + g(z) \big] \, dz &amp;=&amp; \int_{C} \, f(z) \, dz + \int_{C} g(z) \, dz \\
393393
\end{eqnarray}
394394
</div>
@@ -470,7 +470,7 @@ <h2>Properties</h2>
470470
\[
471471
z'(t) = x'(t) + iy'(t)
472472
\]
473-
are continuos on the entire interval $[a,b].$
473+
are continuous on the entire interval $[a,b].$
474474
Then the real-valued function
475475
\[
476476
\left|z'(t)\right| =\sqrt{\left[x'(t)\right]^2+ \left[y'(t)\right]^2}
@@ -483,8 +483,8 @@ <h2>Properties</h2>
483483
</p>
484484

485485
<p>
486-
If $C$ is a contour of lenght $L$ and $f$ is a piecewise continuous
487-
function on $C,$ and $M$ is a nonnegative contant such that
486+
If $C$ is a contour of length $L$ and $f$ is a piecewise continuous
487+
function on $C,$ and $M$ is a nonnegative constant such that
488488
$\left|f(z)\right|\leq M$ for all points $z$ on $C$ at which $f(z)$
489489
is defined, then
490490
\begin{eqnarray}\label{ML-inequality}
@@ -633,7 +633,7 @@ <h2>Antiderivatives</h2>
633633

634634
<div class="theorem" id="FTC">
635635
Suppose that $f(z)$ is continuous on a domain $D.$
636-
If $f(z)$ has an antiderivative throughtout $D,$ then
636+
If $f(z)$ has an antiderivative throughout $D,$ then
637637
for any contour $C$ lying entirely in $D$,
638638
with initial fixed point $z_1$ and
639639
final fixed point $z_2,$ we have that
@@ -760,7 +760,7 @@ <h2>Antiderivatives</h2>
760760
Now, since $f$ is continuous, for any $\epsilon\gt 0 $ there
761761
exists a $\delta\gt 0$ such that $\abs{f(s)-f(z)}\lt \epsilon$
762762
whenever $\abs{s-z}\lt \delta.$
763-
Thus, if we choose $z+ \Delta z$ clos enough to $z$
763+
Thus, if we choose $z+ \Delta z$ close enough to $z$
764764
so that $\abs{\Delta z}\lt \delta,$
765765
it follows from the ML-inequality that
766766
</p>
@@ -792,7 +792,7 @@ <h2>Antiderivatives</h2>
792792
</article>
793793
</main>
794794

795-
<!--GeoGebra embeding-->
795+
<!--GeoGebra embedding-->
796796
<script src="https://www.geogebra.org/apps/deployggb.js"></script>
797797

798798
<script>
@@ -823,7 +823,7 @@ <h2>Antiderivatives</h2>
823823
ggbApplet2.inject('ggb-element-2');
824824
});
825825
</script>
826-
<!--GeoGebra embeding ends-->
826+
<!--GeoGebra embedding ends-->
827827

828828
<a href="integrals_of_functions_with_branch_cuts.html" style="text-decoration: none;">
829829
<p class="nextPage">Integrals of Functions with Branch Cuts <i class="fa-solid fa-angles-right"></i></p>
@@ -910,4 +910,4 @@ <h2>Antiderivatives</h2>
910910
<script async src="js/prism.js"></script>
911911
</body>
912912

913-
</html>
913+
</html>

content/conformal_mapping.html

Lines changed: 7 additions & 7 deletions
Original file line numberDiff line numberDiff line change
@@ -317,7 +317,7 @@ <h1>Conformal Mapping</h1>
317317

318318
<div id="section2">
319319

320-
<h2>Analytics functions</h2>
320+
<h2>Analytic functions</h2>
321321

322322
<p>
323323
A remarkable geometrical property enjoyed by all complex
@@ -328,7 +328,7 @@ <h2>Analytics functions</h2>
328328

329329
<div class="theorem">
330330
If $f$ is analytic in a domain $D$ containing $z_0,$ and if
331-
$f'(z_0)\neq 0,$ then $w=f(z)$ is a conformal mapping at $z_0.$
331+
$f'(z_0)\neq 0,$ then $w=f(z)$ is conformal at $z_0.$
332332
</div>
333333

334334
<div class="proof">
@@ -383,7 +383,7 @@ <h2>Analytics functions</h2>
383383
<div class="scroll-wrapper">
384384
\begin{eqnarray*}
385385
\text{arg}\left(f'\left(z_0\right)\cdot z_2'\right)-\text{arg}\left(f'\left(z_0\right)\cdot z_1'\right) &amp;= &amp;
386-
\text{arg}\left(f'\left(z_0\right) z_2'\right) +
386+
\text{arg}\left(f'\left(z_0\right)\right) +
387387
\text{arg}\left(z_2'\right)-\left[\text{arg}\left(f'\left(z_0\right)\right)+ \text{arg}\left(z_1'\right)
388388
\right]\\
389389
&amp;=&amp; \text{arg}\left(z_2'\right) - \text{arg}\left(z_1'\right).
@@ -720,7 +720,7 @@ <h2>Local inverses</h2>
720720
<p>
721721
throughout $V.$
722722
Since the Cauchy-Riemann equations hold for $u$ and $v,$ they also
723-
fold for $x$ and $y,$ that is
723+
hold for $x$ and $y,$ that is
724724
\[
725725
x_u = y_v \quad \text{and}\quad x_v = - y_u.
726726
\]
@@ -851,7 +851,7 @@ <h2>The Riemann Mapping Theorem</h2>
851851
</article>
852852
</main>
853853

854-
<!--GeoGebra embeding-->
854+
<!--GeoGebra embedding-->
855855
<script src="https://www.geogebra.org/apps/deployggb.js"></script>
856856

857857
<script>
@@ -884,7 +884,7 @@ <h2>The Riemann Mapping Theorem</h2>
884884
ggbApplet2.inject('ggb-element-2');
885885
});
886886
</script>
887-
<!--GeoGebra embeding ends-->
887+
<!--GeoGebra embedding ends-->
888888

889889
<a href="linear_fractional_transformations.html" style="text-decoration: none;">
890890
<p class="nextPage">Linear Fractional Transformations<i class="fa-solid fa-angles-right"></i></p>
@@ -971,4 +971,4 @@ <h2>The Riemann Mapping Theorem</h2>
971971
<script async src="js/prism.js"></script>
972972
</body>
973973

974-
</html>
974+
</html>

content/continuity.html

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -343,7 +343,7 @@ <h1>Continuity</h1>
343343
</p>
344344

345345
<div class="theorem" id="bounded-function">
346-
If $f$ is continuous throughtout a region $R$ that is
346+
If $f$ is continuous throughout a region $R$ that is
347347
both bounded and closed, there there exists
348348
$M\gt 0$ such that $\abs{f(z)}\leq M$ for all points in $R,$
349349
where the equality holds for at least one such $z.$
@@ -367,7 +367,7 @@ <h1>Continuity</h1>
367367
</p>
368368

369369
<div class="theorem" id="contuity-properties">
370-
Suppose that $f$ and $g$ are continous at $z_0,$ then the following
370+
Suppose that $f$ and $g$ are continuous at $z_0,$ then the following
371371
are continuous functions at $z_0:$
372372
<ol class="roman-list">
373373
<li>$c\cdot f,$ with $c$ a complex constant,</li>
@@ -474,4 +474,4 @@ <h1>Continuity</h1>
474474
<script async src="js/prism.js"></script>
475475
</body>
476476

477-
</html>
477+
</html>

0 commit comments

Comments
 (0)