|
| 1 | +"""test_err_corr_forms - tests for obsarray.err_corr_forms""" |
| 2 | + |
| 3 | +import unittest |
| 4 | +import numpy as np |
| 5 | +import obsarray |
| 6 | +import xarray as xr |
| 7 | + |
| 8 | + |
| 9 | +__author__ = "Sam Hunt <sam.hunt@npl.co.uk>" |
| 10 | +__all__ = [] |
| 11 | + |
| 12 | +from obsarray.concat import obs_concat |
| 13 | + |
| 14 | + |
| 15 | +def create_test_ds(): |
| 16 | + c1a = np.ones((4, 3)) |
| 17 | + c2a = np.ones((4, 3)) |
| 18 | + |
| 19 | + c1b = np.ones((7, 5, 3)) |
| 20 | + c2b = np.ones((7, 5, 3)) |
| 21 | + |
| 22 | + d1a = np.ones((4, 3)) * 1 |
| 23 | + d2a = np.ones((4, 3)) * 2 |
| 24 | + s1a = np.ones((4, 3)) * 3 |
| 25 | + s2a = np.ones((4, 3)) * 4 |
| 26 | + s3a = np.ones((4, 3)) * 5 |
| 27 | + |
| 28 | + d1b = np.ones((7, 5, 3)) * 1 |
| 29 | + |
| 30 | + d1a_attrs = {"units": "test_units", "geometry": "a", "measurand": "d", 'm': 10} |
| 31 | + d2a_attrs = {"units": "test_units", "geometry": "a", "measurand": "d", 'm': 11} |
| 32 | + s1a_attrs = {"units": "test_units", "geometry": "a", "measurand": "s", 'm': 12} |
| 33 | + s2a_attrs = {"units": "test_units", "geometry": "a", "measurand": "s", 'm': 4} |
| 34 | + s3a_attrs = {"units": "test_units", "geometry": "a", "measurand": "s", 'm': 5} |
| 35 | + d1b_attrs = {"units": "test_units", "geometry": "b", "measurand": "d"} |
| 36 | + |
| 37 | + ds = xr.Dataset( |
| 38 | + { |
| 39 | + "d1a": (["xa", "ya"], d1a, d1a_attrs), |
| 40 | + "d2a": (["xa", "ya"], d2a, d2a_attrs), |
| 41 | + "s1a": (["xa", "ya"], s1a, s1a_attrs), |
| 42 | + "s2a": (["xa", "ya"], s2a, s2a_attrs), |
| 43 | + "s3a": (["xa", "ya"], s3a, s3a_attrs), |
| 44 | + "d1b": (["xb", "yb", "zb"], d1b, d1b_attrs), |
| 45 | + }, |
| 46 | + coords={ |
| 47 | + "c1a": (["xa", "ya"], c1a), |
| 48 | + "c2a": (["xa", "ya"], c2a), |
| 49 | + "c1b": (["xb", "yb", "zb"], c1b), |
| 50 | + "c2b": (["xb", "yb", "zb"], c2b), |
| 51 | + }, |
| 52 | + attrs={ |
| 53 | + "history": "test_history", |
| 54 | + "meas_vars": ["d1a", "d2a", "s1a", "s2a", "s3a", "d1b"], |
| 55 | + }, |
| 56 | + ) |
| 57 | + |
| 58 | + for var in ["d1a", "d2a"]: |
| 59 | + ds.unc[var]["u_r_" + var] = (["xa", "ya"], ds[var].values, {}) |
| 60 | + |
| 61 | + err_corr_def = [ |
| 62 | + { |
| 63 | + "dim": ["xa", "ya"], |
| 64 | + "form": "systematic", |
| 65 | + "params": [], |
| 66 | + "units": [] |
| 67 | + } |
| 68 | + ] |
| 69 | + |
| 70 | + ds.unc[var]["u_s_" + var] = (["xa", "ya"], ds[var].values, {"err_corr": err_corr_def}) |
| 71 | + |
| 72 | + return ds |
| 73 | + |
| 74 | +def create_concat_ds(): |
| 75 | + c1a = np.ones((4, 3)) |
| 76 | + c2a = np.ones((4, 3)) |
| 77 | + |
| 78 | + c1b = np.ones((7, 5, 3)) |
| 79 | + c2b = np.ones((7, 5, 3)) |
| 80 | + |
| 81 | + da = np.ones((4, 3, 2)) * 1 |
| 82 | + da[:, : 1] = 2 |
| 83 | + |
| 84 | + s1a = np.ones((4, 3)) * 3 |
| 85 | + s2a = np.ones((4, 3)) * 4 |
| 86 | + s3a = np.ones((4, 3)) * 5 |
| 87 | + |
| 88 | + d1b = np.ones((7, 5, 3)) * 1 |
| 89 | + |
| 90 | + da_attrs = {"units": "test_units", "geometry": "a", "measurand": "d", 'm': 10} |
| 91 | + s1a_attrs = {"units": "test_units", "geometry": "a", "measurand": "s", 'm': 12} |
| 92 | + s2a_attrs = {"units": "test_units", "geometry": "a", "measurand": "s", 'm': 4} |
| 93 | + s3a_attrs = {"units": "test_units", "geometry": "a", "measurand": "s", 'm': 5} |
| 94 | + d1b_attrs = {"units": "test_units", "geometry": "b", "measurand": "d"} |
| 95 | + |
| 96 | + ds = xr.Dataset( |
| 97 | + { |
| 98 | + "da": (["xa", "ya"], da, da_attrs), |
| 99 | + "s1a": (["xa", "ya"], s1a, s1a_attrs), |
| 100 | + "s2a": (["xa", "ya"], s2a, s2a_attrs), |
| 101 | + "s3a": (["xa", "ya"], s3a, s3a_attrs), |
| 102 | + "d1b": (["xb", "yb", "zb"], d1b, d1b_attrs), |
| 103 | + }, |
| 104 | + coords={ |
| 105 | + "c1a": (["xa", "ya"], c1a), |
| 106 | + "c2a": (["xa", "ya"], c2a), |
| 107 | + "c1b": (["xb", "yb", "zb"], c1b), |
| 108 | + "c2b": (["xb", "yb", "zb"], c2b), |
| 109 | + }, |
| 110 | + attrs={ |
| 111 | + "history": "test_history", |
| 112 | + "meas_vars": ["d1a", "d2a", "s1a", "s2a", "s3a", "d1b"], |
| 113 | + }, |
| 114 | + ) |
| 115 | + |
| 116 | + for var in ["d1a", "d2a"]: |
| 117 | + ds.unc[var]["u_r_" + var] = (["xa", "ya"], ds[var].values, {}) |
| 118 | + |
| 119 | + err_corr_def = [ |
| 120 | + { |
| 121 | + "dim": ["xa", "ya"], |
| 122 | + "form": "systematic", |
| 123 | + "params": [], |
| 124 | + "units": [] |
| 125 | + } |
| 126 | + ] |
| 127 | + |
| 128 | + ds.unc[var]["u_s_" + var] = (["xa", "ya"], ds[var].values, {"err_corr": err_corr_def}) |
| 129 | + |
| 130 | + return ds |
| 131 | + |
| 132 | + |
| 133 | + |
| 134 | + |
| 135 | +class TestConcat(unittest.TestCase): |
| 136 | + |
| 137 | + def test_concat_combine_unc_concat(self): |
| 138 | + ds = create_test_ds() |
| 139 | + |
| 140 | + obs_vars, unc_vars = obs_concat([ds["d1a"], ds["d2a"]], "new_dim", ds, "concat") |
| 141 | + |
| 142 | + c1a = np.ones((4, 3)) |
| 143 | + c2a = np.ones((4, 3)) |
| 144 | + |
| 145 | + c1b = np.ones((7, 5, 3)) |
| 146 | + c2b = np.ones((7, 5, 3)) |
| 147 | + |
| 148 | + da = np.ones((4, 3, 2)) * 1 |
| 149 | + da[:, : 1] = 2 |
| 150 | + |
| 151 | + s1a = np.ones((4, 3)) * 3 |
| 152 | + s2a = np.ones((4, 3)) * 4 |
| 153 | + s3a = np.ones((4, 3)) * 5 |
| 154 | + |
| 155 | + d1b = np.ones((7, 5, 3)) * 1 |
| 156 | + |
| 157 | + da_attrs = {"units": "test_units", "geometry": "a", "measurand": "d", 'm': 10} |
| 158 | + s1a_attrs = {"units": "test_units", "geometry": "a", "measurand": "s", 'm': 12} |
| 159 | + s2a_attrs = {"units": "test_units", "geometry": "a", "measurand": "s", 'm': 4} |
| 160 | + s3a_attrs = {"units": "test_units", "geometry": "a", "measurand": "s", 'm': 5} |
| 161 | + d1b_attrs = {"units": "test_units", "geometry": "b", "measurand": "d"} |
| 162 | + |
| 163 | + ds = xr.Dataset( |
| 164 | + { |
| 165 | + "da": (["xa", "ya"], da, da_attrs), |
| 166 | + "s1a": (["xa", "ya"], s1a, s1a_attrs), |
| 167 | + "s2a": (["xa", "ya"], s2a, s2a_attrs), |
| 168 | + "s3a": (["xa", "ya"], s3a, s3a_attrs), |
| 169 | + "d1b": (["xb", "yb", "zb"], d1b, d1b_attrs), |
| 170 | + }, |
| 171 | + coords={ |
| 172 | + "c1a": (["xa", "ya"], c1a), |
| 173 | + "c2a": (["xa", "ya"], c2a), |
| 174 | + "c1b": (["xb", "yb", "zb"], c1b), |
| 175 | + "c2b": (["xb", "yb", "zb"], c2b), |
| 176 | + }, |
| 177 | + attrs={ |
| 178 | + "history": "test_history", |
| 179 | + "meas_vars": ["d1a", "d2a", "s1a", "s2a", "s3a", "d1b"], |
| 180 | + }, |
| 181 | + ) |
| 182 | + |
| 183 | + for var in ["d1a", "d2a"]: |
| 184 | + ds.unc[var]["u_r_" + var] = (["xa", "ya"], ds[var].values, {}) |
| 185 | + |
| 186 | + err_corr_def = [ |
| 187 | + { |
| 188 | + "dim": ["xa", "ya"], |
| 189 | + "form": "systematic", |
| 190 | + "params": [], |
| 191 | + "units": [] |
| 192 | + } |
| 193 | + ] |
| 194 | + |
| 195 | + ds.unc[var]["u_s_" + var] = (["xa", "ya"], ds[var].values, {"err_corr": err_corr_def}) |
| 196 | + |
| 197 | + return ds |
| 198 | + |
| 199 | + |
| 200 | + |
| 201 | +if __name__ == "__main__": |
| 202 | + pass |
0 commit comments