|
| 1 | +import pandas as pd |
| 2 | +import polars as pl |
| 3 | +import pandas.testing as pdt |
| 4 | +from polars.testing import assert_frame_equal |
| 5 | + |
| 6 | +from tests.resources import TestBaseline |
| 7 | +from pyindicators import stochastic_oscillator |
| 8 | + |
| 9 | + |
| 10 | +class Test(TestBaseline): |
| 11 | + correct_output_csv_filename = \ |
| 12 | + "STOCHASTIC_OSCILLATOR_BTC-EUR_BINANCE_15m_2023-12-01:00:00_2023-12-25:00:00.csv" |
| 13 | + |
| 14 | + def generate_pandas_df(self, polars_source_df): |
| 15 | + polars_source_df = stochastic_oscillator( |
| 16 | + data=polars_source_df, |
| 17 | + high_column="High", |
| 18 | + low_column="Low", |
| 19 | + close_column="Close", |
| 20 | + k_period=4, |
| 21 | + d_period=3, |
| 22 | + k_slowing=10 |
| 23 | + ) |
| 24 | + return polars_source_df |
| 25 | + |
| 26 | + def generate_polars_df(self, pandas_source_df): |
| 27 | + pandas_source_df = stochastic_oscillator( |
| 28 | + data=pandas_source_df, |
| 29 | + high_column="High", |
| 30 | + low_column="Low", |
| 31 | + close_column="Close", |
| 32 | + k_period=4, |
| 33 | + d_period=3, |
| 34 | + k_slowing=10 |
| 35 | + ) |
| 36 | + return pandas_source_df |
| 37 | + |
| 38 | + def test_comparison_pandas(self): |
| 39 | + |
| 40 | + # Load the correct output in a pandas dataframe |
| 41 | + correct_output_pd = pd.read_csv(self.get_correct_output_csv_path()) |
| 42 | + |
| 43 | + # Load the source in a pandas dataframe |
| 44 | + source = pd.read_csv(self.get_source_csv_path()) |
| 45 | + |
| 46 | + # Generate the pandas dataframe |
| 47 | + output = self.generate_pandas_df(source) |
| 48 | + output = output[correct_output_pd.columns] |
| 49 | + output["Datetime"] = \ |
| 50 | + pd.to_datetime(output["Datetime"]).dt.tz_localize(None) |
| 51 | + correct_output_pd["Datetime"] = \ |
| 52 | + pd.to_datetime(correct_output_pd["Datetime"]).dt.tz_localize(None) |
| 53 | + |
| 54 | + pdt.assert_frame_equal(correct_output_pd, output) |
| 55 | + |
| 56 | + def test_comparison_polars(self): |
| 57 | + |
| 58 | + # Load the correct output in a polars dataframe |
| 59 | + correct_output_pl = pl.read_csv(self.get_correct_output_csv_path()) |
| 60 | + |
| 61 | + # Load the source in a polars dataframe |
| 62 | + source = pl.read_csv(self.get_source_csv_path()) |
| 63 | + |
| 64 | + # Generate the polars dataframe |
| 65 | + output = self.generate_polars_df(source) |
| 66 | + |
| 67 | + # Convert the datetime columns to datetime |
| 68 | + # Convert the 'Datetime' column in both DataFrames to datetime |
| 69 | + output = output.with_columns( |
| 70 | + pl.col("Datetime").str.strptime(pl.Datetime).alias("Datetime") |
| 71 | + ) |
| 72 | + |
| 73 | + correct_output_pl = correct_output_pl.with_columns( |
| 74 | + pl.col("Datetime").str.strptime(pl.Datetime).alias("Datetime") |
| 75 | + ) |
| 76 | + output = output[correct_output_pl.columns] |
| 77 | + output = self.make_polars_column_datetime_naive(output, "Datetime") |
| 78 | + correct_output_pl = self.make_polars_column_datetime_naive( |
| 79 | + correct_output_pl, "Datetime" |
| 80 | + ) |
| 81 | + |
| 82 | + assert_frame_equal(correct_output_pl, output) |
0 commit comments