|
| 1 | + |
| 2 | +#include <CL/sycl.hpp> |
| 3 | + |
| 4 | +#include <CL/sycl/backend/cuda.hpp> |
| 5 | +#include <algorithm> |
| 6 | +#include <mpi.h> |
| 7 | +#include <mpi-ext.h> |
| 8 | +#include <numeric> |
| 9 | +#include <stdio.h> |
| 10 | +#include <stdlib.h> |
| 11 | + |
| 12 | +int main(int argc, char *argv[]) { |
| 13 | + /* ------------------------------------------------------------------------------------------- |
| 14 | + SYCL Initialization, which internally sets the CUDA device |
| 15 | + --------------------------------------------------------------------------------------------*/ |
| 16 | + sycl::queue q(cl::sycl::gpu_selector{}); |
| 17 | + |
| 18 | + /* ------------------------------------------------------------------------------------------- |
| 19 | + Check to see if MPI library is CUDA-aware |
| 20 | + --------------------------------------------------------------------------------------------*/ |
| 21 | + printf("Run time check:\n"); |
| 22 | +#if defined(MPIX_CUDA_AWARE_SUPPORT) |
| 23 | + if (1 == MPIX_Query_cuda_support()) { |
| 24 | + printf("This MPI library has CUDA-aware support.\n"); |
| 25 | + } else { |
| 26 | + printf("This MPI library does not have CUDA-aware support.\n"); |
| 27 | + } |
| 28 | +#else /* !defined(MPIX_CUDA_AWARE_SUPPORT) */ |
| 29 | + printf("This MPI library cannot determine if there is CUDA-aware support.\n"); |
| 30 | +#endif /* MPIX_CUDA_AWARE_SUPPORT */ |
| 31 | + |
| 32 | + /* ------------------------------------------------------------------------------------------- |
| 33 | + MPI Initialization |
| 34 | + --------------------------------------------------------------------------------------------*/ |
| 35 | + MPI_Init(&argc, &argv); |
| 36 | + |
| 37 | + int size; |
| 38 | + MPI_Comm_size(MPI_COMM_WORLD, &size); |
| 39 | + |
| 40 | + int rank; |
| 41 | + MPI_Comm_rank(MPI_COMM_WORLD, &rank); |
| 42 | + |
| 43 | + if (size != 2) { |
| 44 | + if (rank == 0) { |
| 45 | + printf("This program requires exactly 2 MPI ranks, but you are " |
| 46 | + "attempting to use %d! Exiting...\n", |
| 47 | + size); |
| 48 | + } |
| 49 | + MPI_Finalize(); |
| 50 | + exit(0); |
| 51 | + } |
| 52 | + |
| 53 | + /* ------------------------------------------------------------------------------------------- |
| 54 | + Setting data size to 1MB |
| 55 | + Allocating 1 MB data on Host |
| 56 | + --------------------------------------------------------------------------------------------*/ |
| 57 | + long int N = 1 << 10; |
| 58 | + std::vector<double> A(N, 1.0); |
| 59 | + size_t local_size = N / size; |
| 60 | + |
| 61 | + /* ------------------------------------------------------------------------------------------- |
| 62 | + Create SYCL buffers |
| 63 | + --------------------------------------------------------------------------------------------*/ |
| 64 | + sycl::buffer<double> input_buffer(std::begin(A), std::end(A)); |
| 65 | + sycl::buffer<double> local_buffer(sycl::range{local_size}); |
| 66 | + sycl::buffer<double> out_buffer(sycl::range{1}); |
| 67 | + sycl::buffer<double> global_sum(sycl::range{1}); |
| 68 | + |
| 69 | + double start_time, stop_time, elapsed_time; |
| 70 | + start_time = MPI_Wtime(); |
| 71 | + /* ------------------------------------------------------------------------------------------- |
| 72 | + Create an SYCL interoperability with CUDA to scatter the data among two MPI |
| 73 | + process |
| 74 | + --------------------------------------------------------------------------------------------*/ |
| 75 | + |
| 76 | + auto ht = [&](sycl::handler &h) { |
| 77 | + sycl::accessor input_acc{input_buffer, h, sycl::read_write}; |
| 78 | + sycl::accessor local_acc{local_buffer, h, sycl::read_write}; |
| 79 | + h.codeplay_host_task([=](sycl::interop_handle ih) { |
| 80 | + auto cuda_ptr = reinterpret_cast<double *>( |
| 81 | + ih.get_native_mem<sycl::backend::cuda>(input_acc)); |
| 82 | + auto cuda_local_ptr = reinterpret_cast<double *>( |
| 83 | + ih.get_native_mem<sycl::backend::cuda>(local_acc)); |
| 84 | + MPI_Scatter(cuda_ptr, local_size, MPI_DOUBLE, cuda_local_ptr, local_size, |
| 85 | + MPI_DOUBLE, 0, MPI_COMM_WORLD); |
| 86 | + }); |
| 87 | + }; |
| 88 | + q.submit(ht); |
| 89 | + |
| 90 | + |
| 91 | + /* ------------------------------------------------------------------------------------------- |
| 92 | + Create a SYCL GPU kernel to sale each element of the data based on the MPI |
| 93 | + process ID |
| 94 | + --------------------------------------------------------------------------------------------*/ |
| 95 | + auto cg = [&](sycl::handler &h) { |
| 96 | + auto acc = local_buffer.get_access(h); |
| 97 | + auto kern = [=](cl::sycl::id<1> id) { acc[id] *= (rank + 1); }; |
| 98 | + h.parallel_for(sycl::range<1>{local_size}, kern); |
| 99 | + }; |
| 100 | + q.submit(cg); |
| 101 | + |
| 102 | + /* ------------------------------------------------------------------------------------------- |
| 103 | + Create a SYCL GPU kernel to partially reduce each local data into an scalar |
| 104 | + --------------------------------------------------------------------------------------------*/ |
| 105 | + auto cg2 = [&](sycl::handler &h) { |
| 106 | + auto acc = local_buffer.get_access(h); |
| 107 | + h.parallel_for(sycl::nd_range<1>( |
| 108 | + cl::sycl::range<1>(local_size), |
| 109 | + cl::sycl::range<1>(std::min(local_size, size_t(256)))), |
| 110 | + sycl::reduction(out_buffer, h, 1.0, std::plus<double>()), |
| 111 | + [=](sycl::nd_item<1> idx, auto &reducer) { |
| 112 | + reducer.combine(acc[idx.get_global_id(0)]); |
| 113 | + }); |
| 114 | + }; |
| 115 | + q.submit(cg2); |
| 116 | + /* ------------------------------------------------------------------------------------------- |
| 117 | + Create a SYCL interoperability with CUDA to calculate the total sum of the |
| 118 | + reduced scalar created by each MPI process |
| 119 | + --------------------------------------------------------------------------------------------*/ |
| 120 | + auto ht2 = [&](sycl::handler &h) { |
| 121 | + sycl::accessor out_acc{out_buffer, h, sycl::read_write}; |
| 122 | + sycl::accessor global_sum_acc{global_sum, h, sycl::read_write}; |
| 123 | + h.codeplay_host_task([=](sycl::interop_handle ih) { |
| 124 | + auto cuda_out_ptr = reinterpret_cast<double *>( |
| 125 | + ih.get_native_mem<sycl::backend::cuda>(out_acc)); |
| 126 | + auto cuda_global_sum_ptr = reinterpret_cast<double *>( |
| 127 | + ih.get_native_mem<sycl::backend::cuda>(global_sum_acc)); |
| 128 | + MPI_Allreduce(cuda_out_ptr, cuda_global_sum_ptr, 1, MPI_DOUBLE, MPI_SUM, |
| 129 | + MPI_COMM_WORLD); |
| 130 | + }); |
| 131 | + }; |
| 132 | + |
| 133 | + q.submit(ht2); |
| 134 | + |
| 135 | + /* ------------------------------------------------------------------------------------------- |
| 136 | + Create a SYCL GPU kernel to normalize local buffer based on the global sum |
| 137 | + result |
| 138 | + --------------------------------------------------------------------------------------------*/ |
| 139 | + auto cg3 = [&](sycl::handler &h) { |
| 140 | + auto acc = local_buffer.get_access(h); |
| 141 | + auto global_sum_acc = global_sum.get_access(h); |
| 142 | + auto kern = [=](cl::sycl::id<1> id) { acc[id] /= global_sum_acc[0]; }; |
| 143 | + h.parallel_for(sycl::range<1>{local_size}, kern); |
| 144 | + }; |
| 145 | + q.submit(cg3); |
| 146 | + |
| 147 | + /* ------------------------------------------------------------------------------------------- |
| 148 | + Create a SYCL interoperability with CUDA to replace the original input with |
| 149 | + normalized value |
| 150 | + --------------------------------------------------------------------------------------------*/ |
| 151 | + auto ht3 = [&](sycl::handler &h) { |
| 152 | + sycl::accessor input_acc{input_buffer, h, sycl::read_write}; |
| 153 | + sycl::accessor local_acc{local_buffer, h, sycl::read_write}; |
| 154 | + h.codeplay_host_task([=](sycl::interop_handle ih) { |
| 155 | + auto cuda_local_ptr = reinterpret_cast<double *>( |
| 156 | + ih.get_native_mem<sycl::backend::cuda>(local_acc)); |
| 157 | + auto cuda_input_ptr = reinterpret_cast<double *>( |
| 158 | + ih.get_native_mem<sycl::backend::cuda>(input_acc)); |
| 159 | + MPI_Gather(cuda_local_ptr, local_size, MPI_DOUBLE, cuda_input_ptr, |
| 160 | + local_size, MPI_DOUBLE, 0, MPI_COMM_WORLD); |
| 161 | + }); |
| 162 | + }; |
| 163 | + |
| 164 | + q.submit(ht3); |
| 165 | + q.wait_and_throw(); |
| 166 | + stop_time = MPI_Wtime(); |
| 167 | + elapsed_time = stop_time - start_time; |
| 168 | + |
| 169 | + /* ------------------------------------------------------------------------------------------- |
| 170 | + Print the output |
| 171 | + --------------------------------------------------------------------------------------------*/ |
| 172 | + if (rank == 0) { |
| 173 | + std::cout << "elapsed_time" << elapsed_time; |
| 174 | +#if defined(PRINT_DEBUG_MODE) |
| 175 | + auto p = input_buffer.get_host_access(); |
| 176 | + for (int i = 0; i < 1; i++) { |
| 177 | + std::cout << " value at i : " << p[i] << "\n"; |
| 178 | + } |
| 179 | +#endif |
| 180 | + } |
| 181 | + MPI_Finalize(); |
| 182 | + |
| 183 | + return 0; |
| 184 | +} |
0 commit comments