@@ -31,8 +31,8 @@ This repository contains four files.
31
31
32
32
33
33
### Phase-encoding analysis tool.
34
- pea = PEA(params) creates an instance of the PEA class.
35
- params is a structure with 7 required fields
34
+ ` pea = PEA(parameters) ` creates an instance of the PEA class.
35
+ parameters is a structure with 7 required fields
36
36
- f_sampling: sampling frequency (1/TR)
37
37
- f_stim : stimulation frequency
38
38
- n_samples : number of samples (volumes)
@@ -42,24 +42,26 @@ params is a structure with 7 required fields
42
42
43
43
This class has the following functions
44
44
45
- - delay = PEA.get_delay();
46
- - direction = PEA.get_direction();
47
- - PEA.set_delay(delay);
48
- - PEA.set_direction(direction);
49
- - results = PEA.fitting(data);
45
+ - ` delay = PEA.get_delay(); `
46
+ - ` direction = PEA.get_direction(); `
47
+ - ` PEA.set_delay(delay); `
48
+ - ` PEA.set_direction(direction); `
49
+ - ` results = PEA.fitting(data); `
50
50
51
- Use help PEA.function to get more detailed help on any specific
52
- function (e.g. help PEA.fitting)
51
+ Use ` help PEA.function ` to get more detailed help on any specific
52
+ function (e.g. ` help PEA.fitting ` )
53
53
54
54
typical workflow:
55
- 1 . pea = PEA(params);
56
- 2 . pea.set_delay(delay);
57
- 3 . pea.set_direction(direction);
58
- 4 . results = pea.fitting(data);
55
+ ``` Matlab
56
+ pea = PEA(parameters);
57
+ pea.set_delay(delay);
58
+ pea.set_direction(direction);
59
+ results = pea.fitting(data);
60
+ ```
59
61
60
62
### Population receptive field (pRF) mapping tool.
61
- prf = pRF(params) creates an instance of the pRF class.
62
- params is a structure with 7 required fields
63
+ ` prf = pRF(parameters) ` creates an instance of the pRF class.
64
+ parameters is a structure with 7 required fields
63
65
- f_sampling: sampling frequency (1/TR)
64
66
- n_samples : number of samples (volumes)
65
67
- n_rows : number of rows (in-plane resolution)
@@ -78,28 +80,30 @@ optional inputs are
78
80
79
81
This class has the following functions
80
82
81
- - hrf = pRF.get_hrf();
82
- - stimulus = pRF.get_stimulus();
83
- - tc = pRF.get_timecourses();
84
- - pRF.set_hrf(hrf);
85
- - pRF.set_stimulus(stimulus);
86
- - pRF.import_stimulus();
87
- - pRF.create_timecourses();
88
- - results = pRF.mapping(data);
83
+ - ` hrf = pRF.get_hrf(); `
84
+ - ` stimulus = pRF.get_stimulus(); `
85
+ - ` tc = pRF.get_timecourses(); `
86
+ - ` pRF.set_hrf(hrf); `
87
+ - ` pRF.set_stimulus(stimulus); `
88
+ - ` pRF.import_stimulus(); `
89
+ - ` pRF.create_timecourses(); `
90
+ - ` results = pRF.mapping(data); `
89
91
90
- Use help pRF.function to get more detailed help on any specific function
91
- (e.g. help pRF.mapping)
92
+ Use ` help pRF.function ` to get more detailed help on any specific function
93
+ (e.g. ` help pRF.mapping ` )
92
94
93
95
typical workflow:
94
- 1 . prf = pRF(params);
95
- 2 . prf.import_stimulus();
96
- 3 . prf.create_timecourses();
97
- 4 . results = prf.mapping(data);
96
+ ``` Matlab
97
+ prf = pRF(parameters);
98
+ prf.import_stimulus();
99
+ prf.create_timecourses();
100
+ results = prf.mapping(data);
101
+ ```
98
102
99
103
### Input-referred model (IRM) mapping tool.
100
104
101
- irm = IRM(params) creates an instance of the IRM class.
102
- params is a structure with 5 required fields
105
+ ` irm = IRM(parameters) ` creates an instance of the IRM class.
106
+ parameters is a structure with 5 required fields
103
107
- f_sampling: sampling frequency (1/TR)
104
108
- n_samples : number of samples (volumes)
105
109
- n_rows : number of rows (in-plane resolution)
@@ -116,27 +120,29 @@ optional inputs are
116
120
117
121
This class has the following functions
118
122
119
- - hrf = IRM.get_hrf();
120
- - stimulus = IRM.get_stimulus();
121
- - tc = IRM.get_timecourses();
122
- - IRM.set_hrf(hrf);
123
- - IRM.set_stimulus(stimulus);
124
- - IRM.create_timecourses();
125
- - results = IRM.mapping(data);
123
+ - ` hrf = IRM.get_hrf(); `
124
+ - ` stimulus = IRM.get_stimulus(); `
125
+ - ` tc = IRM.get_timecourses(); `
126
+ - ` IRM.set_hrf(hrf); `
127
+ - ` IRM.set_stimulus(stimulus); `
128
+ - ` IRM.create_timecourses(); `
129
+ - ` results = IRM.mapping(data); `
126
130
127
- Use help IRM.function to get more detailed help on any specific function
128
- (e.g. help IRM.mapping)
131
+ Use ` help IRM.function ` to get more detailed help on any specific function
132
+ (e.g. ` help IRM.mapping ` )
129
133
130
134
typical workflow:
131
- 1 . irm = IRM(params);
132
- 2 . irm.set_stimulus();
133
- 3 . irm.create_timecourse(FUN,xdata);
134
- 4 . results = irm.mapping(data);
135
+ ``` Matlab
136
+ irm = IRM(parameters);
137
+ irm.set_stimulus();
138
+ irm.create_timecourse(FUN,xdata);
139
+ results = irm.mapping(data);
140
+ ```
135
141
136
142
### Ridge-based analysis tool.
137
143
138
- rrt = RRT(params) creates an instance of the RRT class.
139
- params is a structure with 5 required fields
144
+ ` rrt = RRT(parameters) ` creates an instance of the RRT class.
145
+ parameters is a structure with 5 required fields
140
146
- f_sampling: sampling frequency (1/TR)
141
147
- n_samples : number of samples (volumes)
142
148
- n_rows : number of rows (in-plane resolution)
@@ -153,18 +159,20 @@ optional inputs are
153
159
154
160
This class has the following functions
155
161
156
- - hrf = RRT.get_hrf();
157
- - X = RRT.get_design();
158
- - RRT.set_hrf(hrf);
159
- - RRT.set_design(X);
160
- - RRT.optimize_lambda(data,range);
161
- - results = RRT.perform_ridge(data);
162
+ - ` hrf = RRT.get_hrf(); `
163
+ - ` X = RRT.get_design(); `
164
+ - ` RRT.set_hrf(hrf); `
165
+ - ` RRT.set_design(X); `
166
+ - ` RRT.optimize_lambda(data,range); `
167
+ - ` results = RRT.perform_ridge(data); `
162
168
163
- Use help RRT.function to get more detailed help on any specific
164
- function (e.g. help RRT.perform_ridge)
169
+ Use ` help RRT.function ` to get more detailed help on any specific
170
+ function (e.g. ` help RRT.perform_ridge ` )
165
171
166
172
typical workflow:
167
- 1 . rrt = RRT(params);
168
- 2 . rrt.set_design(X);
169
- 3 . rrt.optimize_lambda(data,range);
170
- 4 . results = rrt.perform_ridge(data);
173
+ ``` Matlab
174
+ rrt = RRT(parameters);
175
+ rrt.set_design(X);
176
+ rrt.optimize_lambda(data,range);
177
+ results = rrt.perform_ridge(data);
178
+ ```
0 commit comments