Skip to content

Commit 81ac9b6

Browse files
committed
improved code highlighting
1 parent f18ac37 commit 81ac9b6

File tree

1 file changed

+66
-58
lines changed

1 file changed

+66
-58
lines changed

README.md

Lines changed: 66 additions & 58 deletions
Original file line numberDiff line numberDiff line change
@@ -31,8 +31,8 @@ This repository contains four files.
3131

3232

3333
### Phase-encoding analysis tool.
34-
pea = PEA(params) creates an instance of the PEA class.
35-
params is a structure with 7 required fields
34+
`pea = PEA(parameters)` creates an instance of the PEA class.
35+
parameters is a structure with 7 required fields
3636
- f_sampling: sampling frequency (1/TR)
3737
- f_stim : stimulation frequency
3838
- n_samples : number of samples (volumes)
@@ -42,24 +42,26 @@ params is a structure with 7 required fields
4242

4343
This class has the following functions
4444

45-
- delay = PEA.get_delay();
46-
- direction = PEA.get_direction();
47-
- PEA.set_delay(delay);
48-
- PEA.set_direction(direction);
49-
- results = PEA.fitting(data);
45+
- `delay = PEA.get_delay();`
46+
- `direction = PEA.get_direction();`
47+
- `PEA.set_delay(delay);`
48+
- `PEA.set_direction(direction);`
49+
- `results = PEA.fitting(data);`
5050

51-
Use help PEA.function to get more detailed help on any specific
52-
function (e.g. help PEA.fitting)
51+
Use `help PEA.function` to get more detailed help on any specific
52+
function (e.g. `help PEA.fitting`)
5353

5454
typical workflow:
55-
1. pea = PEA(params);
56-
2. pea.set_delay(delay);
57-
3. pea.set_direction(direction);
58-
4. results = pea.fitting(data);
55+
```Matlab
56+
pea = PEA(parameters);
57+
pea.set_delay(delay);
58+
pea.set_direction(direction);
59+
results = pea.fitting(data);
60+
```
5961

6062
### Population receptive field (pRF) mapping tool.
61-
prf = pRF(params) creates an instance of the pRF class.
62-
params is a structure with 7 required fields
63+
`prf = pRF(parameters)` creates an instance of the pRF class.
64+
parameters is a structure with 7 required fields
6365
- f_sampling: sampling frequency (1/TR)
6466
- n_samples : number of samples (volumes)
6567
- n_rows : number of rows (in-plane resolution)
@@ -78,28 +80,30 @@ optional inputs are
7880

7981
This class has the following functions
8082

81-
- hrf = pRF.get_hrf();
82-
- stimulus = pRF.get_stimulus();
83-
- tc = pRF.get_timecourses();
84-
- pRF.set_hrf(hrf);
85-
- pRF.set_stimulus(stimulus);
86-
- pRF.import_stimulus();
87-
- pRF.create_timecourses();
88-
- results = pRF.mapping(data);
83+
- `hrf = pRF.get_hrf();`
84+
- `stimulus = pRF.get_stimulus();`
85+
- `tc = pRF.get_timecourses();`
86+
- `pRF.set_hrf(hrf);`
87+
- `pRF.set_stimulus(stimulus);`
88+
- `pRF.import_stimulus();`
89+
- `pRF.create_timecourses();`
90+
- `results = pRF.mapping(data);`
8991

90-
Use help pRF.function to get more detailed help on any specific function
91-
(e.g. help pRF.mapping)
92+
Use `help pRF.function` to get more detailed help on any specific function
93+
(e.g. `help pRF.mapping`)
9294

9395
typical workflow:
94-
1. prf = pRF(params);
95-
2. prf.import_stimulus();
96-
3. prf.create_timecourses();
97-
4. results = prf.mapping(data);
96+
```Matlab
97+
prf = pRF(parameters);
98+
prf.import_stimulus();
99+
prf.create_timecourses();
100+
results = prf.mapping(data);
101+
```
98102

99103
### Input-referred model (IRM) mapping tool.
100104

101-
irm = IRM(params) creates an instance of the IRM class.
102-
params is a structure with 5 required fields
105+
`irm = IRM(parameters)` creates an instance of the IRM class.
106+
parameters is a structure with 5 required fields
103107
- f_sampling: sampling frequency (1/TR)
104108
- n_samples : number of samples (volumes)
105109
- n_rows : number of rows (in-plane resolution)
@@ -116,27 +120,29 @@ optional inputs are
116120

117121
This class has the following functions
118122

119-
- hrf = IRM.get_hrf();
120-
- stimulus = IRM.get_stimulus();
121-
- tc = IRM.get_timecourses();
122-
- IRM.set_hrf(hrf);
123-
- IRM.set_stimulus(stimulus);
124-
- IRM.create_timecourses();
125-
- results = IRM.mapping(data);
123+
- `hrf = IRM.get_hrf();`
124+
- `stimulus = IRM.get_stimulus();`
125+
- `tc = IRM.get_timecourses();`
126+
- `IRM.set_hrf(hrf);`
127+
- `IRM.set_stimulus(stimulus);`
128+
- `IRM.create_timecourses();`
129+
- `results = IRM.mapping(data);`
126130

127-
Use help IRM.function to get more detailed help on any specific function
128-
(e.g. help IRM.mapping)
131+
Use `help IRM.function` to get more detailed help on any specific function
132+
(e.g. `help IRM.mapping`)
129133

130134
typical workflow:
131-
1. irm = IRM(params);
132-
2. irm.set_stimulus();
133-
3. irm.create_timecourse(FUN,xdata);
134-
4. results = irm.mapping(data);
135+
```Matlab
136+
irm = IRM(parameters);
137+
irm.set_stimulus();
138+
irm.create_timecourse(FUN,xdata);
139+
results = irm.mapping(data);
140+
```
135141

136142
### Ridge-based analysis tool.
137143

138-
rrt = RRT(params) creates an instance of the RRT class.
139-
params is a structure with 5 required fields
144+
`rrt = RRT(parameters)` creates an instance of the RRT class.
145+
parameters is a structure with 5 required fields
140146
- f_sampling: sampling frequency (1/TR)
141147
- n_samples : number of samples (volumes)
142148
- n_rows : number of rows (in-plane resolution)
@@ -153,18 +159,20 @@ optional inputs are
153159

154160
This class has the following functions
155161

156-
- hrf = RRT.get_hrf();
157-
- X = RRT.get_design();
158-
- RRT.set_hrf(hrf);
159-
- RRT.set_design(X);
160-
- RRT.optimize_lambda(data,range);
161-
- results = RRT.perform_ridge(data);
162+
- `hrf = RRT.get_hrf();`
163+
- `X = RRT.get_design();`
164+
- `RRT.set_hrf(hrf);`
165+
- `RRT.set_design(X);`
166+
- `RRT.optimize_lambda(data,range);`
167+
- `results = RRT.perform_ridge(data);`
162168

163-
Use help RRT.function to get more detailed help on any specific
164-
function (e.g. help RRT.perform_ridge)
169+
Use `help RRT.function` to get more detailed help on any specific
170+
function (e.g. `help RRT.perform_ridge`)
165171

166172
typical workflow:
167-
1. rrt = RRT(params);
168-
2. rrt.set_design(X);
169-
3. rrt.optimize_lambda(data,range);
170-
4. results = rrt.perform_ridge(data);
173+
```Matlab
174+
rrt = RRT(parameters);
175+
rrt.set_design(X);
176+
rrt.optimize_lambda(data,range);
177+
results = rrt.perform_ridge(data);
178+
```

0 commit comments

Comments
 (0)