20
20
import sys
21
21
import cv2
22
22
import glob
23
+ import time
23
24
import numpy as np
24
25
import tkinter as tk
25
26
from tkinter import filedialog
@@ -273,6 +274,8 @@ def create_timecourses(self, max_radius = 10.0, n_xy = 30,
273
274
274
275
W = np .zeros ((self .n_points ,
275
276
self .w_stimulus * self .h_stimulus ))
277
+ start = time .time ()
278
+ print ('\n creating timecourses' )
276
279
for p in range (self .n_points ):
277
280
x = np .cos (self .pa [self .idx [p , 0 ]]) * self .ecc [self .idx [p , 1 ]]
278
281
y = np .sin (self .pa [self .idx [p , 0 ]]) * self .ecc [self .idx [p , 1 ]]
@@ -281,13 +284,14 @@ def create_timecourses(self, max_radius = 10.0, n_xy = 30,
281
284
282
285
i = int (p / self .n_points * 19 )
283
286
sys .stdout .write ('\r ' )
284
- sys .stdout .write ("creating timecourses [%-20s] %d%%"
287
+ sys .stdout .write ("[%-20s] %d%%"
285
288
% ('=' * i , 5 * i ))
286
289
287
290
tc = np .matmul (W , self .stimulus ).transpose ()
288
291
sys .stdout .write ('\r ' )
289
- sys .stdout .write ("creating timecourses [%-20s] %d%%\n " % ('=' * 20 , 100 ))
290
- self .tc_fft = fft (tc , axis = 0 )
292
+ sys .stdout .write ("[%-20s] %d%%" % ('=' * 20 , 100 ))
293
+ self .tc_fft = fft (tc , axis = 0 )
294
+
291
295
292
296
def mapping (self , data , threshold = 100 , mask = []):
293
297
'''
@@ -338,6 +342,8 @@ def mapping(self, data, threshold = 100, mask = []):
338
342
'mu_y' : np .zeros (self .n_total ),
339
343
'sigma' : np .zeros (self .n_total )}
340
344
345
+ start = time .time ()
346
+ print ('\n mapping receptive fields' )
341
347
if self .hrf_fft .ndim == 1 :
342
348
tc = np .transpose (
343
349
zscore (
@@ -366,7 +372,7 @@ def mapping(self, data, threshold = 100, mask = []):
366
372
367
373
i = int (m / n_voxels * 21 )
368
374
sys .stdout .write ('\r ' )
369
- sys .stdout .write ("pRF mapping [%-20s] %d%%"
375
+ sys .stdout .write ("[%-20s] %d%%"
370
376
% ('=' * i , 5 * i ))
371
377
372
378
else :
@@ -397,11 +403,7 @@ def mapping(self, data, threshold = 100, mask = []):
397
403
results ['sigma' ][v ] = self .ecc [self .idx [idx_best , 1 ]] * \
398
404
self .slope [self .idx [idx_best , 2 ]]
399
405
400
- i = int (m / n_voxels * 21 )
401
- sys .stdout .write ('\r ' )
402
- sys .stdout .write ("pRF mapping [%-20s] %d%%"
403
- % ('=' * i , 5 * i ))
404
-
406
+ i = int (m / n_voxels * 21 )
405
407
406
408
for key in results :
407
409
results [key ] = np .squeeze (
@@ -414,7 +416,7 @@ def mapping(self, data, threshold = 100, mask = []):
414
416
results ['mu_y' ] * 1j )
415
417
results ['polar_angle' ] = np .angle (results ['mu_x' ] +
416
418
results ['mu_y' ] * 1j )
417
-
419
+
418
420
return results
419
421
420
422
0 commit comments