Skip to content

Commit 091cb3d

Browse files
feat: add pydantic type check in mcp decorator (#3017)
Co-authored-by: Wendong-Fan <133094783+Wendong-Fan@users.noreply.github.com> Co-authored-by: Wendong-Fan <w3ndong.fan@gmail.com>
1 parent 6f3e245 commit 091cb3d

File tree

2 files changed

+543
-2
lines changed

2 files changed

+543
-2
lines changed

camel/utils/mcp.py

Lines changed: 136 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -13,7 +13,121 @@
1313
# ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. =========
1414
import functools
1515
import inspect
16-
from typing import Any, Callable, Optional
16+
import warnings
17+
from typing import (
18+
Any,
19+
Callable,
20+
List,
21+
Optional,
22+
Tuple,
23+
Union,
24+
get_args,
25+
get_origin,
26+
get_type_hints,
27+
)
28+
29+
from pydantic import create_model
30+
from pydantic.errors import PydanticSchemaGenerationError
31+
32+
from camel.logger import get_logger
33+
34+
logger = get_logger(__name__)
35+
36+
37+
def _is_pydantic_serializable(type_annotation: Any) -> Tuple[bool, str]:
38+
r"""Check if a type annotation is Pydantic serializable.
39+
40+
Args:
41+
type_annotation: The type annotation to check
42+
43+
Returns:
44+
Tuple[bool, str]: (is_serializable, error_message)
45+
"""
46+
# Handle None type
47+
if type_annotation is type(None) or type_annotation is None:
48+
return True, ""
49+
50+
# Handle generic types (List, Dict, Optional, etc.)
51+
origin = get_origin(type_annotation)
52+
if origin is not None:
53+
args = get_args(type_annotation)
54+
55+
# For Union types (including Optional), check all args
56+
if origin is Union:
57+
for arg in args:
58+
is_serializable, error_msg = _is_pydantic_serializable(arg)
59+
if not is_serializable:
60+
return False, error_msg
61+
return True, ""
62+
63+
# For List, Set, Tuple, etc., check the contained types
64+
if origin in (list, set, tuple, frozenset):
65+
for arg in args:
66+
is_serializable, error_msg = _is_pydantic_serializable(arg)
67+
if not is_serializable:
68+
return False, error_msg
69+
return True, ""
70+
71+
# For Dict, check both key and value types
72+
if origin is dict:
73+
for arg in args:
74+
is_serializable, error_msg = _is_pydantic_serializable(arg)
75+
if not is_serializable:
76+
return False, error_msg
77+
return True, ""
78+
79+
# Try to create a simple pydantic model with this type
80+
try:
81+
create_model("TestModel", test_field=(type_annotation, ...))
82+
# If model creation succeeds, the type is serializable
83+
return True, ""
84+
except (PydanticSchemaGenerationError, TypeError, ValueError) as e:
85+
error_msg = (
86+
f"Type '{type_annotation}' is not Pydantic serializable. "
87+
f"Consider using a custom serializable type or converting "
88+
f"to bytes/base64. Error: {e!s}"
89+
)
90+
return False, error_msg
91+
92+
93+
def _validate_function_types(func: Callable[..., Any]) -> List[str]:
94+
r"""Validate function parameter and return types are Pydantic serializable.
95+
96+
Args:
97+
func (Callable[..., Any]): The function to validate.
98+
99+
Returns:
100+
List[str]: List of error messages for incompatible types.
101+
"""
102+
errors = []
103+
104+
try:
105+
type_hints = get_type_hints(func)
106+
except (NameError, AttributeError) as e:
107+
# If we can't get type hints, skip validation
108+
logger.warning(f"Could not get type hints for {func.__name__}: {e}")
109+
return []
110+
111+
# Check return type
112+
return_type = type_hints.get('return', Any)
113+
if return_type != Any:
114+
is_serializable, error_msg = _is_pydantic_serializable(return_type)
115+
if not is_serializable:
116+
errors.append(f"Return type: {error_msg}")
117+
118+
# Check parameter types
119+
sig = inspect.signature(func)
120+
for param_name, _param in sig.parameters.items():
121+
if param_name == 'self':
122+
continue
123+
124+
param_type = type_hints.get(param_name, Any)
125+
if param_type != Any:
126+
is_serializable, error_msg = _is_pydantic_serializable(param_type)
127+
if not is_serializable:
128+
errors.append(f"Parameter '{param_name}': {error_msg}")
129+
130+
return errors
17131

18132

19133
class MCPServer:
@@ -55,7 +169,7 @@ class MyToolkit(BaseToolkit):
55169

56170
def __init__(
57171
self,
58-
function_names: Optional[list[str]] = None,
172+
function_names: Optional[List[str]] = None,
59173
server_name: Optional[str] = None,
60174
):
61175
self.function_names = function_names
@@ -135,6 +249,26 @@ def new_init(instance, *args, **kwargs):
135249
f"Method {name} not found in class {cls.__name__} or "
136250
"cannot be called."
137251
)
252+
253+
# Validate function types for Pydantic compatibility
254+
type_errors = _validate_function_types(func)
255+
if type_errors:
256+
error_message = (
257+
f"Method '{name}' in class '{cls.__name__}' has "
258+
f"non-Pydantic-serializable types:\n"
259+
+ "\n".join(f" - {error}" for error in type_errors)
260+
+ "\n\nSuggestions:"
261+
+ "\n - Use standard Python types (str, int, float, bool, bytes)" # noqa: E501
262+
+ "\n - Convert complex objects to JSON strings or bytes" # noqa: E501
263+
+ "\n - Create custom Pydantic models for complex data" # noqa: E501
264+
+ "\n - Use base64 encoding for binary data like images" # noqa: E501
265+
)
266+
267+
# For now, issue a warning instead of raising an error
268+
# This allows gradual migration while alerting developers
269+
warnings.warn(error_message, UserWarning, stacklevel=3)
270+
logger.warning(error_message)
271+
138272
wrapper = self.make_wrapper(func)
139273
instance.mcp.tool(name=name)(wrapper)
140274

0 commit comments

Comments
 (0)