-
Notifications
You must be signed in to change notification settings - Fork 61
Open
Description
Dear All,
Hopefully the reprex is self-explanatory.
I plan to use anomalize on non-time series data.
It should still work according to the documentation (without the time series decomposition) and it does, but not on non-time series grouped data.
Any ideas?
library(tidyverse)
library(anomalize)
#> ══ Use anomalize to improve your Forecasts by 50%! ═════════════════════════════
#> Business Science offers a 1-hour course - Lab #18: Time Series Anomaly Detection!
#> </> Learn more at: https://university.business-science.io/p/learning-labs-pro </>
test1 <- tidyverse_cran_downloads %>%
time_decompose(count) %>%
anomalize(remainder)
#> Registered S3 method overwritten by 'quantmod':
#> method from
#> as.zoo.data.frame zoo
print(test1) ##and this works fine
#> # A time tibble: 6,375 x 9
#> # Index: date
#> # Groups: package [15]
#> package date observed season trend remainder remainder_l1 remainder_l2
#> <chr> <date> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 broom 2017-01-01 1053. -1007. 1708. 352. -1725. 1704.
#> 2 broom 2017-01-02 1481 340. 1731. -589. -1725. 1704.
#> 3 broom 2017-01-03 1851 563. 1753. -465. -1725. 1704.
#> 4 broom 2017-01-04 1947 526. 1775. -354. -1725. 1704.
#> 5 broom 2017-01-05 1927 430. 1798. -301. -1725. 1704.
#> 6 broom 2017-01-06 1948 136. 1820. -8.11 -1725. 1704.
#> 7 broom 2017-01-07 1542 -988. 1842. 688. -1725. 1704.
#> 8 broom 2017-01-08 1479. -1007. 1864. 622. -1725. 1704.
#> 9 broom 2017-01-09 2057 340. 1887. -169. -1725. 1704.
#> 10 broom 2017-01-10 2278 563. 1909. -194. -1725. 1704.
#> # … with 6,365 more rows, and 1 more variable: anomaly <chr>
test2 <- tidyverse_cran_downloads %>%
group_by(package) %>%
time_decompose(count) %>%
anomalize(remainder)
print(test2) ##and also this works fine
#> # A time tibble: 6,375 x 9
#> # Index: date
#> # Groups: package [15]
#> package date observed season trend remainder remainder_l1 remainder_l2
#> <chr> <date> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 broom 2017-01-01 1053. -1007. 1708. 352. -1725. 1704.
#> 2 broom 2017-01-02 1481 340. 1731. -589. -1725. 1704.
#> 3 broom 2017-01-03 1851 563. 1753. -465. -1725. 1704.
#> 4 broom 2017-01-04 1947 526. 1775. -354. -1725. 1704.
#> 5 broom 2017-01-05 1927 430. 1798. -301. -1725. 1704.
#> 6 broom 2017-01-06 1948 136. 1820. -8.11 -1725. 1704.
#> 7 broom 2017-01-07 1542 -988. 1842. 688. -1725. 1704.
#> 8 broom 2017-01-08 1479. -1007. 1864. 622. -1725. 1704.
#> 9 broom 2017-01-09 2057 340. 1887. -169. -1725. 1704.
#> 10 broom 2017-01-10 2278 563. 1909. -194. -1725. 1704.
#> # … with 6,365 more rows, and 1 more variable: anomaly <chr>
## From the documentation:
## For non-time series data (data without trend), the anomalize()
## function can be used without time
## series decomposition.
test3 <- tidyverse_cran_downloads %>%
select(-date) %>%
filter(package=="broom") %>%
anomalize(count)
print(test3) ## OK!
#> # A tibble: 425 x 5
#> count package count_l1 count_l2 anomaly
#> <dbl> <chr> <dbl> <dbl> <chr>
#> 1 1053 broom -2535. 7965. No
#> 2 1481 broom -2535. 7965. No
#> 3 1851 broom -2535. 7965. No
#> 4 1947 broom -2535. 7965. No
#> 5 1927 broom -2535. 7965. No
#> 6 1948 broom -2535. 7965. No
#> 7 1542 broom -2535. 7965. No
#> 8 1479 broom -2535. 7965. No
#> 9 2057 broom -2535. 7965. No
#> 10 2278 broom -2535. 7965. No
#> # … with 415 more rows
### now let us try this on grouped data
test4 <- tidyverse_cran_downloads %>%
select(-date) %>%
group_by(package) %>%
anomalize(count)
#> Error in value[[3L]](cond): Error in prep_tbl_time(): No date or datetime column found.
print(test4) ##and now an error ## what to do?
#> Error in print(test4): object 'test4' not found
Created on 2020-07-30 by the reprex package (v0.3.0)
Metadata
Metadata
Assignees
Labels
No labels