Skip to content

Commit f0bcb80

Browse files
committed
Add x-only ecmult_const version for x=n/d
1 parent 83d54e1 commit f0bcb80

File tree

3 files changed

+196
-0
lines changed

3 files changed

+196
-0
lines changed

src/ecmult_const.h

Lines changed: 19 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -18,4 +18,23 @@
1818
*/
1919
static void secp256k1_ecmult_const(secp256k1_gej *r, const secp256k1_ge *a, const secp256k1_scalar *q, int bits);
2020

21+
/**
22+
* Same as secp256k1_ecmult_const, but takes in an x coordinate of the base point
23+
* only, specified as fraction n/d. Only the x coordinate of the result is returned.
24+
*
25+
* If known_on_curve is 0, a verification is performed that n/d is a valid X
26+
* coordinate, and 0 is returned if not. Otherwise, 1 is returned.
27+
*
28+
* d being NULL is interpreted as d=1.
29+
*
30+
* Constant time in the value of q, but not any other inputs.
31+
*/
32+
static int secp256k1_ecmult_const_xonly(
33+
secp256k1_fe* r,
34+
const secp256k1_fe *n,
35+
const secp256k1_fe *d,
36+
const secp256k1_scalar *q,
37+
int bits,
38+
int known_on_curve);
39+
2140
#endif /* SECP256K1_ECMULT_CONST_H */

src/ecmult_const_impl.h

Lines changed: 114 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -228,4 +228,118 @@ static void secp256k1_ecmult_const(secp256k1_gej *r, const secp256k1_ge *a, cons
228228
secp256k1_fe_mul(&r->z, &r->z, &Z);
229229
}
230230

231+
static int secp256k1_ecmult_const_xonly(secp256k1_fe* r, const secp256k1_fe *n, const secp256k1_fe *d, const secp256k1_scalar *q, int bits, int known_on_curve) {
232+
233+
/* This algorithm is a generalization of Peter Dettman's technique for
234+
* avoiding the square root in a random-basepoint x-only multiplication
235+
* on a Weierstrass curve:
236+
* https://mailarchive.ietf.org/arch/msg/cfrg/7DyYY6gg32wDgHAhgSb6XxMDlJA/
237+
*
238+
*
239+
* Background: the effective affine technique
240+
*
241+
* Let phi_u be the isomorphism that maps (x, y) on secp256k1 curve y^2 = x^3 + 7 to
242+
* x' = u^2*x, y' = u^3*y on curve y'^2 = x'^3 + u^6*7. This new curve has the same order as
243+
* the original (it is isomorphic), but moreover, has the same addition/doubling formulas, as
244+
* the curve b=7 coefficient does not appear in those formulas.
245+
*
246+
* This means any computation on secp256k1 can be peformed by applying phi_u for any non-zero
247+
* u on all the input points (including the generator, if used), performing the computation
248+
* on the isomorphic curve (using the same group laws), and then applying phi_{1/u} to get back
249+
* to secp256k1.
250+
*
251+
* Applying this to Jacobian coordinates, note that phi_u applied to (X, Y, Z) is simply
252+
* (X, Y, Z/u). This means that if we want to compute (X1, Y1, Z) + (X2, Y2, Z), with
253+
* identical Z coordinates, we can use phi_Z to transform it to (X1, Y1, 1) + (X2, Y2, 1) on
254+
* an isomorphic curve where the affine addition formula can be used instead.
255+
* If (X3, Y3, Z3) = (X1, Y1) + (X2, Y2) on that curve, then our answer on secp256k1 is
256+
* (X3, Y3, Z3*Z).
257+
*
258+
* This is the effective affine technique: if we have a linear combination of group elements
259+
* to compute, and all those group elements have the same Z coordinate, we can simply pretend
260+
* that all those Z coordinates are 1, perform the computation that way, and then multiply the
261+
* original Z coordinate back in.
262+
*
263+
*
264+
* Avoiding the square root for x-only point multiplication.
265+
*
266+
* In this function, we want to compute the X coordinate of q*(n/d, y), for
267+
* y = sqrt((n/d)^3 + 7).
268+
*
269+
* Let g = y^2*d^3 = n^3 + 7*d^3. This also means y = sqrt(g/d^3).
270+
*
271+
* The input point (n/d, y) also has Jacobian coordinates:
272+
* (n/d, y, 1)
273+
* = (n/d * sqrt^2(d*g), y * sqrt^3(d*g), sqrt(d*g))
274+
* = (n/d * d*g, y * sqrt(d^3*g^3), sqrt(d*g))
275+
* = (n*g, sqrt(g/d^3 * d^3*g^3), sqrt(d*g))
276+
* = (n*g, sqrt(g^4), sqrt(d*g))
277+
* = (n*g, g^2, sqrt(d*g))
278+
*
279+
* Note that sqrt(d*g) must exist if the input was valid, as d*g = y^2*d^4 = (y*d^2)^2.
280+
*
281+
* Now switch to the effective affine curve using phi_{sqrt(d*g)}, where the input point has
282+
* coordinates (n*g, g^2).
283+
*
284+
* Let (X, Y, Z) = q*(n*g, g^2). Back on secp256k1, that means q*(n*g, g^2, sqrt(d*g)) =
285+
* (X, Y, Z*sqrt(d*g)). This last point has affine X coordinate X/(d*g*Z^2). The affine Y
286+
* coordinate would involve a square root, but if we only care about the resulting X
287+
* coordinate, no square root was needed anywhere in this computation.
288+
*/
289+
290+
secp256k1_fe g, i;
291+
secp256k1_ge p;
292+
secp256k1_gej rj;
293+
294+
/* Compute g = (n^3 + B*d^3). */
295+
secp256k1_fe_sqr(&g, n);
296+
secp256k1_fe_mul(&g, &g, n);
297+
if (d) {
298+
secp256k1_fe b;
299+
secp256k1_fe_sqr(&b, d);
300+
secp256k1_fe_mul_int(&b, SECP256K1_B);
301+
secp256k1_fe_mul(&b, &b, d);
302+
secp256k1_fe_add(&g, &b);
303+
if (!known_on_curve) {
304+
/* We need to determine whether (n/d)^3 + 7 is square.
305+
*
306+
* is_square((n/d)^3 + 7)
307+
* <=> is_square(((n/d)^3 + 7) * d^4)
308+
* <=> is_square((n^3 + 7*d^3) * d)
309+
* <=> is_square(g * d)
310+
*/
311+
secp256k1_fe c;
312+
secp256k1_fe_mul(&c, &g, d);
313+
if (!secp256k1_fe_is_square_var(&c)) return 0;
314+
}
315+
} else {
316+
secp256k1_fe_add(&g, &secp256k1_fe_const_b);
317+
if (!known_on_curve) {
318+
/* g at this point equals x^3 + 7. Test if it is square. */
319+
if (!secp256k1_fe_is_square_var(&g)) return 0;
320+
}
321+
}
322+
323+
/* Compute base point P = (n*g, g^2), the effective affine version of
324+
* (n*g, g^2, sqrt(d*g)), which has corresponding affine X coordinate
325+
* n/d. */
326+
secp256k1_fe_mul(&p.x, &g, n);
327+
secp256k1_fe_sqr(&p.y, &g);
328+
p.infinity = 0;
329+
330+
/* Perform x-only EC multiplication of P with q. */
331+
secp256k1_ecmult_const(&rj, &p, q, bits);
332+
333+
/* The resulting (X, Y, Z) point on the effective-affine isomorphic curve
334+
* corresponds to (X, Y, Z*sqrt(d*g)) on the secp256k1 curve. The affine
335+
* version of that has X coordinate (X / (Z^2*d*g)). */
336+
secp256k1_fe_sqr(&i, &rj.z);
337+
secp256k1_fe_mul(&i, &i, &g);
338+
if (d) secp256k1_fe_mul(&i, &i, d);
339+
secp256k1_fe_inv(&i, &i);
340+
secp256k1_fe_mul(r, &rj.x, &i);
341+
342+
return 1;
343+
}
344+
231345
#endif /* SECP256K1_ECMULT_CONST_IMPL_H */

src/tests.c

Lines changed: 63 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -4351,6 +4351,68 @@ void ecmult_const_mult_zero_one(void) {
43514351
ge_equals_ge(&res2, &point);
43524352
}
43534353

4354+
void ecmult_const_mult_xonly(void) {
4355+
int i;
4356+
4357+
/* Test correspondence between secp256k1_ecmult_const and secp256k1_ecmult_const_xonly. */
4358+
for (i = 0; i < 2*count; ++i) {
4359+
secp256k1_ge base;
4360+
secp256k1_gej basej, resj;
4361+
secp256k1_fe n, d, resx, v;
4362+
secp256k1_scalar q;
4363+
int res;
4364+
/* Random base point. */
4365+
random_group_element_test(&base);
4366+
/* Random scalar to multiply it with. */
4367+
random_scalar_order_test(&q);
4368+
/* If i is odd, n=d*base.x for random non-zero d */
4369+
if (i & 1) {
4370+
do {
4371+
random_field_element_test(&d);
4372+
} while (secp256k1_fe_normalizes_to_zero_var(&d));
4373+
secp256k1_fe_mul(&n, &base.x, &d);
4374+
} else {
4375+
n = base.x;
4376+
}
4377+
/* Perform x-only multiplication. */
4378+
res = secp256k1_ecmult_const_xonly(&resx, &n, (i & 1) ? &d : NULL, &q, 256, i & 2);
4379+
CHECK(res);
4380+
/* Perform normal multiplication. */
4381+
secp256k1_gej_set_ge(&basej, &base);
4382+
secp256k1_ecmult(&resj, &basej, &q, NULL);
4383+
/* Check that resj's X coordinate corresponds with resx. */
4384+
secp256k1_fe_sqr(&v, &resj.z);
4385+
secp256k1_fe_mul(&v, &v, &resx);
4386+
CHECK(check_fe_equal(&v, &resj.x));
4387+
}
4388+
4389+
/* Test that secp256k1_ecmult_const_xonly correctly rejects X coordinates not on curve. */
4390+
for (i = 0; i < 2*count; ++i) {
4391+
secp256k1_fe x, n, d, c, r;
4392+
int res;
4393+
secp256k1_scalar q;
4394+
random_scalar_order_test(&q);
4395+
/* Generate random X coordinate not on the curve. */
4396+
do {
4397+
random_field_element_test(&x);
4398+
secp256k1_fe_sqr(&c, &x);
4399+
secp256k1_fe_mul(&c, &c, &x);
4400+
secp256k1_fe_add(&c, &secp256k1_fe_const_b);
4401+
} while (secp256k1_fe_is_square_var(&c));
4402+
/* If i is odd, n=d*x for random non-zero d. */
4403+
if (i & 1) {
4404+
do {
4405+
random_field_element_test(&d);
4406+
} while (secp256k1_fe_normalizes_to_zero_var(&d));
4407+
secp256k1_fe_mul(&n, &x, &d);
4408+
} else {
4409+
n = x;
4410+
}
4411+
res = secp256k1_ecmult_const_xonly(&r, &n, (i & 1) ? &d : NULL, &q, 256, 0);
4412+
CHECK(res == 0);
4413+
}
4414+
}
4415+
43544416
void ecmult_const_chain_multiply(void) {
43554417
/* Check known result (randomly generated test problem from sage) */
43564418
const secp256k1_scalar scalar = SECP256K1_SCALAR_CONST(
@@ -4382,6 +4444,7 @@ void run_ecmult_const_tests(void) {
43824444
ecmult_const_random_mult();
43834445
ecmult_const_commutativity();
43844446
ecmult_const_chain_multiply();
4447+
ecmult_const_mult_xonly();
43854448
}
43864449

43874450
typedef struct {

0 commit comments

Comments
 (0)