Skip to content

Commit e8a702c

Browse files
Save _normalize_weak calls in group add methods
Co-authored-by: Sebastian Falbesoner <sebastian.falbesoner@gmail.com>
1 parent b159c63 commit e8a702c

File tree

1 file changed

+26
-26
lines changed

1 file changed

+26
-26
lines changed

src/group_impl.h

Lines changed: 26 additions & 26 deletions
Original file line numberDiff line numberDiff line change
@@ -492,7 +492,7 @@ static void secp256k1_gej_add_var(secp256k1_gej *r, const secp256k1_gej *a, cons
492492
}
493493

494494
static void secp256k1_gej_add_ge_var(secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_ge *b, secp256k1_fe *rzr) {
495-
/* 8 mul, 3 sqr, 13 add/negate/normalize_weak/normalizes_to_zero (ignoring special cases) */
495+
/* Operations: 8 mul, 3 sqr, 11 add/negate/normalizes_to_zero (ignoring special cases) */
496496
secp256k1_fe z12, u1, u2, s1, s2, h, i, h2, h3, t;
497497
secp256k1_gej_verify(a);
498498
secp256k1_ge_verify(b);
@@ -510,11 +510,11 @@ static void secp256k1_gej_add_ge_var(secp256k1_gej *r, const secp256k1_gej *a, c
510510
}
511511

512512
secp256k1_fe_sqr(&z12, &a->z);
513-
u1 = a->x; secp256k1_fe_normalize_weak(&u1);
513+
u1 = a->x;
514514
secp256k1_fe_mul(&u2, &b->x, &z12);
515-
s1 = a->y; secp256k1_fe_normalize_weak(&s1);
515+
s1 = a->y;
516516
secp256k1_fe_mul(&s2, &b->y, &z12); secp256k1_fe_mul(&s2, &s2, &a->z);
517-
secp256k1_fe_negate(&h, &u1, 1); secp256k1_fe_add(&h, &u2);
517+
secp256k1_fe_negate(&h, &u1, 6); secp256k1_fe_add(&h, &u2);
518518
secp256k1_fe_negate(&i, &s2, 1); secp256k1_fe_add(&i, &s1);
519519
if (secp256k1_fe_normalizes_to_zero_var(&h)) {
520520
if (secp256k1_fe_normalizes_to_zero_var(&i)) {
@@ -553,7 +553,7 @@ static void secp256k1_gej_add_ge_var(secp256k1_gej *r, const secp256k1_gej *a, c
553553
}
554554

555555
static void secp256k1_gej_add_zinv_var(secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_ge *b, const secp256k1_fe *bzinv) {
556-
/* 9 mul, 3 sqr, 13 add/negate/normalize_weak/normalizes_to_zero (ignoring special cases) */
556+
/* Operations: 9 mul, 3 sqr, 11 add/negate/normalizes_to_zero (ignoring special cases) */
557557
secp256k1_fe az, z12, u1, u2, s1, s2, h, i, h2, h3, t;
558558

559559
secp256k1_gej_verify(a);
@@ -586,11 +586,11 @@ static void secp256k1_gej_add_zinv_var(secp256k1_gej *r, const secp256k1_gej *a,
586586
secp256k1_fe_mul(&az, &a->z, bzinv);
587587

588588
secp256k1_fe_sqr(&z12, &az);
589-
u1 = a->x; secp256k1_fe_normalize_weak(&u1);
589+
u1 = a->x;
590590
secp256k1_fe_mul(&u2, &b->x, &z12);
591-
s1 = a->y; secp256k1_fe_normalize_weak(&s1);
591+
s1 = a->y;
592592
secp256k1_fe_mul(&s2, &b->y, &z12); secp256k1_fe_mul(&s2, &s2, &az);
593-
secp256k1_fe_negate(&h, &u1, 1); secp256k1_fe_add(&h, &u2);
593+
secp256k1_fe_negate(&h, &u1, 6); secp256k1_fe_add(&h, &u2);
594594
secp256k1_fe_negate(&i, &s2, 1); secp256k1_fe_add(&i, &s1);
595595
if (secp256k1_fe_normalizes_to_zero_var(&h)) {
596596
if (secp256k1_fe_normalizes_to_zero_var(&i)) {
@@ -623,7 +623,7 @@ static void secp256k1_gej_add_zinv_var(secp256k1_gej *r, const secp256k1_gej *a,
623623

624624

625625
static void secp256k1_gej_add_ge(secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_ge *b) {
626-
/* Operations: 7 mul, 5 sqr, 24 add/cmov/half/mul_int/negate/normalize_weak/normalizes_to_zero */
626+
/* Operations: 7 mul, 5 sqr, 21 add/cmov/half/mul_int/negate/normalizes_to_zero */
627627
secp256k1_fe zz, u1, u2, s1, s2, t, tt, m, n, q, rr;
628628
secp256k1_fe m_alt, rr_alt;
629629
int degenerate;
@@ -683,17 +683,17 @@ static void secp256k1_gej_add_ge(secp256k1_gej *r, const secp256k1_gej *a, const
683683
*/
684684

685685
secp256k1_fe_sqr(&zz, &a->z); /* z = Z1^2 */
686-
u1 = a->x; secp256k1_fe_normalize_weak(&u1); /* u1 = U1 = X1*Z2^2 (1) */
686+
u1 = a->x; /* u1 = U1 = X1*Z2^2 (6) */
687687
secp256k1_fe_mul(&u2, &b->x, &zz); /* u2 = U2 = X2*Z1^2 (1) */
688-
s1 = a->y; secp256k1_fe_normalize_weak(&s1); /* s1 = S1 = Y1*Z2^3 (1) */
688+
s1 = a->y; /* s1 = S1 = Y1*Z2^3 (4) */
689689
secp256k1_fe_mul(&s2, &b->y, &zz); /* s2 = Y2*Z1^2 (1) */
690690
secp256k1_fe_mul(&s2, &s2, &a->z); /* s2 = S2 = Y2*Z1^3 (1) */
691-
t = u1; secp256k1_fe_add(&t, &u2); /* t = T = U1+U2 (2) */
692-
m = s1; secp256k1_fe_add(&m, &s2); /* m = M = S1+S2 (2) */
691+
t = u1; secp256k1_fe_add(&t, &u2); /* t = T = U1+U2 (7) */
692+
m = s1; secp256k1_fe_add(&m, &s2); /* m = M = S1+S2 (5) */
693693
secp256k1_fe_sqr(&rr, &t); /* rr = T^2 (1) */
694-
secp256k1_fe_negate(&m_alt, &u2, 1); /* Malt = -X2*Z1^2 */
695-
secp256k1_fe_mul(&tt, &u1, &m_alt); /* tt = -U1*U2 (2) */
696-
secp256k1_fe_add(&rr, &tt); /* rr = R = T^2-U1*U2 (3) */
694+
secp256k1_fe_negate(&m_alt, &u2, 1); /* Malt = -X2*Z1^2 (2) */
695+
secp256k1_fe_mul(&tt, &u1, &m_alt); /* tt = -U1*U2 (1) */
696+
secp256k1_fe_add(&rr, &tt); /* rr = R = T^2-U1*U2 (2) */
697697
/* If lambda = R/M = R/0 we have a problem (except in the "trivial"
698698
* case that Z = z1z2 = 0, and this is special-cased later on). */
699699
degenerate = secp256k1_fe_normalizes_to_zero(&m);
@@ -703,34 +703,34 @@ static void secp256k1_gej_add_ge(secp256k1_gej *r, const secp256k1_gej *a, const
703703
* non-indeterminate expression for lambda is (y1 - y2)/(x1 - x2),
704704
* so we set R/M equal to this. */
705705
rr_alt = s1;
706-
secp256k1_fe_mul_int(&rr_alt, 2); /* rr = Y1*Z2^3 - Y2*Z1^3 (2) */
707-
secp256k1_fe_add(&m_alt, &u1); /* Malt = X1*Z2^2 - X2*Z1^2 */
706+
secp256k1_fe_mul_int(&rr_alt, 2); /* rr_alt = Y1*Z2^3 - Y2*Z1^3 (8) */
707+
secp256k1_fe_add(&m_alt, &u1); /* Malt = X1*Z2^2 - X2*Z1^2 (8) */
708708

709-
secp256k1_fe_cmov(&rr_alt, &rr, !degenerate);
710-
secp256k1_fe_cmov(&m_alt, &m, !degenerate);
709+
secp256k1_fe_cmov(&rr_alt, &rr, !degenerate); /* rr_alt (8) */
710+
secp256k1_fe_cmov(&m_alt, &m, !degenerate); /* m_alt (5) */
711711
/* Now Ralt / Malt = lambda and is guaranteed not to be Ralt / 0.
712712
* From here on out Ralt and Malt represent the numerator
713713
* and denominator of lambda; R and M represent the explicit
714714
* expressions x1^2 + x2^2 + x1x2 and y1 + y2. */
715715
secp256k1_fe_sqr(&n, &m_alt); /* n = Malt^2 (1) */
716-
secp256k1_fe_negate(&q, &t, 2); /* q = -T (3) */
716+
secp256k1_fe_negate(&q, &t, 7); /* q = -T (8) */
717717
secp256k1_fe_mul(&q, &q, &n); /* q = Q = -T*Malt^2 (1) */
718718
/* These two lines use the observation that either M == Malt or M == 0,
719719
* so M^3 * Malt is either Malt^4 (which is computed by squaring), or
720720
* zero (which is "computed" by cmov). So the cost is one squaring
721721
* versus two multiplications. */
722-
secp256k1_fe_sqr(&n, &n);
723-
secp256k1_fe_cmov(&n, &m, degenerate); /* n = M^3 * Malt (2) */
722+
secp256k1_fe_sqr(&n, &n); /* n = Malt^4 (1) */
723+
secp256k1_fe_cmov(&n, &m, degenerate); /* n = M^3 * Malt (5) */
724724
secp256k1_fe_sqr(&t, &rr_alt); /* t = Ralt^2 (1) */
725725
secp256k1_fe_mul(&r->z, &a->z, &m_alt); /* r->z = Z3 = Malt*Z (1) */
726726
secp256k1_fe_add(&t, &q); /* t = Ralt^2 + Q (2) */
727727
r->x = t; /* r->x = X3 = Ralt^2 + Q (2) */
728728
secp256k1_fe_mul_int(&t, 2); /* t = 2*X3 (4) */
729729
secp256k1_fe_add(&t, &q); /* t = 2*X3 + Q (5) */
730730
secp256k1_fe_mul(&t, &t, &rr_alt); /* t = Ralt*(2*X3 + Q) (1) */
731-
secp256k1_fe_add(&t, &n); /* t = Ralt*(2*X3 + Q) + M^3*Malt (3) */
732-
secp256k1_fe_negate(&r->y, &t, 3); /* r->y = -(Ralt*(2*X3 + Q) + M^3*Malt) (4) */
733-
secp256k1_fe_half(&r->y); /* r->y = Y3 = -(Ralt*(2*X3 + Q) + M^3*Malt)/2 (3) */
731+
secp256k1_fe_add(&t, &n); /* t = Ralt*(2*X3 + Q) + M^3*Malt (6) */
732+
secp256k1_fe_negate(&r->y, &t, 6); /* r->y = -(Ralt*(2*X3 + Q) + M^3*Malt) (7) */
733+
secp256k1_fe_half(&r->y); /* r->y = Y3 = -(Ralt*(2*X3 + Q) + M^3*Malt)/2 (4) */
734734

735735
/* In case a->infinity == 1, replace r with (b->x, b->y, 1). */
736736
secp256k1_fe_cmov(&r->x, &b->x, a->infinity);

0 commit comments

Comments
 (0)