Skip to content

Commit 3026daa

Browse files
committed
Merge pull request #302
03d4611 Add sage verification script for the group laws (Pieter Wuille)
2 parents a965937 + 03d4611 commit 3026daa

File tree

3 files changed

+892
-0
lines changed

3 files changed

+892
-0
lines changed

sage/group_prover.sage

Lines changed: 322 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,322 @@
1+
# This code supports verifying group implementations which have branches
2+
# or conditional statements (like cmovs), by allowing each execution path
3+
# to independently set assumptions on input or intermediary variables.
4+
#
5+
# The general approach is:
6+
# * A constraint is a tuple of two sets of of symbolic expressions:
7+
# the first of which are required to evaluate to zero, the second of which
8+
# are required to evaluate to nonzero.
9+
# - A constraint is said to be conflicting if any of its nonzero expressions
10+
# is in the ideal with basis the zero expressions (in other words: when the
11+
# zero expressions imply that one of the nonzero expressions are zero).
12+
# * There is a list of laws that describe the intended behaviour, including
13+
# laws for addition and doubling. Each law is called with the symbolic point
14+
# coordinates as arguments, and returns:
15+
# - A constraint describing the assumptions under which it is applicable,
16+
# called "assumeLaw"
17+
# - A constraint describing the requirements of the law, called "require"
18+
# * Implementations are transliterated into functions that operate as well on
19+
# algebraic input points, and are called once per combination of branches
20+
# exectured. Each execution returns:
21+
# - A constraint describing the assumptions this implementation requires
22+
# (such as Z1=1), called "assumeFormula"
23+
# - A constraint describing the assumptions this specific branch requires,
24+
# but which is by construction guaranteed to cover the entire space by
25+
# merging the results from all branches, called "assumeBranch"
26+
# - The result of the computation
27+
# * All combinations of laws with implementation branches are tried, and:
28+
# - If the combination of assumeLaw, assumeFormula, and assumeBranch results
29+
# in a conflict, it means this law does not apply to this branch, and it is
30+
# skipped.
31+
# - For others, we try to prove the require constraints hold, assuming the
32+
# information in assumeLaw + assumeFormula + assumeBranch, and if this does
33+
# not succeed, we fail.
34+
# + To prove an expression is zero, we check whether it belongs to the
35+
# ideal with the assumed zero expressions as basis. This test is exact.
36+
# + To prove an expression is nonzero, we check whether each of its
37+
# factors is contained in the set of nonzero assumptions' factors.
38+
# This test is not exact, so various combinations of original and
39+
# reduced expressions' factors are tried.
40+
# - If we succeed, we print out the assumptions from assumeFormula that
41+
# weren't implied by assumeLaw already. Those from assumeBranch are skipped,
42+
# as we assume that all constraints in it are complementary with each other.
43+
#
44+
# Based on the sage verification scripts used in the Explicit-Formulas Database
45+
# by Tanja Lange and others, see http://hyperelliptic.org/EFD
46+
47+
class fastfrac:
48+
"""Fractions over rings."""
49+
50+
def __init__(self,R,top,bot=1):
51+
"""Construct a fractional, given a ring, a numerator, and denominator."""
52+
self.R = R
53+
if parent(top) == ZZ or parent(top) == R:
54+
self.top = R(top)
55+
self.bot = R(bot)
56+
elif top.__class__ == fastfrac:
57+
self.top = top.top
58+
self.bot = top.bot * bot
59+
else:
60+
self.top = R(numerator(top))
61+
self.bot = R(denominator(top)) * bot
62+
63+
def iszero(self,I):
64+
"""Return whether this fraction is zero given an ideal."""
65+
return self.top in I and self.bot not in I
66+
67+
def reduce(self,assumeZero):
68+
zero = self.R.ideal(map(numerator, assumeZero))
69+
return fastfrac(self.R, zero.reduce(self.top)) / fastfrac(self.R, zero.reduce(self.bot))
70+
71+
def __add__(self,other):
72+
"""Add two fractions."""
73+
if parent(other) == ZZ:
74+
return fastfrac(self.R,self.top + self.bot * other,self.bot)
75+
if other.__class__ == fastfrac:
76+
return fastfrac(self.R,self.top * other.bot + self.bot * other.top,self.bot * other.bot)
77+
return NotImplemented
78+
79+
def __sub__(self,other):
80+
"""Subtract two fractions."""
81+
if parent(other) == ZZ:
82+
return fastfrac(self.R,self.top - self.bot * other,self.bot)
83+
if other.__class__ == fastfrac:
84+
return fastfrac(self.R,self.top * other.bot - self.bot * other.top,self.bot * other.bot)
85+
return NotImplemented
86+
87+
def __neg__(self):
88+
"""Return the negation of a fraction."""
89+
return fastfrac(self.R,-self.top,self.bot)
90+
91+
def __mul__(self,other):
92+
"""Multiply two fractions."""
93+
if parent(other) == ZZ:
94+
return fastfrac(self.R,self.top * other,self.bot)
95+
if other.__class__ == fastfrac:
96+
return fastfrac(self.R,self.top * other.top,self.bot * other.bot)
97+
return NotImplemented
98+
99+
def __rmul__(self,other):
100+
"""Multiply something else with a fraction."""
101+
return self.__mul__(other)
102+
103+
def __div__(self,other):
104+
"""Divide two fractions."""
105+
if parent(other) == ZZ:
106+
return fastfrac(self.R,self.top,self.bot * other)
107+
if other.__class__ == fastfrac:
108+
return fastfrac(self.R,self.top * other.bot,self.bot * other.top)
109+
return NotImplemented
110+
111+
def __pow__(self,other):
112+
"""Compute a power of a fraction."""
113+
if parent(other) == ZZ:
114+
if other < 0:
115+
# Negative powers require flipping top and bottom
116+
return fastfrac(self.R,self.bot ^ (-other),self.top ^ (-other))
117+
else:
118+
return fastfrac(self.R,self.top ^ other,self.bot ^ other)
119+
return NotImplemented
120+
121+
def __str__(self):
122+
return "fastfrac((" + str(self.top) + ") / (" + str(self.bot) + "))"
123+
def __repr__(self):
124+
return "%s" % self
125+
126+
def numerator(self):
127+
return self.top
128+
129+
class constraints:
130+
"""A set of constraints, consisting of zero and nonzero expressions.
131+
132+
Constraints can either be used to express knowledge or a requirement.
133+
134+
Both the fields zero and nonzero are maps from expressions to description
135+
strings. The expressions that are the keys in zero are required to be zero,
136+
and the expressions that are the keys in nonzero are required to be nonzero.
137+
138+
Note that (a != 0) and (b != 0) is the same as (a*b != 0), so all keys in
139+
nonzero could be multiplied into a single key. This is often much less
140+
efficient to work with though, so we keep them separate inside the
141+
constraints. This allows higher-level code to do fast checks on the individual
142+
nonzero elements, or combine them if needed for stronger checks.
143+
144+
We can't multiply the different zero elements, as it would suffice for one of
145+
the factors to be zero, instead of all of them. Instead, the zero elements are
146+
typically combined into an ideal first.
147+
"""
148+
149+
def __init__(self, **kwargs):
150+
if 'zero' in kwargs:
151+
self.zero = dict(kwargs['zero'])
152+
else:
153+
self.zero = dict()
154+
if 'nonzero' in kwargs:
155+
self.nonzero = dict(kwargs['nonzero'])
156+
else:
157+
self.nonzero = dict()
158+
159+
def negate(self):
160+
return constraints(zero=self.nonzero, nonzero=self.zero)
161+
162+
def __add__(self, other):
163+
zero = self.zero.copy()
164+
zero.update(other.zero)
165+
nonzero = self.nonzero.copy()
166+
nonzero.update(other.nonzero)
167+
return constraints(zero=zero, nonzero=nonzero)
168+
169+
def __str__(self):
170+
return "constraints(zero=%s,nonzero=%s)" % (self.zero, self.nonzero)
171+
172+
def __repr__(self):
173+
return "%s" % self
174+
175+
176+
def conflicts(R, con):
177+
"""Check whether any of the passed non-zero assumptions is implied by the zero assumptions"""
178+
zero = R.ideal(map(numerator, con.zero))
179+
if 1 in zero:
180+
return True
181+
# First a cheap check whether any of the individual nonzero terms conflict on
182+
# their own.
183+
for nonzero in con.nonzero:
184+
if nonzero.iszero(zero):
185+
return True
186+
# It can be the case that entries in the nonzero set do not individually
187+
# conflict with the zero set, but their combination does. For example, knowing
188+
# that either x or y is zero is equivalent to having x*y in the zero set.
189+
# Having x or y individually in the nonzero set is not a conflict, but both
190+
# simultaneously is, so that is the right thing to check for.
191+
if reduce(lambda a,b: a * b, con.nonzero, fastfrac(R, 1)).iszero(zero):
192+
return True
193+
return False
194+
195+
196+
def get_nonzero_set(R, assume):
197+
"""Calculate a simple set of nonzero expressions"""
198+
zero = R.ideal(map(numerator, assume.zero))
199+
nonzero = set()
200+
for nz in map(numerator, assume.nonzero):
201+
for (f,n) in nz.factor():
202+
nonzero.add(f)
203+
rnz = zero.reduce(nz)
204+
for (f,n) in rnz.factor():
205+
nonzero.add(f)
206+
return nonzero
207+
208+
209+
def prove_nonzero(R, exprs, assume):
210+
"""Check whether an expression is provably nonzero, given assumptions"""
211+
zero = R.ideal(map(numerator, assume.zero))
212+
nonzero = get_nonzero_set(R, assume)
213+
expl = set()
214+
ok = True
215+
for expr in exprs:
216+
if numerator(expr) in zero:
217+
return (False, [exprs[expr]])
218+
allexprs = reduce(lambda a,b: numerator(a)*numerator(b), exprs, 1)
219+
for (f, n) in allexprs.factor():
220+
if f not in nonzero:
221+
ok = False
222+
if ok:
223+
return (True, None)
224+
ok = True
225+
for (f, n) in zero.reduce(numerator(allexprs)).factor():
226+
if f not in nonzero:
227+
ok = False
228+
if ok:
229+
return (True, None)
230+
ok = True
231+
for expr in exprs:
232+
for (f,n) in numerator(expr).factor():
233+
if f not in nonzero:
234+
ok = False
235+
if ok:
236+
return (True, None)
237+
ok = True
238+
for expr in exprs:
239+
for (f,n) in zero.reduce(numerator(expr)).factor():
240+
if f not in nonzero:
241+
expl.add(exprs[expr])
242+
if expl:
243+
return (False, list(expl))
244+
else:
245+
return (True, None)
246+
247+
248+
def prove_zero(R, exprs, assume):
249+
"""Check whether all of the passed expressions are provably zero, given assumptions"""
250+
r, e = prove_nonzero(R, dict(map(lambda x: (fastfrac(R, x.bot, 1), exprs[x]), exprs)), assume)
251+
if not r:
252+
return (False, map(lambda x: "Possibly zero denominator: %s" % x, e))
253+
zero = R.ideal(map(numerator, assume.zero))
254+
nonzero = prod(x for x in assume.nonzero)
255+
expl = []
256+
for expr in exprs:
257+
if not expr.iszero(zero):
258+
expl.append(exprs[expr])
259+
if not expl:
260+
return (True, None)
261+
return (False, expl)
262+
263+
264+
def describe_extra(R, assume, assumeExtra):
265+
"""Describe what assumptions are added, given existing assumptions"""
266+
zerox = assume.zero.copy()
267+
zerox.update(assumeExtra.zero)
268+
zero = R.ideal(map(numerator, assume.zero))
269+
zeroextra = R.ideal(map(numerator, zerox))
270+
nonzero = get_nonzero_set(R, assume)
271+
ret = set()
272+
# Iterate over the extra zero expressions
273+
for base in assumeExtra.zero:
274+
if base not in zero:
275+
add = []
276+
for (f, n) in numerator(base).factor():
277+
if f not in nonzero:
278+
add += ["%s" % f]
279+
if add:
280+
ret.add((" * ".join(add)) + " = 0 [%s]" % assumeExtra.zero[base])
281+
# Iterate over the extra nonzero expressions
282+
for nz in assumeExtra.nonzero:
283+
nzr = zeroextra.reduce(numerator(nz))
284+
if nzr not in zeroextra:
285+
for (f,n) in nzr.factor():
286+
if zeroextra.reduce(f) not in nonzero:
287+
ret.add("%s != 0" % zeroextra.reduce(f))
288+
return ", ".join(x for x in ret)
289+
290+
291+
def check_symbolic(R, assumeLaw, assumeAssert, assumeBranch, require):
292+
"""Check a set of zero and nonzero requirements, given a set of zero and nonzero assumptions"""
293+
assume = assumeLaw + assumeAssert + assumeBranch
294+
295+
if conflicts(R, assume):
296+
# This formula does not apply
297+
return None
298+
299+
describe = describe_extra(R, assumeLaw + assumeBranch, assumeAssert)
300+
301+
ok, msg = prove_zero(R, require.zero, assume)
302+
if not ok:
303+
return "FAIL, %s fails (assuming %s)" % (str(msg), describe)
304+
305+
res, expl = prove_nonzero(R, require.nonzero, assume)
306+
if not res:
307+
return "FAIL, %s fails (assuming %s)" % (str(expl), describe)
308+
309+
if describe != "":
310+
return "OK (assuming %s)" % describe
311+
else:
312+
return "OK"
313+
314+
315+
def concrete_verify(c):
316+
for k in c.zero:
317+
if k != 0:
318+
return (False, c.zero[k])
319+
for k in c.nonzero:
320+
if k == 0:
321+
return (False, c.nonzero[k])
322+
return (True, None)

0 commit comments

Comments
 (0)