Skip to content

Commit 0a82084

Browse files
committed
Save _normalize_weak calls in group add methods
1 parent e70c08c commit 0a82084

File tree

1 file changed

+26
-24
lines changed

1 file changed

+26
-24
lines changed

src/group_impl.h

Lines changed: 26 additions & 24 deletions
Original file line numberDiff line numberDiff line change
@@ -211,6 +211,9 @@ static void secp256k1_ge_table_set_globalz(size_t len, secp256k1_ge *a, const se
211211
secp256k1_fe zs;
212212

213213
if (len > 0) {
214+
secp256k1_gej tmpa;
215+
secp256k1_fe_set_int(&tmpa.z, 1);
216+
214217
/* Ensure all y values are in weak normal form for fast negation of points */
215218
secp256k1_fe_normalize_weak(&a[i].y);
216219
VERIFY_GE(&a[i]);
@@ -219,7 +222,6 @@ static void secp256k1_ge_table_set_globalz(size_t len, secp256k1_ge *a, const se
219222

220223
/* Work our way backwards, using the z-ratios to scale the x/y values. */
221224
while (i > 0) {
222-
secp256k1_gej tmpa;
223225
if (i != len - 1) {
224226
secp256k1_fe_mul(&zs, &zs, &zr[i]);
225227
}
@@ -492,11 +494,11 @@ static void secp256k1_gej_add_ge_var(secp256k1_gej *r, const secp256k1_gej *a, c
492494
}
493495

494496
secp256k1_fe_sqr(&z12, &a->z);
495-
u1 = a->x; secp256k1_fe_normalize_weak(&u1);
497+
u1 = a->x;
496498
secp256k1_fe_mul(&u2, &b->x, &z12);
497-
s1 = a->y; secp256k1_fe_normalize_weak(&s1);
499+
s1 = a->y;
498500
secp256k1_fe_mul(&s2, &b->y, &z12); secp256k1_fe_mul(&s2, &s2, &a->z);
499-
secp256k1_fe_negate(&h, &u1, 1); secp256k1_fe_add(&h, &u2);
501+
secp256k1_fe_negate(&h, &u1, 6); secp256k1_fe_add(&h, &u2);
500502
secp256k1_fe_negate(&i, &s2, 1); secp256k1_fe_add(&i, &s1);
501503
if (secp256k1_fe_normalizes_to_zero_var(&h)) {
502504
if (secp256k1_fe_normalizes_to_zero_var(&i)) {
@@ -568,11 +570,11 @@ static void secp256k1_gej_add_zinv_var(secp256k1_gej *r, const secp256k1_gej *a,
568570
secp256k1_fe_mul(&az, &a->z, bzinv);
569571

570572
secp256k1_fe_sqr(&z12, &az);
571-
u1 = a->x; secp256k1_fe_normalize_weak(&u1);
573+
u1 = a->x;
572574
secp256k1_fe_mul(&u2, &b->x, &z12);
573-
s1 = a->y; secp256k1_fe_normalize_weak(&s1);
575+
s1 = a->y;
574576
secp256k1_fe_mul(&s2, &b->y, &z12); secp256k1_fe_mul(&s2, &s2, &az);
575-
secp256k1_fe_negate(&h, &u1, 1); secp256k1_fe_add(&h, &u2);
577+
secp256k1_fe_negate(&h, &u1, 6); secp256k1_fe_add(&h, &u2);
576578
secp256k1_fe_negate(&i, &s2, 1); secp256k1_fe_add(&i, &s1);
577579
if (secp256k1_fe_normalizes_to_zero_var(&h)) {
578580
if (secp256k1_fe_normalizes_to_zero_var(&i)) {
@@ -666,17 +668,17 @@ static void secp256k1_gej_add_ge(secp256k1_gej *r, const secp256k1_gej *a, const
666668
*/
667669

668670
secp256k1_fe_sqr(&zz, &a->z); /* z = Z1^2 */
669-
u1 = a->x; secp256k1_fe_normalize_weak(&u1); /* u1 = U1 = X1*Z2^2 (1) */
671+
u1 = a->x; /* u1 = U1 = X1*Z2^2 (6) */
670672
secp256k1_fe_mul(&u2, &b->x, &zz); /* u2 = U2 = X2*Z1^2 (1) */
671-
s1 = a->y; secp256k1_fe_normalize_weak(&s1); /* s1 = S1 = Y1*Z2^3 (1) */
673+
s1 = a->y; /* s1 = S1 = Y1*Z2^3 (4) */
672674
secp256k1_fe_mul(&s2, &b->y, &zz); /* s2 = Y2*Z1^2 (1) */
673675
secp256k1_fe_mul(&s2, &s2, &a->z); /* s2 = S2 = Y2*Z1^3 (1) */
674-
t = u1; secp256k1_fe_add(&t, &u2); /* t = T = U1+U2 (2) */
675-
m = s1; secp256k1_fe_add(&m, &s2); /* m = M = S1+S2 (2) */
676+
t = u1; secp256k1_fe_add(&t, &u2); /* t = T = U1+U2 (7) */
677+
m = s1; secp256k1_fe_add(&m, &s2); /* m = M = S1+S2 (5) */
676678
secp256k1_fe_sqr(&rr, &t); /* rr = T^2 (1) */
677-
secp256k1_fe_negate(&m_alt, &u2, 1); /* Malt = -X2*Z1^2 */
678-
secp256k1_fe_mul(&tt, &u1, &m_alt); /* tt = -U1*U2 (2) */
679-
secp256k1_fe_add(&rr, &tt); /* rr = R = T^2-U1*U2 (3) */
679+
secp256k1_fe_negate(&m_alt, &u2, 1); /* Malt = -X2*Z1^2 (2) */
680+
secp256k1_fe_mul(&tt, &u1, &m_alt); /* tt = -U1*U2 (1) */
681+
secp256k1_fe_add(&rr, &tt); /* rr = R = T^2-U1*U2 (2) */
680682
/** If lambda = R/M = 0/0 we have a problem (except in the "trivial"
681683
* case that Z = z1z2 = 0, and this is special-cased later on). */
682684
degenerate = secp256k1_fe_normalizes_to_zero(&m) &
@@ -687,24 +689,24 @@ static void secp256k1_gej_add_ge(secp256k1_gej *r, const secp256k1_gej *a, const
687689
* non-indeterminate expression for lambda is (y1 - y2)/(x1 - x2),
688690
* so we set R/M equal to this. */
689691
rr_alt = s1;
690-
secp256k1_fe_mul_int(&rr_alt, 2); /* rr = Y1*Z2^3 - Y2*Z1^3 (2) */
691-
secp256k1_fe_add(&m_alt, &u1); /* Malt = X1*Z2^2 - X2*Z1^2 */
692+
secp256k1_fe_mul_int(&rr_alt, 2); /* rr_alt = Y1*Z2^3 - Y2*Z1^3 (8) */
693+
secp256k1_fe_add(&m_alt, &u1); /* Malt = X1*Z2^2 - X2*Z1^2 (8) */
692694

693-
secp256k1_fe_cmov(&rr_alt, &rr, !degenerate);
694-
secp256k1_fe_cmov(&m_alt, &m, !degenerate);
695+
secp256k1_fe_cmov(&rr_alt, &rr, !degenerate); /* rr_alt (8) */
696+
secp256k1_fe_cmov(&m_alt, &m, !degenerate); /* m_alt (5) */
695697
/* Now Ralt / Malt = lambda and is guaranteed not to be 0/0.
696698
* From here on out Ralt and Malt represent the numerator
697699
* and denominator of lambda; R and M represent the explicit
698700
* expressions x1^2 + x2^2 + x1x2 and y1 + y2. */
699701
secp256k1_fe_sqr(&n, &m_alt); /* n = Malt^2 (1) */
700-
secp256k1_fe_negate(&q, &t, 2); /* q = -T (3) */
702+
secp256k1_fe_negate(&q, &t, 7); /* q = -T (8) */
701703
secp256k1_fe_mul(&q, &q, &n); /* q = Q = -T*Malt^2 (1) */
702704
/* These two lines use the observation that either M == Malt or M == 0,
703705
* so M^3 * Malt is either Malt^4 (which is computed by squaring), or
704706
* zero (which is "computed" by cmov). So the cost is one squaring
705707
* versus two multiplications. */
706-
secp256k1_fe_sqr(&n, &n);
707-
secp256k1_fe_cmov(&n, &m, degenerate); /* n = M^3 * Malt (2) */
708+
secp256k1_fe_sqr(&n, &n); /* n = Malt^4 (1) */
709+
secp256k1_fe_cmov(&n, &m, degenerate); /* n = M^3 * Malt (5) */
708710
secp256k1_fe_sqr(&t, &rr_alt); /* t = Ralt^2 (1) */
709711
secp256k1_fe_mul(&r->z, &a->z, &m_alt); /* r->z = Z3 = Malt*Z (1) */
710712
infinity = secp256k1_fe_normalizes_to_zero(&r->z) & ~a->infinity;
@@ -713,9 +715,9 @@ static void secp256k1_gej_add_ge(secp256k1_gej *r, const secp256k1_gej *a, const
713715
secp256k1_fe_mul_int(&t, 2); /* t = 2*X3 (4) */
714716
secp256k1_fe_add(&t, &q); /* t = 2*X3 + Q (5) */
715717
secp256k1_fe_mul(&t, &t, &rr_alt); /* t = Ralt*(2*X3 + Q) (1) */
716-
secp256k1_fe_add(&t, &n); /* t = Ralt*(2*X3 + Q) + M^3*Malt (3) */
717-
secp256k1_fe_negate(&r->y, &t, 3); /* r->y = -(Ralt*(2*X3 + Q) + M^3*Malt) (4) */
718-
secp256k1_fe_half(&r->y); /* r->y = Y3 = -(Ralt*(2*X3 + Q) + M^3*Malt)/2 (3) */
718+
secp256k1_fe_add(&t, &n); /* t = Ralt*(2*X3 + Q) + M^3*Malt (6) */
719+
secp256k1_fe_negate(&r->y, &t, 6); /* r->y = -(Ralt*(2*X3 + Q) + M^3*Malt) (7) */
720+
secp256k1_fe_half(&r->y); /* r->y = Y3 = -(Ralt*(2*X3 + Q) + M^3*Malt)/2 (4) */
719721

720722
/** In case a->infinity == 1, replace r with (b->x, b->y, 1). */
721723
secp256k1_fe_cmov(&r->x, &b->x, a->infinity);

0 commit comments

Comments
 (0)