Releases: biomass-dev/BioMASS.jl
Releases · biomass-dev/BioMASS.jl
v0.4.2
Updates
-
examples
- Renamed core functions
-
docs
- Fix example codes
-
Parameter estimation
-
Add new local search method:
"CMAES"
- The CMA Evolution Strategy is a stochastic method for derivative-free optimization of potentially non-linear, non-convex or noisy functions over continuous domains (Hansen 2016).
-
Fix search bounds in SciPyOptimize
-
v0.4.1
Update visualize
save_format
::String (default: "pdf")- Either "png" or "pdf", indicating whether to save figures as png or pdf format.
Update optimize
initial_threshold
::Float64 (default: 1e12)- Allowable error used to generate initial population. Default is 1e12 (numerically solvable).
v0.4.0 (January 2021)
- Add a Delay differential Equation (DDE) model
using BioMASS
dde_model = load_model("examples/nfkb_model");
visualize(dde_model, viz_type="original")
v0.3.4
v0.3.3
v0.3.2
Updates:
-
Add new local search method: "DE"
- using differential evolution with 'best2bin' strategy in local search phase
Example usage
using BioMASS
model = load_model("./examples/fos_model")
optimize(model, 1, max_generation=1000, allowable_error=0.35, local_search_method="DE")
v0.3.1
v0.3.0 (December 2020)
Updates:
- Documentation
New Features:
- Bifurcation analysis
v0.2.1
v0.2.0 (November 2020)
Updates:
-
Create visualize.jl
visualize(model, viz_type="best", show_all=true)
-
viz_type : String
"average"
:
The average of simulation results with parameter sets in "fitparam/"."best"
:
The best simulation result in "fitparam/"."original"
:
Simulation with the default parameters and initial values defined inset_model.jl
."n(=1,2,...)"
:
Use the parameter set in "fitparam/n/".
-
show_all : Bool
- Whether to show all simulation results.
-
stdev : Bool
- If True, the standard deviation of simulated values will be shown (only available for "average" visualization type).
-
-
Change Sim.normalization type from Bool to Dict:
normalization = Dict{String, Dict{}}() for observable in observables normalization[observable] = Dict( "timepoint" => nothing, "condition" => [] ) end
-
"timepoint"
: Union{Int, Nothing}- The time point at which simulated values are normalized. If nothing, the maximum value will be used for normalization.
-
"condition"
: Vector{Stirng}- The experimental conditions to use for normalization. If empty, all conditions defined int Sim.conditions will be used.
-