Skip to content

Releases: biomass-dev/BioMASS.jl

v0.4.2

05 Mar 01:19
0c0f0d1
Compare
Choose a tag to compare

Updates

  • examples

    • Renamed core functions
  • docs

    • Fix example codes
  • Parameter estimation

    • Add new local search method: "CMAES"

      • The CMA Evolution Strategy is a stochastic method for derivative-free optimization of potentially non-linear, non-convex or noisy functions over continuous domains (Hansen 2016).
    • Fix search bounds in SciPyOptimize

v0.4.1

13 Feb 05:10
6c3d267
Compare
Choose a tag to compare

Update visualize

  • save_format::String (default: "pdf")
    • Either "png" or "pdf", indicating whether to save figures as png or pdf format.

Update optimize

  • initial_threshold::Float64 (default: 1e12)
    • Allowable error used to generate initial population. Default is 1e12 (numerically solvable).

v0.4.0 (January 2021)

22 Jan 01:30
d73326a
Compare
Choose a tag to compare
  • Add a Delay differential Equation (DDE) model
using BioMASS

dde_model = load_model("examples/nfkb_model");

visualize(dde_model, viz_type="original")

v0.3.4

10 Jan 04:35
c3e3ba0
Compare
Choose a tag to compare
  • Add new function to visualize estimated parameter region
  • Allow users to modify the maximum number of iterations for the local search methods: "Powell" and "DE"

v0.3.3

03 Jan 06:16
dce5bfd
Compare
Choose a tag to compare
  • Update docs
  • Remove Random from deps

v0.3.2

24 Dec 01:09
fca601f
Compare
Choose a tag to compare

Updates:

  • Add new local search method: "DE"

    • using differential evolution with 'best2bin' strategy in local search phase

Example usage

using BioMASS

model = load_model("./examples/fos_model")

optimize(model, 1, max_generation=1000, allowable_error=0.35, local_search_method="DE")

v0.3.1

08 Dec 01:13
41be260
Compare
Choose a tag to compare

Updates:

  • Add new local search method: "powell"
    • Using modified Powell's method (scipy.optimize.minimize(method="Powell"))

v0.3.0 (December 2020)

01 Dec 00:52
efbdde3
Compare
Choose a tag to compare

Updates:

  • Documentation

New Features:

  • Bifurcation analysis

v0.2.1

19 Nov 01:17
f74bf69
Compare
Choose a tag to compare

Fix index in set_search_param.jl

v0.2.0 (November 2020)

16 Nov 08:56
b02cea0
Compare
Choose a tag to compare

Updates:

  • Create visualize.jl

    visualize(model, viz_type="best", show_all=true)
    • viz_type : String

      • "average":
        The average of simulation results with parameter sets in "fitparam/".
      • "best":
        The best simulation result in "fitparam/".
      • "original":
        Simulation with the default parameters and initial values defined in set_model.jl.
      • "n(=1,2,...)":
        Use the parameter set in "fitparam/n/".
    • show_all : Bool

      • Whether to show all simulation results.
    • stdev : Bool

      • If True, the standard deviation of simulated values will be shown (only available for "average" visualization type).
  • Change Sim.normalization type from Bool to Dict:

    normalization = Dict{String, Dict{}}()
    for observable in observables
        normalization[observable] = Dict(
            "timepoint" => nothing,
            "condition" => []
        )
    end
    • "timepoint" : Union{Int, Nothing}

      • The time point at which simulated values are normalized. If nothing, the maximum value will be used for normalization.
    • "condition" : Vector{Stirng}

      • The experimental conditions to use for normalization. If empty, all conditions defined int Sim.conditions will be used.