-
Notifications
You must be signed in to change notification settings - Fork 8.3k
/
Copy pathbridge_chatglm4.py
81 lines (66 loc) · 3.46 KB
/
bridge_chatglm4.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
model_name = "ChatGLM4"
cmd_to_install = """
`pip install -r request_llms/requirements_chatglm4.txt`
`pip install modelscope`
`modelscope download --model ZhipuAI/glm-4-9b-chat --local_dir ./THUDM/glm-4-9b-chat`
"""
from toolbox import get_conf, ProxyNetworkActivate
from .local_llm_class import LocalLLMHandle, get_local_llm_predict_fns
# ------------------------------------------------------------------------------------------------------------------------
# 🔌💻 Local Model
# ------------------------------------------------------------------------------------------------------------------------
class GetGLM4Handle(LocalLLMHandle):
def load_model_info(self):
# 🏃♂️🏃♂️🏃♂️ 子进程执行
self.model_name = model_name
self.cmd_to_install = cmd_to_install
def load_model_and_tokenizer(self):
# 🏃♂️🏃♂️🏃♂️ 子进程执行
import torch
from transformers import AutoModel, AutoModelForCausalLM, AutoTokenizer
import os
LOCAL_MODEL_PATH, device = get_conf("CHATGLM_LOCAL_MODEL_PATH", "LOCAL_MODEL_DEVICE")
model_path = LOCAL_MODEL_PATH
chatglm_tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
chatglm_model = AutoModelForCausalLM.from_pretrained(
model_path,
torch_dtype=torch.bfloat16,
low_cpu_mem_usage=True,
trust_remote_code=True,
device=device
).eval().to(device)
self._model = chatglm_model
self._tokenizer = chatglm_tokenizer
return self._model, self._tokenizer
def llm_stream_generator(self, **kwargs):
# 🏃♂️🏃♂️🏃♂️ 子进程执行
def adaptor(kwargs):
query = kwargs["query"]
max_length = kwargs["max_length"]
top_p = kwargs["top_p"]
temperature = kwargs["temperature"]
history = kwargs["history"]
return query, max_length, top_p, temperature, history
query, max_length, top_p, temperature, history = adaptor(kwargs)
inputs = self._tokenizer.apply_chat_template([{"role": "user", "content": query}],
add_generation_prompt=True,
tokenize=True,
return_tensors="pt",
return_dict=True
).to(self._model.device)
gen_kwargs = {"max_length": max_length, "do_sample": True, "top_k": top_p}
outputs = self._model.generate(**inputs, **gen_kwargs)
outputs = outputs[:, inputs['input_ids'].shape[1]:]
response = self._tokenizer.decode(outputs[0], skip_special_tokens=True)
yield response
def try_to_import_special_deps(self, **kwargs):
# import something that will raise error if the user does not install requirement_*.txt
# 🏃♂️🏃♂️🏃♂️ 主进程执行
import importlib
# importlib.import_module('modelscope')
# ------------------------------------------------------------------------------------------------------------------------
# 🔌💻 GPT-Academic Interface
# ------------------------------------------------------------------------------------------------------------------------
predict_no_ui_long_connection, predict = get_local_llm_predict_fns(
GetGLM4Handle, model_name, history_format="chatglm3"
)